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A CRITERION FOR THE NON-EXISTENCE
OF INVARIANT CIRCLES

by JOHN MATHER
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i. Introduction

This paper is based on joint work with A. Katok. Results similar to those obtained
here have been obtained by Aubry, Le Daeron and Andr^ [7]. Our method is inspired
by some remarks of G. D. Birkhoff on the billiard ball problem. We quote BirkhofTs
remarks in § 2. The minimax principle, described by Birkhoff, plays a fundamental
role in this paper. We discuss the minimax principle in § 3. Birkhoff's remarks
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154 J O H N M A T H E R

generalize in a straightforward way to area-preserving monotone twist mappings of the
annulus. This generalization is described in § 4. Our new results are described in
§§ 5-10- The rest of the paper consists of proofs of the results announced in §§ 5-10.

Our main result is a criterion for the existence of invariant circles for a certain
class of area preserving diffeomorphisms of the annulus, which we call < c monotone
twist maps59. Our motivation for studying this question comes from the version of
celestial mechanics studied by Poincar^, Levi-Civita, G. D. Birkhoff, Kolmogoroff,
Arnold, Moser, Sternberg, and others who are essentially pure mathematicians. The
studies of these mathematicians led to the consideration of invariant circles in area
preserving mappings. It is seen from these studies that it is of fundamental importance
to understand when invariant circles do and do not exist.

More recently, Percival used a variational principle to study the question of the
existence of invariant circles numerically [27], [28]. This reminded me of Birkhoff's
proof [9] of the existence of periodic orbits in the billiard ball problem. Of course,
one cannot prove the existence of invariant circles by such a method, because very
frequently invariant circles do not exist. The orbits {(^,j^)}^z which lie in the
invariant circles are called quasi-periodic^ because they have expansions in Fourier series

k^-sc,^,

where G^ denotes a vector in R2. Around March 1981, I realized that a simple modi-
fication of Birkhoff's argument [9], using PercivaFs Lagrangian, provides a proof of
the existence of quasi-periodic orbits in this sense. Since there may be no invariant
circle of frequency co, these quasi-periodic orbits do not necessarily lie on an invariant
circle. However, under the hypothesis which I considered (monotone twist hypothesis),
they necessarily exist and lie on a minimal set. The restriction of the original trans-
formation to this minimal set has dynamical properties very similar to an irrational
rotation of a circle. In fact, it is semi-conjugate to such a rotation by a continuous
mapping which is i — i except on a countable set. Moreover, if there is an invariant
circle, this minimal set is necessarily in the circle.

I proved these results by maximizing PercivaPs Lagrangian. Another proof was

later given by Katok, who showed that if co is an irrational number, and -n is a sequence
in

of rational numbers converging to co, then the Birkhoff periodic orbits of type Q^, ?„)
converge in the Hausdorff metric to an invariant set. This invariant set contains a
minimal set, which is precisely the minimal set (associated to the frequency co) which
I constructed. Still another proof has been given by Aubry, Le Daeron, and Andr^ [7].
It seems that this proof is the result of ideas Aubry had developed over several years
([I]? [2], [3L [4] ? bL [6], [8]). The proof of Aubry et al. is quite different from either
Katok's proof or my proof.

In March 1982, after long discussions with Katok, I discovered the results which
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A CRITERION FOR THE NON-EXISTENCE OF INVARIANT CIRCLES 155

I will describe in this paper. In the second half of my graduate course in the spring
of 1982, I lectured on these results. The proofs I give here follow the method I described
in my course, although I have made considerable efforts to improve the exposition.
I would like to thank the students in my course, T. Folk, D. Goroff, R. Llave, R. MacKay,
D. Nance and T. Pignataro, whose questions, comments, enthusiasm and willingness
to listen to some very obscure lectures greatly aided me in writing up this article.

The principle result of this paper gives a numerical invariant, for each irrational
number <o, which is always non-negative, and which vanishes if and only if there is
an invariant circle of frequency G). One way of defining this number is the following.
Let piq be a rational number, expressed in lowest terms. In the case of the billiard
ball problem, Birkhoff [9] showed the existence of at least two periodic orbits of type Q&, q).
One of these is obtained by maximizing the perimeter of a polygon; the other is obtained
by a minimax principle. Birkhoff's arguments generalize to the case of monotone
twist mappings of the annulus. In this more general setting, the perimeter of the polygon
is replaced by the " action " of a sequence of points in R. But, we still get a max orbit
of type Q&, q), with action Wp^^x? ^d a minimax orbit of type {p, q) with action
Wp^^ax- We set AW^g = Wp^^ - W^^^. For an irrational number <o,
we will prove AWp converges to a limit AW^ as the rational number piq (in lowest
terms) tends to co. Our principle result states that AW^ = o if and only if there
exists an invariant circle of frequency co.

While I was preparing this text, I became aware (in May 1982) ofAubry's work
(E1]? [2]? [3]) M ? D)L [6] 5 [7] -> E8])- Starting from a question in solid state physics
which is completely different from the question we started with, he has arrived at results
which are similar to ours. In particular, he defines a number which he calls the Peierls
energy barrier. A principal result in his paper [7] is that the Peierls energy barrier
vanishes if and only if there is an invariant circle (for the given frequency). This is
closely related to our result. The Peierls energy barrier is a lower bound for AW^.
We will discuss the Peierls energy barrier in our terminology in § 25.

The methods of the paper of Aubry, Le Daeron, and Andrd are very interesting
and quite different from our methods. They also have a number of results in their
preprint which we have not proved, and this paper contains a number of results which
they have not proved. Specifically, we have the following results: continuity results
for AW^ and semi-continuity results for the minimal sets whose existence was proved
in [21]. Moreover, we show the connection with the classical results described by
Birkhoff in [9].

Our setting is somewhat different from Aubry's. We consider diffeomorphisms
of a bounded annulus A == (R/Z) X [o, i]; Aubry considers diffeomorphisms of an
infinite annulus (R/Z) X R. The difference is that our annulus has finite area and
a boundary; Aubry's has infinite area and no boundary; moreover, in Aubry's set-up
the diffeomorphism twists arbitrarily much in the negative direction near the lower
end, and arbitrarily much in the positive direction near the upper end. However,
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these are only technical differences; they do not affect the main ideas. Nevertheless,
treating the case where there is a boundary does require a lengthy discussion of techni-
calities at several points.

One of my principle aims in developing this theory was to find a rigorous criterion
for existence or non-existence of invariant circles which would be possible to implement
numerically. I have had several very useful conversations with J. Greene, J. Percival
and R. MacKay, who have been in the forefront of numerical studies of invariant circles.
In particular, I learned the whole approach of studying invariant circles through
maximization-minimization in PercivaPs formulation) from Percival. The influence of
Greene may be seen in the use of approximating periodic orbits to study quasi-periodic
orbits, which follows an idea Greene has used for numerical purposes.

This idea of using approximating periodic orbits to study quasi-periodic orbits
also derives from Katok's ideas in his paper [17] and in many conversations I have
had with him. In [21], I used a method analogous to BirkhofPs to construct quasi-
periodic orbits. In [17], Katok showed that the existence theorem for quasi-periodic
orbits could be obtained from BirkhofPs existence theorem for periodic orbits and a
limiting procedure. He also suggested to me (in conversation) that there should be
something which corresponds to the Birkhoff minimax orbits for the quasi-periodic (as
opposed to periodic) case. His original idea was a second Cantor set, in the case the
invariant set which I constructed was a Cantor set and not a circle. This idea turned
out to be very valuable; following it, I found not a second Cantor set, but an orbit
homoclinic to the first Cantor set. This, in turn, led to the orbits I describe in this paper.

I believe it should be possible to develop numerical methods to compute AW^
to an arbitrary degree of precision, together with a rigorous estimate for the error. If
that were done, the main result of this paper would give a means of proving the non-
existence of invariant circles when they, in fact, do not exist. (Hence, the title of this
paper.) On the other hand, computing AW^ to arbitrary precision will never tell
whether it is zero or not, so the result in this paper does not provide a means of proving
the existence of invariant circles, when they do, in fact, exist.

Newman and Percival [26] also have a criterion (different from the above) for
proving non-existence of invariant circles. A rigorous proof of their criterion follows
easily from the work of Aubry, Le Daeron and Andrt [7].

2. The Periodic Orbits of Birkhoff in the Billiard Ball Problem

Since I got some of my basic ideas for this paper and some of the previous papers
I have written on this subject ([21], [22], [23], [24]) from considering BirkhofTs
description of the billiard ball problem, I will quote what he says at length [9, § 2]:

<c In order to see how the theorem ofPoincard and its generalization can be applied
to dynamical systems with two degrees of freedom, I propose to draw attention to a
special but highly typical system of this sort, namely that afforded by the motion of
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A CRITERION FOR THE NON-EXISTENCE OF INVARIANT CIRCLES 157

a billiard ball upon a convex billiard table (Fig. i). This example is very illuminating
for the following reason: Any dynamical system with two degrees of freedom is isomorphic
with the motion of a particle on a smooth surface rotating uniformly about a fixed axis
and carrying a conservative field of force with it. In particular if the surface is not
rotating and if the field of force is lacking, the paths of particles will be geodesies. If
the surface is conceived of as convex to begin with and then gradually flattened to the
form of a plane convex curve G, the ( billiard ball5 problem results. But in this problem,
the formal side, usually so formidable in dynamics, almost completely disappears, and
only the interesting qualitative questions need to be considered. If G happens to be
an ellipse an integrable system results, namely as a limiting case of the geodesies on an
ellipsoid treated by Jacobi.

<( In this problem one can arrive at the existence of certain periodic motions by
direct maximum-minimum methods. As of interest in itself I wish to show how this
can be done. Results which are being obtained by Morse (but not yet published)
indicated that the scope of these methods, already developed to some extent by Hadamard,
Poincar^, Whittaker, and myself, can further be extended. Thus the power of such
maximum-minimum considerations in the billiard ball problem is likely to prove typical
of the general case.

c( Any longest chord of the curve G (or boundary of the billiard table) when
traversed in both directions evidently yields one of the simplest periodic motions. The
billiard ball moving along this chord strikes the curved boundary at right angles and
recoils along it in the opposite direction. If we seek to vary this chord continuously,
while diminishing its length as little as possible, so as to finally to interchange its two
ends, there will be an intermediate position at least length which will be the chord C
where G is of least breadth. Detailed computation of the slightly perturbed motions
indicates that the first of these two periodic motions is unstable, while the second is
stable, i.e. with formal trigonometric series for the perturbations.

(< Next we ask for the triangle of maximum length inscribed in G. Evidently
at least one such triangle will exist, and can have no degenerate side of zero length.
At each of its vertices the tangent will, of course, make equal angles with the two sides
passing through the vertex. Hence a harmonic triangle is obtained which will correspond
to two distinct motions, one for each of the two possible senses of description.

(< Moreover if we seek to vary this triangle continuously, without changing the
order of the vertices and diminishing the perimeter as little as possible, so as finally
to advance the vertices cyclically, we discover a second harmonic triangle, also corres-
ponding to two periodic motions.

" In this way the existence of two harmonic n sided polygons which make k circuits
of the curve C (k less than n/2 and prime to n) can be proved. The [motion] corres-
ponding to the polygon of maximum type will be unstable, while the other of minimax
type may be stable or unstable. "
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3. The Minimax Principle

Here, we give a version of the minimax principle which is suited to our needs.
We begin by considering a G1 function H on a smooth, connected, compact

manifold SP. Since SK is compact, H has a maximum on 3£. We will suppose that
H takes its maximum value at at least two distinct points x° and x1. Intuitively, one
expects to find a cc pass ?? between two (( peaks 5? represented by x° and x1 (Fig. 2). If
one imagines a traveler traveling between two peaks who wishes to stay at as high an
altitude as possible, i.e. keep H as large as possible, it appears that he must travel through
a pass. This leads to the following definitions, which make sense when 9C is a compact,
Hausdorff topological space, which is connected and locally pathwise connected, H is
a continuous real valued function on Sf', and H takes its maximum value at at least
two points x° and x1.

Definition. — A path connecting two points x° and x1 is a continuous mapping
Y : [o, i] —^ SK such that Y(°) == xo ^d T(1) == x1'

Definition. — The minimax value of H associated to the two points x° and x1 is
sup min H(Y(^)), where y ranges over all paths connecting x° and x1, and t ranges over
the unit interval [o, i],

For any real number a, let {H .> a} == {x e 3£ : H[x) ̂  a}.

Proposition (3.1). — The minimax value of H associated to the two points x° and x1 is
max{ a: x° and x1 are in the same connected component of {H ̂  a}}.

The proof follows from our assumption that 3E is locally pathwise connected, by
means of elementary topological arguments. Note that the maximum of { a : x° and
x1 are in the same connected component of { H ^ a}} is actually achieved, as may
also be seen by an elementary topological argument based on the fact that SK is compact.
We omit these arguments. D

Note that there may be no path y connecting x° and x1 such that
min H(y(^)) = sup min H(y(^)),

even if H is a C°° function on a G00 manifold, although there is such a path if H is an
analytic function on an analytic manifold, by the Bruhat-Gartan Selection Lemma
([14], [i9L [20]).

Let H^^ax denote the minimax value of H associated to the two points x° and x1.

Definition. — A point y e{H = H^imax} wlu be said to be free (with respect
to (H, ^*, x°, x1)) if there exists of continuous mapping F of {H^H^y^x} mto

itself with the following properties:
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A CRITERION FOR THE NON-EXISTENCE OF INVARIANT CIRCLES 159

1) HoF^H,
2) HoF(j)>H(jO,
3) H o FM == H{x) => FM = x, for all ^ e{H ̂  H__,}.

Other points in {H = H^^x} wil1 be said to be bou^ (with respect to (H, X, A:°, A:1)).

Proposition (3.2). — There exist bound points in {H = H^y^x}*

Proo/'. — Suppose the contrary. Then for each y e{H = H™y^}, there
exists Fy == F with the properties listed above. Let

U, == {y e { H == H__,}: HF,(y) > H(V)}.

Since Uy is open and y eUy, the family of sets {Uy} forms an open cover of
{H == H î̂ }. Since this set is compact, the open cover {Vy} of {H == H^^}
has a finite subcover Uy^, ..., Vy^. Let

G = ^(1)0 • • • (̂n)-

Then HoG(j / )>H(jO, for all y e{H = H^imax}- Moreover, since A:° and .V1

maximize H, it follows from i) that H o ¥y{x°) == H{x°) = H(^) ==HoF^1), and
from 3) that Fy{x°) = x^ Fy{x1) = x\ for all y e{H == H^ ,̂}. Then G{x°) = ̂
and G(^) == x\

We have proved that G {H^ H^^}C {H> H^^J, G is continuous,
and G{x°) == x°, G(x1) == x1. But this is impossible because x° and x1 are in the same
connected component of {H^H^^}, but in different connected components of
{H>H^^ax}' This contradiction proves the proposition. D

Proposition (3.3). — If 3£ is a smooth manifold without boundary (in addition to being
compact^ connected^ and Hausdorjf) and H is a G1 function on SK^ then any hound point in
{H == H^om^x} ls a critical point of H, i.e. d¥L vanishes there.

Proof. — Let y e{H == H^^}. If dH(y) 4= o, then there is a C1 vector
field ^ supported in a small neighborhood ofy such that ^.H(j^) > o, S-H^ o? and
^.H = o only where ^ = o. Let exp E; denote the exponential of ^ (i.e. the time one
map of the flow generated by ^). Then F == exp ^ has the properties listed in the
definition of a free point, so y is free. D

Proposition (3.4). — If 3C is a smooth manifold with boundary^ H is a ^function on S£^
and for each y e < ,̂ there exists a tangent vector ^y pointing into the interior of SK such that
^y.H> o, then any hound point in {H == H^y^x} ts m ̂  interior of 9£ and is a critical
point of H.

Proof. — Same as for Proposition (3.3). D
To summarize, the minimax principal allows us, given two points which maximize

a G1 function, to find a third critical point, a sort of" pass " between the two < c peaks ".
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All this has been well known for a century or so (as indicated by Birkhoff in our quote
from his article). Nonetheless, because it forms the basis of our reasoning in what
follows, we felt it would be helpful to give an exposition of it.

4« Generalization of BirkhofPs Results
to Area-Preserving Twist Mappings of the Annulus

In [9, § 3], G. D. Birkhoff points out that the billiard ball problem is equivalent
to a dynamical system which may be described as follows: Let A == {{x, v) : x e G and
v is a unit vector at x directed towards the interior of G or tangent to 8C} (Fig. 3). Let
(;c', v ' ) be the pair, where x ' is the point in G where the ray starting at x and directed
in the direction of v intersects G, and v ' is the unit vector obtained by reflecting this
ray in the tangent to C at x\ Topologically A is an annulus, and we have a homeo-
morphismyof this annulus into itself, defined by f{x, v) = ( x ' y v ' ) . Periodic orbits in
the dynamical system generated by / correspond to harmonic polygons in Birkhoff's
sense (§ 2). Therefore, Birkhoff's argument proves the existence of periodic orbits in
the billiard ball problem.

Birkhoff's argument generalizes without any difficulty to a class of mappings of
the annulus which we call area-preserving monotone twist homeomorphisms. To
describe the condition which we impose, we consider not the annulus A, but its universal
cover A, which we represent as {(A:,j) eR2 : o <jy <_ i}. We consider a homeo-
morphism f: A ->A. We suppose that the representation of A as the universal cover
of A is chosen so that the translation by the unit, T(^,j^) = {x + i,j0, is a generator
of the group of Deck transformations. In other words, A = A/T. We suppose that
f is the lifting of a homeomorphism of A, i.e. fT = Tf. We suppose that f is area-
preserving (for the usual area in the plane), orientation preserving, maps each boundary
component of A into itself, and satisfies the following monotone twist condition:

^/(^jO > ^/(^ z)^ when y > ̂
where TCI : A = R x [o, i] -> R

denotes the projection on the first factor.
For A; eR, we let f^x) == ̂ f{x, o), f^x) == n^f{x, i). We let

B == { {x, x ' ) e R2 :f,{x) ̂  x- <_ f^x)}.

We may associate to f a real-valued continuous function A, defined on B, such that h
is G1 in the interior of B, and

/ _8h(^xf)

(4.1) /(^)==(^y)o

160

8x
8h{x, x ' )
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For a convenience, we will assume throughout this paper that f is C1 and

^ ^x/(^)) ̂  ,
(4 7 ^
Then h is G2 and

(4-3) ^12 > o

on the interior of B, where
fflh

h^x') = =^^ (^').

Physicists call A a generating function for /. Obviously, A uniquely determines /.
Conversely, / determines h up to an additive constant. The class of area preserving
monotone twist mappings is precisely the class of mappings which can be defined by
a generating function in this way. BirkhofPs reasoning, quoted in § 2, generalizes
without any difficulty to this class of mappings, as we will explain below.

In the case of the billiard ball problem,/is area preserving for the area form ds du,
where ds is the element of arc-length on G and u == cos 9, where 9 is the angle which
the inward pointing vector v makes with the tangent to G. In this case, / is obviously
a monotone twist map. Moreover h{x, x ' ) is the Euclidean planar distance between x
and A:', for all A*, x ' e G.

Next, we outline how Birkhoff^ arguments generalize to monotone twist mappings.
Here, and in the sequel, we let p and q be relatively prime integers, with q > o. We
will also suppose that pfq lies between the rotation numbers off^ and/,, i.e.,

P(/o)<^<P(/i).

We let SKy ̂  denote the set of all bi-infinite sequences x = ( . . . , x^y . . .) such that
(^, A-^i) eB, ̂  == x, +A tor all i eZ, and

(4-4) ^ +J ̂  ̂  +f <= pi + q j ^ p i ' + qj\

for all tj, i ' J ' e Z.
We provide R00 with the product topology, and its subset S^ ̂  with the induced

topology. The mapping ( . . . , x^ . . . ) \-> (^, ..., ^_i) embeds ^ ^ as a subspace
of R3.

We let T^R00-^00 be defined by T°°(..., ̂ , . . . ) = = ( . . . , x, + i, . . .).
Then SKy ̂  is invariant under T°°. The quotient space SKy ̂ /T°° is compact, in view
of the fact that f^{xo) <_ x^ ^/i^o)? ^ x = = ( • • • ? x^ • • •) e<^,^ an^ i> o.

For A:e^g , we define

W^^YA^,^).
i= 0

This is the analogue, for the discrete dynamical system generated by/, of what physicists
call the (< action " of a periodic orbit of a continuous dynamical system. Accordingly,
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we call W(A?) the action of x. In the case of the billiard ball problem, W(;v) is the
perimeter of the polygon which corresponds to x.

Using W, it is possible to define Birkhoff max and minimax orbits of^just as we
did for the billiard ball problem. To do this it is convenient to introduce the following
notation. We let 3E denote the set of bi-infinite sequences ( . . . , x^ . . . ) eR°° such
that (A:,, ^4.1) eB. An element A : = = ( . . . , ^ , . . . ) e ^ will be said to be an equi-
librium sequence if
(4.5) h^x,_^ x,) + h^x,, ̂ i) = o,

for all t e Z. Here, and in the sequel, we use the notation

A(..n -^xf) h (x x-} - ̂ xf)w x ) - ~^r~' w x ) ~ ~sx~9

Using the fact that A is a generating function for^, we may set up a i — i corres-
pondence between equilibrium sequences and orbits ofy, as follows: Let ( . . . , x^ . . . )
be an equilibrium sequence. Set

.^==?,^1).

From (4.1) and (4.5)5 it follows easily that

f^Vi) = (^-(-l^i+l).

so ( . . . , (x^y^ . . .) is an orbit of f. Conversely, if ( . . . , (A*,,J^), . . . ) is an orbit
ofy, it follows easily from (4.1) that (. .., ̂ , . . . ) is an equilibrium sequence.

Clearly W o T°° == W. Hence W induces a function on ^^/T°°, which we
continue to denote by the same letter. Obviously, W is continuous (whether considered
as a function on Sip ̂  or on SKy ̂ /T°°). Since W is a continuous function on the compact
space Sp ,g/T°°) it has a maximum value. Therefore, it also has a maximum value
on ̂ . '

Proposition (4.1). — Any point in SKp q where W takes its maximum is an equilibrium
sequence.

This will be proved in § 11.
Let x = ( . . . , ̂ , . . . ) e3Kp ̂  maximize W. Since it is an equilibrium sequence,

there is a corresponding orbit ( . . . , (^,J^), . . . ) off' We will call this orbit a Birkhoff
max orbit of type {p, q). Its projection on A is obviously a periodic orbit of period q.

We will give a somewhat involved topological description of the Birkhoff minimax
orbit (s), following the ideas discussed in §§ 2 and 3. First, we choose x = Xp ̂  ̂ ax e^p,g
which maximize W. We define x^. e«^g by setting

(^+)t == ^+^ +J*05

where pi^ + ?Jo ls tlle minimum positive element of the set {pi + qj : i,j e Z}. We set

^W == {^ ^ ̂  :̂  A <. (^)o all i e Z}.
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We let Wp^ ̂ minimax denote the minimax value of W | S^p^x) associated to the
points x and x^..

Clearly, SCp^x) is a compact, Hausdorff topological space, which is connected
and locally pathwise connected, W is a continuous real valued function on SK (^),
and W takes its maximum value on ^q{x) at x and ̂ , which are distinct points. So,
the definition of bound points (§ 3) applies. By Proposition (3.2)3 there exist bound
points in

^,^)^{W-W^^,^^}.

Proposition (4.2). — Any bound point in STp^x) n{W == W^^^ax} is an equi-
librium sequence.

Here, we mean bound with respect to (W, 3Ky^{x)^ x, x^.), Proposition (4.2)
will be proved in § 12.

Let x ' = = ( . . . , x[, . . . ) be a bound point in ^(x) n { W = W^^^}.
Since it is an equilibrium sequence, there is a corresponding orbit ( . . . , (^ojO, .. .)
ofy. We will call this orbit a Birkhoff minimax orbit of type (^, q). Its projection
on A is obviously a periodic orbit of period q.

Proposition (4.3). — If x, x-^eSp^ both maximize W over Sp^q, then
W == Wp,q, x, minimax P» <I, ̂ (1)» minimax *

This will be proved in § 19.
We will write Wp^^n^ for Wy^^^x^ where x is any element of ^q

which maximizes W. The above proposition says this is well defined. We will also
write Wp ^ ^x ^or t^le maximum of W over ^g. We set

AW = W — WP»9 ' p,q',max • p, q, mimmax *

5. The Necessary and Sufficient Conditions
for the Existence of Invariant Circles

In the last section, we defined AWp g to be the difference of the action of a
Birkhoff max orbit of type (^, q) and a Birkhoff minimax orbit of type (p, q).

Proposition (5.1). — Consider an irrational number <o satisfying p(/o) ̂  0) ̂  9{fi)9

Then AWy/^ converges to a limit as pjq tends to <o.

We denote the limit by AW^. In other words,

AW, == lim AW.,,.P / q 'p/^-xo

Proposition (5.1) will be proved in § 24.
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Proposition (5.2). — Consider an irrational number co satisfying p(/o) < 0) < p(/i)-
TA^ m^y an/invariant circle of rotation number (or frequency) <o if and only if AW^ = o.

This will be proved in § 20, for the direct definition of AW^ given in § 6.
Note that nothing is said about whether/is topologically transitive on this circle.
For our proof, we will give a direct definition of AW^ in § 6. Our direct definition

is vaguely similar to the definition given in [7]. However, what Aubry calls the Peierls
energy barrier is not the same as our AW^. It is a lower bound for AW^. In [7]
Aubry, Le Daeron, and Andrt prove a version of our Proposition (5.2), where AW^
is replaced by the Peierls energy barrier. They do not have the analogue of our
Proposition (5.1) in [7].

Propositions (5.1) and (5.2) were suggested to me by lengthy conversations I had
with A. Katok, when I was in Maryland in January 1982, and previously. My existence
theorem for quasi-periodic orbits was suggested by BirkhofPs method of finding periodic
orbits in the billiard ball problem. But, I had forgotten that Birhoff had constructed
periodic orbits also by a minimax principle. Katok reminded me of this and suggested
finding a second invariant Cantor set by means of a minimax principle. We played
around with this idea quite a bit. A couple of months after I came home from Maryland,
I realized that the ideas that Katok had suggested lead, not to a second invariant Cantor
set, but to an orbit which is homoclinic to the original Cantor set. This orbit will be
described in § 7.

6. Direct Definition of AW<,

To give the direct definition of AW^, we have to recall some features of the proof
of the existence of quasi-periodic orbits which we gave in [21].

Let GO be an irrational number, p(/o) < <o < p(/i). In [21], we set

Y^ = = { < p : R - > R : < p i s weakly order preserving, <p(^ + i) = y(^) + i?
(<p(^), 9(^ + (o)) eB, for all t eR, and <p is left continuous}.

It will be convenient to also introduce here the following subset of Y^ :

^ = = { ? e Y ^ : s u p { j : 9 ( J ) < o}==o}.

WARNING: This differs from the set which we called X^ in [21].
The advantage of introducing this set is that for each 9 e Y^, there is a unique

a == <z((p) such that yT^ e X^. Explicitly,

0(9) ==sup{s:^(s)< o}.

This provides us with a representation of Y^ as a product:

(6.1) Y,=X,xR,
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where we set up the identification

(6-2) 9 = (<p1o, a), where a = a(<p).

Here T,.: R -^ R is translation by a. In other words, T,(f) = f + a. For the
topology on Y, which we introduced in [21], (6.1) cannot be a topological product;
the projection on R associated to (6. i) is not continuous, and X, x o is not closed
in Y^. Nevertheless, it will be useful to give X^ the quotient topology coming from
the topology on Y^ defined in [21] via the projection of Y^ on X^ associated to (6.1).

In [22], we defined an isometry I : Y, ->Y,; we have X, == I(XJ, and the
topology we have introduced here on X^ corresponds via I to the topology we introduced
in [22] on X,;. Thus, the discussion of [22] applies; in particular, we see that X is
compact. More directly, the set which we called X, in [21] maps surjectively and
continuously onto the set we call X, here. Since the former is compact, so is the latter.

In [21], we denned

FJy) = J^((p(<), <p(f + o))) dt.

This is Percival's Lagrangian. In [21], we showed that F, o T,, == F^ and F is
continuous on Y,. It follows that F, is continuous on X,. Since xj is complct,
there is an element of it which maximizes F^. We denote this element by y^. In [21 ],
we proved that there is only one element which maximizes F^ | X^.

For y e Y^ and t e R, we define y(f —), y(f +) e X by

W —). ̂  ?(< + w —), y(f +). = y(f + w +).

Note that $(( —) = y(<) (with the obvious meaning of the latter), since 9 is left-
continuous. In [21], we proved that yj< -) and yj< +) are equilibrium sequences.

Since $J< —) and $Jf +) are equilibrium sequences, there are orbits of /
associated to them. Explicitly, we let

Ut±)i == Ai(y^±),, y<^±).+i).
Then (. . . , (yjf ±)., ^(f±)<), . . .) is an orbit of/. We will denote the union of
all such orbits by M^. (This is the same as the set which we denoted M, in [21].)
Then M<, is a closed set, invariant for both/and T. The image of M^ in A under
the covering mappings A ^A is the minimal set for/mentioned in the introduction
(" ... under the hypothesis I considered (monotone twist hypothesis), [the quasi-periodic
orbits whose existence I proved] necessarily exist and lie on a minimal set"),

We showed [21] that <?„ is strictly order preserving and ^ : M^ -^ R is injective.
In Aubry's terminology, ^ M^ is the union of all ground states of mean atomic dis-
tance (0.

For f e R , we let ^, denote the set of all x =( . . . , x,, . . . ) e 3£ which
satisfy

9<^-)<^.S<pJf+)..
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We topologize SK^ with the topology induced by the product topology on R°°. Note that
SK^ ( is compact, by the Tychonoff product theorem. We set x^ = x°{t)i == 9,^ —)^,
^ ̂  ̂ )» = <Po^ +)»• For x == ( . . . ,^ , . . . ) ^ = = ( . . . , A:,, . . . ) e^, we set

G,W = S [A(^,^)-^,^,,)].
1= — 00

Lemma (6.1). — The sum on the right side of the above equation is uniformly {over 3t'^ ^
absolutely convergent,

This will be proved in § 13.
Consequently, G, is continuous on 3£^ ^

Lemma (6.2). —For all x e^(, G<oW <. o. Moreover, G^{x°) = G^{x1) == o.

The statement that G,(^°) = o is obvious from the definitions. The other
statements will be proved in § 14.

Now we are in the situation considered in § 3, if t is a point of discontinuity of 9,.
In other words, SC^ ^ is a compact, Hausdorff space, which is connected and locally
pathwise connected, G, is a continuous function on SC^ ^ ^d G^ takes its maximum
value at x9 and x1. Clearly, x0 4= x1, when t is a point of discontinuity of <p^. (When
t is a point of continuity of <p^, then 3£^ ^ consists of just one point, in view of the fact,
which we proved in [21], that if t is a point of continuity of 9^ then so is t + (^, for
all i e Z. Obviously x° == x1, in this case.)

Definition. — When t is a point of discontinuity of 9^, we let AW^ , denote the
negative of the minimax value of G^ : ̂  ^ -> R associated to x^ and x1. When t
is a point of continuity of <p^, we let AW^ ̂  == o.

Obviously, AW^ , = AW^ (. when t ' == ^ + coi +j, where z,j e Z.

Definition. — We will say that two points t, t ' e R are (^"independent if

< '+ ^+o i+J ,

for all i,j e Z.

Lemma (6.3). — Let 1 be a maximal ^-independent set of points of discontinuity of 9^.
We have

S AW, , < oo.
< e i

This will be proved in § 17.
We set

AW<, == max AW,to.C< G H

By the preceding discussion, this is finite and non-negative. The statement that this
agrees with the previous definition amounts to the assertion:
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Proposition (6.4). — AW,, = lim AW,,.
p/q-> oo t ' 1 y

This will be proved in § 24. It obviously implies Proposition (5.1).
Note that this implies that AW,, is continuous as a function of (o at all irrational

points (d. On the other hand, it is not necessarily continuous at rational points.

Example. — In the billiard ball problem in the ellipse, AW^ > o, when <o = J-
T 2

AW^ == o, when co + ^. This can be seen from the discussion of the billiard ball

problem in the ellipse given in [29, p. 86].

Consider an invariant circle for./: We will say that such an invariant circle is
transitive if the restriction of/to it is topologically transitive; otherwise, we will say it
is intransitive. For area preserving monotone twist mappings/of high differentiability
class, it is an unsolved problem as to whether intransitive circles of irrational rotation
number which wind once around the annulus exist. On the other hand, M. R. Herman
has constructed [16] mappings/of class G3-* which are monotone twist diffeomorphisms
in our sense, and have intransitive circles of irrational rotation number which wind
once around the annulus.

The necessary and sufficient condition for there to be a transitive circle of fre-
quency o is that ̂  be continuous. For, if <^ is continuous, M^ is homeomorphic
to R, and its image in the annulus A under the covering mapping is a circle. Conversely,
if there is an invariant circle, Birkhoff's theorem [10], [11] implies that it is the graph
of a function. Its lifting to the universal cover A of the annulus is a curve which
separates A into two parts. From the monotone twist hypothesis, it follows that the
points in the lower part advance slower than the rate <o, and points in the upper part
advance faster. Using this idea, one proves easily that M^ cannot be in the lower or
upper part, so it must be in the curve itself. Since the circle is assumed to be transitive,
M^ must be the whole curve, i.e. <p must be continuous.

7. The Minimax Orbits of Irrational Frequencies

Let P(/o) < to < p(/i), suppose to is irrational, and suppose ( is a point of dis-
continuity of <p^.

Proposition (7.1). — Let xelT^ and suppose G^x) = - AW,,. If x is
bound with respect to (G^, ̂ ,, x», x1), then x is an equilibrium sequence.

According to Proposition (3.2) such bound points exist.
Since x = (. ..,x,, ...) is an equilibrium sequence, there is associated an

orbit (... , (;v,,j>,), . . .) of/. We will call this a minimax orbit of frequency co associated
to a point t of discontinuity of ^. It is easily seen that the projection of this orbit
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on the annulus is homoclinic to the Cantor set M^/T, i.e. it approaches the Cantor
set under both forward and backward iteration.

Proposition (7.1) was suggested to me by Katok's idea that there should be an
analogue for irrational frequencies of the Birkhoff minimax orbits of type {p, q). Ori-
ginally, he thought one might find a second Cantor set, but I observed that his idea
leads to an orbit homoclinic to the Cantor set. Proposition (7.1) led to the other results
in this paper.

Proposition (7.1) will be proved in § 18.

8. Limit Infinum and Limit Supremum of Subsets

In the next section, we will define an / and T-invariant set M^ which contains M^
and whose projection onto R is injective. The principal results which we state in that
section can be stated briefly, as follows: i) M^ is an upper semi-continuous function
of f and co, at irrational co. 2) M^ if a lower semi-continuous function ofy and co, at
irrational o.

Some care in formulating these results is required, because there are various
inequivalent notions of semi-continuity for set-valued functions. These notions are
surveyed in [13], [25] and the references there.

For definitions of convergence, the notion due to H. Cartan [15] of filter is conve-
nient (cf. [12]). A filter on a set X is a non-empty collection ^ of subsets of X such
that: i) The intersection of any finite family of members of ^ is a member ofe^, 2) any
subset of X which contains a member of ^ is itself a member of ̂ , and 3) the empty
set is not a member of ^/.

Examples. — If X is a topological space and XQ e X, the collection of neighborhoods
of XQ in X is a filter on X, called the filter a/neighborhoods of XQ in X. It XQ is not isolated
in X, then the collection of sets N\^o, where N is a neighborhood of XQ in X, is a filter
on X\^o, called the filter of punctured neighborhoods of XQ.

Definition. — Let X be a set with a filter ^ and Y a topological space. Let
/: X -> Y be a mapping. We say / converges toy over ^ if for every neighborhood ofj,
there is an element of ^ whose image under f lies in the given neighborhood. We
will express this notion also by writing

lim/=j or ^/W ==V'

In the two examples above, the expression \imf=y is equivalent to the usual
expressions lim f(x) = y and lim f(x) = y, respectively.

X-fXQ ' ' X-^X^X^XQ v / - * •

Definition. —Let ^ be a filter on a set X. Let Y be a topological space. For
each x e X, let Z^ be a subset of Y. We define
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lim sup Z = lim sup Z^ = {y e Y : for any neighborhood N o f j ^
^/ a?,ĵ

and any U e j^, there exists ^ e U such that Z^ n N =j= 0 },

lim infZ = lim infZ^ == [y e Y : for any neighborhood N ofy in Y,

there exists U e j^, such that for any x e U, we have Z^ n N =(= 0 }.

Obviously, lim sup Z and lim inf Z are both closed subsets of Y.

For us, the following are the convenient definitions of upper and lower semi-
continuity.

Definition. — Let X be a topological space. Let x -> Z^ be a mapping of X
into the set of subsets of a second topological space. This mapping will be said to be
upper semi-continuous at XQ e X if

lim^sup Z^ == Z^o).

Note that we necessarily have the inclusion 3 and that upper semi-continuity
at XQ implies that Z^ is closed.

Definition. — The mapping x -> Z^ will be said to be lower semi-continuous at
XQEX if

liminfZ^ == Z^o).
X-*'Xo

Note that we necessarily have the inclusion lim inf Z^. C Z^ and lower semi-
continuity at XQ implies Z^ is closed.

9« Semi-Continuity Properties

Suppose co is irrational and p(/o) < (0 < p(/i)- Let t be a point of discontinuity
of ?<o.

Proposition (9.1). — Suppose x ==( . . . , x^ ...) e^< and G^(x) = o. TA^ x
is an equilibrium sequence.

This will be proved in § 15.
We define M^, to be the set of all (x^^), where x ranges over G'^o) n St^,

i ranges over all integers, and y^ == h^x^ A",+i). We let

M , = M , u U M ^
<

where t ranges over all points of discontinuity of y^.
By Proposition (9.1)5 M^ is invariant under/. Obviously, it is invariant under T.
Now suppose co is rational, say co == pfq in lowest terms. In this case, we define M^

to be the union of all Birkhoff max orbits of type {p, q).
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In this section, we will want to state some semi-continuity results with respect
to variation of/as well as G). For this purpose, we need to introduce the set ̂ rl consisting
of all area, orientation, and boundary component preserving C1 diffeomorphisms
/: A -> A such that /T = T/ and ^i/(^,j0)/^ > o, provided with the G1 topology.
We call y^ the space of area-preserving monotone twist diffeomorphisms.

We will indicate the dependence on / of various quantities which we introduced
above by means of a subscript, e.g. M^, M^, Y^, X^, F^, Ap etc.

The domain Q of the mapping (/, o) -> My'^ is the set of pairs (/, <x)) such
that f e y1 and p(/o) < <*> < p(/i)- ^e provide Q with the topology induced from
the topology on ^ X R.

Proposition (9.2). — The mapping (/, co) -> My^ is upper semi-continuous at (/, <o)
if co is irrational.

This will be proved in § 23.
We will denote by (/, T) the action of Z2 on A generated by / and T. By an

(/, T)-orbit, we mean an orbit of this action. If (9 is an orbit under/, obviously U T1 (9
is an (/, T)-orbit. If (9 is a max (resp. minimax) Birkhoff orbit of type (p, q), we will
call U T' 0 a max (resp. minimax} (/, T)-Birkhoff orbit of type {p, q). For generic /e ̂ rl,
there is only one max (resp. minimax) (/, T)-BirkhofF orbit of type {p, q), although
in general there may be more than one.

Proposition (9.3). — For each /e^'1, and each rational number p\q satisfying
P(/o) <^/?< P(/i). let ^.p/q denote one °f the max ̂  ̂ 'Birkhoff orbits of type {?, q).
Then the function (/, (x)) -> My^ is defined on all of 2. It is lower semi-continuous at all
points (/, o>) where there is no choice in the definition of M^ ^, i.e. whenever co is irrational or
<o === pfq and there is only one max Birkhoff orbit of type {p, q).

This will be proved in § 21, where we will also discuss some questions concerning
convergence in measure.

Proposition (9.4). — ^^,o> ts continuous as a function of (/, o) e ̂ , at any point
(/, co) e Q where co is irrational.

This will be proved in § 24. It obviously implies Propositions (6.4) and (5.1).

10. Order Properties

Let (/, co) e Q. Let M be a closed subset of A which is invariant under/and T.
We will say that M is /-monotone (for projection on the first factor) if TT^ : M -> R
is injective, and for [x,y) e M, { x ' . y ' ) e M, we have

x < x ' => TV^.j) < 7rJ^',y) and ^/-^jO < ̂ /-V^').

(Recall that ^: A == R x [o, i] -> R is the projection on the first factor.)
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Proposition (10.1). — M^ is f-monotone (for projection on the first factor).

This will be proved in § 16.
In Aubry's terminology, n^M^ is the union of all m.e. states of atomic mean

distance <o. This assertion follows from Aubry's results (but not from ours). Aubry's
Fundamental Lemma is the basic step in proving such a result in his approach. Propo-
sition (10. i) can also be easily proved from Aubry's results. Indeed, his Fundamental
Lemma goes further in one direction than anything which we have done. He does
not assume any order property on m.e. states, but proves they have an order property
which corresponds to Proposition (10.1), as a consequence of his Fundamental Lemma.
In contrast, the fact that M^ is monotone is an immediate consequence of our definition
of it.

ii« Proof of Proposition (4.1)

For the proof, it is convenient to introduce the following definition.

Definition. — By the boundary SSp^ of S y q , we mean {x e^q: (^,, ^4.1) e <®
for some i, or (^4.)^ == x^ for some i}.

It is not difficult to show that SKp ̂  is a ^-dimensional topological manifold with
boundary, and <^p,g is its boundary in this sense. Indeed for x e S E y , let cp^ e Y^
(where co ==j&/?) be the step function associated to x, and let ^= I(<pa;) eY^ (in
the notation of [22]). The family {^ : x eSy ̂ } is a family of step functions, which
forms a convex, ^-dimensional set. The fact that SSKp^q is the boundary of Sp in
the sense of manifold with boundary follows easily from this representation of it. How-
ever, we will not need to use this fact.

Likewise, it is not difficult to show that ̂  ̂  is the point-set boundary of Sp g,
when the latter is considered as the subspace of the affine space of all sequences
x == (. . .,^, .. .) such that x^^x.+p.

Now suppose that x maximizes W over SC .

Step i. — x ^ SSp^q- It x e 8Sy ̂ , we have one of two possibilities: {x^ x^^) e SB
or {x^.)i == x^ for some i. In the case that (^,A?^i) e 3B, we have x^^ ==^(^)
or ^+i=/i(^)- Suppose ̂  ==/o(^ tor some i.

We cannot have x^ i ==,/o(^), for all large i, since this would imply

lim ^==p(/,),n->±oo n rwo /3

whereas lim ^ P
n->±oo fl d
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by the hypothesis that x e SCy ̂ . (Recall that we assumed p(/o) < - < p(/i).) Hence

a
there exists i such that x^ ==fo{x^_^), but Xi+i^fo^). Then —A(^_^ , ^) == o

a ^
and — A(^, ^4.1) > o, so we have

ox^

8
("•«) .-[A(^-i,^) +A(^,^4.i)]> o.ox,

In the case {x^)^> x^ we may replace x with A:' e X » n for which W(A:') > W(;v),
by increasing x^ slightly.

In the case (^4.), = ^, we have /o((^+)t-i) ^/o(^-i) = ^ == (^+)^ so

/o((^4-)i-l) == (^)z (since ((^-)z-l,^+)z) eB. ^•^((^t-l)^^)!^/^^)*-!))-

Likewise, fo((x^.),) ^fo^i) < ̂ i+i < (^+)z4-r so? J^ as before,

——— [A((^h_i, (̂ ),) + A((^, (^)^i)] > o.(7^A:+)^

It follows that, in the case (^4..^> {x^.)^ we may replace x with x ' e^p^ for which
W(-v') > W(^c), by increasing both ^ and (^+)» slightly.

Likewise, if (A:^. ^.)^ == (A;+)^ == ^, but [x^^^)^> (^4.4.),, we may replace ^
with ^ e^,, for which W(A?') > W(A:), by increasing (^+),, (^4.),, and ^ slightly,
and so on, for ever larger number of + 's. For a large enough number of + 's, we
must have (x^. ...4-)i> x^ so in any case we obtain the existence of x ' for which
w(^') > WQc).

Since x was assumed to maximize W, this is a contradiction. This contradiction
shows that we cannot have ^_^ ==j^(^), for any i. A similar argument shows that
we cannot have x^^ ==^(^), for any i.

Suppose (^4.), = x^ for some i. We cannot have (^4.)^ == ^ for all large i,
for otherwise, we would have x^ -}-j == Xy -}-j\ for all i, j, i', j', which is clearly
impossible. Hence (^4.)^=^ and {x^.)^^> ^4-1, for some z.

Recall formula (4.3), A^^o. This implies Ai(A:,, A:^i) < ^((^4.),, (A:^)^!).
Since (^+)»-i^ ^_i, we also have Ag^.i, x^) <_ h^{x^)i_^ (^+)i). We must there-
fore have

^,-1. î) + Ai(^, ^+3.) < h^{x^,_^ (^4.),) + ^((^4.),, (A:+),4.i).

Now suppose (^4.4.)»> (^4-), and (^_)»<^, (where A:_ £^g is defined by
(x_)^ == x = (A?4.)_). From the above inequality, we have

^2(^-1. ̂ i) + ̂ i(^. ̂ +i) < °.
Or ^((^4.),_i, (A?4.),) + Ai((A:4.),, (A:4.),4.i) > 0

(or both). In the first case, we may replace x with x ' e ̂ g? for which W(^') > W(A:),
by decreasing x^ slightly. In the second case, we may replace x with x ' e SC for
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which W(;v') > W(^), by increasing (x^.), slightly. In either case, we obtain a
contradiction to the assumption that x maximizes W.

In the general case, we write x^==x^., x^==x^^., etc., and x^_^==x_,
^(-2) == A?__, etc. Obviously, we may choose integers a <_ o, (B > o, such that

(^(a-l))^ (^(a))! == (^O))*^ (^P+l)f

The argument we gave above shows that

^((^t-i. (^(Y))i) + Ai((^),, (^) î)

^. n2{{x(-Y+l))i-l) (^(Y+l))i) + ̂ l((^(Y+l)»3 (^(Y4-l)»+l)

for a ̂  Y <^ P? wlt^ strict inequality for o <_ y. Consequently, slightly decreasing
(x^)i for which

^((^•-l. (^r))i) + ̂ l((^))i, (^(r)),4-l) < 0

and slightly increasing (x^)^ for which
A2((^),_i, (^),) + Ai((^),, (^)),+i) > o,

produces an x9 for which W(.y') > W(^).
Hence ^ ^S^g.

•S^ 2. — From the fact that x maximizes W and x ^ 83Kp ̂ , it follows immediately
that

0W(x)
^(^-1> Xi) + Ai(^, ̂ +i) = ——^- = 0,

so, x is an equilibrium sequence. D

12. Proof of Proposition (4.2)

The idea is to follow the proof of Proposition (3.4), with 3C (x) in place of 3£.
Proposition (3.4) doesn't strictly apply, because the boundary of ^p,gM may have
corners and not be very smooth. However, this doesn't affect the proof any. The
main point is that there is an appropriate modification of the condition (in Prop. (3.4))
that for each y e ̂ , there exist a tangent vector ^ pointing into the interior of SC
such that ^.H> o.

We define 8^{x) =={^ ' e^x) : x\ = x, or ^ == (x^), or /o(^) = ^+1 or

f^) == ^+3.3 for some i}. The space ^q{x) is a topological manifold with boun-
dary ()SKp ,q{x). However, we will not need to use this fact. The important thing for
us is that ()3^^{x) is the point-set boundary of SCy ,3(^)3 when the latter is considered
as a subspace of the affine space of all sequences x = ( . . . ,^ , . . .) such that
Xi+q^^+R.

What replaces the condition concerning S;y is the following result. For any real
number a, we let ^{x) (^ a) ={x' eSp^x) : Vf{x') ̂  a}.
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Lemma. — Let x' e 8Sp^{x) and suppose x' 4= x or x^.. Let a = W(A:'). Then
there is a continuous mapping F of ^q(x) (^ a) into itself which satisfies

1) W o F ^ W ,
2) WoF(^ ' )>W(^),
3) WoF(^") == W^") =>F(^") == ^", /or all x" eS-^x) (^ a).

proof. — This follows the main lines of step i in § n. For y e^^x) (^ a)
near x\ we construct a point F(j^) by means of the construction we used there. In
other words, F(j^) is obtained by modifying^ in the same way as x ' was obtained by
modifying x in step i in § n. Recall that the modification which we used there
depended on which case held, i.e. whether x^-^ ==/o(^), A^i ==/i(^)» or (^+), == x,,
and then which subcase held. Here the cases are ^+i ==/o(^)? ^i+i ^fiW^
x[ = x,, and x[ = {x^.),. We do the appropriate modification of all y in a neigh-
borhood of A:' depending on which case x ' belongs to (not which casej belongs to, because
that would lead to a discontinuous F). The construction in step i in § n was such
that we can make the modification ofy as small as we like. If we make the modification
small enough, we will have 7{y) e^^(^) {>. a). (The proof of this will be discussed
below.) Moreover, it is easily seen from the construction in step i in § 11 that we can
make the modification so that F(j^) depends continuously onjy and F(j^) =y outside
a small neighborhood of x ' , but 7{x') + x\ It is clear from the construction used in
step i in § ii that W o F(j/) > W(j^) when F(j) ^ y. In this way, we see that all
the conditions on the mapping F listed in the lemma will be satisfied.

For example, in the case x[ =/o(^_i), <+i>/o(^)? we modify y by increasing^
slightly. The only way a small enough modification ofy of this type could fail to be
in ^q{x) is if x\ = (A:+),. But this cannot be:

^ -/o^'-i) </o((^)i-i) < ̂

where the strict inequality is a consequence of the fact that x ^^^.
The case x[ =/i(^'_i), ^+i>A(^) "^Y be treated similarly.
In the case x, = K\, we have that for some i, either x,_^< ̂ _i, x, = x\, and

^+ i<^+ i . or ^-i<^-i. ^==^ and xi+l<xfi+•i (or both), since x + x\ by
assumption. In either case, we have

^,[A(^-i^O+^,^i)]>o,

since h^ > o and
s- [A(^_i, x,) + h{x,, ̂ +1)] == o,

cx^

since ^ was assumed to maximize W, and therefore is an equilibrium sequence by
Proposition (4.1). So, by slightly increasing y,, we get F(j) having the required
properties.

The case (x^)^ = x[ may be treated similarly. D
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End of the Proof of Proposition (4.2). — Let x ' be a bound point in
^p,qW n (^ == ^M.mmimax}- 1̂  x ' == x or ^ then it is an equilibrium sequence.
Otherwise, x ' ^SS^ [x)y according to the lemma and the definition of bound point.
Since this is so, it follows, just as in the proof of Proposition (3.3)5 that

h ( x x } + h ( x x ^ -^^-o^vS-l? ^i) 1~ "lA^t? ^i+lJ — —o——— — ^

so, x is an equilibrium sequence. D

13. Proof of Lemma (6.1)

Let p :R-^R/Z denote the projection. The intervals p[^?,^], ieZ. are
mutually disjoint subsets of R/Z, by the fact that <p^ is strictly order-preserving, the
fact that 9^ + i) == <p^) + i, and the fact that co is irrational. Hence,

(13.1) S (^-^);<i.
t== — oo

Since x^ < x^ <_ x^, we obtain

(13.2) S |A(^^^)-^°,^,)|<2C,
i=x — oo

where
(13.3) C = max{s^p h^ s^p Ag}.

Note that G is finite, since h{x + i, x ' + i) == A(A:, x ' ) , and Ai and Ag are continuous. D

14. Proof of Lemma (6. a)

Let A* = = ( . . . , x^ . . . ) e^ ( and suppose G^{x) > o. We will construct
9 'eY^ such that F^(y') > F^(yJ. This will contradict our assumption that <p^
maximizes F^ over Y^.

Choose a large positive integer N and a small positive number 8. Define 9' e Y^ by
(p'(^) == A-, if t + w — 8 < s < t + coi, | i| < N,
<p'(j) == 9^^), for all other s.

For fixed N and small enough 8 (depending on N), 9' is well-defined by the above
specifications.

For N large enough and 8 small enough, we have F^(q/) > F^(<p^). Indeed,
N -1 /•( + <oi

Fj9')-FJ<Pj= S [^,,^x)-A(y,M,9^+<»))]^
»==-N J(+<«)i-8

/»(4-<oN

+ [A(^ ?^ + <*>)) - A(?,M, yj^ + (o))] A
J t + (ON - 8

/•<-«i(N+l)
+ [A(y.M, ̂ -N) - A(<p^), 9.̂  + <»))] A.

J(-<o(N+l)-5
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It follows that if we fix N, then

Km¥^^ ~" ̂ (^ _ Nyl (hfx x \ h(x° x° }}lim ————.———— == 2j [fi[x^ x^-^) — n\x^ x^^))
8-^0 8 t==-N

+ E^N, 4+l) - A(4, 4+l)] + [A(^N-I, ^N) - A(^N-l)^°-N)]-

Therefore, we will have FJ<p') — FJcpJ > o for small enough 8, if the right side
above is positive. But, as N -^ oo, the right side converges to G^{x), which is positive
by assumption. Hence, the right side is positive for all sufficiently large N, and we
obtain the existence of 9' for which FJ<p') > FJyJ, which is the desired contradiction.

We have shown G^{x) < o, for all x e^. In particular G^{x1) < o.
Define G^{x) in the same way as G^{x), but with x° replaced by x1, i.e.

G,M= S (A(^,^)~/^^i))-
i= — oo

We may show that G^{x) < o, for all x e^ ̂ , by an argument just like that which
we have just given. Clearly G^°) = — G^{x1), so from G^{x°) <_ o, we obtain
G^{x1) >, o. We have shown both G^{x1) < o and G^{x1) >, o, so we have
GJ )̂ = o. D

15. Proof of Proposition (9.1)

We set x° == y^ —) and x1 == ^{t +), following the notation we introduced
in § 6. We define B^( =={x e^ : for some i, we have ^ = x°, or ^ = x1, or
/^) ==^+i or f^x,) ==A:^i}. In the proof we are about to give, B^ plays a
role analogous to that played by 8^q in the proof of Proposition (4.1) (§ n) and that
played by 8^{x) in the proof of Proposition (4.2) (§ i2). However, in this case
^r^^ is infinite dimensional (in fact, a Hilbert cube manifold), and B^, has no
intrinsic topological meaning. But this doesn't affect the proof any.

Suppose x = = ( . . . , ̂ , . . . ) E^( and G^{x) == o.

Step j. — We will show that if x e B^, then x == x° or x1. There are several
cases to be considered:

Case J. — x, == ^ for some i. If ^ 4= x°, then either there exists i such that
^_ i>^_ i and x, == ^ or there exists an i such that ^ = ̂  and A:,^> ̂ i.
Consider the first subcase. Since h^> o and ^4-1^: ^+19

?-1, î) + Al(^ ^i4-l) > W-l, ^?) + ^(^?. ̂ -l) = °.

so if we replace x by ^' by slightly increasing x,, we find G^x') > G^{x) == o. But
since x ' e^o(, this contradicts Lemma (6.2).

The subcase when x, = ̂  and x^^> x^^ may be treated similarly.

Case 2. — x^ === ^ for some z. Similar to Case i.
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Case 3. — x^ ==/Q(^_i), for some i. If we had ^ ̂ /o^-i) ^or a^ large i,
it would follow that

p(y) == lim ̂ 0) == lim ^ = co,
rWO/ i-^+oo i i->+w i 9

which contradicts our assumption that p(./o) ^ 0)- Hence, there exists i for which
^=/o(^-i) and xi^l>fQ{xi)- Then

^(^•-i^ ^) + h^x,, ̂ .+1) == Ai(^,, ^.+1) > o,

so, slightly increasing ^ produces x ' eSC^ ^ for which G^{x') > G^(x) == o. This
contradicts Lemma (6.2).

Case 4. — x^ ==^1(^-1)5 for some i. Similar to Case 3.

Step 2. — If x == x9 or x1, then it is an equilibrium point. Otherwise, it is not
in a%^, by Step i.

In the latter case, if we had ^(^--i?^) +^1(^5^+1) + ° ^or some i, then
by slightly increasing or decreasing ^, we would get A " ' € ^ ( for which
G^(x') > G^{x) = o. This contradicts Lemma (6.2). Therefore, x is an equilibrium
point. D

16. Proof of Proposition (10.1)

We begin with the case when co is irrational. Suppose that the conclusion of
Proposition (10.1) does not hold. One possibility is that there exist two orbits (x^jy,)
and (x'^y^ in M ^ ( = = M ^ J such that x,< x^ x^< x^ and ^ > 4 for i<k<^
where i and j are some positive integers such that j > i + i • In this case,
x == ( . . . , Xj,, . . . ) e 3£^ f and x ' == ( . . . , x^ . . . ) e SC^ ̂  for the same value of t.
We define ^'/, x " ' e^ by

x^ == ̂ , k < i or k >:j,
==4, i < k < j ,

^"==4, k ^ i o r k ^ j
== Xj, i < k< j .

We have
G^x") + G^x'") - G^x) - G,(x')

= h{x,, <+i) + A(.v,', .v.+i) — h{x,, x^t) — h(x'i, x'^^ + h{x,_^ xj)
+ h^_^, x,) - h(x,_^, x,) - h(x',, A-J+i).

^^^+^^h^s,t)dsdt>o.
\Jxi Ja;,+i Jay_i J x j f

Since G^{x) == G^(A:') == o, we obtain
G^") + GJ^'") > o.

This contradicts Lemma (6.2).
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Another possibility is that there exist two orbits (^,j^) and (^,j0 in M^
such that x, < K\ and x^ >_ x^ for all j > i. Again x = = ( . . . , ^, . . . ) and
;c' = = ( . . . , ̂ , . . . ) are both in ̂  ̂ , for some ^. In this case we define

y" ____ y fc < <

"fc —— "fc 5 ^ »,

== A^, i < A,
y " ' ___ y' Z> < »
"fe ——— "fc? •v y'

== ̂  ^ < ̂

We have
GJ;c") + G,( '̂") - G,W - GJ '̂)

= A(A:,, ^+1) + A(^, ^+1) - h{x,, ^+1) - A(^, A:;+i)

==^i^ lM '^)A^>o•
So, again we get a contradiction.

The remaining possibility leads to a contradiction in the same way. For every
possibility of the conclusion of Proposition (10.1) being false when <o is irrational, we
have obtained a contradiction. So, we have proved Proposition (10.1) when co is
irrational.

Now, suppose (o = pfq, where p and q are relatively prime integers, q > o. Let
x and ^ ^^q both maximize W over ^pg. We set

^' =min(^,^),

^" == max(^,<).

It is easily verified that x " , x " " e^p,g. Moreover, the argument we have just given
shows that W(^') + W^'") - W(^) —W^') > o, unless x,< x^ for all t, or
^/ < ^, for all i, or ^ = x[, for all i.

For, we can evaluate W(^") + W(^") - W(^) - W(A:') in the same way as
we evaluated GJ^") + G^'") - G^(^) - G^(.v') above. The resulting sum has
a positive summand for every i for which ^ < x[ and ^+1 ̂  ^+i? or ^ < ^ and
^'4-1^^+1, or x,<_x[ and A:^i>^+i, or ^ <_ x, and ^+ i>^+r These are
all the summands, so W(^") + W(^') - WM - W(^) > o.

But, since x and ^c' maximize W over ^ ̂  and .v", ^'" e^p,<p this inequality
gives a contradiction. Hence, we have x,< x\, for all i, or x[< x,, for all i, or
^ == ^ for all i. D

17. Proof of Lemma (6.3)

We use the notation of § 13. The reasoning used in § 13 shows that the inter-
vals p0?°(<),, x^f),] C R/Z are mutually disjoint, where t ranges over the maximal
independent set I of points of discontinuity of <p^ and i ranges over Z. It follows that

S S; (^),-^TO<i.
< g l t=-oo
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From this and the fact that x^x,^x^ for x e S T ^ , we obtain
00

<2! .i%.. .̂  ) k{xi> xi+l) ~ h{xo{t)i> ̂ <^>1 ̂  2C'

where G is given by (13.3).

Obviously, G, ̂  - ̂ up ^ ̂  \ h(x,, x,^) - ̂ "(f),, ̂ ).̂ )|, on ̂ .

Hence

AW,,,^ ̂ up^J:^ | h(x,, x,^ - ATO.., ̂ ).̂ )|,

so we get

S AW^<2G. D
(61 ' ~

18. More on Mimmax Orbits

Let fe ̂  and let p(/J < <o < p(^). We consider a closed non-void subset M
of M;<, which is invariant under/and T. In view of Proposition (10 .1 ) (proved
m § 16), such a set is /-monotone. In the case <o is irrational, we have M- „ C M,
since for any {x,y) e M;̂ , the closure of {/*T^,j>) : i,j eZ} contains M^.

By a complementary interval of 7^ M, we will mean the closure of a component of
the complement of T^ M. Let J be a complementary interval of ̂  M. We will denote
its endpoints by ^ = ̂ (J)o and ^ == ^(J)o, where ^<^. Let j^ e [o; i] be
numbers defined by (̂ ) e M, (̂ ) e M. Set /t(^) = (4^), for 7 = o, I,
i e Z. Set A;° = x\J) == (..., ^?, ...) and ^l = ̂ (J) = (..., ̂ , ...).

In the case o> is irrational, we let ^j =={.»•= (.,.,^,, ...) 6^:^^^,^^',
for t'eZ}. For are^j, we have

G(ow =^^ft^x^-h^x^ =^ (A(^^.+i) -A(^,^,)).

In the case <o is rational, say w = ̂ /y in lowest terms, we let

r̂ = {x == (.. .,̂ ., ...) ear: ̂ $ ̂  ̂  and A-^,= x, + p, for feZ}.

We let
9-1

G )̂ = S (h{Xi, x^^) - A(4 ̂ i)) = WM - W^°).

Since x° maximizes W over ̂ , we have G^(x) ̂  o everywhere. Since x1 also
maximizes W over ̂ ,, we have G^(x1) = G^A;") = o.

Now we are again in the situation considered § 3. In other words, ^j is a compact,
Hausdorff space, which is connected and locally pathwise connected, G^ is a continuous
function on S~j, and G^ takes its maximum value at Xs and x1. Clearly Xs + x1.
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Definition. — We let AWj denote the negative of the minimax value of G^ : ̂ j -> R
associated to x° and ;c1.

This generalizes two definitions which we have made previously. In the case that
(o is irrational, M = M^, t is a point of discontinuity of 9^, and J = [<p(^ —), <p(^ +)],
we have AWj = AW^ ,. (The latter was defined in § 6.) In the case that <x> = piq,
we consider a max (/, T)-Birkhoff orbit M of type (p, q). The obvious action of Z2

(generated by/and T) on the set of complementary intervals of^ M is transitive. It
follows that AWj is independent of the choice of the interval J, complementary to TC^ M,
in this case. Moreover, if ( . . . (^,^), . . . ) is an/-orbit in M, then

(18.1) AWj = W ,̂,, - W,^__,,

where x == ( . . . , A:,, . ..). This is what we denoted AWp/g in § 4, although AWp/^
will not be proved to be independent of the choice of x e SKy^ maximizing W (or,
equivalently, of the choice of max (/, T)-Birkhoff orbit M) until § 19.

Proposition (18.1). — Let x e^j and suppose G^{x) = — AWj. If x is bound
with respect to (G^, ̂ j, x°, x1), then x is an equilibrium sequence.

According to Proposition (3.2) such bound points exist.
Since x = ( . . . , ̂ , . . . ) is an equilibrium sequence, there is associated an

orbit (.. . , (^, j^-), . . . ) of/. We will call this a minimax orbit of frequency <o associated to J .
Proposition (18.1) generalizes both Proposition (4.2) and Proposition (7.1).
We set SS^j ==={x eS'j : for some i, we have ^ == x^ or ^ = x} or /o(^) = x^ i

or /i(^<) = ^^.i}. If (o == piq, then ^j is a ^-dimensional manifold with boun-
dary c^j. On the other hand, if <o is irrational, then S'j is infinite dimensional (in
fact, a Hilbert cube manifold), and ̂ j has no intrinsic topological meaning. However,
this is of no importance in what we do.

We have the following generalization of the lemma in § 12. For aeR, let
^jG^^'e^GJ^)^}.

Lemma. — Let x' e SS^j and suppose x' 4= A:0 or x1. Let a == G^(A:'). Then there
is a continuous mapping F of 3C^ (^ a) into itself which satisfies:

1) G.oF^G,,
2) G.oFM >G^'),
3) G, o F(^) = G,^") => F(^') = ^",

/or all x" eS-j^a).

If we take <o =^/?? and let M be a max (/, T)-Birkhoff orbit of type (/», y),
this lemma becomes a restatement of the lemma in § 12, since ^j = ̂  g(^), where
(• • - 5 (^5^)5 • • •) ls an appropriate /-orbit in M and x = (. . . , ̂ , . . .), and G^
differs from W by a constant.
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chan^NT ̂ T" ̂  proofofthe lemma in § "- -th appropriate notational
changes. Note that smce F(^) is a modification of> obtained by increasing or decreasing

S^n -'• ofj' the fact that °" is defined by an mfinite gum causes ̂

^<./Pr^^(i8.i).-If^=,o^^ then it is an equilibrium sequence
Otherwise, it is not in ̂ , by the lemma. Suppose

-̂i, x,) + A .̂, ̂ ) + o.

Depending on the sign, we may construct F(^) by slightly increasing or decreasing
the t̂h coordinate of.,, for all., in a small neighborhood of . and letting F(.) g

outeide such a small neighborhood. Such an F satisfies the conditions we gave In th^
defim.on of a free point. Therefore, . is free. But, we assumed . was bo'und. T^
contradiction shows that

^.-i,^.) +h^,x^ ==o,

so x is an equilibrium sequence. D

19. Comparison of Minimax Orbits

Let (/, o>) e^. We consider two closed non-void subsets M, M' of M' both
of which are invariant under/and T. We suppose M C M'.

Proposition (19. i). — Let J be a complementary interval of ̂  M. Then

AWj = max {AWj, : J' is a complementary interval of^ M' and J' C J}.

We let J; = ro')^ ̂ y)^ ^ ̂  notation of § 18. Obviously,

AWj,(.^,=AW,,,

for any integers i andj. We will say that two complementary intervals J' and ] " ofn M
are ^-independent H J"+J.'4-^ for all i,j eZ. l

Lemma (19.2). - S AWj, < co, where the sum is taken over a maximal ^-independent

set of complementary intervals of ̂  M'.

Proof. — Same as the proof of Lemma (6.3) (§ 17). Q

, ^JT^T/1?'^ it follows that {AWJ':J' is 'a ^^Plementary intervalol WiM and J CJ} has a maximum.

Notation: For x e TC, M', we define x — ( f \ i. i, •, „ ,-, , i^co? we ucune x — ( . . .,Xi, . . . ) by choosmg y so that
{x,y) €M^, and setting x^ = ̂ (x^).
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Proof of Proposition (19.1). — For each complementary interval J' of n^ M, let
Cj' be the connected component of {x e X'j, : G^{x) ̂  — AWj.} which contains
x°{y). In view of the definition of AW j., we have that Cj. also contains ^(J'). We let

G = u { G j , : J ' C J } u { J ? : ^ e ^ M ' n J } .

It is easily seen that G is a connected subset of S^j which contains x°{J) and ^(J). Hence

AWj^max{AWj,},

where J' ranges over all complementary intervals of 7^1 M' such that J' C J.
To prove the opposite inequality, we define a retraction

^j, j' *• ^j "^ ^ 3 ' ?

for each complementary interval J' of TT^ M' in J. We set

^Wi=WL if^^m
=^ i^m^<^m
=^(J'),, if^(J').<^.

We will show that G^onj ̂ ,{x) ̂  G^{x) with equality only if TCJ ̂ ,{x) = x.
The algebra is a little easier if we do this in two steps. Let x° == ^(J'),

x\ == max(^, x,), x^ = min(^, x,). The argument used in § 16 shows that

GJ )̂ + GJ )̂ >. G^x) + GJ^O),

with equality if and only if x == x ' . Since M'C M^, it follows from the defining
property of M^ that G^(x°) == o. Moreover, G^(A?") < o, since this is true for all
elements of^j. Hence

G^) >. G,W,

with equality only if x = x ' .
Now set x1 == ^(J'), ^'' = inin(^, ^), x^ == max(^, ^). Again, we find

G,(̂ ) + G,(̂ ) > G,M + GJ )̂,

and GJA:1) = o, G^(A;(W)) ^ o, so we obtain

GJ^')^G^').

Since x " 1 = TCj j,(^), we have shown

G,o7rj^)^G,M.

Let G be the connected component of {x e^j: G^(x) >, — AWj} which
contains x°{J) and ^(J). Then Tr^j.(C) is a connected subset of 9Cy which contains
A?°(J') and A^JF). Gonsequently, the inequality above implies

AWj, < AWj. D
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Proposition (4.3) follows from Proposition (19.1). For, take co==^/^,
M ={(^+J,J ;^):lJe :Z}, where ^==^,^+1), and take M'= M^. If J is a
complementary interval of TT^M, then (18.1) holds. Hence, Proposition (19.1) and
the fact that AWj is independent of the choice of complementary interval J of TT^ M
(in this case) imply that

.̂(̂ minimax == ^^max — max ^3' ?

where J' runs over all complementary intervals of M'. Since M' is independent of x,
this shows that Wp ̂  ̂  ,mimmax ls independent of x, which is the statement of Propo-
sition (4.3).

20. Proof of Proposition (5.2)

We will prove Proposition (5. s) using the definition of AW^ given in § 6.
First, suppose that there is any-invariant circle, going once around the annulus,

of rotation number co. Its lifting to A is a curve which separates A into two parts.
From the monotone twist hypothesis, it follows that points in the lower part advance
slower than the rate <o, and points in the upper part advance faster. Hence, M^ is
not in the lower or upper part; it is in the curve itself.

Lemma (20.1). — M^ is the invariant curve.

Proof. — By a theorem of G. D. Birkhoff [10, § 44] and [n, § 3], the invariant
curve is the graph of a Lipschitz function [L : R -> [o, i]. It is enough to show that
graph [L C M^, since M^ cannot properly contain graph (JL, by the monotone property
ofM^ (Proposition (10. i)). If M^ = graph [A, we are done. Otherwise, we consider
a complementary interval J of T^ M^. Let x^ and x^ denote its endpoints. Let
•̂  == ̂ i/^^^))? £ = o , i . Let Xs == ( . . . ,^, . . .) , e = = o , i . For XQ ej, let
^ == n^f\XQ, pi(^o))- Let x = ( . . . , x^ . . . ) . It is enough to prove that

(20.1) S (A(^^)-A(^,i))=o,
t== — 00

for, then, we will have graph ,̂ | J C M^.
First, we will give a formal argument which indicates why (20. i) should be true.

Then we will give the rigorous version of the formal argument.
Formally, we differentiate (20.1) with respect to XQ:

8 S; (A(^.+i)-A(^,^i))
()XQ i == — oo

== S (^1(^5 ^i+l) T~" + ^2(^15 ^i+l) ~/~—Ii=-ao \ dXQ axo i
00 dx

== S (^(A:,, ̂ +i) + Aa(^_i, x,)) — == o.
i = — oo ^•"0

We have A^(^, A*,.̂ ) + Aa(^_i, A^) = o, because graph ^ is y-invariant.
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The difficulties with this argument are, first, that ̂  is not necessarily a differentiable
function of XQ. Second, we have to justify differentiating under the summation sign
and changing the order of summation in the second sum.

By BirkhofTs theorem, (JL is Lipschitz, so ̂  is a Lipschitz function of XQ. Obviously,
Xi is an increasing function ofxo. Since x^ is a Lipschitz function of XQ , its derivative dxjdxo
exists almost everywhere, and

, 1 n r19 ̂  ^ dx,r^dx^r1 ^
Jx^ dXQ ° Jx^ dXo

x, — x, = — dXo = — dx,
J^ dxQ Jx^ dx.

since the Fundamental Theorem of Calculus is true for absolutely continuous functions,
and any Lipschitz function is absolutely continuous (cf. [30, n.7]).

The reasoning which gives (13.1) is valid in this case, too, so we get
00 r^ dx Qo

S — dx,= S (4-^)<i.rd- ^,=.s (4-^1.
J X^ dXQ »== — 00- -ooJ^s \dxQ\ v ^-oo' l t/ -

Since h^ and Ag are bounded and continuous, the sums which appear in the above
calculation are absolutely convergent in the L1 norm on functions defined on J. So,
the changes of order of summation are valid if the various terms appearing are considered
as elements of L^J). So, we get

o=r [ s ^.,^)^+A^.,^)^±l]^o
•/r,=a;g li== — oo dXQ dXQ J

TO f d
== S T-A(^,A:,^) dxo

i == — oo J x» == uXQ

= S {h{x,,x^,)-h^,x°,^)). D
i= — oo

From Lemma (20.1), it follows immediately that AW^ == o, for the definition
of the latter given in § 6. We have in this way shown that the existence of an invariant
circle implies AW^ == o.

Conversely, suppose AW^ = o. From the definition of AW^ given in § 6, it
follows that for every point t of discontinuity of 9^, we have that 3E^ ^ (^ o) is
connected. It follows that T^(M^) = R. In view of the monotonicity of M^, it
follows easily from this that M^ is the graph of a function. The projection of this graph
on the annulus is the required circle. D

21. Convergence in Measure

Let (y, co) e 3). If <x> is irrational, the set M^/T supports a unique Borel prob-
ability measure (A^ which is ̂ invariant. This is a consequence of the semi-conjugacy
of f\ (M^/T) with the rotation of the circle through <o. Note that (JL^ is also the only
Borel probability measure on M^/T which is ̂ invariant. This is because every ̂ orbit
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in M^/T is either in MJT or is homoclinic to MJT (i.e. approaches arbitrarily close
to MJT under indefinite forward and backward iteration).

When co is rational, M^/T may support more than one Borel probability measure
which is ̂ invariant. In fact, the^ergodic Borel probability measures on M^/T are
in i — i correspondence with they^orbits in M^/T; each ^-orbit supports one such
measure. In particular, M^/T supports only one ̂ -invariant Borel probability measure
if and only if M^/T is reduced to a singles-orbit. This is the same as saying that M^
is reduced to a single (/, T) orbit. Obviously, this is the case for generic /.

We provide the space of Borel probability measures on A/T with the weak topology.
A basis of open sets for this topology consists of sets of the form

{ (A:^< [L{fi) < .̂, for i == i, . . . ,TZ} ,

where ^ < ^ are real numbers and^ is a continuous function on A/T, for i == i, . . . , n.
We will indicate the dependence of ̂  on f explicitly, by writing pi. ^.

Proposition (21.1) . — When (./,(»>) ^Q and o == pfq, let (JL ^ denote any Borel
probability measure on M^/T which is /-invariant. (For other {f, <o) e Qiy let ^ ^ be as
defined above.) The mapping (jf, co) -> p.̂  is continuous at all points of Q where it is
uniquely defined^ i.e. where co is irrational or where co == piq and there is only one max (/, T)-
Birkhojf orbit of type {p, q).

Proof. — Let (Jiy ^ be an element of X^ which maximizes F/^. When co is
irrational, <p^ ^ is unique by the main result of [22]. When co == pfq and there is
only one max (jf, T)-Birkhoff orbit of type Q&, y), it is easily seen that 9^ ^ is unique.

To cp^ we may associate a measure ^ ^, as follows. We define

^oW == ̂ (9^), 9^ + co)).

Then (<p^, ̂ ^) is a mapping of R into A. Let T^ : A -> A/T denote the projection.
We set

^,0 = (^T0 (y/.o^/.J)* (p. I [o? i])?
where (A denotes the Lebesgue measure on [o, i]. Then ^ ^ is an ^invariant Borel
probability measure on M^/T. In fact, the correspondence 9/, <o<-^ ^-/, o ls a

i — i correspondence between elements of X^ ^ which maximize Fy ^ and ̂ -invariant
probability measures on M^/T. This correspondence is bi-continuous, where we use
the weak topology on measures and the topology on the 9^ ^ defined by the metric d
of [21]. Moreover, because <p^ is obtained by maximizing F^ ^ over a compact
space X^ ^, and F^ ^(9) depends continuously on f, co, and 9, it follows that 9^ ^
depends continuously on / and co, wherever it is uniquely defined. There is a slight
technical difficulty in this argument caused by the fact that the space X^ depends
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on/ and (o. But this is overcome by the observation that for each (/, <o) e Q there
is a compact set K. C X^ such that

9/',6/ e K C X^,,

for all (/', co') in a sufficiently small neighborhood of (/, <o), where 9 ,̂ may be any
element of Xy^, which maximizes Fy. ^ over X^ ^.. D

Proof of Proposition (9.3). — Immediate from Proposition (21.1) and the fact that
M^ ^^PP^/.o- D

22. Lemmas Concerning Convergence of Sets

For what we do in the next couple of sections, we will need some elementary
results from general topology.

Definition. — By a basis 38 of a filter ^, one means a subcollection 36 C 3F such
that for every U e ̂ , there exists V e ̂  such that V C U.

Definition. — Let «^" be a filter on a set X. We say a sequence A"!, ^g, ... of
elements of X is ^-convergent if for each U e < ,̂ there exists a positive integer N such
that ^eU, for all i^:N.

Lemma (22.i). — Z»^ <^ ̂  a filter on a set X. Let Y &^ a topological space. For each
x e X, to Z ;̂ 6^ a subset of Y. Suppose that there is a countable basis for 3^ and a countable
basis for the topology of Y.

Let y e lim sup Z^p. Then there exists an ^-convergent sequence x^ x^ ... of elements

of X such that

y e lim inf Z^ == lim sup Z^.
l -> oo ' ' t -> oo

Proq/'. — Let Ui, U^, . . . be a countable basis for ^'. Since Y has a countable
basis for its topology, the system of neighborhoods o f j / i n Y has a countable basis,
V\ , Vg , ... Since y e lim sup Z^;, we may choose, for each positive integer i, an
element x^ e U^ such that Z^ ̂  n V^ =1= 0. Then
(22.1) j/elimmfZ^.

Let Vi, V^, ... be a basis for the topology of Y. We construct, by induction
onj, sequences x^, x^, ... We have just constructed x^y x^, ... Suppose x^, x^y ...
has been constructed. If V^ n lim sup Z^ ̂  = 0, we let ^j+i == ̂ , for all i. Other-

i-> + oo

wise, we choose y^ e Vj n lim sup Z^,jp we let ^ij+1=^-5 fb1' i ^ j ) ^d ^t
^+ij+i, ^+2,1+1^ ^+3. j+i^ • • • be a subsequence of ^.+^, A:^^^., ^.+3^., ... such that
(22.2) j/.eUmmfZ^^i).
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The same argument which shows the existence of the sequence x^, x^, ... such that
(22.1) holds also shows the existence of the subsequence ^,+1^4.1, A ' -^J+I ) ^ ,+3 ,+ i5 . . •
such that (22.2) holds.

We let x^ = x^. Then we have that
lim infZ^ n V, + 0 o lim sup Z^ n V, + 0.

i -> oo v ' ' i ->• oo v / J

Since V\, Vg, ... is a basis for the topology of Y, and lim infZ^ and lim sup Z^v
are both closed, it follows that

lim infZ^x == lim sup Z^.
i -> oo v / »->oo - l /

Since j/ e lim infZ^i), and ^i, x^ ... is a subsequence of x^y x^, x^, ..., we have
that y e lim inf Z /.).

»->• 00 ' /

Clearly x^, x^, . . . is ^-convergent (since x^ e U,), so its subsequence x^x^, . . .
is also ^-convergent. D

We will adopt the following standard notation. We will say that lim Z^; exists
and write
(22.3) Zo==UgiZ^

to mean that
ZQ = lim infZa; = lim sup Z^.

In general, there is no convenient topology on the set of subsets of Y such that
(22.3) can be interpreted as convergence in that topology [25, p. 179]. However, in
a special case there is: We suppose Y is a compact metric space, and the sets Z^p are all
closed subsets of Y. Let d denote the metric on Y, and use the same symbol to denote
the Hausdorjf metric on the set of closed, non-void subsets of Y. Recall from [18] that
this is the metric defined by
(22.4) rf(Zi, Z^) == max{sup in{d{x,jy), sup infrf(.y,j/)},
where x ranges of Z^ and y ranges over Zg.

We then have the following elementary result: If each Z^ is a closed, non-void
subset of the compact metric space Y, then the definition of (22.3) which we gave above
is equivalent to convergence with respect to the Hausdorff metric.

In § 24, it will be useful to have a generalization of this result:

Lemma (22.2). — Let Y he a metric space, T an isometry ofY. Suppose Y/T is compact.
Define the Hausdorjf metric on the set ofr!'-invariant, closed, non-void subsets of Y by (22.4).
Suppose each Z ;̂ is a T-invariant, closed, non-void subset of Y. Then the definition of (22.3)
which we gave above is equivalent to convergence with respect to the Hausdorff metric.

The proof is elementary. One way to proceed is to observe that the Hausdorff
metric on T-orbits is a metric on Y/T. Its underlying topology is the quotient topology,
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associated to the projection Y ->Y/T. Since we have a metric on Y/T, we may speak
of the Hausdorff metric on closed, non-void subsets of Y/T. The natural i — i corre-
spondence between T-invariant, closed, non-void subsets of Y and closed, non-void
subsets of Y/T is an isometry with respect to the Hausdorff metrics. Since lim inf and
limsup of T-invariant sets commute with passage to the quotient by T, Lemma (22.2)
reduces to the special case of it quoted just before the statement of it.

We omit the details. D

23. Upper Semi-Continuity of M^o

Let (V, co) e Q and suppose <o is irrational. Let (^o?^) e limsup M^ ^.. By
(/',0')->(/,<0)

Lemma (22. i), there is a sequence (/, <<>i)i=i 2 ... °^ elements of 3) which converges to
(/ G)) as i ->co, such that M = lim M^)^) exists and (^05^0) e M. Since (^J^o)
is an arbitrary element of limsup. M^ ^, it is enough to show that (^05^0) ^^f,^

(r,o')->(f,<o)
in order to prove Proposition (9.2). Since (^0,^0) e M, it is then enough to prove
MCM;^.

In order to prove M C M^, we first develop several properties of M.
By Proposition (9.3) (proved in § 21), we have M^ C M.

Lemma (23. i). — M is f-monotone (for the projection on the first factor, in the sense defined
in § 10). Moreover, M satisfies a Lipschitz condition of the form: There exists L > o such
that (^j), (^',y) eM^\y-y\<L\xf-x\.

In this and the next section, it will be convenient to use the following abbreviations:

dotation. — We set M^ = M; ,̂), G = G^, G, = G^(,), h == A(/), h, = h^.

Proof of Lemma (23.1). — Since M^ is (/, T)-invariant and /-monotone, and
M = lim M^, we obtain that M is weakly f-monotone, in the sense that for (x,y) e M,

t ->• oo

{x\y) e M, we have
x < x ' => ̂ f\x,y) ̂  •n:i/^',y), for all i e Z.

Since/commutes with T and A/T is compact, (4.2) implies that there exists
8 > o such that

-W^)) > g and _ -W-1^)) > s,
9y 8y

for all {x,ji) e B. Likewise, there exists G > o such that
<W{^ 8^f(x^)) |
——8x—— < c and ——8x——'< c '
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for all (^j/) eB. If L = G/8, then (^) eB, (x\y) eB and |y -y\ ̂  L \x' - x\
imply

^/(^V) > ̂ i/M and ^/-^'.y) < T^/-1^),

or ^/(^Y) < ̂ i/(^) and TrJ-^y) > ̂ /-^y).

Since M is weakly/-monotone, this shows that M satisfies the Lipschitz condition, and
is y-monotone. D

Lemma (23.2). — If J is a complementary interval of TT^ M, then

GW = G(^),

where x° = A;°(J) anrf x1 == ^(J).

Note that since M^ C M, we have J C [ < p ^ o ( ^ — ) ? ?/,<o(^+)]? f011 some
^ e R. (Recall from § 6 that 9 .̂ ^ = 9^ denotes the unique element of X^ ̂  which
maximizes F^^. We have TC^ M^^ == 9^^(R).) Then ^^e^^ , , so G{x°) and
G(A:1) are defined, and the equation G{x°) = G{x1) is equivalent to

(23.1) S (A(^,, ̂ ) - A(^,, ̂ )) = o.
j == —00

This sum is absolutely convergent, in view of (13.1)3 which refers to the endpoints of
the interval [<p^(^—)? 9/,<o(^+)]? but obviously implies the same result for the
endpoints ofj.

Proof of Lemma (23.2). — Suppose G{x°) > G{x1). Let

^ = ^ | J |<N,
=^, b- |>N,

where N is some large positive integer. Then G(A:') > G(A:1), if N is large enough.
Since M == lim M^, we have TT, M == lim TTi M^. According to Lemma (22.2),

t -> oo t->-oo

this can be interpreted as convergence with respect to the Hausdorff metric. (Take
Y == R, T(^) = t + i? to apply Lemma (22.2).) It follows that we can choose, for
each positive integer i, a complementary interval J^ of M^ such that

J == lim p.
J t - ^OO^

Set ^(J^), == x^\ ^(p), = ^(i). Define
^•)==^, |j |^N,

-^), | j |>N.

We have
x°, == lim x0^
• i -> oo "

^ = lim A-.1"1,
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although convergence is not uniform in j. Also h^->h uniformly as i —^ oo. We have

G.( '̂) - G.(^<') = S W, ̂ ,) - A.(Af>, ̂ )),
i=-N-i

and G^')-G(^)= S ( ,̂ ̂ ) - A(^, x]^}},
j = — N — 1

so it follows that
lim G^) - G^) == G(^) - G{x1) > o.
i -> oo

Moreover, G^x^) == o, for large enough i, by the defining property of M^. Hence,
G^A:'^) > o, for large enough i. But, this contradicts Lemma (6.2). D

The following is a slight variation on the notation introduced in § 19.

Notation. — If x e n^ M, we define ; ? = = ( . . . , x^ . . . ) by choosing y so that
{x,y} e M, and setting Xj == T^/^,^).

If x e TC^ M, then either x e 7^ M^ ^ or ^ ej, for some complementary interval J
ofTii M.f ̂ . In the latter case, J == [^(^ —), cp(^ +)]? fo1' some point t of discontinuity
of 9=9^. Since My ^ C M and M is ^-monotone, it follows that x e ^ ^
when x ej = [<p(^—), <p^ +)]•

Proo/ ^^ M C M^. Consider ^ ej n 7^ M, where J = [<p(( —), ^{t +)]
and t is a point of discontinuity of <p = cpy ̂ . It is enough to show that G(Jc) == o.

For arbitrary x ej, we define x = ( . . . , J^., . . . ) , as follows. If A: ej n n^ M,
we have already defined x. Otherwise, x is contained in a complementary interval [x°, x1]
of TC^ M. We have x°, x1 ej n 71:1 M, and we define

.̂ == (i — X) ^° + ̂ , where ;v == (i — X) A:0 + 'kx\

It follows easily from Lemma (23. i) that x^ is a Lipschitz function of x. Moreover,
Go r^^) dy co

S — ^== S (?(<+«y+)-9(^+«y-))< i .
j == — oo J cp(( —) flA: j == — oo

Now we may reason exactly as in the proof of Lemma (20. i) and conclude that
G{x) is an absolutely continuous function of x ej, and

dG^ ^ f^f- ^ ^ A ^ - ^<——— = 2 (̂ i-i, ̂ ) + h^x,, x^^)) —,
flA: »= - oo flA:

on J\Z, where Z is a set of measure o in J.
For x e TT^ M nj, we have that x is an equilibrium sequence, by thejf-invariance

of M. Hence

dGW . „ , T . _ ^v.== o, on (J n TCi M)\Z.
dx

By Lemma (23.2)5 the value of the function x i-> G{x) is the same on both endpoints
of a complementary interval of TC^ M in J. These facts together with the absolute conti-
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nuity of x^G{x) imply that x \-> G{x) is constant on 7^ M nj. Since it is zero
on the endpoints ofj, we get that it is zero everywhere on TT^ M nj.

This finishes the proof of Proposition (9.2). D
Another proof of Proposition (9.2) follows from Aubry's work. For, by Aubry's

work, there is an identification of 71:1 M^ ^ with the set of m.e. states. This is a deep
result, and Proposition (9.2) is an immediate consequence of it.

24. Proof of Proposition (9.4)

Note that Propositions (5.1) and (6.4) follow immediately from Proposition (9.4).
Let (/,<»>) e Q and let co be irrational. Since Q has a countable basis for its

topology, it is easily seen that in order to prove that AW is continuous at {f, co), it is
sufficient to prove that a sequence {f^, co^), (^5 ^2)9 ' • • which tends to (f, co) has a
subsequence (/^, <o^), (/^), Q)^))? • • • such that

^^-^^W)),^))-

It follows from Lemma (22.1) that any sequence (/i, (*)i), (/a? ^2)9 • • • which
tends to (/, co) has a subsequence (Y^I), <»>i(i)), ... such that lim M^)) ̂ ^ exists. There-
fore, it will be enough to prove:

Lemma (24.1). — Let (/^, <x)i), (/g, co^), ... be a sequence in Q which converges to
(y, co) e ̂ , where co is irrational, and suppose

(24.1) M=J™M;(,^)

exists. Then

AW/,"=.llmAW/«?

In the rest of this section, we will use the following abbreviations, which we
introduced in § 23: M^ = M^ ̂ , G = G^, G, == G/^),^), A = A^, A, = A^.p and
the further abbreviations: AW = AW^ ^, AW, == AW^)^,).

Lemma (24.2). — Under the hypotheses of Lemma {24.. i), M^ have

AW< liminfAW,.
— »-> oo

Proof. — By Proposition (19.1) and the definition of AW, we may choose a
complementary interval J of TT^ M so that

AW == AWj.

From (24.1), one easily deduces

(24.2) TT, M == lim TTi M^.v - 7 - i-^oo
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Since T^ M and T^ M^ are invariant under the translation x \-> x + i, it follows from
Lemma (22.2) that (24.2) may be interpreted as convergence in the Hausdorff metric.
Consequently, we may choose complementary intervals J^ to TT^ M^ such that

J^->J, as i -^oo.

Let ^°=AJ). ^-^(J). x°^=xW, x^^xW. Obviously,

(24.3) xow ->^ xw -> ̂  as l -> °°'

although convergence is not uniform in j.
Let 8> o. For each i, we may choose a continuous path ^'^ in ^j(i) connec-

ting x0^ and ^l(l) such that

(24.4) G,(̂ ) ̂  - AWj(i) - 8/io,

for all t e [o, i]. This is a consequence of the definition of minimax value (§ 3) and
the definition of AWj (§ 18).

Choose N so large that

(24.5) S (^-^)<8/2oC,
v |j|>N J

where G is given by (13.3). It is possible to find such an N by (13.1).
Since co, -> o and o is irrational, there exists i^ such that if i >_ io and co, is

rational, then

(24.6) q,^ 2 (N+ 100),

where (x), = p^q^ in lowest terms.
Since /• ->/ in the G1 topology and fi commutes with T, we obtain that the

first and second partial derivatives of h, converge uniformly to the corresponding partial
derivatives of A. From (13.3), it follows that there exists i^>_ io such that

,̂ x') . -. ^{x, x')
(24.7) -P-^2^ ^-^-<2G5

for i ̂  ii, where B, is the domain of A,, i.e. B, = { {x, x ' ) e R2 :/,o(^) ^ xf ^fnW }•
From now on, we fix i>, z\. In the case <o, is irrational, we set

.̂(i),. ^^.W |j|^N+2,

=^ | y | > N + 2 ,
^^^ l j l ^ N + 2 ,

-^^ | j | > N + 2 .

We have ^'(l)'*, ̂ ^'^ e ^jd), provided 8 is small enough, by (24.5) and the fact
that M^/T is uniformly bounded away from the boundary of the annulus. In the
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case (»\ is rational, we write <x>, == ^/^- in lowest terms, and define ^'(t))itt and A^'**
by the same formulas as above when

-t^'^2 2

and for other j define ^•w'" and ^•(<)-** so that ^w == ^'w>* + pi and
^•W^* == ^ <•)••* + ̂ . With this definition, we again have ^ w ' * , ^'t)'" e ^j(,).
Whether o, is rational or irrational, we have
(24.8) | G,(̂ *) + G,(̂ -*) - G.(̂ ) - G^-tO) |

=| S {A.^w^+^^.w^"))
^-N-3,N+2

- W\ ̂ \} - h^\ ̂ )}| ̂  2G S (^•'••' - ̂ ),
j'== — N — 2 , N4-2

by (24.7) and the Mean Value Theorem.
From (24.3) and (24.5)3 we get that there exists z'g >: i^ such that

(24.9) x^-x0^^ 8/20G,

when \j\ = N + 2 and z^> ^. From now on, we suppose i>_ i^.
Since G^x0^) =o and G^^'**) <_ o, inequalities (24.8) and (24.9) imply

G^*) ̂  G,(̂ ) - 8/5.

Using (24.4), we get
(24.10) G '̂*) >, - AW,(i) - 3 8/io.

Let 83^ == 8/8oG(N +3)* By (24.3), we may choose ig^ ^ such that
|^-A:J|<8,, c = o , i , | 7 | ^N+3 ,

for z ̂  t'3. Furthermore, we may choose 1*4 ̂  ^ such that
(24.11) sup | A, - h\ < 8/40(N + 3),

for i^ ?4. From now on, we suppose i^ 14.
We may choose a continuous curve 11-> ̂  * in ^j such that

|^-4*|<8,, | j | ^ N + 3 , ^[0,1]
4*==^ | y | > N + 2 ,

^-^ ^'^^ | J | < N + 2 .

Note that the curve t h> ^<'* depends on z. But, we may suppress i from the notation,
because i is fixed throughout the discussion.

We have

G(^-)= S W^)-A(^,^))
J = — 00

N + 2

S W*,^i)-A(^,^,)),
j==-N--3

293
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since ^'* = x°^ for | j | > N + 2 . Likewise,
N + 2

G^.«'-*) = S (A^-to.-, ̂ *) - W*>, A^)).
j= —N—3

Hence, |G(^*) - G^'-tO'*)! ̂  4(N + 3) sup |A. - h\
N4-2

+ S IA^''*'-*,^*)-^'*,^!)!
j == —N — 3

N + 2

+ S |A(^,^)-A(^^,)|
j== —N—3

^ 4(N + 3) sup | h, ~ h | + 8C(N + 3) \ ̂  8/5.

Combining this with (24.10), we get

(24.12) G(^+) ̂  - AWj(o - 8/2,

for all t e [o, i],
We define a continuous curve t \-> x1 in 3K'j by

^=^ ' l j l ^ N + 2 ,
=(I-^)^+^ |j|>N+2.

By (24.5), (13.3)5 and the Mean Value Theorem, we have
|G(^) -G(^*)|<8/io.

From this and (24.12), we get
G(^) ̂  - AWj(o - 8,

for all t e [o, i]. Obviously, AWjd) ̂  AW,.
We have, in this way, found a continuous curve x1 in ^j, connecting ^° and x1,

such that
G(^) ̂  - AW, - 8,

so AW < AW, + 8. Since 8 > o was arbitrary and i >, i^ was arbitrary, this proves
Lemma (24.2). D

Lemma (24.3). — Under the hypotheses of Lemma (24.1), we have
AW^ limsupAW,.

1-> 00

Proof. — By the hypotheses we assumed on/, we have that h is twice continuously
differentiable on the interior of B, and its second partial derivatives extend continuously
to the boundary ofB. Let h^, h^ h^ denote the appropriate second partial derivatives
of h. Let

Gi=max(|^|+2|^|+|^2l).
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Note that the maximum of the function in the parenthesis actually exists, because
h{x, x ' ) == h[x + i, x ' + i) and the quotient ofB by the equivalence relation generated
by {x, x ' ) ^ {x + i? ^ + i) is compact. Let 8> o and let

81 == 8/20 max {G,Ci},

where C is given by (13.3).
Let Ji, Ja? • • • be a maximal co-independent set of complementary intervals

of 71:1 M. (We defined the notion of o-independent intervals in § 19.) Such a maximal
co-independent set may be finite (and possibly empty) or countably infinite. For
each J, in this set, and each integer 7, we let J^ == [^°(Jt)j? ^(J^j]- Obviously, the
collection of all p(Jy) is the set of all complementary intervals of PTT^ M in R/Z. Since
P(Jy) n P(J^) = 0. when (ij) + (z'J'), we have

S|J,|<i,

where |J| denotes the length ofj. Hence we may find a non-negative integer n and
positive integer N such that
(24.13) S{|J,|:i>nor |y|>N}<8^.

Of course, n may be taken no larger than the number of complementary intervals in
a maximal (o-independent set. For example, if there are no such complementary
intervals (i.e. M is a curve), then we may, and will, take n == o.

Let 83 == 8/4o(2N + 2) G.
Consider a positive integer i, let J' be a complementary interval of T^ M^, and

let Jj == [^°(J')^ ^CDj]. Since (24. i) and (24.2) are valid for the Hausdorff metric,
we have that for ig large enough, if i>_ io then there exist integers a^ . .., a^ with
fla+i ̂  a^ + 2N + 100, such that:

1) For a = i, ..., k, there exist b^y c^ e Z, i < by < n, such that

I^W-^W^^
when a^ — i <_j < a^ + 2N + i, e = o or i, where we set

,]/' == (j6(a))j-a(a)-N + ^a •

2) ^4= ̂  if a+ a'.
3) Suppose either: a) ^ is irrational and j does not satisfy a^ <j ' <_ a^ + 2N,

for any a == i, . .., k, or b) o\ is rational, co^ == p^q^ in lowest terms and j does not
satisfy a^ <j^ + q^l < ̂  + 2N, for any /' e Z and any a = i, . . ., k. In either case,

IJ ; l<8r
In other words, since 71:1 M^ differs by very little from ^ M in the Hausdorff

metric, we have that each JJ either has length < 8^ or p(JJ) differs by very lit'Ie from
one of the p(J^) for i ^ i ^n , and \{\ < N. This is because there exists T] > o
such that p(J^) has length < 8^ — Y] when z > % or \f\ < N, by (24.13). Moreover,
when p(JJ) differs by very little from one of the p(J^) then p(JJ+j') differs by very little
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from p(J,',/4.,') when [/ +j'\ <_~N + i, since M*11 differs by very little from M in
the Hausdorff metric, and f^ is uniformly close to /.

From now on, we suppose i >_ iy.

dotation. — We set J'"' ==J^\
^ = ^(JW) = ^(J(^., £ = 0 , I ,

^(«)=^(J(«)),

< = ^(JJ) = ^(J'),-> S=0 , I ,

^ =^W
For each a == i, ..., k, we choose a continuous curve Ya ln ^jo connecting A;°^

and ^l(a) such that
(24.14) GY,(O ̂  - AWj(a) - 8/10

> -AW-8/io,

for all t e [o, i]. We may do this by the definition of AWj (§ 18) and the definition
of minimax value (§ 3). We define Ya : [°) I] -^SK^v.) by

Ta(<), = Ya(<),, i f | y - f l a - N | ^ N ,

^t0", i fy -a , -N>N,
=^(a), i f j - a , -N<-N.

By definition of G,

(W) - GY,(<) = S A(y,(f),, Y,(^+i) - A(Ya(<),, Ya(^-+i).
J=-00

From (24.13) and the definition of y^ we obtain

S lTa(<)j-Ya(^l= S |Ya(<)-YaWI<8r
j=-oo | j _a (a ) -N |>N

From (13.3), the Mean Value Theorem, and the definition of S^, we then obtain

|GY^)-GY^)|<2G8i<8/io,

for all t e [o, i]. From this and (24.14), we obtain
(24.15) G^t) ̂  - AW - 8/5,

for all t e [o, i].
If (x)^ is rational, we set co^ == pjq^ in lowest terms, ^> o. If <o^ is irrational,

we set y, == + oo. We choose z\ ̂  t'o such that if i^ ?i, then

(24. i6) — ^/2 < ^ — 100 < ^ + 2N + 100 < ^/2.

It is possible to choose such an i^ since co is irrational and <x)^ -^ <o as t -> oo. From
now on, we will suppose that i'>_ i^.
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There exists a continuous curve ^ : [o, i] ->^j', such that

(24.17) K(^-Ya(^|<S2,

for ^ — i <_j <^ a^ + 2N + i,

Ya'(s)j = <. s = o, i,

for a^<j <_a^ + 2N,

Y,'(0,==<, i f f t / 2^j>a ,+2N,

and Ya'Wj-^ i f - ^ /2< j<^ ,

This is because JJ is very close to J^ in the appropriate range (condition i in the
definition of a^ . . . , a^).

Note thatj', J^\ Ya? Ta'? ^^ depend on i. However, we may suppress i from
the notation, because we keep it fixed throughout the discussion.

Choose ig ̂  t\, so that if ij> ^, then (24.7) holds. From now on, we suppose
i ^ i^. To continue the proof of Lemma (24.3), we will need the following result:

Sublemma i. — Let A e { — 00} u Z and B e Z u { + o o } , and suppose A < B.
Suppose max{|Jl | , | jB|}<73. Then

|BSl^«,^,)~A,«,^l)|<4G7),
J=A

provided T) is small enough.

Proof. — In the case co^ is rational, we have that the above sum vanishes when
A(0)+g(»'K B-l

B — A is an integral multiple of q^. It follows that we may subtract S from S ,
A(0) A

for any integer AQ and any positive integer /, without changing the value of the sum.
Consequently, we may assume, without loss of generality, that |B — A| < q^2. We
will assume this in the following argument.

Define x ' by

^ =^ i f A ^ y < B ,

= x^\ otherwise,

in the case o\ is irrational, and

^ == xj\ if I e Z such that A <j + iq, <^ B,

== x^\ otherwise,

in the case o^==^/^. Since M^/T is uniformly bounded away from the boundary
of the annulus, we have x ' e Xj., provided that T] is small enough.
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By Lemma (6.2), we have G^x') <_ o. By the definition of x\ this is the same as

Y(W,<^)-A,(<,<^))

<. W-i. 4) - A,(4-i, 4') + W, 4+1) - A,(4\ 4+i).
By (24.7), the Mean Value Theorem, and the hypothesis of the sublemma, the right
side of this inequality is < 4C7]. Hence,

YW, x]^) - W, ̂ ) < 4^.
j =A

Interchanging x01 and x11 in this argument (including the definition of x ' ) and using
the fact that G,(;c1') == o (by Lemma (6.2)), we obtain

^(Af, < )̂ - A '̂, ̂ -l) < 4G7].

Combining these two inequalities gives the required result. D

Remarks. — In the case <o, is irrational, if A = — oo or B == + °^ the right
side of the estimate may be improved to 2GY]. IfJ" is replaced by J^ and A, by A, the
estimate of Sublemma i still holds, with the right side half as large, because we may
use (13.3) in place of (24.7).

Choose z'3 ̂  i^ so that if i >_ ^3, then (24. n) holds. From now on, we suppose
i^s.

By the definition of G and y^, we have
a(a)-2

GYaW= S [h{x^\x^\)-h{x^\x^\)]
3°-°° o(a)+2N

+ S [A(y^),, Y«(<),^) - h(x^\ ̂ )].
j=a(a)-l

By Sublemma i and the remarks following it,

I^S2 [h{x^\ x^\) - h^\ x^\)] \ < C |J^_J < C 81,
j==-oo

where the last inequality is a consequence of J^-i =^(^,-N-1 and (24.13). By
the definition of G^ and y^, we have

G.Ya'W-A+A'+A",

where, setting L == — -1—— , we define
L 2 J

A = W, ̂ +1) - A,«, <^i), if q, < oo,
= o, if q, == oo,

A' == ^S"2 (^(^r, ̂ ,) - h^\ ̂ ,)),
J = L +1
a(a)+2N

A" = S (A.(Y,'(O,, Y,'(^),+i) - W, <+i)).
j=a(a)-l

295



A CRITERION FOR THE NON-EXISTENCE OF INVARIANT CIRCLES 199

Then |A| < sC |jL+i|, by (24.7) and the Mean Value Theorem, and |A'| <^ 4C7],
where T] = max { U ^ 4.1! 5 |Ja(a)-i|}5 by Sublemma i. By condition 3 in the definition
of fl^, .. .3 a^ and (24.16), T] < 81. Hence

|A| + |A' |^6G8i.

Consequently,
\Gi^W - Gy^)| ̂  8C ̂  + 2(2N + 2) sup \h - AJ

o(a) + 2N

+ S IA(Y^),., Ta'W,+i) - A(YaW,, T,W,+i)l
j=o(a)-l

o(a)+2N

+ S W,x^}-h^\x^\)\
] ==» o(a) — 1

<, 8G 81 + 2(2N + 2) sup | A - AJ + 4(2N + 2) G §2 < 6 S/io,

where the second inequality is a consequence of (24.17), condition i in the definition
of a^ ..., a^ (13.3), and the Mean Value Theorem, and the last inequality follows
from (24.11) and the definitions of \ and 82- Combining the inequality which we
have just derived with (24.15), we obtain

(24.18) G,Y^)^-AW-S,

for all t e [o, i].
For i <_ a <^ k + i, we define Ya" : [°? J] -^ ̂ j' by setting

Ta"(^=(l-^)<+<,

when any one of the following conditions holds:

1) a == i and — q^2 <^ < ^i, or
2) i < a < A + i and ^-i + ̂  <J< ^a, or
3) a = k + i and ^ + 2N <j <_ ^./2,
and by setting

Ya'^), == ̂ \ if oc > i and - ft/2 < j^ ^_i + 2N,

Ya"(^ == <> if a < ^ + i and a, <j < yj2.

In order to complete the proof of Lemma (24.3)5 we need the following elementary
result from calculus.

Sublemma 2. — Let u be a C2 real valued function on an interval [a, b]. Then

| u{{i - t) a + tb) - (i - t) u{a) - tu(b) \ <_ sup | u" \ (b — afft,
[a,6]

everywhere on [a, b].

Proof. — Let

v{t) == M(( I - t) a + tb) - (i - t) u{a) - tu{b).
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Obviously, v(a) == v{b) == o. Let ^ be a point in [o, i] where | v(t} \ takes its maximum.
Then Y(^) == o and

| .(̂ ) | == [ ̂ 0) A f ̂ "(^ ^ sup K | ̂ /2.

Similarly,

K^l^supKKi-^.

Since v"{t) == (6 — fl)2 M"((i — ^ fl + ^), and ^o < ̂  or i — ^ < 1/2, we get

| y ( f o ) | < s u p | M " | (6-0)2/8. D

Since /, ->/ in the G1 topology, it follows that h, -> h in the C2 topology.
From this and the definition of G^, it follows that we may choose i^>_ 1*3 such that
if i >_ t'4 then

(24.19) l^ij + 2 1/^1 + l^aal < 2Gi,

everywhere on B,, where A,^, etc., denote the appropriate second partial derivatives
of h^. From now on, we suppose i>_ i^. Applying Sublemma 2 to

G,Ya"W = S (A,(Ya"(^, Ya'(^4-i) - ̂ «. ̂ i)).

we obtain

|G,Ya"W - (i - t) GzYa"(o) - ̂ y^(i)|

<-SSUP ^^Ya"(^,Ya'W^l) ^^'C.IJJP,-~ 8 j <e[o,i] A2 4 J

where S' denotes summation over the following set ofj's:
j

{-^/2<J<^}, i f a = i ,

{ a , _ i + 2 N < j < f l a } . if i < a < ^ + I

{ ^ a < J < ? » / 2 L i f a = ^ + l .

The last inequality above is a consequence of the fact that the second derivative of Ya'^^j
vanishes, by the definition of^^t)^ of the fact that the first derivative of Ya"^ equals
xV — x^' == |J'|, for j appearing in the summation, and vanishes for other j, and of
(24.19). By condition 3 in the definition of ^, ..., ̂ , we have |JJ|< §1 tor those j
which appear in the sum S'. By (13.1) and its obvious analogue for rational co»,

we have

Hence,

S{|J;|:-^/2<J<?j2}<I.

S'lJJI^SiS'IJJI^Sr
j •" j
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Together with our previous inequality and the definition of ^, this implies

(24.20) |G,^'(<) - (i - t) G.y,"(o) - fG.Y."(i)| ̂  C^/4< S/io.

Setting L == - [(y. + i)/a], we have G..Y,"(o) = o, and

G,Ya"(o) = A + A ' + A " ,

if a> i, where

A = W, <^) - A.«, <^) ify.< oo,

=o if ?, = oo,
«(a-l)+2N

A' = ,-?.i W^)-W^t)),
A = A.(^(a-l)+2N^ ^(a-l)+2N+l) - ̂  (^(a -1) + 2N > ^(a-l)+2N + l).

Furthermore,

|A|,|A"|^2G8i,

by (24.7), the Mean Value Theorem, and condition 3 in the definition of a^ ..., a,, and

|A'|^4C8i,

by Sublemma i and condition 3 in the definition of a^, ..., a^. Hence

(24.21) | G.Y«"(O) |^8C8^2 8/5,

by the definition of ^. A similar argument shows that

(24.22) |G.Y;"(i)|^28/5.

From (24.20-22), we get

(24.23) |G.T;"(<)|<5,

for all t e [o, i].

We define y : [o, i] -^S'j, as the cocatenation of -y"' f" ^"' v" v" v'"
in that order. In other words, ' ' ' '' " ̂ ' Y&+1 '

Y(<)=Y;'(^+l)<-2a+2), 2^<f<2a-^_[

tR + I — ~ 2^ + I

-Ya'^+l^^a+i), 2a^-[<f<-^OL_
2^ + I - — 2Vfe + I '

It is obvious from the definitions that y is well-defined and continuous, i.e. the two
definitions of it given at the common endpoints of adjacent intervals are equal. Thus,
Y is a continuous curve in 3Tj., connecting x»(J') and ̂ (J'). By (24.18) and (24.23),'

G.y(^ -AW-8,
for all t e [o, i]. Hence,

AW, <_ AW + 8.
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Since 8 is an arbitrary positive number, we thereby obtain the conclusion of Lemma (24.3).
D

Proof of Lemma (24.1). — Immediate from Lemmas (24.2) and (24.3). D

Proof of Proposition (9.4). — From Lemma (24. i), by the discussion at the beginning
of this section. D

25. The Peierls Energy Barrier

Our purpose in this section is to relate what we have done to something Aubry,
Le Daeron, and Andr6 did in [7]. We will explain a version of a result of these authors,
which makes sense in our context.

We suppose co is an irrational number such that p(/o) < <o < p(/i). We will
suppose that MJT is a Cantor set, not a circle. Equivalently, TC^ M^ 4= R. Let J
be a complementary interval of 7^ M^. For x ej, we define

VQc) == max { G^x) : x e Xj, J?o = ^}-

Here, Xj and G^ are as defined in § 18. By Lemma (6.2), V{x) <^ o.

Definition. — The Peierls energy barrier associated to J is max{— V(^) : x ej}.

Note that V{x) is a continuous function of x, so — V{x) actually takes a maximum
in J. Obviously, the Peierls energy barrier associated to J is a lower bound for AWj.

However, the Peierls energy barrier associated to J, = [^°(J)», ^(Ji)] depends
on i, in contrast to AWj^, which is independent of i. In fact, we have |JJ -> o,
as i -> ± oo. From this, it follows easily that the Peierls energy barrier associated to J,
tends to o as i -> ± oo. Moreover, one can produce examples where AWj is greater
than the maximum of the Peierls energy barrier associated to the J^.

The definition of the Peierls energy barrier which we have given above is not the
same as that which Aubry, Le Daeron, and Andr^ gave in [7]. However, it is equivalent
to their definition, as may easily be shown by means of a suitable variant of the Funda-
mental Lemma of [7]. The difference between the two definitions is that in defining V(A:) ,
the authors of [7] allow x to vary over a larger space than our Xj. However, their
methods show that the maximum over this larger space is still achieved for x e Xj,
so the different definitions arrive at the same result.

The analogue of our Proposition (5.2) which is proved in [7] may be stated in
our terminology, as follows: J C ^(M^) if and only if the Peierls energy barrier
associated to J vanishes. Aubry, Le Daeron, and Andr^ also have a result for rational (x>
(which we do not have).
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