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AN ANALYTIC PROOF OF NOVIKOV'S THEOREM
ON RATIONAL PONTRJAGIN CLASSES

by D. SULLIVAN and N. TELEMAN (1)

We give here an analytic proof for the following:

Theorem i (S. P. Novikov [3]). — The rational Pontrjagin classes of any compact oriented
smooth manifold are topological invariants.

This problem, was previously posed by I. M. Singer [4] and D. Sullivan [5].
Theorem i is a direct consequence of the following Theorems 2 and 3.

Theorem 2 (D. Sullivan [5]). — Any topological manifold of dimension 4= 4 has a
Lipschitz atlas of coordinates3 and for any two such Lipschitz structures oS^, i == i^ 2, there
exists a Lipschitz homeomorphism h: oS^ -> oSfg close to the identity.

Remark i. — The proof of theorem 2 in general uses Kirby's annulus theorem
to know that topological manifolds are stable (2), The proof of Theorem 2 for stable
manifolds is more elementary. Simply connected manifolds are stable and these (3)
are sufficient for proving Novikov's theorem.

Theorem 3 (N. Teleman [6]). — For any compact oriented boundary free Riemannian
Lipschitz manifold M2 ,̂ and for any Lipschitz complex vector bundle ^ over M2^, there exists
a signature operator D^, which is Fredholm, and its index is a Lipschitz invariant.

Theorem 2 allows a strengthening of the statement of Theorem 3.

Theorem 4. — For any simply-connected compact^ oriented^ boundary free topological
manifold M211 of dimension 2 p. + 4, and for any complex continuous vector bundle ^ over M,
there exists a class (̂M, ^) of signature operators D "̂ which are Fredholm operators. The index

(1) Partially supported by the NSF grant # MCS 8102758.
(2) See also P. TUKIA and J. VAISALA [7] and [8].
(8) Sec remark in [3].
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of any of these operators is the same and is a topological invariant of the pair (M, ̂ ). When M
and ^ dfe smooth, the smooth signature operators D "̂ (cf. [i]) belong to this class (̂M, S).

Proof. — Pick a Lipschitz structure oS^ on M by Theorem 2, and regularize the
bundle S up to a Lipschitz vector bundle Sr Theorem 3 says that the class ^(M, S)
is not void, and because the Lipschitz signature operators generalize the smooth signature
operators, the last part of the theorem follows.

Suppose now that oS^, i = 1,2, are two Lipschitz structures on M and that
^ are corresponding Lipschitz regularizations of ^.

The Theorem 2 implies that there exists a Lipschitz homeomorphism h: «S^ -> S?^
close to the identity (isotopic to the identity). As A is isotopic to the identity, the
bundle h* ̂  is Lipschitz isomorphic to ^; let ~h\ Si-^2 be such an isomorphism.
Take any Lipschitz Riemannian metric [6] 1̂  on M, i == 1,2, and any connection A^
in ^.$ the signature operators D^ are defined. From Theorem 3 we know that the
index of D^, i fixed, is independent of the Riemannian metric F, and the connection A^
chosen. In order to compare Index D^" and Index D^ themselves, we chose Fg and Ag
arbitrarily, but we take

Pi == ATg, and A^ == ^Ag.

From the very definition of the signature operators, we get that the homeomorphisms h, A
allow us to identify the corresponding domains and codomains of the operators D^, Dj?";
with these natural identifications, D^~ and D^" coincide, and therefore, they have the
same index.

Proof of theorem i. — Suppose that M2^ is a smooth manifold, and ^ is a smooth
complex vector bundle over M. The signature theorem due to F. Hirzebruch, and
subsequently generalized by M. F. Atiyah and I. M. Singer [i], asserts that

Index D^- == ch S.L(^,^, .. .,^)[M]

where L is the Hirzebruch polynomial and p^p^ .. .5/^/2 are Ae Pontrjagin classes
of M. Theorem 4 implies that the right hand side of this identity is a topological
invariant of the pair (M,^). By letting ^ to vary, ch i; generates over the rationals
the whole even-cohomologysubringofH*(M, QJ. From the Poincard duality we deduce
further that the cohomology class L(^i, .. .3^/2) is a topological invariant. It is known
that the homogeneous cohomology part L( of degree 41 of L(/^, .. .5^/2) is of the form
(see e.g. [2])

L» = ^.A + polynomial in p^, p^, ..., A_i, a, e %, a, =t= o.

Therefore p^p^ ...?^/2 ^^ polynomial combinations with rational coefficients of
Li, Lg, ..., L^a? which, as seen, are topological invariants.
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