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THE C1-1-01 HYPOTHESIS IN PESIN THEORY
by CHARLES G. PUGH*

i. Introduction. — The stable manifold theory developed by Pesin and others
[^ 4? 7? 8, 9] contains a hypothesis that the given dynamics be of differentiability
class G14"01 for some a> o. That is, first derivatives must obey a-Holder conditions.
Here is an example showing that C1 alone, i.e. a == o, is insufficient. It uses the
auxiliary function

u
if o< u< i

g{u) = log(i/M)
o if u == o

which is G1, strictly monotone increasing, has g'(o) === o, and is not C14"" for any a > o.
Near o, g grows faster than ui+ol for all a > o. Functions like g have been seen before,
for instance in S. Sternberg's example of a non CMinearizable C1 contraction of R
[10, p. 101].

Suppose f:M->M is a G1 diffeomorphism of the compact manifold M. Let
p e M, v e Tp M, v =(= o, be given. The Lyapunov exponents of v are

/-(.)= Urn -Llog|T,/-»(o)|
-n-»--oo — ^ ''

X^^in^logIT,,/"^))

if the limits exist. For vectors in most tangent spaces, Oseledec [6] proves that these
Lyapunov exponents do exist and that there is a kind of uniformity referred to as regularity
of the orbit 0{p) = {/"^Lgz? namely, ifE^ denotes {v : v = o or /-(&) = X == -)^(v)}
then T p M = © E ^ and

.-.̂ ŷ == 0.

* Partially supported by NSF grant No. MCS-Si-oaaGa and SERC grant No. GR/B 82363.
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144 C H A R L E S C . P U G H

See also [i, 8]. (A better name for this property might be subexponential conformality
since T/^ | E^ grows like a sequence of dilations, up to a subexponential error.)

Definition. — The orbit (P{p) is asymptotically hyperbolic if^Q&) is regular and -/^{v) + o
for all non-zero v e Tp M.

Assume (P(p) is asymptotically hyperbolic and write

E;,-®^, E;=©^.

Pesin's Stable Manifold Theorem [i, 5, 7, 9] asserts in part that the asymptotically
exponentially stable set of p

W8^) = ̂ xeM:^m^l-logd(fnxJnp)<o\

is an injectively immersed C1 manifold tangent at p to E8, provided/is G14'01 for some
a > o.

Theorem. — There exists a C1 dijfeomorphism of a ^-manifold having an asymptotically
hyperbolic orbit (P{p) such that W8^) is not an injectively immersed manifold tangent to E .̂

See § 3 for the example cited.
In the proof of Pesin's Theorem, / is lifted from M to TM along (P(p) via the

exponential map. The composites

T^M ̂  T^,M

fn= eXpjnhpofoCXpfnp exp exp

n eZ M M

.. -^> T^M -^ TpM -^ T^M ^-> T^M -A> ...

exp exp exp exp

f-1? P ffi fp
locally represent/in exponential coordinates along the orbit <D{p). The crucial conse-
quence of C14"" differentiability of/is that the/, are G^^equicontinuous. That is,
there are uniform constants K, 8 > o such that

IKD/^-^D/JJI^KI^-.^
for all x^eTfupM, with . \x\, \jy\ <, 8.
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THE C^ HYPOTHESIS IN PESIN THEORY 145

In § 2, we give an example of a sequence of maps

R2 J^ R2 f^) =A,z+ G^z), n e Z

such that A^ is a diagonal 2 X 2 matrix, HAJ[ and HA^H are uniformly bounded,

lim - log I Ay. o ... o An(y) | == X
n-»oo yi

yeR 2 -^}
lim —— log | Al1 o ... o Al^) I = Xn->oo _ ^ 0 1 " i\ / i

where X is a negative constant, G^ is C1, (DGJo = o, and (G1 equicontinuity of/J

||(DGJ,- (DGJJI -^o uniformly as \x-y\ -̂  o,

but there exist points z arbitrarily near o with

\f^o ... 0^0^)1 -^oo as n -^ oo.

Thus, o should be asymptotically stable under {/„} since {Tfn} contracts asymptotically,
but, due to lack of smoothness of{^}, it is not. See Theorem i in § 2. (Regularity
in this context is implied by the fact that A^ is diagonal.)

In § 3 the maps f^ are realized as lifts along an orbit of some G1 diffeomorphism
of a compact 4-manifold. See Theorem 2.

Conjecture. — l!(P(p) is an asymptotically hyperbolic orbit of the G1 diffeomorphism
/: M -> M, M has dimension two, and dim E^ = dim E^ = i, then Pesin's result
holds: W^p) is G1 and tangent at p to E^. Indeed this might be true whenever E^
has dimension one. Regularity is automatic on one-dimensional subspaces.

Thanks. — In writing this paper, I benefitted from conversations with M. Herman
and A. Fathi at the ficole Polytechnique in Paris. Comments by the referee were also
useful.

2. Nonlinear shear. — Let g : (o, oo) -> (o, oo) be any smooth function such that

gw=}^) ifo<u<,.le

(2) g'W> i if u^ lie

g^u) is constant if u>_ i.

Extend g to all of R by setting g{— u) = g{u) and g{6) = o. Then g : R -^ (o, oo)
is G1 and is G°° on R —{o}. The graph of g is shown in Figure i.

145
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146 C H A R L E S C . P U G H

FIG. i. — The graph of g

Choose constants o < a < ab< i < b and call

S =
\o b]

T= ib o\
\o a/

f I" g} f ( b °\•7S=: J' •ft=\\o bj \g a)

Thus,yg and/T are G1 origin preserving maps R2 -*-R2

.. (^+g(}')\ . ( bx \ (x\
fs:z\->{ , , ft:z^ I , z= .

\ ky I \gW + ay) \jy/

The linear parts of/g,/,, at o are S, T and/g,/T are easily seen to be invertible on all
ofR«.

As a = i, 2, 3, ... choose A^ equal to S or T according to the pattern

S T T S S S T T T T S S S S S . . .

•t\i —S —•S A.15 • • •

Thus, if L^ denotes i + ... + k = k(k + i)/2 then o = Lo < Li < L^ < .
the sets

y == {n e N : Lj^i < n ̂  L^ for some odd A}
f = {n e N : L^_^ < n ̂  Lj^ for some even A}

decompose N into disjoint subsets, and

S n e y
\-

T nee-
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THE C14^ HYPOTHESIS IN PESIN THEORY 147

Correspondingly define

. f/s ney
Jn — ( r ^-9

[/T ^<= ̂

To suggest local iteration along the origin-orbit, write

A" = A^o ... oAo, /n ==/n-io ... o/o, ri> o,

where we take AQ = T and /o ^/T- To complete the picture, if — n < o, set

A-n == A^, /_„ ==./»»»

A—n A — 1 A — 1 /—n _ •f~^1 f~~1
= A_^o . . . oA_i, J ==J-n ° • • • °J-1»

and call A° ==/° = identity. Then A" is the linear part of/" at o, n eZ.
For |n| large

An==^ °)\o dj

where <?„ and d^ are products of approximately equal numbers of fl's and i's. As
\n\ -)- oo, ^/n and d^ ->- {ab)112, so the family {A^gz has double Lyapunov exponent
equal to

\ = - log(fli) < o.
2

Since the A^ are diagonal, regularity (see (i) in § i) of this Lyapunov splitting is auto-
matic. In sum, {A^gz contracts asymptotically. Note, however, that the contraction
is only asymptotic. Along the orbit, the length of v = (i, o) expands by &, shrinks
by a, grows by b at the next two points, shrinks by a at the next three points, etc.

Theorem 1. — {/"Lez ^o€s not contract asymptotically although its linear part does. In
fact if z == {x,y) is any point in the first quadrant of R2, x > o and y > o, then

/"(^ -> oo as n -> oo

although (ly*)^) -> o as n -̂  oo.

Remarks. — a) /g is a C1 diffeomorphism of R2 onto itself leaving invariant the
foliation by horizontal lines. It shears the j^-axis onto the curve y\->g[ylb) and is
an affine contraction of each horizontal line by the constant factor a. See Figure 2.

b) /T is conjugate to /g by a 90° rotation:

/o -i\ / o i\
°/s ° =JT-

\I 0 \— I O/

c) {fn}ne^ ls imiformly G^equicontinuous.
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148 C H A R L E S C. P U G H

d) The stable set of o under/n can be shown to lie wholly in the third quadrant,
x< o and jy< o; it seems to be a curve which converges to o in the manner of
sin (i I x ) /log (i fx) as x ->o. All other orbits converge to oo as n -> oo.

FIG. 2. — The non-linear horizontal shear /g

Lemma 1. — If o < (^ -> i as n -> oo ^nrf A > i, c > o flr<? /W, then
Hm^-1^^,...^^1-^

Pro</. — Fix j, / such that

^><y ^Pn^ ^-c

Po,. . . ,^^^-1 .
Then

^nl pn • . . pr1 = ̂ n> pn... K;! pr^1... pr1
^ ^n'^-cM+...+(n-s)^-A(n+l)(s+l)

> ^(cn«/2)-/(s+l)(n+l) ^.oo

as w -^oo. Q.E.D.
For any function f(u) that vanishes at u = o and is defined for u>, o, let

./.)̂ .
cr^(M) is the shrinking/actor of/at M: under/, the distance from u to o is shrunk by the
factor df{u).

Lemma 2. — Let g{u) == ^/log(i/M) as above, o < u < ife. Call a = Og. Then
a{gu)
——— -> i as u -> o.
c(u)

Proof.

^{gU) ___ log(M) _ log(M) _ ____ I

^^ ^g^gu) ~~ log u — log | log u I ~ log I log u I ^ !

|log^|
as M -^o. Q.E.D.
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THE C^ HYPOTHESIS IN PESIN THEORY 149

Remark. — Since 5'(o) = o, o-(^) and a{u) both tend to o with u. It is somewhat
remarkable that they do so at the same order because gu is far closer to o than is u. If
g were C1'1'", a> o, the lemma would fail. For example if g'== u14'" and 5' is the
shrinking factor for ^ then

/^//^/ \
a{SU) a«^—— = u^ -> o as M -> o.
o(M)

Likewise, in the next lemma, g must be M/log(i/^) or some similar function which grows
too fast near o to be G1'1'", oc> o.

Lemma 3. — Let g be as in Figure i and (2). Fix UQ> o, &> i. *S^

^i = ̂ oL • • -^/c = ^5(^-1)-
rA^ lim M, == oo.

fc-^oo /c

Proo/'. — If UQ> ife then ^ = ^(^o) .̂ ble> lie, and, by induction,
u^ == bkg{u^_^ ̂  ̂  -^oo as ^ ~> oo,

so we may suppose o< UQ< lie. On (o, i/^),

•''(">=.(iogf,/.j).>°• .
so a is monotone there. Clearly g and g^ == g o ... o g, k times, are monotone also.
Thus,

M = ̂ -l(^«o) < S^gu,) == ̂ -1^)

= ̂ '-'(^t) < ̂ -'(^ ̂ i) - ̂ -'("a)

=...<«,

and ^ = ̂ ^^("^ = ̂ +1 < )̂ ». - ̂ +1 ̂ ) y a{u,_,) «,_,.

= ... =^+2^+1^(T(M^) ... CT(Mo)

> ^+^+1)/2^^)<,(^-1^) ...<,(«„)

( / I e \ \ I f If 1 \ \ 2 / / \ \ f c

> .̂/2 ^g^o) \ W-1^} W\ (<,(«))^1

^(^-1 «0)J W-2 "O); " ' \ ^("0) ; { { o ) i '

By Lemma 2, all the factors

^(^0)
^r^o)^

as n -^oo, so by Lemma i, ^+1^: i/^ for some first k + i. Beyond this k + i,
^m^. y"""^4'1^ -> oo as 77i -^ oo, as observed at the outset. Q.E.D.
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150 C H A R L E S C . P U G H

Proof of Theorem 1. — Recall that o<a<ab<i<b and

Q—I^ °\ T ( b °\ f (a S\ f ( b °
L J5 5 /S- J> /T==\o &/ \o a] \o b g a)

where

f S if n e y
An== T- •r ^5 A n=A^o. . .oAo,[ T if n e ̂

f/s \{ney
fn == { „ .. .) /n ==/n-l° • • - ^^[/T i fne^

y=={neVS:i +...+(A-i)<n^i+... + ̂  for some even k e N },
r ==N-^:

and 5 is the function in Figure i or (2). Write
f^z)=\z+G^),

where G^: R2 -> R2 is given by

(M ifne^
„ , , ; < o / /^\o / _ / ^

t) -/ "L)'Gn(^) == ̂  , ^

° ) i f ^ e r
W

Let TCI and TC^ be the projections onto the A:-axis and^-axis. Identify each axis with R.
Then

(go^ \£ney, t o \Sney,
7710 Gn=: •r ^ ^oG^^ o if n e ̂  ^ o TCI if n e ̂ .

Now fix some z =: (A:,^) with ^ > o and y > o. We must prove
(3) f\z) -> oo as n -> oo.

By construction, /n carries the first quadrant into itself, so all quantities in the following
estimates are positive. Set

^0 =^2(/1^) --^(/O^

Sl ==^l(/3^),

^=^2(/6^)>

( i k is odd
^-^(/^ m= i + . . .+(A+i ) , i=

2 A is even

^^



THE C1^ HYPOTHESIS IN PESIN THEORY 151

We claim
(4) ^^-i) k^ i .

Suppose k is odd, for instance k = i. Then
\ - T

7r! 0 G-n = °

^2 ° On = 5 ° TC!

for m — {k + i) + i <_ n < w,

A^=S
TCI o G,, = g o TCJ ^ if n == fft — (A 4- I)'
Tta o G, = o ]

Thus s, = ̂ (/w ^) = ̂ (/^(.T-1 ^)) = ̂ ^(y1"-1 z) + G^f"-1 z))

= ̂ (/M-1 z) = ... = f-1 ̂ (y"-^1 z)
= ̂ -l^(/m-k(/m-^)) = ̂ -l^(T(/m-^) + G^.^/"-^))

== ̂ ^(/m-^) = ̂ ^(/^..^r-'-1^))
= ̂ ^(S^-^-^) + G^.^/--4-^))
== ^OT^/"-*-1 ^) + A^^^/"-"-1 ^))

> ^(^(/"-t-l-^))=^^-l),

since (i 4- ... +A) = » » — A — i . Similarly, iEk is even, ^ ̂  2, m == i + • • • (k + i)»
then

A,=S
TC^ 0 Gn = 5 0 TCj for CT — (̂  + i) + I ^ » .̂ "t>

8̂ ° ̂  == °

A,=T
TCI o G^ == o if « = m — {k + i)
T C g o G ^ ^ ^ O T C i

and ^ = ̂ (^ z) = ... = ̂  ̂ (/„_,_^(/OT-ft-l ^))

= ̂ cn./-"-*-1;?) + G^.,.^/-"-^))
= yan^f^-1 z) + i*^(^(/m-t-l,?)) > &^(^-i),

which proves (4).
Gall MO = -TO and "A = ^^("t-i)» ^^ i. By (4), induction, and monotonicity

of g,
(5) -^"k "'^^0,

for s^^ b1'g{s^_f)'^ ^(u^t) =u^. By Lemma 3, »k->oo as k->oo. From (5)
(6) ^ -»• oo as A -»• oo.

161



152 C H A R L E S C. P U G H

This proves (3) for a certain subsequences of n -> oo, namely for n = m with m of
the form i + ... + {k + i).

To handle general n, observe that

(7) ^(j^14'1 z} and ^(j^14'1 z} both tend to oo as m = i + . . . + {k+ i) -> oo.

For if k is odd then

^(/wl+1^) =^(T(/^) + GJ/^))
== ^i^f"1 z) === &^ -> oo as A -> oo,

^(/m+l^) =7T,(T(/^) + (U/̂ ))

= ̂ ^(/^ z) + g^f"1 z)) > gW -> 00 as k -^ oo.

Similarly, if A is even. Now the k + i iterates /„, m< n < m + (k + 2), increase
one of these coordinates, '^:^fm+lz)or ^{/m+l ^), by powers of 6, so, for these n,

maxC^/^^),^/^^)) > mî T^r-^), ̂ (/m+l^)).

But this means, by (7), that

[/n+l z\ ̂  mu^Cf"4-1 z), T^/"14-1 ^)) -^oo as A ̂  oo,

for i + ... + (k + i)^< n < i + . . .+ (k +2 )3 which completes the proof of (3)
and Theorem i.

Remark. — The strategy of{/^} is to expand one component of z k times by b and
then transfer as much as possible of this expanded component to the opposite component
for the next k + i iterates. The non-smoothness offn permits just enough transfer.

3. Realizing the Example. — Consider the diffeomorphisms /„: R2 -^ R2 as
in § 2. We want to lift them to the 2-sphere by central projection, that is, by projection
from the center of a unit 2-sphere whose south pole rests at the origin of R2. For
polynomial vector fields this is a standard construction due to Poincard [2]. Let

R
i +R2

R = tan(9)

FIG. 3. — Central Projection

152



THE C^ HYPOTHESIS IN PESIN THEORY 153

P- : ]R2 -^ S2. be this projection where S2. is the southern hemisphere. Let a be the
antipodal map of S2 and define p_^ : R2 ->S2., the central projection to the northern
hemisphere, S^, by p + = = a o p _ . See Figure 3. (Stereographic projection, by the
way, is unsuitable for such lifting.)

Any map /: R2 -. R2 lifts to a map p_/ u p+/: S2 - S2 -> S2 - S2 making

Si -^ Si

r rY ^

R2 -̂  R2

commute. (S2 is the equator of S2.) The next lemma gives sufficient conditions that
9-fu P+/ extend to a map p^/on all of S2. Note first, however, that any linear
(or affine) isomorphism A : R2 -> R2 lifts to a diffeomorphism p* A : S2 -> S2. See [2]
or below.

Lemma 4. — Suppose A = ( j, ab=f= o, and h: R ->R u a ^function with
compact support. Then the map

la c + h \ ( x \ ^ ( a x + c y + h { ^ \
\o b ] \ y ] \ by I

lifts to a unique continuous map p^/: S2 ~>S2 which agrees with p^/ on S2. Moreover, ̂ f
is a C1 diffeomorphism whose i-jet at the equator S2 is the same as that of p^ A. At the points x^ ̂
where the x-axis-longitude L^ meets S2, this i -jet isindependent of c\ it is

X±W "̂> | ^±QO?

dja o \

[o blaj

respecting the splitting T^^) = T^JL,) ©T^^(Sg).

Proof. — This is basically a chain rule calculation. Let (<p, 6) be the natural
angular coordinates on SL and let (r, 9) be the polar coordinates in R2. Then

r = tan 9, 6 = 6, p-1^, 6) == (tan 9, 6),
x = r cos 6, /i = ax + cy + h{y),
y = r sin 6, f^ == by.

Express p_f•.S't_->S2_ in the (9, 6)-coordinates as

(9,9)^(0,0)
0 = tan-^R), R = I/I = (A2+/,2)172,
© = tan-V^).

J53
20



154 C H A R L E S C . P U G H

Since R = |/| we have

— == a2 cos2 8 + c2 sin2 6 + ̂ rsme^2 + 200 cos 6 sin 6
r2 r2

A(rsin6) . A(rsin6)
+ 20 cos 6 ————- + 2c sm 6 ————- + i2 sin2 6.

r r

Let y -> 7T/2. Then r == tan <p -> oo and

R2

(8) -y :$ a2 cos2 9 + c2 sin2 6 + 2ac cos 6 sin 6 + A2 sin2 8 > o.

By =^ we denote uniform convergence respecting 6. From (8) follows

(9) 0 =$ 7T/2 as <p -> TC/2.

Similarly
b sin 6

©M^an-V^-tan-1!(10) vyvr5v/ t<UA ^2/Ji^ == L<ul I ———————————^—————
\ a cos 9 + ^ sin 6 + - h(r sin 6)\ r v ' y

:tan-1 b sin 9
i0 cos 0 + c sin OJ

Some care is needed here since a cos 6 4- c sin 6 can equal o. Fix some small 60 > o
and let N == {6 : o $ 6 ;< OQ, or TC — 60 <_ Q <, n + 60, or 2-n. — Oo :< 6 < 27c}. If
60 is small and 6 eN then the argument of tan""1 converges uniformly and (10) is
immediate. If 6 ^ N and z = (r, 6), r == tan <p -> oo, then

^'M\ by I

since h{y) =A(rsin6), h has compact support, and rsin6 ->oo. Since 0 refers to
the angle made by/(,?), ©(9, 6) converges uniformly for 6 ^N also, proving (10).

From (9) and (10) we see that p_/: S2. -^S2. extends to a continuous map on
S2 U S2., sending the equator into itself according to

b sin 6
(n) 6h>tan~1

[a cos 6 + c sin 6/

Note that (n) changes by7c i f6 is replaced by 6 + ^. Thus, p^/ extends to the same
map on the equator; i.e.f lifts to a (necessarily unique) continuous map p*/: S2 ->S2

agreeing with p^y on S2. It is easily seen to be a homeomorphism which is a diffeo-
morphism except perhaps at the equator.

154



THE C^ HYPOTHESIS IN PESIN THEORY 155

To calculate the derivatives of p#/ we compute

^=f---^——V^Vffy l^^4-^^^^f^
a<p \i + R2^R; [Jl [^ Qr 89 •" 8y 8r 89; • J 2 (̂  f)r 89 ' ^ 8r ̂ j

/ i+ r^ / rU/ v
"(TTR'^W n f lcose+"me+7A(rs^e))

(a cos 6 + (A'(r sin 6) + c) sin 6) + b2 sin2 6 .

By (8), the first two factors converge uniformly. As above, the terms A(rsin6)/r and
A'(r sin 6) sin 6 go to o when r -> oo. Thus

80 ,. / r \ 3

(12) ^- ̂  lim ^- {a2 cos2 6 + 2ac cos 6 sin 6 + c2 sin2 6 + b2 sin2 6}
^ <p->? v1^/

^^-
Second,

^ = ( T \ I1-} [f (^ + 9A8y\ , f (^8X ^ ̂  ̂ 1
ay \Ra + i; \Rf [Jl[9x 89 r 9y 9Q] '^[sx 8Q r ~9yw]\

= (R»Tr)(l) (^^e+^inO+^A^sme))

(— a sin 6 + (c + A'(r sin 6)) cos 8) + b* sin 6 cos 6 .

As r-»•(», r/(R2 + i) ->-o while the other factors approach finite limits. Hence

/ ^ 8^ "^S) "flfl^0 as y ̂ -.
(70 2

Third,

ae _ i fa(/,//i) a.y 8r 8jf^ gy ̂
^ i+CW2! ^ a r a < p ' ay arayj

== •̂  f"^ cos 9 a^ + bh{y) — byh\y) sin 9
T»«»i -r2 -.-o "1R^ /,2 cos2 9 r /,2 cos^J

i + r2

== —nT- { — al)r sm 6 cos 6 + abr cos 6 sin 9 + (&A(^) — byh\y)) sin 6}

i + r2

= —pi— { ̂ (r sin 6) sin 6 — br sin 6A'(r sin 6) sin 6 }.

155



156 C H A R L E S C. P U G H

Now as 9 -^ —, either A and A' equal o or else r sin 6 stays bounded: sin 9 -> o while

r -> oo. Thus, the bracketed terms go to o while (i + r^/R2 tends to (lim r/R)2 + oo.
Therefore

, , 8@ _ n
(14) o"^0 as 9 ->-.

<?9 2

Finally,

8Q _ i f^2//i 8x 8f,lf, 8y\
^ i + {f2lfl)2[ sx a e ' ^ aej

== (—) aA sin2 6 + ab cos2 6
\R/

/ \ ^
+ (^ bh(r sin 6) — AA'(r sin 6) sin 6)cos 6 .

As above, the terms involving h and A' tend to o as 9 -^7r/2. Thus

8Q ( r \ 2

(15) 88 ^l11"1]^) flA as 9 ">TC/2-

The limits (i2)-(i5) commute with the antipodal map, so p^/is G1; at (Tc/2, 6) e S2

it has derivative

Y ° |, Y == ((a cos 6 + ^ sin 6)2 + (b sin 6)2)-172,
LO fl&Y2]

respecting the (9, 6)-coordinates. This is clearly invertible and independent of A.
Hence p^/is a G1 diffeomorphism whose i-jet agrees with that o fp^A at the equator.
The points x_ „, x^. „ correspond to 6 == TC, 6 == o and give y = fl-1? verifying the
fact that the derivative of py/ at A^ ls independent of c. Q.E.D.

Now return to the proof of Theorem i. Since /g does not satisfy the hypotheses
of Lemma 4, it is convenient to introduce the odd version of the function g in § 2,

&(.)=(M 'f"so•I— gW ^f u<_ o.

Then g'o(u) s c for some constant ^> i , provided J M | ^ i. Call

A ^ ( a ±<;^ f -[p. ^(° ^ - c \ \ t x \ (ax±g^)\A^ — h J ± — A^± . p->
\o b j \ \o o / / \yl \ by ]

Clearly

f±{x^) ===/s(A:^) fof ±^>. o-

2.56
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Since ^) - cy has compact support, /^ satisfies the hypotheses of Lemma 4 and
lifts to S2 as p^(/J. At the equator, the i-jet of p^) agrees with that of p^(A^).

Divide S2 into two hemispheres H^ along the A-axis longitude L,, say

H^ is the hemisphere containing the quarter sphere p_{ (x,jy) e R2 :
±^>o}.

See Figure 4.

FIG. 4. — The hemispheres H± with half latitudes drawn in H-

Define Fg : S2 ->S2 by

Fg(^) =^A^) i f ^ e H ^ ,
lptf/-(^) i t ^ e H _ .^ e H _ .

Then Fg lifts /g to S2, but not as p_/g u p^./g! In fact this canonical lift py/g fails
to be C1 at the equator.

At all finite points of the A-axis, f^. —f_ vanishes to first order (since
•?(°) == g'W = o) so Fg is well defined and continuous on S!.; in fact

T.Fg=T,(p^)==T^/_)

for all z e L^ n S2.. Thus, Fg | S?. is a G1 diffeomorphism of S2..
Although Fg does not commute with the antipodal map a, there is enough

symmetry that differentiability of Fg on S2. implies it on S2.. If z e S2^ n H^. then

^(^ == Ptf/4-(^) == a ° P-/+ o a(^),

T, Fg = (Ta),_^ o T^(p_/^) o T, a,
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while if z* e S2. n H_ then

W) == Ptf/-(^) = oc o p_/_ o a(^),
T^ Fs = (^p.^a.') o T^(p_/_) o T^ a.

Now if z == z ' e L, n S2. then

P-/+(a2:) =p_/_(a^),

T^(p_/,.) = T^(p_/_),

since p_/+ equals p_/^ to first order along L, n S2,. Thus, Fg | S^ is a well defined
C1 diffeomorphism of S .̂ also.

Since Fg is the C1 diffeomorphism p#y± on the interior ofH^, it remains only
to check Fg at S2 n 3H^ = ^±00- But by Lemma 4, p^/^ has at the equator a i-jet
equal to that of the diffeomorphism p^A^ and at x^^ the latter i-jet does not depend
on c. That is,

T.^(p,A)=T^Jp,A^),

T^(p»/-)=T^(p,A_),

and so T, Fg exists and is invertible. Hence
rfc oo ~

/Q lifts to a (somewhat noncanonical) C1 diffeomorphism Fg of S2;
similarly/T lifts to F^.

Remarks, — It is because the dynamics of the sequence {f^} is sensitive to pertur-
bations at infinity that we took pains to lift the global map^ to S2, not just its germ
near o.

We are now ready to embed the example in § 2 into a diffeomorphism of a compact
manifold.

Let h: M2 -> M2 be any diffeomorphism having a hyperbolic invariant set H
on which h is topologically conjugate to the full 2-shift and

(17) TH& dominates TFg.

By (17) we mean that if E^CE'^TuM2 is the hyperbolic splitting then

| Th{v) | > | TFg(^) | whenever v e E ,̂ | v \ = i,

t^eTS2, H== i,
| Th{v) | < | TFg(if) | whenever v e E ,̂ | v \ == i,

MeTS2, H== i.

That is, the spectrum ofTg h lies outside the annular hull of the spectrum of TFg. We
could, for instance, take H to be a horse-shoe basic set.
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Let Ho be the set of points ofH which correspond to symbol sequences with a o
in the initial position and Hi be those with a i m the initial position. Then

H == Ho u Hi

and Ho, Hi are compact. Choose a smooth bump function

(JL : M2 ̂  [0, TC/2]

such that Ho = pL-^o) n H, Hi = ̂ (TT^) n H, and ̂ ({o, re/a}) is a neighborhood
ofH.

Let RQ be the rotation of S2 by angle 6 which fixes the poles. Form the skew
product of h and Fg

F : M2 x S2 -> M2 x S2

(^ z) K (h{w), R^o Fg o R_^)).

F leaves invariant the foliation y by 2-spheres w x S2, w e M2, and by (17), F is
normally hyperbolic to y. See [3, p. 116]. Besides

(18) T(^X)'F =

8A ^Ru, o Fg o R_
9w 8z</

8R^ o Fg o R_ ^o
8<?

Since A | H is the 2-shift, there is a (unique) orbit <B{p) in H such that

h^p) eHo iff A^= S, A^) eHi iff A^ == T.

That is, we consider the orbit (P(p) whose symbol is

O O O I I O . I O I I O O O I I I I ...

respecting the division H = Ho u Hi. Let

P = (A ^o)
where Zy is the south pole of S2. The F-orbit of P is {(h"?, Zy)} since Zy is fixed under Fg
and Rg. By (16), (18), and constancy of (JL near H,

[T^h o1
L o AJ'

(i9) '̂•p.̂ o) F

Indeed by choice of (JL and the fact that

/T = ^7i/2 °/S ° ̂ -7t/2

^<5P
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A^XS 2 -^ A^^XS 2

160

one sees that

(20)

S2 —!"—^ s2

commutes, where F^ == Fg or F^ == Frp according as A^ == S or A^ == T.
From (19) fl^(P) has one positive Lyapunov exponent corresponding to TA | E""

and three negative Lyapunov exponents: one corresponding to Th | E88 and the other

two being X == -log (ab) which correspond to the A^s as in § 2. Let E8 denote the

space of vectors with negative Lyapunov exponents

EpT(/»xS2).

The orbit ^(P) is regular because TFn | E^is diagonal repecting E88 © (A-axis) © (j/-axis).

Theorem 2. — The stable set of P is not an immersed manifold tangent to E8..

Proof. — Since F is normally hyperbolic to y, a point (w, z} is asymptotic with P
under F if and only if {w, z) lies on the strong stable manifold of some point

(^^eWW n(^xS2).

That is,
W^P) = W^W^P) n (p x S2))

where W88 denotes the strong stable manifolds. See [3, p. 71]. But, by (20),
W^P) n [p x S2) is just the stable set of o under the maps /n as in § 2 and this set is
not a neighborhood ofo; it misses the whole first quadrant. Thus, W^P) is contained
in the three dimensional set W88^ x S2) but does not include a neighborhood of P
in it. It is therefore not able to be an immersed manifold tangent to E^. Q.E.D.

Remarks and Questions. — a) More can probably be proved about W^P). It
seems to consist of the W88 fibers over a curve tending to P in p x S2 in an oscillatory
fashion. In particular, it seems to have dimension two.

b) Can the dimension of M be reduced form 4 to 3 in the above example by the
introduction of a solenoid?

c ) Do G1 diffeomorphisms of 2-manifolds have G1 stable manifolds at asympto-
tically hyperbolic orbits?
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d ) Which orbits in H {i.e. which symbol sequences) exhibit this anti-Pesin
behavior? Do they form a residual set in H? A set of measure zero for every A-invariant
probability measure on H?

e ) Is the set of points where the stable set of/is a G1 injectively immersed manifold
a set of measure one for every jf-invariant probability measure on M?

f) Does the generic C1 diffeomorphism (for example, one near the F above) have
G1 stable manifolds at its generic asymptotically hyperbolic orbits?

REFERENCES

[i] A. FATHI, M. HERMAN and J. C. Yoccoz, A proof of Pesin^s Stable Manifold Theorem, preprint of Universite
de Paris-Sud, Orsay, France.

[2] E. A. GONZALES VELASCO, Generic Properties of Polynomial Vector Fields at Infinity, Trans. AMS, 143 (69),
201-222.

[3] M. HIRSCH, C. PUGH and M. SHUB, Invariant Manifolds, Springer Lecture Notes, 583, 1977.
[4] A. KATOK, Lyapunov Exponents, Entropy and Periodic Orbits for Diffeomorphisms, Publ. Math. IHES,

51 (1980), I37-I73.
[5] R. Mane RAMIREZ, Introducdo d Teoria Erg6dica, IMPA, 1979.
[6] V. I. OSELEDEC, Multiplicative Ergodic Theorem, Lyapunov Characteristic Exponents for Dynamical Systems,

Trans. Moscow Math. Soc., 19 (1968), 197-231.
[7] Y. B. PESIN, Families of Invariant Manifolds Corresponding to Nonzero Characteristic Exponents, Math.

USSR Izvestija, 10 (1976), 1261-1305.
[8] Y. B. PESIN, Characteristic Lyapunov Exponents and Smooth Ergodic Theory, Russian Math. Surveys, 32

(W7)> 4> 55-"4-
[9] D. RUELLE, Ergodic Theory of Differentiable Dynamical Systems, Publ. Math. IHES, 50 (1979), 27-58.

[10] S. STERNBERG, Local C" Transformations of the Real Line, Duke Mathematical Journal, 24 (1957), 97-102.

Mathematics Department
University of California
Berkeley, California 94720
U.S.A.

Manuscrit refu Ie 26 fevrier 1982.

161
21


