## Publications mathématiques de l'I.H.É.S.

## Charles C. Pugh

## The $C^{1}+\alpha$ hypothesis in Pesin theory

Publications mathématiques de l'I.H.É.S., tome 59 (1984), p. 143-161
[http://www.numdam.org/item?id=PMIHES_1984__59__143_0](http://www.numdam.org/item?id=PMIHES_1984__59__143_0)
© Publications mathématiques de l'I.H.É.S., 1984, tous droits réservés.
L'accès aux archives de la revue « Publications mathématiques de l'I.H.É.S. » (http:// www.hes.fr/IHES/Publications/Publications.html) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

## THE $\mathrm{C}^{1+\alpha}$ HYPOTHESIS IN PESIN THEORY <br> by Charles C. PUGH*

1. Introduction. - The stable manifold theory developed by Pesin and others [ $1,4,7,8,9$ ] contains a hypothesis that the given dynamics be of differentiability class $\mathbf{C}^{1+\alpha}$ for some $\alpha>0$. That is, first derivatives must obey $\alpha$-Hölder conditions. Here is an example showing that $\mathrm{C}^{1}$ alone, i.e. $\alpha=0$, is insufficient. It uses the auxiliary function

$$
g(u)=\left\{\begin{array}{cl}
\frac{u}{\log (\mathrm{I} / u)} & \text { if } \mathrm{o}<u<\mathrm{I} \\
\mathrm{o} & \text { if } u=0
\end{array}\right.
$$

which is $\mathrm{C}^{1}$, strictly monotone increasing, has $g^{\prime}(0)=0$, and is not $\mathrm{C}^{1+\alpha}$ for any $\alpha>0$. Near $o, g$ grows faster than $u^{1+\alpha}$ for all $\alpha>0$. Functions like $g$ have been seen before, for instance in S. Sternberg's example of a non $\mathbf{C}^{1}$-linearizable $\mathbf{C}^{1}$ contraction of $\mathbf{R}$ [io, p. ioi].

Suppose $f: \mathbf{M} \rightarrow \mathbf{M}$ is a $\mathbf{C}^{1}$ diffeomorphism of the compact manifold $\mathbf{M}$. Let $p \in \mathrm{M}, v \in \mathrm{~T}_{p} \mathrm{M}, v \neq 0$, be given. The Lyapunov exponents of $v$ are

$$
\begin{aligned}
& \chi^{-}(v)=\lim _{-n \rightarrow-\infty} \frac{\mathrm{I}}{-n} \log \left|\mathrm{~T}_{p} f^{-n}(v)\right| \\
& \chi^{+}(v)=\lim _{n \rightarrow \infty} \frac{\mathrm{I}}{n} \log \left|\mathrm{~T}_{p} f^{n}(v)\right|
\end{aligned}
$$

if the limits exist. For vectors in most tangent spaces, Oseledec [6] proves that these Lyapunov exponents do exist and that there is a kind of uniformity referred to as regularity of the orbit $\mathcal{O}(p)=\left\{f^{n} p\right\}_{n \in \mathbf{Z}}$; namely, if $\mathrm{E}_{p}^{\lambda}$ denotes $\left\{v: v=0\right.$ or $\left.\chi^{-}(v)=\lambda=\chi^{+}(v)\right\}$ then $\mathrm{T}_{p} \mathrm{M}=\bigoplus_{\lambda} \mathrm{E}_{p}^{\lambda}$ and

$$
\begin{equation*}
\lim _{|n| \rightarrow \infty} \frac{\mathrm{I}}{n} \log \left(\frac{\left\|\mathrm{~T} f^{n} \mid \mathrm{E}_{p}^{\lambda}\right\|}{\left\|\left(\mathrm{T} f^{n} \mid \mathrm{E}_{p}^{\lambda}\right)^{-1}\right\|}\right)=0 \tag{I}
\end{equation*}
$$

[^0]See also [ $\mathrm{I}, 8$. (A better name for this property might be subexponential conformality since $\mathrm{T} f^{n} \mid \mathrm{E}_{p}^{\lambda}$ grows like a sequence of dilations, up to a subexponential error.)

Definition. - The orbit $\mathcal{O}(p)$ is asymptotically hyperbolic if $\mathcal{O}(p)$ is regular and $\chi^{ \pm}(v) \neq 0$ for all non-zero $v \in \mathrm{~T}_{p} \mathrm{M}$.

Assume $\mathcal{O}(p)$ is asymptotically hyperbolic and write

$$
\mathrm{E}_{p}^{u}=\bigoplus_{\lambda>0} \mathrm{E}_{p}^{\lambda}, \quad \mathrm{E}_{p}^{s}=\underset{\lambda<0}{ } \mathrm{E}_{p}^{\lambda} .
$$

Pesin's Stable Manifold Theorem [1, 5, 7, 9] asserts in part that the asymptotically exponentially stable set of $p$

$$
\mathrm{W}^{s}(p)=\left\{x \in \mathrm{M}: \lim _{n \rightarrow \infty} \frac{\mathrm{I}}{n} \log d\left(f^{n} x, f^{n} p\right)<0\right\}
$$

is an injectively immersed $\mathrm{C}^{1}$ manifold tangent at $p$ to $\mathrm{E}_{p}^{s}$, provided $f$ is $\mathrm{C}^{1+\alpha}$ for some $\alpha>0$.

Theorem. - There exists a $\mathrm{C}^{1}$ diffeomorphism of a 4-manifold having an asymptotically hyperbolic orbit $\mathcal{O}(p)$ such that $\mathrm{W}^{s}(p)$ is not an injectively immersed manifold tangent to $\mathrm{E}_{p}^{s}$.

See § 3 for the example cited.
In the proof of Pesin's Theorem, $f$ is lifted from M to TM along $\mathcal{O}(p)$ via the exponential map. The composites

locally represent $f$ in exponential coordinates along the orbit $\mathcal{O}(p)$. The crucial consequence of $\mathbf{C}^{1+\alpha}$ differentiability of $f$ is that the $f_{n}$ are $\mathbf{C}^{1+\alpha}$-equicontinuous. That is, there are uniform constants $\mathrm{K}, \delta>\mathrm{o}$ such that

$$
\left\|\left(\mathrm{D} f_{n}\right)_{x}-\left(\mathrm{D} f_{n}\right)_{y}\right\| \leq \mathrm{K}|x-y|^{\alpha}
$$

for all $x, y \in \mathrm{~T}_{m_{p}} \mathrm{M}$, with $|x|,|y| \leq \delta$.

In § 2, we give an example of a sequence of maps

$$
\mathbf{R}^{2} \xrightarrow{f_{n}} \mathbf{R}^{2}, \quad f_{n}(z)=\mathbf{A}_{n} z+\mathbf{G}_{n}(z), \quad n \in \mathbf{Z}
$$

such that $A_{n}$ is a diagonal $2 \times 2$ matrix, $\left\|A_{n}\right\|$ and $\left\|A_{n}^{-1}\right\|$ are uniformly bounded,

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{\mathrm{I}}{n} \log \left|\mathrm{~A}_{n} \circ \ldots \circ \mathrm{~A}_{0}(v)\right|=\lambda \\
& \lim _{n \rightarrow \infty} \frac{\mathrm{I}}{-n} \log \left|\mathrm{~A}_{-n}^{-1} \circ \ldots \circ \mathrm{~A}_{-1}^{-1}(v)\right|=\lambda
\end{aligned} \quad v \in \mathbf{R}^{2}-\{0\}
$$

where $\lambda$ is a negative constant, $G_{n}$ is $\mathrm{C}^{1},\left(\mathrm{DG}_{n}\right)_{0}=0$, and $\left(\mathrm{C}^{1}\right.$ equicontinuity of $\left.f_{n}\right)$

$$
\left\|\left(\mathrm{DG}_{n}\right)_{x}-\left(\mathrm{DG}_{n}\right)_{y}\right\| \rightarrow 0 \text { uniformly as }|x-y| \rightarrow 0
$$

but there exist points $z$ arbitrarily near $o$ with

$$
\left|f_{n} \circ \ldots \circ f_{0}(z)\right| \rightarrow \infty \quad \text { as } n \rightarrow \infty .
$$

Thus, o should be asymptotically stable under $\left\{f_{n}\right\}$ since $\left\{\mathrm{T} f_{n}\right\}$ contracts asymptotically, but, due to lack of smoothness of $\left\{f_{n}\right\}$, it is not. See Theorem I in § 2. (Regularity in this context is implied by the fact that $A_{n}$ is diagonal.)

In § 3 the maps $f_{n}$ are realized as lifts along an orbit of some $\mathrm{C}^{1}$ diffeomorphism of a compact 4 -manifold. See Theorem 2.

Conjecture. - If $\mathcal{O}(p)$ is an asymptotically hyperbolic orbit of the $\mathrm{C}^{1}$ diffeomorphism $f: \mathbf{M} \rightarrow \mathbf{M}, \mathbf{M}$ has dimension two, and $\operatorname{dim} \mathrm{E}_{p}^{u}=\operatorname{dim} \mathrm{E}_{p}^{s}=\mathrm{I}$, then Pesin's result holds: $\mathrm{W}^{s}(p)$ is $\mathrm{C}^{1}$ and tangent at $p$ to $\mathrm{E}_{p}^{s}$. Indeed this might be true whenever $\mathrm{E}_{p}^{s}$ has dimension one. Regularity is automatic on one-dimensional subspaces.

Thanks. - In writing this paper, I benefitted from conversations with M. Herman and A. Fathi at the Ecole Polytechnique in Paris. Comments by the referee were also useful.
2. Nonlinear shear. - Let $g:(0, \infty) \rightarrow(0, \infty)$ be any smooth function such that
$\mathrm{g}(u)=\frac{u}{\log (\mathrm{I} / u)} \quad$ if $\mathrm{o}<u \leq \mathrm{I} / e$
$g^{\prime}(u)>1 \quad$ if $u \geq \mathrm{I} / e$
$g^{\prime}(u)$ is constant if $u \geq \mathrm{I}$.
Extend $g$ to all of $\mathbf{R}$ by setting $g(-u)=g(u)$ and $g(0)=0$. Then $g: \mathbf{R} \rightarrow(0, \infty)$ is $\mathbf{C}^{\mathbf{1}}$ and is $\mathbf{C}^{\infty}$ on $\mathbf{R}-\{0\}$. The graph of $g$ is shown in Figure I .


Fic. i. - The graph of $g$
Choose constants $0<a<a b<\mathrm{I}<b$ and call

$$
\begin{array}{ll}
\mathrm{S}=\left(\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right), & \mathrm{T}=\left(\begin{array}{ll}
b & 0 \\
0 & a
\end{array}\right), \\
f_{\mathrm{s}}=\left(\begin{array}{ll}
a & g \\
0 & b
\end{array}\right), & f_{\mathrm{T}}=\left(\begin{array}{ll}
b & 0 \\
g & a
\end{array}\right) .
\end{array}
$$

Thus, $f_{\mathrm{B}}$ and $f_{\mathrm{T}}$ are $\mathbf{C}^{1}$ origin preserving maps $\mathbf{R}^{\mathbf{2}} \rightarrow \mathbf{R}^{\mathbf{2}}$

$$
f_{\mathrm{s}}: z \mapsto\binom{a x+g(y)}{b y}, \quad f_{\mathrm{T}}: z \mapsto\binom{b x}{g(x)+a y}, \quad z=\binom{x}{y} .
$$

The linear parts of $f_{\mathrm{B}}, f_{\mathrm{T}}$ at o are $\mathrm{S}, \mathrm{T}$ and $f_{\mathrm{B}}, f_{\mathrm{T}}$ are easily seen to be invertible on all of $\mathbf{R}^{\mathbf{2}}$.

As $n=1,2,3, \ldots$ choose $A_{n}$ equal to $S$ or $T$ according to the pattern


Thus, if $\mathrm{L}_{k}$ denotes $\mathrm{I}+\ldots+k=k(k+\mathrm{I}) / 2$ then $\mathrm{o}=\mathrm{L}_{0}<\mathrm{L}_{1}<\mathrm{L}_{2}<\ldots$, the sets

$$
\begin{aligned}
& \mathscr{S}=\left\{n \in \mathbf{N}: \mathrm{L}_{k-1}<n \leq \mathrm{L}_{k} \text { for some odd } k\right\} \\
& \mathscr{E}=\left\{n \in \mathbf{N}: \mathrm{L}_{k-1}<n \leq \mathrm{L}_{k} \text { for some even } k\right\}
\end{aligned}
$$

decompose $\mathbf{N}$ into disjoint subsets, and

$$
\mathrm{A}_{n}=\left\{\begin{array}{ll}
\mathrm{S} & n \in \mathscr{S} \\
\mathrm{~T} & n \in \boldsymbol{\mathscr { E }}
\end{array} .\right.
$$

Correspondingly define

$$
f_{n}= \begin{cases}f_{\mathrm{s}} & n \in \mathscr{S} \\ f_{\mathrm{T}} & n \in \mathscr{E}\end{cases}
$$

To suggest local iteration along the origin-orbit, write

$$
\mathrm{A}^{n}=\mathrm{A}_{n-1} \circ \ldots \circ \mathrm{~A}_{0}, \quad f^{n}=f_{n-1} \circ \ldots \circ f_{0}, \quad n>0
$$

where we take $\mathrm{A}_{0}=\mathrm{T}$ and $f_{0}=f_{\mathrm{T}}$. To complete the picture, if $-n<0$, set

$$
\begin{array}{ll}
\mathrm{A}_{-n}=\mathrm{A}_{n}, & f_{-n}=f_{n} \\
\mathrm{~A}^{-n}=\mathrm{A}_{-n}^{-1} \circ \ldots \circ \mathrm{~A}_{-1}^{-1}, & f^{-n}=f_{-n}^{-1} \circ \ldots \circ f_{-1}^{-1}
\end{array}
$$

and call $\mathrm{A}^{0}=f^{0}=$ identity. Then $\mathrm{A}^{n}$ is the linear part of $f^{n}$ at $0, n \in \mathbf{Z}$.
For $|n|$ large

$$
\mathrm{A}^{n}=\left(\begin{array}{ll}
c_{n} & 0 \\
0 & d_{n}
\end{array}\right)
$$

where $c_{n}$ and $d_{n}$ are products of approximately equal numbers of $a$ 's and $b$ 's. As $|n| \rightarrow \infty, c_{n}^{1 / n}$ and $d_{n}^{1 / n} \rightarrow(a b)^{1 / 2}$, so the family $\left\{\mathrm{A}^{n}\right\}_{n \in \mathrm{Z}}$ has double Lyapunov exponent equal to

$$
\lambda=\frac{1}{2} \log (a b)<0
$$

Since the $A_{n}$ are diagonal, regularity (see ( 1 ) in § 1 ) of this Lyapunov splitting is automatic. In sum, $\left\{\mathrm{A}^{n}\right\}_{n \in \mathrm{z}}$ contracts asymptotically. Note, however, that the contraction is only asymptotic. Along the orbit, the length of $v=(1,0)$ expands by $b$, shrinks by $a$, grows by $b$ at the next two points, shrinks by $a$ at the next three points, etc.

Theorem 1. - $\left\{f^{n}\right\}_{n \in \mathbf{Z}}$ does not contract asymptotically although its linear part does. In fact if $z=(x, y)$ is any point in the first quadrant of $\mathbf{R}^{2}, x>0$ and $y>0$, then

$$
f^{n}(z) \rightarrow \infty \quad \text { as } n \rightarrow \infty
$$

although $\left(\mathrm{D} f^{n}\right)_{0}(z) \rightarrow 0$ as $n \rightarrow \infty$.
Remarks. - a) $f_{\mathrm{s}}$ is a $\mathbf{C}^{1}$ diffeomorphism of $\mathbf{R}^{2}$ onto itself leaving invariant the foliation by horizontal lines. It shears the $y$-axis onto the curve $y \mapsto g(y / b)$ and is an affine contraction of each horizontal line by the constant factor $a$. See Figure 2.
b) $f_{\mathrm{T}}$ is conjugate to $f_{\mathrm{S}}$ by a $90^{\circ}$ rotation:

$$
\left(\begin{array}{rr}
0 & -\mathrm{I} \\
\mathrm{I} & 0
\end{array}\right) \circ f_{\mathrm{S}} \circ\left(\begin{array}{rr}
0 & \mathrm{I} \\
-\mathrm{I} & 0
\end{array}\right)=f_{\mathrm{T}} .
$$

c) $\left\{f_{n}\right\}_{n \in \mathbf{Z}}$ is uniformly $\mathbf{C}^{\mathbf{1}}$-equicontinuous.
d) The stable set of o under $f^{n}$ can be shown to lie wholly in the third quadrant, $x<0$ and $y<0$; it seems to be a curve which converges to $o$ in the manner of $\sin (\mathrm{I} / x) / \log (\mathrm{I} / x)$ as $x \rightarrow 0$. All other orbits converge to $\infty$ as $n \rightarrow \infty$.


Fig. 2. - The non-linear horizontal shear $f_{\mathrm{S}}$
Lemma 1. - If $\mathrm{o}<\beta_{n} \rightarrow \mathrm{I}$ as $n \rightarrow \infty$ and $b>\mathrm{I}, c>0$ are fixed, then $\lim _{n \rightarrow \infty} b^{6 n^{2}} \beta_{n} \beta_{n-1}^{2} \ldots \beta_{1}^{n} \beta_{0}^{n+1}=\infty$.

Proof. - Fix $s, l$ such that

$$
\begin{aligned}
& n>s \Rightarrow \beta_{n} \geq b^{-c} \\
& \beta_{0}, \ldots, \beta_{s} \geq b^{-l} .
\end{aligned}
$$

Then

$$
\begin{aligned}
b^{c n^{2}} \beta_{n} \ldots \beta_{0}^{n+1} & =b^{c n^{2}} \beta_{n} \ldots \beta_{s}^{n-s} \beta_{s}^{n-s+1} \ldots \beta_{0}^{n+1} \\
& \geq b^{c n^{2}}\left(b^{-c}\right)^{1+\ldots+(n-s)}\left(b^{\ell} \ell()^{(n+1)(s+1)}\right. \\
& >b^{\left(n^{n}(2)-\ell(s+1)(n+1)\right.} \rightarrow \infty
\end{aligned}
$$

as $n \rightarrow \infty$.
Q.E.D.

For any function $f(u)$ that vanishes at $u=0$ and is defined for $u \geq 0$, let

$$
\sigma_{t}(u)=\frac{f(u)}{u} .
$$

$\sigma_{f}(u)$ is the shrinking factor of $f$ at $u$ : under $f$, the distance from $u$ to $o$ is shrunk by the factor $\sigma_{f}(u)$.

Lemma 2. - Let $g(u)=u / \log (\mathrm{I} / u)$ as above, $\mathrm{o}<u<\mathrm{I} /$. Call $\sigma=\sigma_{g}$. Then

$$
\frac{\sigma(g u)}{\sigma(u)} \rightarrow \mathrm{I} \quad \text { as } u \rightarrow \mathrm{o} .
$$

Proof.

$$
\frac{\sigma(g u)}{\sigma(u)}=\frac{\log (u)}{\log (g u)}=\frac{\log (u)}{\log u-\log |\log u|}=\frac{\mathrm{I}}{\mathrm{I}+\frac{\log |\log u|}{|\log u|}} \rightarrow \mathrm{I}
$$

as $u \rightarrow 0$.
Q.E.D.

148

Remark. - Since $g^{\prime}(0)=0, \sigma(g u)$ and $\sigma(u)$ both tend to $o$ with $u$. It is somewhat remarkable that they do so at the same order because $g u$ is $f a r$ closer to o than is $u$. If $g$ were $\mathrm{C}^{1+\alpha}, \alpha>0$, the lemma would fail. For example if $\tilde{g}=u^{1+\alpha}$ and $\tilde{\sigma}$ is the shrinking factor for $\widetilde{g}$, then

$$
\frac{\tilde{\sigma}(\tilde{g} u)}{\widetilde{\sigma}(u)}=u^{\alpha^{2}} \rightarrow 0 \quad \text { as } u \rightarrow 0
$$

Likewise, in the next lemma, $g$ must be $u / \log (\mathrm{I} / u)$ or some similar function which grows too fast near $o$ to be $\mathrm{C}^{1+\alpha}, \alpha>0$.

Lemma 3. - Let $g$ be as in Figure 1 and (2). Fix $u_{0}>0, b>1$. Set

$$
u_{1}=b g\left(u_{0}\right), \ldots, u_{k}=b^{k} g\left(u_{k-1}\right)
$$

Then

$$
\lim _{k \rightarrow \infty} u_{k}=\infty
$$

Proof.- If $u_{0}>\mathrm{I} / e$ then $u_{1}=b g\left(u_{0}\right) \geq b / e>1 / e$, and, by induction,

$$
u_{k}=b^{k} g\left(u_{k-1}\right) \geq b^{k} / e \rightarrow \infty \quad \text { as } k \rightarrow \infty
$$

so we may suppose $0<u_{0}<\mathrm{r} / e$. On ( $\mathrm{o}, \mathrm{I} / e$ ),

$$
\sigma^{\prime}(u)=\frac{\mathrm{I}}{u(\log (\mathrm{I} / u))^{2}}>0
$$

so $\sigma$ is monotone there. Clearly $g$ and $g^{k}=g \circ \ldots \circ g, k$ times, are monotone also. Thus,

$$
\begin{aligned}
g^{k}\left(u_{0}\right) & =g^{k-1}\left(g u_{0}\right)<g^{k-1}\left(b g u_{0}\right)=g^{k-1}\left(u_{1}\right) \\
& =g^{k-2}\left(g u_{1}\right)<g^{k-2}\left(b^{2} g u_{1}\right)=g^{k-2}\left(u_{2}\right) \\
& =\ldots<u_{k}
\end{aligned}
$$

and

$$
\begin{aligned}
u_{k+1} & =b^{k+1} g\left(u_{k}\right)=b^{k+1} \sigma\left(u_{k}\right) u_{k}=b^{k+1} \sigma\left(u_{k}\right) b^{k} \sigma\left(u_{k-1}\right) u_{k-1} \\
& =\ldots=b^{(k+2)(k+1) / 2} \sigma\left(u_{k}\right) \ldots \sigma\left(u_{0}\right) \\
& >b^{(k+2)(k+1) / 2} \sigma\left(g^{k} u_{0}\right) \sigma\left(g^{k-1} u_{0}\right) \ldots \sigma\left(u_{0}\right) \\
& >b^{k^{2} / 2}\left(\frac{\sigma\left(g^{k} u_{0}\right)}{\sigma\left(g^{k-1} u_{0}\right)}\right)\left(\frac{\sigma\left(g^{k-1} u_{0}\right)}{\sigma\left(g^{k-2} u_{0}\right)}\right)^{2} \ldots\left(\frac{\sigma\left(g u_{0}\right)}{\sigma\left(u_{0}\right)}\right)^{k}\left(\sigma\left(u_{0}\right)\right)^{k+1}
\end{aligned}
$$

By Lemma 2, all the factors

$$
\frac{\sigma\left(g^{n} u_{0}\right)}{\sigma\left(g^{n-1} u_{0}\right)} \rightarrow \mathrm{I}
$$

as $n \rightarrow \infty$, so by Lemma $\mathrm{I}, u_{k+1} \geq \mathrm{I} / e$ for some first $k+\mathrm{I}$. Beyond this $k+\mathrm{I}$, $u_{m} \geq b^{m-(k+1)} l e \rightarrow \infty$ as $m \rightarrow \infty$, as observed at the outset.
Q.E.D.

Proof of Theorem 1. - Recall that $0<a<a b<\mathrm{I}<b$ and

$$
\begin{aligned}
& \mathrm{S}=\left(\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right), \quad \mathrm{T}=\left(\begin{array}{ll}
b & 0 \\
0 & a
\end{array}\right), \quad f_{\mathrm{S}}=\left(\begin{array}{ll}
a & g \\
0 & b
\end{array}\right), \quad f_{\mathrm{T}}=\left(\begin{array}{ll}
b & 0 \\
g & a
\end{array}\right), \\
& \mathrm{A}_{n}=\left\{\begin{array}{ll}
\mathrm{S} & \text { if } n \in \mathscr{S} \\
\mathrm{~T} & \text { if } n \in \mathscr{G},
\end{array} \quad \mathrm{~A}^{n}=\mathrm{A}_{n-1} \circ \ldots \circ \mathrm{~A}_{0},\right. \\
& f_{n}=\left\{\begin{array}{ll}
f_{\mathrm{S}} & \text { if } n \in \mathscr{S} \\
f_{\mathrm{T}} & \text { if } n \in \mathscr{E}
\end{array}, \quad f^{n}=f_{n-1} \circ \ldots \circ f_{0},\right.
\end{aligned}
$$

where

$$
\begin{aligned}
& \mathscr{S}=\{n \in \mathbf{N}: \mathrm{I}+\ldots+(k-\mathrm{I})<n \leq \mathrm{I}+\ldots+k \text { for some even } k \in \mathbf{N}\}, \\
& \boldsymbol{E}=\mathbf{N}-\mathscr{S},
\end{aligned}
$$

and $g$ is the function in Figure 1 or (2). Write

$$
f_{n}(z)=\mathrm{A}_{n} z+\mathrm{G}_{n}(z),
$$

where $G_{n}: \mathbf{R}^{\mathbf{2}} \rightarrow \mathbf{R}^{\mathbf{2}}$ is given by

$$
\mathrm{G}_{n}(z)=\left\{\begin{array}{cl}
\binom{g y}{\mathrm{o}} & \text { if } n \in \mathscr{S} \\
\binom{\mathrm{o}}{g x} & \text { if } n \in \mathscr{E}
\end{array}, \quad z=\binom{x}{y} .\right.
$$

Let $\pi_{1}$ and $\pi_{2}$ be the projections onto the $x$-axis and $y$-axis. Identify each axis with $\mathbf{R}$. Then

$$
\pi_{1} \circ \mathrm{G}_{n}=\left\{\begin{array}{cc}
g \circ \pi_{2} & \text { if } n \in \mathscr{S}, \\
0 & \text { if } n \in \mathscr{E},
\end{array} \quad \pi_{2} \circ \mathrm{G}_{n}=\left\{\begin{array}{cc}
0 & \text { if } n \in \mathscr{S}, \\
g \circ \pi_{1} & \text { if } n \in \mathscr{E} .
\end{array}\right.\right.
$$

Now fix some $z=(x, y)$ with $x>0$ and $y>0$. We must prove (3)

$$
f^{n}(z) \rightarrow \infty \quad \text { as } n \rightarrow \infty
$$

By construction, $f^{n}$ carries the first quadrant into itself, so all quantities in the following estimates are positive. Set

$$
\begin{aligned}
& s_{0}=\pi_{2}\left(f^{1} z\right)=\pi_{2}\left(f_{0} z\right), \\
& s_{1}=\pi_{1}\left(f^{3} z\right), \\
& s_{2}=\pi_{2}\left(f^{6} z\right), \\
& \vdots \\
& s_{k}=\pi_{i}\left(f^{m} z\right), \quad m=1+\ldots+(k+1), \quad i= \begin{cases}1 & k \text { is odd } \\
2 & k \text { is even }\end{cases}
\end{aligned}
$$

We claim
(4)

$$
s_{k} \geq b^{k} g\left(s_{k-1}\right) \quad k \geq \mathrm{I}
$$

Suppose $k$ is odd, for instance $k=\mathrm{I}$. Then

$$
\left.\begin{array}{rl}
\mathrm{A}_{n} & =\mathrm{T} \\
\pi_{1} \circ \mathrm{G}_{n} & =\mathrm{o} \\
\pi_{2} \circ \mathrm{G}_{n} & =g \circ \pi_{1}
\end{array}\right\} \quad \text { for } m-(k+\mathrm{I})+\mathrm{I} \leq n \leq m, ~\left(\begin{array}{rl}
\mathrm{A}_{n} & =\mathrm{S} \\
\pi_{1} \circ \mathrm{G}_{n} & =g \circ \pi_{2} \\
\pi_{2} \circ \mathrm{G}_{n} & =0
\end{array}\right\} \quad \text { if } n=m-(k+\mathrm{I}) .
$$

Thus

$$
\begin{aligned}
s_{k} & =\pi_{1}\left(f^{m} z\right)=\pi_{1}\left(f_{m-1}\left(f^{m-1} z\right)\right)=\pi_{1}\left(\mathbf{T}\left(f^{m-1} z\right)+\mathbf{G}_{m-1}\left(f^{m-1} z\right)\right) \\
& =b \pi_{1}\left(f^{m-1} z\right)=\ldots=b^{k-1} \pi_{1}\left(f^{m-k+1} z\right) \\
& =b^{k-1} \pi_{1}\left(f_{m-k}\left(f^{m-k} z\right)\right)=b^{k-1} \pi_{1}\left(\mathrm{~T}\left(f^{m-k} z\right)+\mathbf{G}_{m-k}\left(f^{m-k} z\right)\right) \\
& =b^{k} \pi_{1}\left(f^{m-k} z\right)=b^{k} \pi_{1}\left(f_{m-k-1}\left(f^{m-k-1} z\right)\right) \\
& =b^{k} \pi_{1}\left(\mathbf{S}\left(f^{m-k-1} z\right)+\mathrm{G}_{m-k-1}\left(f^{m-k-1} z\right)\right) \\
& =b^{k} a \pi_{1}\left(f^{m-k-1} z\right)+b^{k} g\left(\pi_{2}\left(f^{m-k-1} z\right)\right) \\
& >b^{k} g\left(\pi_{2}\left(f^{m-k-1} z\right)\right)=b^{k} g\left(s_{k-1}\right),
\end{aligned}
$$

since $(\mathrm{I}+\ldots+k)=m-k-\mathrm{I}$. Similarly, if $k$ is even, $k \geq 2, m=\mathrm{I}+\ldots(k+\mathrm{I})$, then

$$
\left.\begin{array}{rl}
\mathrm{A}_{n} & =\mathrm{S} \\
\pi_{1} \circ \mathrm{G}_{n} & =g \circ \pi_{2} \\
\pi_{2} \circ \mathrm{G}_{n} & =\mathrm{o}
\end{array}\right\} \quad \text { for } m-(k+\mathrm{I})+\mathrm{I} \leq n \leq m,
$$

$$
\mathrm{A}_{n}=\mathrm{T}
$$

$$
\left.\begin{array}{rl}
\mathrm{A}_{n} & =1 \\
\pi_{1} \circ \mathrm{G}_{n} & =0 \\
\pi_{2} \circ \mathrm{G}_{n} & =g \circ \pi_{1}
\end{array}\right\} \quad \text { if } \quad n=m-(k+1)
$$

and

$$
\begin{aligned}
s_{k} & =\pi_{2}\left(f^{m} z\right)=\ldots=b^{k} \pi_{2}\left(f_{m-k-1}\left(f^{m-k-1} z\right)\right) \\
& =b^{k} \pi_{2}\left(\mathrm{~T}\left(f^{m-k-1} z\right)+\mathrm{G}_{m-k-1}\left(f^{m-k-1} z\right)\right) \\
& =b^{k} a \pi_{2}\left(f^{m-k-1} z\right)+b^{k} g\left(\pi_{1}\left(f^{m-k-1} z\right)\right)>b^{k} g\left(s_{k-1}\right),
\end{aligned}
$$

which proves (4).
Call $u_{0}=s_{0}$ and $u_{k}=b^{k} g\left(u_{k-1}\right), k \geq$ 1. By (4), induction, and monotonicity of $g$,
(5)

$$
s_{k} \geq u_{k} \quad \text { if } k \geq 0,
$$

for $s_{k} \geq b^{k} g\left(s_{k-1}\right) \geq b^{k}\left(u_{k-1}\right)=u_{k}$. By Lemma 3, $u_{k} \rightarrow \infty$ as $k \rightarrow \infty$. From (5)

$$
\begin{equation*}
s_{k} \rightarrow \infty \quad \text { as } k \rightarrow \infty . \tag{6}
\end{equation*}
$$

This proves (3) for a certain subsequences of $n \rightarrow \infty$, namely for $n=m$ with $m$ of the form $1+\ldots+(k+1)$.

To handle general $n$, observe that

$$
\begin{equation*}
\pi_{1}\left(f^{m+1} z\right) \text { and } \pi_{2}\left(f^{m+1} z\right) \text { both tend to } \infty \text { as } m=\mathrm{I}+\ldots+(k+\mathrm{I}) \rightarrow \infty \tag{7}
\end{equation*}
$$

For if $k$ is odd then

$$
\begin{aligned}
\pi_{1}\left(f^{m+1} z\right) & =\pi_{1}\left(\mathrm{~T}\left(f^{m} z\right)+\mathrm{G}_{m}\left(f^{m} z\right)\right) \\
& =b \pi_{1}\left(f^{m} z\right)=b s_{k} \rightarrow \infty \quad \text { as } k \rightarrow \infty \\
\pi_{2}\left(f^{m+1} z\right) & =\pi_{2}\left(\mathrm{~T}\left(f^{m} z\right)+\mathrm{G}_{m}\left(f^{m} z\right)\right) \\
& =a \pi_{2}\left(f^{m} z\right)+g\left(\pi_{1}\left(f^{m} z\right)\right)>g\left(s_{k}\right) \rightarrow \infty \quad \text { as } k \rightarrow \infty
\end{aligned}
$$

Similarly, if $k$ is even. Now the $k+1$ iterates $f_{n}, m<n<m+(k+2)$, increase one of these coordinates, $\pi_{1}\left(f^{m+1} z\right)$ or $\pi_{2}\left(f^{m+1} z\right)$, by powers of $b$, so, for these $n$,

$$
\max \left(\pi_{1}\left(f^{n+1} z\right), \pi_{2}\left(f^{n+1} z\right)\right)>\min \left(\pi_{1}\left(f^{m+1} z\right), \pi_{2}\left(f^{m+1} z\right)\right)
$$

But this means, by (7), that

$$
\left|f^{n+1} z\right| \geq \min \left(\pi_{1}\left(f^{m+1} z\right), \pi_{2}\left(f^{m+1} z\right)\right) \rightarrow \infty \quad \text { as } k \rightarrow \infty,
$$

for $1+\ldots+(k+1) \leq n<1+\ldots+(k+2)$, which completes the proof of (3) and Theorem I.

Remark. - The strategy of $\left\{f_{n}\right\}$ is to expand one component of $z k$ times by $b$ and then transfer as much as possible of this expanded component to the opposite component for the next $k+1$ iterates. The non-smoothness of $f_{n}$ permits just enough transfer.
3. Realizing the Example. - Consider the diffeomorphisms $f_{n}: \mathbf{R}^{\mathbf{2}} \rightarrow \mathbf{R}^{\mathbf{2}}$ as in § 2. We want to lift them to the 2 -sphere by central projection, that is, by projection from the center of a unit 2 -sphere whose south pole rests at the origin of $\mathbf{R}^{2}$. For polynomial vector fields this is a standard construction due to Poincaré [2]. Let

$$
\begin{aligned}
r & =\frac{R}{I+\mathbf{R}^{2}} \\
R & =\tan (\varphi)
\end{aligned}
$$



Fig. 3. - Central Projection
$\rho_{-}: \mathbf{R}^{2} \rightarrow S_{-}^{2}$ be this projection where $S_{-}^{2}$ is the southern hemisphere. Let $\alpha$ be the antipodal map of $\mathrm{S}^{2}$ and define $\rho_{+}: \mathbf{R}^{2} \rightarrow \mathrm{~S}_{+}^{2}$, the central projection to the northern hemisphere, $S_{+}^{2}$, by $\rho_{+}=\alpha \circ \rho_{-}$. See Figure 3. (Stereographic projection, by the way, is unsuitable for such lifting.)

Any map $f: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ lifts to a map $\rho_{-} f \cup \rho_{+} f: \mathrm{S}^{2}-\mathrm{S}_{0}^{2} \rightarrow \mathrm{~S}^{2}-\mathrm{S}_{0}^{2}$ making

commute. ( $\mathrm{S}_{0}^{2}$ is the equator of $\mathrm{S}^{2}$.) The next lemma gives sufficient conditions that $\rho_{-} f \cup \rho_{+} f$ extend to a map $\rho_{\#} f$ on all of $\mathrm{S}^{2}$. Note first, however, that any linear (or affine) isomorphism A: $\mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ lifts to a diffeomorphism $\rho_{\#} A: S^{2} \rightarrow S^{2}$. See [2] or below.

Lemma 4. - Suppose $\mathrm{A}=\left(\begin{array}{ll}a & c \\ 0 & b\end{array}\right), a b \neq \mathrm{o}$, and $h: \mathbf{R} \rightarrow \mathbf{R}$ is a $\mathrm{C}^{1}$ function with compact support. Then the map

$$
f=\left(\begin{array}{cc}
a & c+h \\
0 & b
\end{array}\right):\binom{x}{y} \mapsto\binom{a x+c y+h(y)}{b y}
$$

lifts to a unique continuous map $\rho_{\sharp} f: \mathrm{S}^{\mathbf{2}} \rightarrow \mathrm{S}^{\mathbf{2}}$ which agrees with $\rho_{ \pm} f$ on $\mathrm{S}^{\mathbf{2}}$. Moreover, $\rho_{\sharp} f$ is a $\mathrm{C}^{1}$ diffeomorphism whose $\mathrm{I}-j$ jet at the equator $\mathrm{S}_{0}^{2}$ is the same as that of $\rho_{\#} \mathrm{~A}$. At the points $x_{ \pm \infty}$ where the $x$-axis-longitude $\mathrm{L}_{x}$ meets $\mathrm{S}_{0}^{2}$, this $\mathrm{I}-\mathrm{jet}$ is independent of $c$; it is

$$
x_{ \pm \infty} \mapsto\left(x_{ \pm \infty},\left(\begin{array}{cc}
\mathrm{I} / a & 0 \\
0 & b / a
\end{array}\right)\right)
$$

respecting the splitting $\mathrm{T}_{x_{ \pm \infty}}\left(\mathrm{S}^{\boldsymbol{z}}\right)=\mathrm{T}_{x_{ \pm \infty}}\left(\mathrm{L}_{x}\right) \oplus \mathrm{T}_{x_{ \pm \infty}}\left(\mathrm{S}_{0}^{2}\right)$.
Proof. - This is basically a chain rule calculation. Let $(\varphi, \theta)$ be the natural angular coordinates on $\mathrm{S}_{-}^{2}$ and let $(r, \theta)$ be the polar coordinates in $\mathbf{R}^{2}$. Then

$$
\begin{array}{lll}
r=\tan \varphi, & \theta=\theta, & \rho^{-1}(\varphi, \theta)=(\tan \varphi, \theta), \\
x=r \cos \theta, & f_{1}=a x+c y+h(y), \\
y=r \sin \theta, & f_{2}=b y .
\end{array}
$$

Express $\rho_{-} f: \mathrm{S}_{-}^{2} \rightarrow \mathrm{~S}_{-}^{2}$ in the $(\varphi, \theta)$-coordinates as

$$
\begin{aligned}
& (\varphi, \theta) \mapsto(\Phi, \Theta) \\
& \Phi=\tan ^{-1}(\mathrm{R}), \quad \mathrm{R}=|f|=\left(f_{1}^{2}+f_{2}^{2}\right)^{1 / 2}, \\
& \Theta=\tan ^{-1}\left(f_{2} / f_{1}\right) .
\end{aligned}
$$

Since $R=|f|$ we have

$$
\begin{aligned}
& \frac{\mathrm{R}^{2}}{r^{2}}=a^{2} \cos ^{2} \theta+c^{2} \sin ^{2} \theta+\frac{(h(r \sin \theta))^{2}}{r^{2}}+2 a c \cos \theta \sin \theta \\
& \\
& \quad+2 a \cos \theta \frac{h(r \sin \theta)}{r}+2 c \sin \theta \frac{h(r \sin \theta)}{r}+b^{2} \sin ^{2} \theta .
\end{aligned}
$$

Let $\varphi \rightarrow \pi / 2$. Then $r=\tan \varphi \rightarrow \infty$ and

$$
\begin{equation*}
\frac{\mathrm{R}^{2}}{r^{2}} \rightrightarrows a^{2} \cos ^{2} \theta+c^{2} \sin ^{2} \theta+2 a c \cos \theta \sin \theta+b^{2} \sin ^{2} \theta>0 . \tag{8}
\end{equation*}
$$

By $\rightrightarrows$ we denote uniform convergence respecting $\theta$. From (8) follows
(9)

$$
\Phi \rightrightarrows \pi / 2 \quad \text { as } \varphi \rightarrow \pi / 2 .
$$

Similarly

$$
\begin{align*}
\Theta(\varphi, \theta) & =\tan ^{-1}\left(f_{2} / f_{1}\right)=\tan ^{-1}\left(\frac{b \sin \theta}{a \cos \theta+c \sin \theta+\frac{1}{r} h(r \sin \theta)}\right)  \tag{io}\\
& \rightrightarrows \tan ^{-1}\left(\frac{b \sin \theta}{a \cos \theta+c \sin \theta}\right) .
\end{align*}
$$

Some care is needed here since $a \cos \theta+c \sin \theta$ can equal $o$. Fix some small $\theta_{0}>o$ and let $N=\left\{\theta: 0 \leq \theta \leq \theta_{0}\right.$, or $\pi-\theta_{0} \leq \theta \leq \pi+\theta_{0}$, or $\left.2 \pi-\theta_{0} \leq \theta<2 \pi\right\}$. If $\theta_{0}$ is small and $\theta \in \mathbb{N}$ then the argument of $\tan ^{-1}$ converges uniformly and (io) is immediate. If $\theta \notin \mathrm{N}$ and $z=(r, \theta), r=\tan \varphi \rightarrow \infty$, then

$$
f(z)=\binom{a x+c y}{b y}
$$

since $h(y)=h(r \sin \theta), h$ has compact support, and $r \sin \theta \rightarrow \infty$. Since $\Theta$ refers to the angle made by $f(z), \Theta(\varphi, \theta)$ converges uniformly for $\theta \notin \mathrm{N}$ also, proving (io).

From (9) and (1o) we see that $\rho_{-} f: \mathrm{S}_{-}^{2} \rightarrow \mathrm{~S}_{-}^{2}$ extends to a continuous map on $S_{0}^{2} \cup S_{-}^{2}$, sending the equator into itself according to

$$
\begin{equation*}
\theta \mapsto \tan ^{-1}\left(\frac{b \sin \theta}{a \cos \theta+c \sin \theta}\right) . \tag{II}
\end{equation*}
$$

Note that (iI) changes by $\pi$ if $\theta$ is replaced by $\theta+\pi$. Thus, $\rho_{+} f$ extends to the same map on the equator; i.e. $f$ lifts to a (necessarily unique) continuous map $\rho_{\sharp} f: \mathbf{S}^{2} \rightarrow \mathbf{S}^{2}$ agreeing with $\rho_{ \pm} f$ on $\mathrm{S}^{2}$. It is easily seen to be a homeomorphism which is a diffeomorphism except perhaps at the equator.

To calculate the derivatives of $\rho_{\#} f$ we compute

$$
\begin{aligned}
& \frac{\partial \Phi}{\partial \varphi}=\left(\frac{\mathrm{I}}{\mathrm{I}+\mathrm{R}^{2}}\right)\left(\frac{\mathrm{I}}{\mathrm{R}}\right)\left\{f_{1}\left(\frac{\partial f_{1}}{\partial x} \frac{\partial x}{\partial r} \frac{\partial r}{\partial \varphi}+\frac{\partial f_{1}}{\partial y} \frac{\partial y}{\partial r} \frac{\partial r}{\partial \varphi}\right)+f_{2}\left(\frac{\partial f_{2}}{\partial x} \frac{\partial x}{\partial r} \frac{\partial r}{\partial \varphi}+\frac{\partial f_{2}}{\partial y} \frac{\partial y}{\partial r} \frac{\partial r}{\partial \varphi}\right)\right\} \\
&=\left(\frac{\mathrm{I}+r^{2}}{\mathrm{r}+\mathrm{R}^{2}}\right)\left(\frac{r}{\mathrm{R}}\right)\left\{\left(a \cos \theta+c \sin \theta+\frac{\mathrm{I}}{r} h(r \sin \theta)\right)\right. \\
&\left.\left(a \cos \theta+\left(h^{\prime}(r \sin \theta)+c\right) \sin \theta\right)+b^{2} \sin ^{2} \theta\right) .
\end{aligned}
$$

By (8), the first two factors converge uniformly. As above, the terms $h(r \sin \theta) / r$ and $h^{\prime}(r \sin \theta) \sin \theta$ go to o when $r \rightarrow \infty$. Thus

$$
\begin{align*}
\frac{\partial \Phi}{\partial \varphi} & \rightrightarrows \lim _{\varphi \rightarrow \frac{\pi}{2}}\left(\frac{r}{\mathrm{R}}\right)^{3}\left\{a^{2} \cos ^{2} \theta+2 a c \cos \theta \sin \theta+c^{2} \sin ^{2} \theta+b^{2} \sin ^{2} \theta\right\}  \tag{I2}\\
& =\lim _{\varphi \rightarrow \frac{\pi}{2}}\left(\frac{r}{\mathrm{R}}\right) .
\end{align*}
$$

Second,

$$
\begin{aligned}
\frac{\partial \Phi}{\partial \varphi}= & \left(\frac{\mathrm{I}}{\mathrm{R}^{2}+\mathrm{I}}\right)\left(\frac{\mathrm{I}}{\mathrm{R}}\right)\left\{f_{1}\left(\frac{\partial f_{1}}{\partial x} \frac{\partial x}{\partial \theta}+\frac{\partial f_{1}}{\partial y} \frac{\partial y}{\partial \theta}\right)+f_{2}\left(\frac{\partial f_{2}}{\partial x} \frac{\partial x}{\partial \theta}+\frac{\partial f_{2}}{\partial y} \frac{\partial y}{\partial \theta}\right)\right\} \\
=\left(\frac{r}{\mathrm{R}^{2}+\mathrm{I}}\right)\left(\frac{r}{\mathrm{R}}\right) & \left\{\left(a \cos \theta+c \sin \theta+\frac{\mathrm{I}}{r} h(r \sin \theta)\right)\right. \\
& \left.\left(-a \sin \theta+\left(c+h^{\prime}(r \sin \theta)\right) \cos \theta\right)+b^{2} \sin \theta \cos \theta\right\} .
\end{aligned}
$$

As $r \rightarrow \infty, \quad r /\left(\mathrm{R}^{2}+1\right) \rightarrow 0$ while the other factors approach finite limits. Hence

$$
\begin{equation*}
\frac{\partial \Phi}{\partial \theta} \rightrightarrows 0 \quad \text { as } \varphi \rightarrow \frac{\pi}{2} . \tag{13}
\end{equation*}
$$

Third,

$$
\begin{aligned}
\frac{\partial \Theta}{\partial \varphi} & =\frac{\mathrm{I}}{\mathrm{I}+\left(f_{2} / f_{1}\right)^{2}}\left\{\frac{\partial\left(f_{2} / f_{1}\right)}{\partial x} \frac{\partial x}{\partial r} \frac{\partial r}{\partial \varphi}+\frac{\partial\left(f_{2} / f_{1}\right)}{\partial y} \frac{\partial y}{\partial r} \frac{\partial r}{\partial \varphi}\right\} \\
& =\frac{f_{1}^{2}}{\mathbf{R}^{2}}\left\{\frac{-a b y}{f_{1}^{2}} \frac{\cos \theta}{\cos ^{2} \varphi}+\frac{a b x+b h(y)-b y h^{\prime}(y)}{f_{1}^{2}} \frac{\sin \theta}{\cos ^{2} \varphi}\right\} \\
& =\frac{\mathbf{1}+r^{2}}{\mathbf{R}^{2}}\left\{-a b r \sin \theta \cos \theta+a b r \cos \theta \sin \theta+\left(b h(y)-b y h^{\prime}(y)\right) \sin \theta\right\} \\
& =\frac{\mathbf{I}+r^{2}}{\mathbf{R}^{2}}\left\{b h(r \sin \theta) \sin \theta-b r \sin \theta h^{\prime}(r \sin \theta) \sin \theta\right\} .
\end{aligned}
$$

Now as $\varphi \rightarrow \frac{\pi}{2}$, either $h$ and $h^{\prime}$ equal o or else $r \sin \theta$ stays bounded: $\sin \theta \rightarrow 0$ while $r \rightarrow \infty$. Thus, the bracketed terms go to $o$ while $\left(\mathrm{I}+r^{2}\right) / \mathrm{R}^{2}$ tends to $(\lim r / \mathrm{R})^{2} \neq \infty$. Therefore

$$
\begin{equation*}
\frac{\partial \Theta}{\partial \varphi} \rightrightarrows 0 \quad \text { as } \varphi \rightarrow \frac{\pi}{2} . \tag{14}
\end{equation*}
$$

Finally,

$$
\begin{aligned}
& \frac{\partial \Theta}{\partial \theta}=\frac{1}{1+\left(f_{2} / f_{1}\right)^{2}}\left\{\frac{\partial f_{2} / f_{1}}{\partial x} \frac{\partial x}{\partial \theta}+\frac{\partial f_{2} / f_{1}}{\partial y} \frac{\partial y}{\partial \theta}\right) \\
& =\left(\frac{r}{\mathrm{R}}\right)^{2}\left\{a b \sin ^{2} \theta+a b \cos ^{2} \theta\right. \\
& \left.+\left(\frac{\mathrm{I}}{r} b h(r \sin \theta)-b h^{\prime}(r \sin \theta) \sin \theta\right) \cos \theta\right\} .
\end{aligned}
$$

As above, the terms involving $h$ and $h^{\prime}$ tend to o as $\varphi \rightarrow \pi / 2$. Thus

$$
\begin{equation*}
\frac{\partial \Theta}{\partial \theta} \rightrightarrows\left(\lim \frac{r}{\mathrm{R}}\right)^{2} a b \quad \text { as } \varphi \rightarrow \pi / 2 \tag{15}
\end{equation*}
$$

The limits (12)-(15) commute with the antipodal map, so $\rho_{\#} f$ is $\mathbf{C}^{1} ;$ at $(\pi / 2, \theta) \in \mathbf{S}_{0}^{2}$ it has derivative

$$
\left[\begin{array}{cc}
\gamma & 0 \\
0 & a b \gamma^{2}
\end{array}\right], \quad \gamma=\left((a \cos \theta+c \sin \theta)^{2}+(b \sin \theta)^{2}\right)^{-1 / 2}
$$

respecting the $(\varphi, \theta)$-coordinates. This is clearly invertible and independent of $h$. Hence $\rho_{\#} f$ is a $\mathrm{C}^{1}$ diffeomorphism whose i-jet agrees with that of $\rho_{\#} \mathrm{~A}$ at the equator. The points $x_{-\infty}, x_{+\infty}$ correspond to $\theta=\pi, \theta=0$ and give $\gamma=a^{-1}$, verifying the fact that the derivative of $\rho_{\#} f$ at $x_{ \pm \infty}$ is independent of $c$.
Q.E.D.

Now return to the proof of Theorem I. Since $f_{\mathrm{s}}$ does not satisfy the hypotheses of Lemma 4, it is convenient to introduce the odd version of the function $g$ in §2,

$$
g_{0}(u)=\left\{\begin{aligned}
g(u) & \text { if } u \geq 0 \\
-g(u) & \text { if } u \leq 0
\end{aligned}\right.
$$

Then $g_{0}^{\prime}(u) \equiv c$ for some constant $c>_{\mathrm{I}}$, provided $|u| \geq \mathrm{I}$. Call

$$
\mathrm{A}_{ \pm}=\left(\begin{array}{cc}
a & \pm c \\
0 & b
\end{array}\right), \quad f_{ \pm}=\left(\mathrm{A}_{ \pm} \pm\left(\begin{array}{cc}
0 & g_{o}-c \\
0 & 0
\end{array}\right)\right):\binom{x}{y} \mapsto\binom{a x \pm g_{0}(y)}{b y} .
$$

Clearly

$$
f_{ \pm}(x, y)=f_{\mathrm{s}}(x, y) \quad \text { for } \pm y \geq 0 .
$$

Since $g_{o}(y)-c y$ has compact support, $f_{ \pm}$satisfies the hypotheses of Lemma 4 and lifts to $\mathbf{S}^{2}$ as $\rho_{\sharp}\left(f_{ \pm}\right)$. At the equator, the 1 -jet of $\rho_{\#}\left(f_{ \pm}\right)$agrees with that of $\rho_{\#}\left(\mathbf{A}_{ \pm}\right)$. Divide $\mathrm{S}^{2}$ into two hemispheres $\mathrm{H}_{ \pm}$along the $x$-axis longitude $\mathrm{L}_{x}$, say

$$
\begin{aligned}
& \mathrm{H}_{ \pm} \text {is the hemisphere containing the quarter sphere } \rho_{-}\left\{(x, y) \in \mathbf{R}^{2}\right. \text { : } \\
& \pm y>\mathrm{o}\} .
\end{aligned}
$$

See Figure 4.


Fig. 4. - The hemispheres $\mathrm{H}_{ \pm}$with half latitudes drawn in $\mathrm{H}_{-}$
Define $\mathrm{F}_{\mathrm{s}}: \mathrm{S}^{\mathbf{2}} \rightarrow \mathrm{S}^{\mathbf{2}}$ by

$$
\mathbf{F}_{\mathrm{s}}(z)= \begin{cases}\rho_{\#} f_{+}(z) & \text { if } z \in \mathrm{H}_{+}, \\ \rho_{\sharp} f_{-}(z) & \text { if } z \in \mathrm{H}_{-} .\end{cases}
$$

Then $\mathrm{F}_{\mathrm{s}}$ lifts $f_{\mathrm{s}}$ to $\mathbf{S}^{2}$, but not as $\rho_{-} f_{\mathrm{S}} \cup \rho_{+} f_{\mathrm{s}}!$ In fact this canonical lift $\rho_{\#} f_{\mathrm{s}}$ fails to be $\mathrm{C}^{1}$ at the equator.

At all finite points of the $x$-axis, $f_{+}-f_{-}$vanishes to first order (since $g(0)=g^{\prime}(0)=0$ ) so $\mathrm{F}_{\mathrm{S}}$ is well defined and continuous on $\mathrm{S}_{-}^{2}$; in fact

$$
\mathrm{T}_{z} \mathrm{~F}_{\mathrm{s}}=\mathrm{T}_{z}\left(\rho_{\#} f_{+}\right)=\mathrm{T}_{z}\left(\rho_{\#} f_{-}\right)
$$

for all $z \in \mathrm{~L}_{x} \cap \mathrm{~S}_{-}^{2}$. Thus, $\mathrm{F}_{\mathrm{s}} \mid \mathrm{S}_{-}^{2}$ is a $\mathrm{C}^{1}$ diffeomorphism of $\mathrm{S}_{-}^{2}$.
Although $\mathrm{F}_{\mathrm{S}}$ does not commute with the antipodal map $\alpha$, there is enough symmetry that differentiability of $\mathrm{F}_{\mathrm{B}}$ on $\mathrm{S}_{-}^{2}$ implies it on $\mathrm{S}_{+}^{2}$. If $z \in \mathrm{~S}_{+}^{2} \cap \mathrm{H}_{+}$then

$$
\begin{aligned}
\mathrm{F}_{\mathrm{s}}(z) & =\rho_{\sharp} f_{+}(z)=\alpha \circ \rho_{-} f_{+} \circ \alpha(z), \\
\mathrm{T}_{z} \mathrm{~F}_{\mathrm{S}} & =(\mathrm{T} \alpha)_{\rho_{-}(\alpha z)} \circ \mathrm{T}_{\alpha z}\left(\rho_{-} f_{+}\right) \circ \mathrm{T}_{z} \alpha,
\end{aligned}
$$

while if $z^{\prime} \in \mathrm{S}_{+}^{2} \cap \mathrm{H}_{-}$then

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{s}}\left(z^{\prime}\right)=\rho_{\#} f_{-}\left(z^{\prime}\right)=\alpha \circ \rho_{-} f_{-} \circ \alpha\left(z^{\prime}\right), \\
& \mathrm{T}_{z^{\prime}} \mathrm{F}_{\mathrm{s}}=(\mathrm{T} \alpha)_{\rho_{-} f_{-}\left(z^{\prime}\right)} \circ \mathrm{T}_{\alpha z^{\prime}}\left(\rho_{-} f_{-}\right) \circ \mathrm{T}_{z^{\prime}} \alpha .
\end{aligned}
$$

Now if $z=z^{\prime} \in \mathrm{L}_{x} \cap \mathrm{~S}_{+}^{2}$ then

$$
\begin{aligned}
& \rho_{-} f_{+}(\alpha z)=\rho_{-} f_{-}\left(\alpha z^{\prime}\right), \\
& \mathrm{T}_{\alpha z}\left(\rho_{-} f_{+}\right)=\mathrm{T}_{\alpha z^{\prime}}\left(\rho_{-} f_{-}\right),
\end{aligned}
$$

since $\rho_{-} f_{+}$equals $\rho_{-} f_{+}$to first order along $\mathrm{L}_{x} \cap \mathrm{~S}_{-}^{2}$. Thus, $\mathrm{F}_{\mathrm{s}} \mid \mathrm{S}_{+}^{2}$ is a well defined $\mathrm{C}^{1}$ diffeomorphism of $\mathrm{S}_{+}^{2}$ also.

Since $\mathrm{F}_{\mathrm{s}}$ is the $\mathrm{C}^{1}$ diffeomorphism $\rho_{\sharp} f_{ \pm}$on the interior of $\mathrm{H}_{ \pm}$, it remains only to check $\mathrm{F}_{\mathrm{S}}$ at $\mathrm{S}_{0}^{2} \cap \partial \mathrm{H}_{ \pm}=x_{ \pm \infty}$. But by Lemma 4 , $\rho_{\#} f_{ \pm}$has at the equator a i-jet equal to that of the diffeomorphism $\rho_{\#} \mathrm{~A}_{ \pm}$and at $x_{ \pm \infty}$ the latter I-jet does not depend on $c$. That is,

$$
\begin{aligned}
& \mathrm{T}_{x_{ \pm \infty}}\left(\rho_{\#} f_{+}\right)=\mathrm{T}_{x_{ \pm \infty}}\left(\rho_{\#} \mathrm{~A}_{+}\right), \\
& \mathrm{T}_{x_{ \pm \infty}}\left(\rho_{\#} f_{-}\right)=\mathrm{T}_{x_{ \pm \infty}}\left(\rho_{\#} \mathrm{~A}_{-}\right),
\end{aligned}
$$

and so $T_{x_{ \pm \infty}} F_{s}$ exists and is invertible. Hence
$f_{\mathrm{s}}$ lifts to a (somewhat noncanonical) $\mathrm{C}^{\mathbf{1}}$ diffeomorphism $\mathrm{F}_{\mathrm{s}}$ of $\mathrm{S}^{\mathbf{2}}$; similarly $f_{\mathrm{T}}$ lifts to $\mathrm{F}_{\mathrm{T}}$.

Remarks. - It is because the dynamics of the sequence $\left\{f_{n}\right\}$ is sensitive to perturbations at infinity that we took pains to lift the global $\operatorname{map} f_{n}$ to $S^{2}$, not just its germ near o.

We are now ready to embed the example in § 2 into a diffeomorphism of a compact manifold.

Let $h: \mathrm{M}^{2} \rightarrow \mathrm{M}^{2}$ be any diffeomorphism having a hyperbolic invariant set H on which $h$ is topologically conjugate to the full 2 -shift and

$$
\begin{equation*}
\mathrm{T}_{\mathrm{H}} h \text { dominates } \mathrm{TF}_{\mathrm{s}} . \tag{17}
\end{equation*}
$$

By (17) we mean that if $\mathrm{E}^{u u} \oplus \mathrm{E}^{s s}=\mathrm{T}_{\mathrm{H}} \mathrm{M}^{2}$ is the hyperbolic splitting then

$$
\begin{array}{rrr}
|\mathrm{T} h(v)|>\left|\mathrm{TF}_{\mathrm{s}}(u)\right| \quad \text { whenever } v \in \mathrm{E}^{u u}, & |v|=\mathrm{I}, \\
u \in \mathrm{TS}^{2}, & |u|=\mathrm{I}, \\
|\mathrm{~T} h(v)|<\left|\mathrm{TF}_{\mathrm{s}}(u)\right| \quad \text { whenever } v \in \mathrm{E}^{s s}, & |v|=\mathrm{I}, \\
u \in \mathrm{TS}^{2}, & |u|=\mathrm{I} .
\end{array}
$$

That is, the spectrum of $\mathrm{T}_{\mathrm{H}} h$ lies outside the annular hull of the spectrum of $\mathrm{TF}_{\mathrm{g}}$. We could, for instance, take H to be a horse-shoe basic set.

Let $\mathrm{H}_{0}$ be the set of points of H which correspond to symbol sequences with a o in the initial position and $\mathrm{H}_{1}$ be those with a I in the initial position. Then

$$
\mathrm{H}=\mathrm{H}_{0} \sqcup \mathrm{H}_{1}
$$

and $H_{0}, H_{1}$ are compact. Choose a smooth bump function

$$
\mu: M^{2} \rightarrow[0, \pi / 2]
$$

such that $H_{0}=\mu^{-1}(o) \cap H, H_{1}=\mu^{-1}(\pi / 2) \cap H$, and $\mu^{-1}(\{0, \pi / 2\})$ is a neighborhood of H .

Let $R_{\theta}$ be the rotation of $S^{2}$ by angle $\theta$ which fixes the poles. Form the skew product of $h$ and $\mathrm{F}_{\mathrm{s}}$

$$
\begin{aligned}
& \mathrm{F}: \mathrm{M}^{2} \times \mathrm{S}^{2} \rightarrow \mathrm{M}^{2} \times \mathrm{S}^{2} \\
& (w, z) \mapsto\left(h(w), \mathrm{R}_{\mu(w)} \circ \mathrm{F}_{\mathrm{s}} \circ \mathrm{R}_{-\mu(w)}(z)\right) .
\end{aligned}
$$

F leaves invariant the foliation $\mathscr{S}$ by 2 -spheres $w \times \mathrm{S}^{2}, w \in \mathrm{M}^{2}$, and by (17), F is normally hyperbolic to $\mathscr{S}$. See [3, p. i16]. Besides

$$
\mathbf{T}_{(w, x)} \mathbf{F}=\left[\begin{array}{cc}
\frac{\partial h}{\partial w} & \frac{\partial \mathbf{R}_{\mu} \circ \mathbf{F}_{\mathbf{s}} \circ \mathbf{R}_{-\mu}}{\partial w}  \tag{18}\\
\mathbf{o} & \frac{\partial \mathbf{R}_{\mu} \circ \mathbf{F}_{\mathbf{8}} \circ \mathbf{R}_{-\mu}}{\partial z}
\end{array}\right]
$$

Since $h \mid \mathrm{H}$ is the 2 -shift, there is a (unique) orbit $\mathcal{O}(p)$ in H such that

$$
h^{n}(p) \in \mathrm{H}_{0} \quad \text { iff } \mathrm{A}_{n}=\mathrm{S}, \quad h^{n}(p) \in \mathrm{H}_{1} \quad \text { iff } \mathrm{A}_{n}=\mathrm{T} .
$$

That is, we consider the orbit $\mathcal{O}(p)$ whose symbol is
ooorio. Ioliooorilit...
respecting the division $H=H_{0} \sqcup H_{1}$. Let

$$
\mathrm{P}=\left(p, z_{0}\right)
$$

where $z_{0}$ is the south pole of $\mathrm{S}^{2}$. The F -orbit of P is $\left\{\left(h^{n} p, z_{0}\right)\right\}$ since $z_{0}$ is fixed under $\mathrm{F}_{\mathrm{s}}$ and $R_{6}$. By ( 16 ), ( 18 ), and constancy of $\mu$ near $H$,

$$
\mathrm{T}_{\left(h^{n} p, z_{0}\right)} \mathrm{F}=\left[\begin{array}{cc}
\mathrm{T}_{h^{n} p} h & \mathrm{o}  \tag{19}\\
\mathrm{o} & \mathrm{~A}_{n}
\end{array}\right] .
$$

Indeed by choice of $\mu$ and the fact that

$$
f_{\mathrm{T}}=\mathrm{R}_{\pi / 2} \circ f_{\mathrm{S}} \circ \mathrm{R}_{-\pi / 2}
$$

one sees that
(20)

commutes, where $\mathrm{F}_{n}=\mathrm{F}_{\mathrm{S}}$ or $\mathrm{F}_{n}=\mathrm{F}_{\mathrm{T}}$ according as $\mathrm{A}_{n}=\mathrm{S}$ or $\mathrm{A}_{n}=\mathrm{T}$.
From (19) $\mathcal{O}(P)$ has one positive Lyapunov exponent corresponding to $\mathrm{T} h \mid \mathrm{E}^{u u}$ and three negative Lyapunov exponents: one corresponding to $\mathrm{T} h \mid \mathrm{E}^{s s}$ and the other two being $\lambda=\frac{1}{2} \log (a b)$ which correspond to the $\mathrm{A}_{n}^{\prime}$ 's as in § 2. Let $\mathrm{E}^{s}$ denote the space of vectors with negative Lyapunov exponents

$$
\mathrm{E}_{\mathrm{P}}^{s} \supset \mathrm{~T}\left(p \times \mathrm{S}^{2}\right) .
$$

The orbit $\mathcal{O}(\mathrm{P})$ is regular because $\mathrm{TF}^{n} \mid \mathrm{E}_{\mathrm{P}}^{s}$ is diagonal repecting $\mathrm{E}^{s s} \oplus(x$-axis $) \oplus(y$-axis $)$.

## Theorem 2. - The stable set of P is not an immersed manifold tangent to $\mathrm{E}_{\mathrm{P}}^{s}$.

Proof. - Since F is normally hyperbolic to $\mathscr{S}$, a point $(w, z)$ is asymptotic with P under F if and only if ( $w, z$ ) lies on the strong stable manifold of some point

$$
\left(p, z^{\prime}\right) \in \mathrm{W}^{s}(\mathrm{P}) \cap\left(p \times \mathrm{S}^{2}\right) .
$$

That is,

$$
\mathrm{W}^{s}(\mathrm{P})=\mathrm{W}^{s s}\left(\mathrm{~W}^{s}(\mathrm{P}) \cap\left(p \times \mathrm{S}^{2}\right)\right)
$$

where $\mathrm{W}^{s s}$ denotes the strong stable manifolds. See [3, p. 7r]. But, by (20), $\mathrm{W}^{s}(\mathrm{P}) \cap\left(p \times \mathrm{S}^{2}\right)$ is just the stable set of o under the maps $f^{n}$ as in § 2 and this set is not a neighborhood of $o$; it misses the whole first quadrant. Thus, $\mathrm{W}^{s}(\mathrm{P})$ is contained in the three dimensional set $\mathrm{W}^{s s}\left(\boldsymbol{p} \times \mathrm{S}^{2}\right)$ but does not include a neighborhood of P in it. It is therefore not able to be an immersed manifold tangent to $\mathrm{E}_{\mathrm{P}}^{s}$.
Q.E.D.

Remarks and Questions. - a) More can probably be proved about $\mathrm{W}^{s}(\mathbf{P})$. It seems to consist of the $\mathrm{W}^{s s}$ fibers over a curve tending to P in $p \times \mathrm{S}^{2}$ in an oscillatory fashion. In particular, it seems to have dimension two.
b) Can the dimension of M be reduced form 4 to 3 in the above example by the introduction of a solenoid?
c) Do $\mathbf{C}^{1}$ diffeomorphisms of 2 -manifolds have $\mathrm{C}^{1}$ stable manifolds at asymptotically hyperbolic orbits?
d) Which orbits in H (i.e. which symbol sequences) exhibit this anti-Pesin behavior? Do they form a residual set in H? A set of measure zero for every $h$-invariant probability measure on H ?
$e)$ Is the set of points where the stable set of $f$ is a $\mathbf{C}^{1}$ injectively immersed manifold a set of measure one for every $f$-invariant probability measure on M ?
$f$ ) Does the generic $\mathrm{C}^{1}$ diffeomorphism (for example, one near the F above) have $\mathrm{C}^{1}$ stable manifolds at its generic asymptotically hyperbolic orbits?

## REFERENCES

[i] A. Fathi, M. Herman and J. C. Yoccoz, A proof of Pesin's Stable Manifold Theorem, preprint of Université de Paris-Sud, Orsay, France.
[2] E. A. Gonzales Velasco, Generic Properties of Polynomial Vector Fields at Infinity, Trans. AMS, 143 (69), 201-222.
[3] M. Hirsch, C. Pugh and M. Shub, Invariant Manifolds, Springer Lecture Notes, 583, 1977.
[4] A. Katok, Lyapunov Exponents, Entropy and Periodic Orbits for Diffeomorphisms, Publ. Math. IHES, 51 (1980), 137-173.
[5] R. Mañé Ramirez, Introducão à Teoria Ergódica, IMPA, 1979.
[6] V. I. Oseledec, Multiplicative Ergodic Theorem, Lyapunov Characteristic Exponents for Dynamical Systems, Trans. Moscow Math. Soc., 19 (1968), 197-231.
[7] Y. B. Pesin, Families of Invariant Manifolds Corresponding to Nonzero Characteristic Exponents, Math. USSR Izvestija, 10 (1976), 1261-1305.
[8] Y. B. Pesin, Characteristic Lyapunov Exponents and Smooth Ergodic Theory, Russian Math. Surveys, 32 (1977), 4, 55-114.
[9] D. Ruelle, Ergodic Theory of Differentiable Dynamical Systems, Publ. Math. IHES, 50 (1979), 27-58.
[10] S. Sternberg, Local C ${ }^{n}$ Transformations of the Real Line, Duke Mathematical Journal, 24 (1957), 97-io2.

Mathematics Department
University of California
Berkeley, California 94720
U.S.A.

Manuscrit reçu le 26 février 1982.


[^0]:    * Partially supported by NSF grant No. MCS-8i-02262 and SERC grant No. GR/B 82363.

