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HOMOTOPY REPRESENTATIONS OF FINITE GROUPS
by TAMMO TOM DIEGK and TED PETRIE

o. Introduction

Our aim is to develop a theory of actions of finite groups on homotopy spheres in
analogy with the theory of representations of finite groups. The starting point is the
notion of a homotopy representation (§ i). This is a finite-dimensional G-GW-complex X
such that for each subgroup H of G the fixed set X11 of H is homotopy-equivalent to a
sphere. The Grothendieck group of equivalence classes of such actions with addition
defined by join is the homotopy representation group V(G) (§ 2). It is the homotopy
analogue of the representation ring of G.

Homotopy representations, as we shall show, are distinguished by two integral
valued functions whose domain is the set of conjugacy classes of subgroups of G. These
are: the dimension function which assigns to each homotopy representation X of G the
function Dim X whose value at the subgroup H is the dimension of X11 plus i and the
degree function which assigns to each pair of homotopy repiesentations X and Y having
the same dimension function and G-map / :X-^Y the function d(f) whose
value d{f) (H) at H is the degree of/11. Given X and Y with Dim X == Dim Y there
is always an/such that d{f) (H) is prime to the order | G | of G for all H. (For such an/,
d{f) is said to be an invertible degree function.) In a suitable sense to be made precise in
section 3 d{f) depends only on X — Y in the representation group of G and vanishes
exactly when X — Y is zero.

Since the dimension function and degree function distinguish homotopy repre-
sentations, the structure ofV(G) is determined by the relations among the values of these
functions on the subgroups of G. Put another way the determination of V(G) as an
abelian group is equivalent to characterizing those integral valued functions on the set
of conjugacy classes of subgroups which occur as Dim X and d{f) for some homotopy
representation X resp. some /: X ->Y with Dim X = DimY. The characterization
required involves among other things the group cohomology of subquotients of G and
the projective class groups of the integral group rings of these subquotients.

As an example of the interplay between geometry and algebra we note that the
existence of a homotopy representation X of G with DimX(i) 4= o and Dim X(H) == o
for H =t= i is equivalent to G having periodic cohomology (§ 12). The values Dim X(i)
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^o T A M M O T O M D I E C K A N D TED P E T R I E

for such X depend on the projective class group ofZG (provided X is a finite CW-complex
and not just a finite-dimensional CW-complex).

Our set-up allows us to study homotopy representations with certain side condition
(abbreviated by X in (2.2)) in the same framework. The corresponding group is
denoted V(G, X). From the point of view of obtaining invariants of smooth actions on
homotopy spheres we are naturally led to study homotopy representations X of finite
type i.e. X is a finite CW-complex. This is the case X = h ((2.1)). The relation between
the geometry and algebra of representations is complicated by imposing this finiteness
condition. It turns out to be more efficient to deal with the case X == ^°° where repre-
sentations are not required to have finite type. Then V(G, h) is the kernel of the homo-
morphism a : V(G, A°°) -> JT(G) where jT(G) is a group fashioned from the reduced
projective class groups of the integral group ring of subquotients of G. In particular
rank V(G, h) == rank V(G, A°°).

The dimension function defines a homomorphism Dim from V(G, X) to the set C(G)
of all integral valued functions on conjugacy classes of subgroups of G. Its kernel is
denoted y(G, X). The set ofinvertible functions in C(G) modulo an equivalence relation
defines a multiplicative group Pic(G) ((3.6)) and the degree function defines a homomor-
phism </ :y(G,X) ->Pic(G). The group Pic(G) is a finite group and d:v{G,\) ->Pic(G)
is injective ((3.8) and (3.9)). In particular rank V(G, X) == rank Dim V(G, X). In
section 10 we compute rankV(G, A°°) in terms of the subgroup structure of G. This
uses actions on Brieskorn varieties and a theorem ofBorel about ̂ -torus actions on spheres.
Since rank V(G, X) = rank Dim V(G, X), Theorem (10.3) counts the number of linearly
independent rational linear relations among the values {DimX(H) |HCG} as X
ranges over homotopy representations of G. In particular (10.2) shows that in general
rankV(G,A°°) exceeds the rank of the subgroup JO (G) generated by the unit spheres
of real representations of G. In section 6 we show that d maps v(G, X) isomorphically
onto Pic(G) when X = A°°. In words this means: Every invertible function is the degree
function of some /: X -> Y with Dim X == Dim Y. This is not the case if we insist
that X and Y be of finite type since v(G, h) is the kernel of a restricted to v(G, A°°). When
G is abelian thi^ point can be made quite explicit in terms of the Swan homomorphism
s^: (Z/[L|)* -> K.o(L) (§ n). In this case there is an isomorphism

(JL : Pic(G) ^ ri(H)(Z/|G/H|*)/B = A

such that x e Pic(G) is d{f) for some /: X -> Y with X and Y of finite type if and
only if S[L{X) == o where s : A -> K(G) is the product of the Swan homomorphisms J^/H
for H C G and B is a suitable subgroup (see (11.5)). Note that the condition s^df) = o
expresses linear relations among the values df{'K), K C G. Sections 11 and 12 are devoted
to illustrate these results for various groups G.

The authors thank S. Illman for several useful suggestions which improved this
paper. The main part of this research was done while the second author was visiting
Gauss Professor at the University of Gottingen during 1978.
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HOMOTOPY REPRESENTATIONS OF FINITE GROUPS 131

i. Homotopy representations of finite groups

Let G be a finite group.

Definition (1.1). — A homotopy representation of G is a G-GW-complex X such that
for each subgroup H of G the fixed point set X11 is an n(H)-dimensional CW-complex
which is homotopy-equivalent to the sphere S .̂ If X11 is empty we put n(H) == —• i.
The homotopy representation is called finite if X is a finite G-GW-complex. A finite-
dimensional G-GW-complex is called a generalized homotopy representation if each fixed
set X11 is homotopy-equivalent to some sphere S^ (not necessarily of the dimension of X11).

We make some remarks concerning these definitions. Since we are mainly interested
in homotopy types, the actual GW-structure is not considered as part of the structure.
In some parts of the following we could also work with spaces of the G-homotopy type
of a G-complex. (Henceforth <( complex 5? shall mean " GW-complex 5?.)

Example (1.2). — Let V be a finite-dimensional representation of G over the real
numbers and let S(V) be the unit sphere of V. Then S(V) is a finite homotopy -
representation (use the triangulation theorem of Illman [15]).

Definition (1.3). — A homotopy representation X is called linear if it is G-homotopy-
equivalent to S(V) for some G-representation V.

Example (1.4). — Let G == Z/^. There exist finite generalized homotopy repre-
sentations X with the following property: X and X° are homotopy-equivalent to the
same sphere S^ The inclusion i: X° -> X has a degree j which can be any integer
prime to p (Bredon [2], p. 391). We shall see later that such an X is not G-homotopy-
equivalent to a homotopy representation.

Since our main interest lies in finite homotopy representations, because only these
can be realized as manifolds, it seems that we could avoid generalized homotopy repre-
sentations. Nevertheless it turns out that examples of the type (1.4) have value in the
development of the general theory.

Homotopy representations have two pieces of structure associated to them, the
dimension function and the orientation behavior. We are going to explain this.

The set e^(G) of subgroups ofG is partially ordered by inclusion written C and <
for strict inclusion. This induces a partial order on <p(G) the set of conjugacy classes
of subgroups ofG. The conjugacy class ofH is written (H).

A subset S of <^(G) is closed by definition if K G S and H e <$^(G) with H > K
implies H eS. Let G(G) be the ring of integral valued functions on 9(G). If X is
a generalized homotopy representation, then X11 is homotopy equivalent to a sphere S^^
(where 0 == S~1) and if His conjugate to K,X11 is homeomorphic to X^ so n(H) ==n(K).
Thus we can give the
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132 T A M M O T O M D I E C K A N D T E D P E T R I E

Definition (1.5). — The dimension function
Dim X : <p(G) -> Z

of the generalized homotopy representation X is defined by
(DimX)(H) ==n(H) + i.

We have to use two different notions of dimension in this paper. By dim X we
mean the geometric dimension of X as a complex; whereas, h-dim X == n means that
X is homotopy-equivalent to S".

Let GY denote the cone over Y (which is a point ifY is empty!). If X is a generalized
homotopy representation then
(1.6) H^^^CX" X"; Z) ^ Z

(even for n(H) == o, — i). The group WH == NH/H acts on X11 and on the coho-
mology group (1.6). We put

^) = 4{g) = J (^P- ==— !)
if g e WH preserves a generator of (1.6) (resp. changes a generator). We obtain a
homomorphism
(1.7) 4: WH-^Z^+i.-i}.

Definition (1.8). — The orientation behavior of X is the collection of the orientation
homomorphisms e^. We call X orientable if all e^ are trivial.

Definition (1.9). — An orientation for an orientable generalized homotopy repre-
sentation is a choice for each (H) of a generator for the group 'Hnw+l{CXR, Xs; Z).

This notion of orientation is well-defined in the following sense: If K is another
representative of (H), say gH.g~1 == K, then left translation ig: X11 -> XK : x \-> gx
induces an isomorphism

r,: IP^-^GX^X^ -^irw-^cx^x11)
which is independent of the choice of g e G with gH.g~1 == K, because e^ is assumed
to be trivial.

The unit sphere in the direct sum of two linear representations is G-homeomorphic
to the join of the individual unit spheres, in symbols

S(V®W) ^ S(V) *S(W).

Therefore we study in general the join operation on homotopy representations. If X
and Y are (generalized, resp. finite) homotopy representations then X * Y is a (generalized,
resp. finite) homotopy representation. Note that
(i. 10) (Dim X • Y) (H) = (Dim X) (H) + (Dim Y) (H)

which is the reason for taking n{H) + i instead of%(H) in definition (1.5).
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HOMOTOPY REPRESENTATIONS OF FINITE GROUPS 133

If X and Y are oriented there is a canonical induced orientation on X » Y which
is associative. Note also that
(i.ii) ^^Y

(pointwise multiplication of functions WH -^Z*).

Definition (1.12). — Two (oriented) homotopy representations X and Y are called
equivalent (oriented equivalent) if there exists a G-homotopy-equivalence /: X ->Y (such
that/11 has degree one with respect to the given orientations, for all HCG).

Actually, if for all HCG the map /H has degree ± i then / is a G-homotopy-
equivalence (Hauschild [13], James-Segal [16] and Illman [33]).

Finally, we can try to imitate complex representations in our context.

Definition (1.13). — A (generalized) homotopy representation X is called even if
Dim X takes only even values and if all homomorphisms e^ are trivial.

There are many variants and generalizations of the above notions. In particular
we mention simple-homotopy-type, sphere bundles, rational homotopy spheres.

Probably the notion of homotopy representation should be more restrictive, at
least if one thinks of actions on manifolds as being the most important models. In that
case, if H and K are different isotropy groups and H < K, then dim X11 > dim X^
One might conjecture that under this condition there exists a function b{n) such that
a group which acts effectively on a homotopy representation of dimension n is a subgroup
of 0(b{n)).

We now give a simple example (generalizing (1.4)) which shows that such finiteness
results do not hold if we drop the condition dim X11 =)= dim X1^ for different isotropy
groups H, K. Let G be any finite group. Let r be an integer prime to |G|. There
exist free ZG-modules F^ and Fg and an isomorphism

9: z e Pi -> z © Fg
such that

Z —> Z © Pi —> Z © F« —> Z
C - <P - pr

is multiplication by r$ we say in this case <p has degree r. (This is due to Swan [23].
Compare section 6 of this paper.) Now consider the exact sequence

o - > F i - > Z © F 2 - > Z - ^ o

and realize F^ —> Z © Fg geometrically as the cellular chain complex of a space X as
follows: Start with S1^ and trivial G action. Attach cells of type G X D" to S" by trivial
attaching maps {n> 2), one for each element of a ZG-basis of Fg. Let Y be the resulting
G-complex. Then T^(Y) ^ H^(Y) ^ Z © F^. For each basis element e of F^ attach a cell
of type G X D" +1 with attaching map { i } x S" -> Y representing 9(0, e) e Z © Fg ^ T^(Y) .
The resulting space X is homotopy-equivalent to S^* and X°CX has as degree the
degree of 9""1.
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2. Homotopy representation groups

The homotopy representation groups now to be defined are the analogues of the
representation ring. We consider equivalence classes of the various types of homotopy
representations introduced in section i. We use the join as composition law. This
yields commutative semi-groups. The unified notation V^G, X) will be used for these
semi-groups, where X refers to the category under question. We mention in particular
the following possibilities for X:
(2.1) A00: homotopy representations

h: finite homotopy representations
h°°: generalized homotopy representations
h: finite generalized homotopy representations
{: linear homotopy representations.

The Grothendieck group associated to V^G, X) is denoted
(2.2) V(G,X)

and is called the homotopy representation group of G.
Because of (1.10) taking dimension functions yields a homomorphism

(2.3) Dim: V(G,X) ->C(G).

The kernel of this homomorphism is denoted v{G, X).
The computation of V(G^ X) and description of its structure is the main objective

of this paper. There are essentially two different steps in the calculation: first—the
determination of the image of Dim (which is a free abelian group), second—the compu-
tation of v{G, X) (which turns out to be a finite abelian group).

Inclusion of categories gives canonical homomorphisms

(2.4) V(G^) —> V(G^) —> V(G,r)

V(G,A) —> V(G,/h

The next Proposition collects a few of the results which we prove in later sections.

Proposition (2.5). — The horizontal maps in (2.4) are injective, the vertical maps are
bijective.

Proof. — It follows immediately from (6.6) that a and (B are surjective. We show
in section 8 that given any generalized homotopy representation Y there exists a homotopy
representation Z such that Y * Z has the G-homotopy-type of a linear homotopy repre-
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HOMOTOPY REPRESENTATIONS OF FINITE GROUPS 135

sentation. Using the definition of the groups V(G, X) this yields immediately the injec-
tivity of all the maps in (2.4).

Because of ( i . 11) we obtain for each subgroup H of G a homomorphism

(2.6) <?H '' V(G. ^) ^ Hom(WH, Z*)

which describes the orientation behavior at H. If gH.g~1 == K then x \-> gxg~1 induces
a homomorphism o^ : WH -> WK and the diagram

r\/<H \CK

Hom(WH,Z*)^^ Hom(WK,Z-)

is commutative. Moreover Hom(oc^ Z*) is independent of the choice of g with gHg~1 = K
because Z* is abelian. Hence e^ essentially only depends on the conjugacy class (H).

The group v{G^) was called j'O(G) in torn Dieck [6] and was computed (using
representation theory) for ^-groups G.

We also point out that the isomorphisms a and (B in diagram (2.4) are stable
phenomena. Unstably there exist many generalized homotopy representations which
are not homotopy representations. Similarly a homotopy representation X may be in
the image of V^G,/") -^V(G,A) without being a linear homotopy representation (so
is only virtually linear). A general question asks for the properties of the canonical
map V^G, X) ->V(G, X): When is this map injective? Can one describe the image?

3. Homotopy representations and Burnside modules

This section introduces another basic invariant for homotopy representations: the
degree function. For the convenience of the reader we collect various known results.

We begin with the equivariant Hopf theorem. Let X be a finite-dimensional
G-complex. Let dim X11 = n(H) >_ i for HGlso(X). Here Iso(X) is the set of
isotropy groups of the G-action on X. If H, K e Iso(X), H < K, H =t= K we assume
TZ(H) ̂  n{K) + 2. We assume that H^X11; Z) ^ Z. The action of WH on X11

then induces an orientation homomorphism e^: WH -> Z* == Aut Z. Let Y be another
G-space. For H e Iso(Y) we assume that Y11 is (^(H) — i)-connected and Tr^Y" ̂  Z.
Then H^^Y11; Z) ^ Z and we obtain an orientation homomorphism ̂ . We assume
that ^ = e^ for all H e Iso(X). This is the case e.g. if X — Y e z/(G, X). We orient X
by choosing a generator ofH^^X11; Z) for every H and similarly for Y. We assume
that X and Y have been oriented. Then, given a G-map /: X ->Y, the fixed point
mapping/11 has a well-defined degree rf(/)(H) eZ and d(f) £G(G).

If K == gH.g~1 then left translation by g maps a generator of H^^X^ to the
chosen generator ofH^^X11). Using these generators gives a degree rf(/)(K) which
is independent of the choice of g with K == gH.g~1 because e^ = e^.
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Proposition (3.1). — Under the assumption above the equivariant homotopy set [X, Y]^
is not empty. Elements [f] e [X, Y](^ are determined by the set of rf(/)(H), H e Iso(X).
The value d{f)(H) is modulo | WH | determined by the fi?(/)(K), K > H, K + H and fixing
these rf(/)(K) the possible d{f)(H) fill the whole residue class mod |WH[.

Proof. — Tom Dieck [8], (8.4.1) and Petrie unpublished Chicago lectures 1978.
We still assume that X and Y are as above. We define the stable equivariant

homotopy group

(3.2) <o(X,Y)

to be the direct limit over linear homotopy representations Z of [X • Z, Y * Z]. (By
stability of suspension it is not necessary to pass to the limit. A sufficiently large Z will
do. See Hauschild [12], Satz (2.4).)

If x e co(X, Y) is represented by /: X * Z -> Y * Z, then rf(/)(H) is the same
for all representatives of x. We denote it by d^x).

Definition (3.3). — The degree function d(x) e C(G) of x e co(X, Y) is given by
(H)^nW.

As a corollary of (3. i) we obtain

Proposition (3.4). — For X, Y as above the assignment x^->d(x} defines an injective
homomorphism d: co(X, Y) -> G(G).

It is quite straightforward to show that v{G, X) is a finite group using the degree
function. We note that (o(X, X) is a ring for any homotopy representation X of G.
It is independent of the homotopy representation X. This ring is historically denoted
by co^ (Segal [32]) and we abbreviate it here by co. The degree function d identifies <o
with a subring of C(G) == G. This provides an isomorphism of co with the Burnside
ring A(G) of G. By definition this is the Grothendieck group of the category of finite
G-sets with addition defined by disjoint union and multiplication by product of finite
sets. The Burnside ring is identified as a subring of C by regarding a finite G-set X as
the function on cp(G) which sends H to the cardinality of X11. The ring obtained this
way is rfco. This shows A(G) ^ co. See torn Dieck-Petrie [9].

Proposition (3.5). — [ G |. G C co.

Proof. — In torn Dieck-Petrie [9, Theorem 3], we have shown that coCG is
described by a set of congruence relations; i.e. d e G is contained in <o if and only if it
satisfies a certain set of congruences

S^K^CK) ==omod |WH
(K)
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HOMOTOPY REPRESENTATIONS OF FINITE GROUPS 137

for (H) e<p(G). Here n^ is an integer with n^ == i and the sum if taken over
conjugacy classes (K) of subgroups such that H is normal in K and K/H is cyclic.
Obviously any multiple of [ G | in G satisfies these congruences.

The multiplicative group of units of a ring S is denoted by S*. Note that G* is
the group of functions whose values are db i at every conjugacy class of subgroups of G.

(3.6) Define Pic(G) = C/G*.^ where G=C/ |G | .C and (O=(O/ |G| .C.
It follows from torn Dieck-Petrie [9], (3.32) that Pic(G) == Pic(A(G)) is the

Picard group of the Burnside ring.
We use the degree function to define a homomorphism

(3.7) D: ,(G,X) -^Pic(G).

Theorem (3.8). — There is an infective homomorphism D : y{G, X) -> Pic(G).

Proof. — The proof depends on these two points: Let X and Y be homotopy repre-
sentations with X — Y = x e v{G, X).

i) There is an /eco(X,Y) such that d{f)(H) is prime to |G| for all HCG.
ii) There is an/' e co(Y, X) such that rf(/)(H) .rf(/')(H) = i( |G|) for all HCG.

Both i) and ii) are proved in the same way using (3.1). First i). If
XH = {x e X | (GJ > (H)} and /n '' XH -> Y has been defined such that degree /^ is
prime to |G| for (K) > (H), then/^ can be extended to a WH-map h of X11 to Y11

because T^Y") == o for i < dim X11. Note d{h){i) is determined mod | WH| by (3.1).
Intact d{h){i) is prime to | WH | because d{h){i) == degree h ̂  o o degree/^ =j= omodp
whenever Z/^CWH is cyclic of prime order p. But h^ ==f^ for some K > H.
The degree of this map is prime top. Now use (3.1) again to modify h without changing h
on X^ so that d(h){i) = degree h is in fact prime to |G[. Then there is a unique
G-map /: XH u GX11 -> Y which extends /g u A. Thus we may assume /: X -> Y
and ^(/)(H) is prime to |G| for all HCG.

To establish ii) reverse the roles of X and Y to inductively construct
/ ' :Y-^X satisfying ii). Suppose /n: Y^ -->- X has been defined such that
degree/^ degree^ = i(| G |) for all (K) > (H). Let A' : Y11 -> X11 extend/H"-
Then degree/", degree A' = degree^oA') == i(|WH|). To see this note u ^"oA'
and iyH are both in co(Y11, Y11) and d{u)(L} = d{i^){L) mod |WH| for i 4= LCWH.
By (3. i) then d(u) ( i ) = d(i^) = i ([ WH |). Now use (3.1) again to modify h' so that
degree A' = (degree/11)-1 mod | G |. Then there is a unique G-map /' : YH u GY" -> X
which extends /g u h; so/' is constructed inductively.

Now define D{x) to be the class of d{f) (/in i) above) in Pic(G). To verify D
is well defined, suppose /" e co(X, Y) also satisfies i). Let /'e co(Y, X) satisfy
rf(/")(H).^(/')(H) = i ( |G[) for all H. Then in Pic(G) we have

^(/W)-1 = d{f)d{f) == d(fD e (0*

(because o = <o(Y, Y) for any homotopy representation Y).
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To see that D is injective suppose D(^) = o. Then d{f) £(o*.C* so there is
an A : X ^ X with ^(A)(H) = ± rf(/)(H)-1 mod | G| for all (H) e <p(G) because the
values of functions in G* are ± i. Then fg: X -^-Y and d{fg)(H.) = ± i mod |G|
for all (H) e <p(G). By (3.1) there is an /': X -> Y such that ^(/')(H) = ± i for
all H. Thenjf' is a G-homotopy-equivalence; so x == o.

Corollary (3.9). — ^(G, X) is a finite group.

Proof. — Clearly Pic(G) is finite.
In (6.5) we show D is an isomorphism for X == A°°.

4« Modifications and finite approximations

In this section we modify a G-map h: A -> Y extending it to a G-map y :X->Y
such thaty11 is highly-connected for all HCG. This is done in such a way that X/A
is a finite complex and the dimension function of X is controlled.

Let M.f denote the mapping cone off and Zy the mapping cylinder. Note that
My is a pointed G-space with a natural base point in M°. The integral group ring
of G is denoted by ZG. Note that ZG acts on H,(My).

We often have to use the following well-known

Lemma (4.1). — Given a commutative diagram

of G-maps. Then there exist G-map s f andf" such that
M<-^M,-^->M/

is up to G-homotopy a cofibration sequence.

In the following lemma let h:A->Y be a G-map. We assume that A is i-connected
and h: A ->Y is i-connected, in order to apply the Hurewicz theorem.

Lemma (4.2). — Suppose H,(MJ == o for j < n>_ 2. Let F be a free 2,G'-module.
Given ^ eHom^(F, H^(M^)), there exists a G-space X obtained from A by attaching cells
of type G X D" and an extension f: X -> Y of h such that:

(i) H^(X,A)=H,(M^F;
(ii)//:F^H^M,)->H^(M,) is^.

(We have used the notation of (4. i) and integral homology.)
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HOMOTOPY REPRESENTATIONS OF FINITE GROUPS 139

Proof. — Let (^. \j ej) be a ZG-basis ofF. Choose any base point in A and the
resulting base point in Z^ and Y to make h and A C Z^ pointed. We have the Hurewicz
isomorphism p : ̂ (h) ̂  T^(Z,, A) -> H^Z,, A) ^ H^(M,). Let

SH-I ——^ pn

<py <py

A ———> Y/»

represent p~1^). We use the < .̂ to attach U G X Dn X {j} equivariantly to A thus
J'G J

forming X. There is a unique G-map /: X -> Y extending h such that f(g, x,j) == g^'{x)
for {g, x) e G x D". Moreover HJX, A) ^ F by the isomorphism which sends .̂ to
the image of i eH^D^S"-1) under the characteristic map (D", S"-1) -^(X,A).
Then (ii) is obvious, by the choice of 9..

Remark (4.3). — IfFis finitely generated, then (X, A) is a relatively finite complex.

Still assume that we are in the situation of (4.2). We look at the exact homology
sequence

-> H,(M,) -> H,(M,) -> ft,(M^) ->

and obtain, because of Hj(M,) = o for i 4= n, the exact sequences

(4.4) H^(M,) —> H,(M,) —> H^Mf) -^ o

I I

F Cokernel ^

(4.5) H,(M,) ^ H,(M^) k ^ n , n + i

(4.6) o -> Q^(MJ ^ H^,(M,) -> kernel + ̂  o.

Proposition (4.7). — Z^ A : A - > Y 6^ a G-map. Suppose Y ^ i -connected. Let
n ̂  i î  fl7z integer. There exists a G-space X^ obtained from A 6^ attaching cells of type G X D\
^ <^ 7i anrf <27z extension f^: X^ -> Y o/'A J^A thatf^ is n-connected. IfT^Q A is finite and 7Ti(A, a)
^Tza? H»(M )̂ are finitely generated then (X^, A) ^TZ be chosen relatively finite.

Proof. — By attaching cells of type G X D1, we build from A a connected space X^
and extend h to f^. Because of T^Y == o, TC^Y == o this means that f is i-connected.
Then we kill the fundamental group of X^ and extend f^ to f : X^ -> Y; so for % ̂  2
we can assume that A and h are i-connected.

Assume that A is (n— i)-connected. By the Hurewicz theorem then Hj(M^) = o
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for j <_ n - ̂ . Let + : F -> H^(M^) be a surjection of a free ZG-module F, finitely
generated iffi^(MJ is finitely generated. Apply lemma (4.2) to this situation to obtain
/: X ->Y. By (4.4) and (4.5) U,(M,) = o for i< n and by the Hurewicz theorem
/is n-connected.

Proposition (4.8). — Assume the hypothesis of (4.7) and moreover A and Y are G-complexes
such that n^dimY, dim A < 72 and H,(M^; Z/r) == o for H + { i } and an integer
r = o mod | G |. Let f =/„ ^ ^ro?^W ̂  (4.7). Then P = fi^(M,; Z) ^ a protective
ZG-module, fi,(M^ Z) = o /or z + n, and

(4.9) o ->H^(Y) ^H,(M^H,_,(X) ^H^(Y) -^o

'̂ ^cfl^.

Proof. — The homology sequence of / :X->Y together with the hypothesis
implies H,(My) == o for i 4= n and the exactness of the sequence (4.9). Since X is
obtained f^om A by adding cells of type G x D' we have /H == A" for H 4= { i } and
therefore H^Mf; Z/r) = o for H + {i}. These hypotheses imply that P is projective
(Petrie [19]).

Now assume the following: h: A -^Y is a G-map between G-complexes; Y is
i-connected; 2 < n ̂  dimY, dimA< n; H,(M^) is finitely generated; TToA is finite
and 7Ti(A, a) is finitely generated; S^M^; Z/r) == o for H + i for an integer
r == o mod [ G [. Then we have

Proposition (4.10). — There exists a G-complex X obtained from A by attaching a finite
number of cells of type G X D\ i <^ n, and an extension /: X -> Y ofh such that:

(i) / is {n— i)-connected;

(ii) H,(M )̂ =o/.r i^n;
(iii) H^(My) is a torsion group of order prime to r.

Proof. — Let /^ : X^ -> Y be the extension provided by (4.7). Since P = H^(M^)
is projective by (4.8), there is a projective module Q such that P ® Q^ is a free module.
There exists a free module F and a monomorphism (JL : Q^ -^ F with cokernel T a torsion
group of order prime to r (Swan [22]). Attach cells of type G x D""1 to X^ by null-
homotopic attaching maps forming a G-complex Xg and extending /i to f^: X^ -> Y
such that H^_i(X2, X^) = F and the sequence (4.9) with (X,/) replaced by (X^/g)
is altered in the middle two terms by adding F to both and Q is replaced by ff = 8 ® idp.
Let ^ be the monomorphism idp®(JL:P©Q^P©F== H^(M^). Apply lemma (4.2)
to ^ and (Xg,/^) to produce /: X -> Y extending^. From the exact homology sequence
for M, -> M^ -> Mf, i: Xg -> X, and the commutative diagram
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H^(Y) -^ H,(M^) —> H^(X,) -^ H,_,(Y)

H,(X) H,(M,) H,-i(X,) H,-i(X)

we find T = cokernel 4' ^ H^(M^) and 9, (My) = o for i 4= n.
We now want to apply the preceding results essentially to each orbit bundle of

a G-complex. The next lemma supplies a technical detail for this procedure.

Lemma (4 .11) . — Let h: A -^ Y be a G-map between G-complexes. For a subgroup K
of G let W be a WK-complex containing A1^ as a subcomplex. Let k : W -> Y1^ be a VfK-map
extending h^. IfVfK acts freely on W\A^ there is a unique G-complex X containing A u W
and an extension f of h and k such that X/A = G XNK W/G XNK A^.

Proof. — Let A^ = W_ i C Wo C . . . C W, == W where W, is obtained from W,_ i
by adding cells of type WK x D\ Let A = X._ i C . . . X,. = X where X, is obtained
from X,_i by adding cells of type G/K x D1 whose attaching maps G/K x S1"1 -^ X,_i
are the unique G-extensions of the attaching maps WK X S1"1 -> W^_^C X^_i for W^.
Define/by f{x) = h{x) for x e A and f{gx) == ^(A:) for g e G and ^ e W.

Note that in the situation of (4.11) X11 == A11, /H = A" for H > K. Also
XK _ ^K yK _ ^^

We now introduce one of the main notions in order to handle geometrically the
finiteness obstruction for G-complexes.

Definition (4.12). — Let Y be a G-complex. A finite approximation to Y consists of
a finite G-complex X and a G-map /: X -^Y such that H^MH;Z|\G\) == o for
all HCG.

We are going to show the existence of finite approximations under the following
assumptions:
(4.13) Y11 is i-connected whenever H ^ S g : = { H C G | dim Y11 < i}.
(4.14) H,(Y11) is finitely generated for all HCG.
(4.15) dim Y^ oo for all HCG.

Theorem (4.16). — Suppose (4. i3)"(4.15) holds/or the G-complex Y. Let AQ be a
finite G-complex such that AQ == U A^ and dimA^^dimY1^ whenever K^SQ. Let

H G So
AQ : Ao -^ Y be a G-map with h^ a homotopy-equivalence for H e So. Let m be an integer larger
than dim Y. Then there is a finite G-complex X containing AQ with X11 = A^ for H e So
and an extension f: X -> Y ofh such that for all H we have H^M ;̂ Z/[ G|) = o andf^ is
m-connected.
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Proof. — Let S()CSCS(G) be closed (§ i). Let A : A -^Y be a G-map from
a finite complex A such that A = U A" H.(M^; Z/| G|) = o, and A11 is w-connected

H £ S
for H e S. Let K e S(G)\S be a maximal element. Let n > max(m, dim Y^ dim A^.
Since K ^ So, Y^s i-connected by (4.13). Use (4.10) to find a WK-complex W^AK

and an extension A : W ̂  Y1^ o{hK such that ^ is Tz-connected and 6,(M^ Z/| G |) == o.
Let X D A u W and / :X->Y be given by (4.11). Then/H is w-connected and
fi^M^; Z/| G [) == o for H e S u (K). The result follows by induction starting with So.

5. Modifications and homotopy representations

Out task in this section is to convert a G-space X into a homotopy representation
by attaching cells. Of course some basic structure of X like the dimension function
should be preserved.

Suppose that X is a G-complex. Set n(H) = dim X11. We suppose X has the
following properties:

(5.1) X is a G-complex of finite dimension.
For all HCG:

(5.2) If n(H) <_ 2, then X11 is homotopy-equivalent to S .̂

(5.3) If n(H) >, 3, then H^)(X11) = Z and H^H)-i(X11) is Z-free.

(5.4) For each^-Sylow subgroup WyH of WH there exists a (generalized) homotopy
representation S(H,^) for the group WpH with DimS(H^) = Dim X11 and
a WyH-map

/(H^X11-^^).

(5.5) For L<WpH the degree of/^H,/^ is prime to p.

Remark (5.6). — IfX11 and S(H,^) are oriented WH-manifolds then (5.5) follows
if we only assume that the degree of/(H,^) is prime to p. See Bredon [3].

Lemma (5^7). — Suppose (5.i)-(5.5) holds for X. Let X11 be a homology sphere for
H ^ { l } ' V Qi(X) = o for z < n — i = d i m X — i then Q^_i(X) is a projective
ZiG-module.

Proof. — Put A = H^_i(X). By Rim [21] it suffices to show that A®Z/^ is a
projective Z/j&(Gp)-module for each j^-Sylow subgroup Gp of G.

Denote the mapping cone of f{i,p) : X -> S{i,p) by M. Then

fi,(M; Zip) ^ H,_i(X; Zip) = A® Zip,

H,(M; Zip) == o for i =t= n,

f i^M^Z/^^o for{ i }+LCG, .
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The last condition implies that fi,(M$ Zip) ^ Q,(M, M,; Zip), where M, = (J M^
L + { 1 )

The relative cellular chain complex C,(M, M,; Zip) is a complex of free Z/j&(Gp)-modules
having homology in only one dimension n. Therefore this homology group has finite
homological dimension as a Z/^(Gy)-module and is therefore a projective ZI?{G) -module.

Proposition (5.8). — Suppose (5.i)-(5-5) holds for X. Then there exists a homotopy
representation Z containing X as a subcomplex such that Dim Z = Dim X.

Proof. — Let S^ : == {H | dim X11 < 2 }. Suppose S^ C S C S(G) and S is closed.
Let K e S(G)\S be maximal. Suppose that X11 is homotopy-equivalent to a sphere
for H e S. Put n == n(K). Add cells of type G/K x D1 to X for i <, n - i to make
X1^ {n— 2) -connected. Let W be the resulting space. Then H^^W^ is a free
Z-module. This uses the assumption that 'H.^_^XK) is a free Z-module.

Extend/(H,j&) to a WH-map h{H,p) : W11 -^S(H,^). This extension exists by
equivariant obstruction theory. The key fact is that for all L C W H

dH^W^-dimS^,^ (5.4)

and (̂H,̂ ) = o for i < dim S^p^.

Apply Lemma (5.7) with G replaced by WK. This shows that fi^_ i (W11) is a projective
WK-module. Let F' be a free WK-module such that ft^^W^ OF' = F is a free
module. This exists by the Eilenberg Swindle. Use this fact to add cells of type
G/K x D'1"1 to W with null-homotopic attaching maps S"~2 -> W1^ converting H^^W^
to F. So we suppose H^^W^) is a free WK-module. Add cells of type G/K x D"
to W to form Y such that H^Y^ W^ = F and H^Y^ W^ -^H^.^W^ is an
isomorphism. Then Y1^ is ^-dimensional, simply-connected, and has the homology of S^
hence Y3^ ^ S". As above we can extend A(H, p) to Y11. By induction over S the
proposition follows.

Finally we describe another construction of homotopy representations which has
some similarity to the modification procedure of (5.8).

Proposition (5.9). — Let Y be a generalized homotopy representation of dimension at least 3.
Set i + n(H) = DimY(H). Let A be a G-complex and let f: A ->Y be a G-map such
that the following holds:

(5.10) A11 ^ Y11 ^ S^ and dim A11 = n{H) for H + {i}.

(5 .11) The degree off^ is prime to \ G | for H =(= {i}.

(5.12) dmiA<n(i). Setn==n{i).

Then there exists a homotopy representation X obtained from A by attaching cells of type G X D1,
i <_ n, and a G-map F : X -> Y extending f. The degree of F is necessarily prime to | G [.
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Proof. — By attaching cells of type G x D1, i<_n—i, we can obtain an (n — 2)-
connected space B D A and a G-map ^ : B - ^ Y such that (5. io)-(5.12) is satisfied
fo1' (B,^) instead of (A,/). The homology sequence for g shows that H<(M) is zero
for i^n. Since B is an (n— 2) -connected (n— i) -dimensional complex H^(M^) is
Z-free. By (5.11) H,(Mj1; Z/| G|) = o for H + i . By Petrie [19] M = H^(M^) is
a projective ZG-module. Attaching cells of type G x D""1 to B by null-homotopic
attaching maps and extending g trivially amounts to attaching cells of type G X D'1 to M
by trivial maps. This changes M by adding free ZG-modules. Hence by further
enlarging B as in the proof of (5.8), we can actually arrange that M is a free ZG-module.
The exact homology sequence of g : B -^Y (compare (4.9)) now yields the exact
sequence

o -^ Z -> M 4. H^_i(B) -> o.

We choose a ZG-basis (^ \j ej) of M and attach cells of type G x D'1 to B by using
d{€j) eH^_i(B) ^ -^n-iW as homotopy classes of attaching maps. The resulting
space X is n-dimensional, i-connected, has the homology ofS", and is therefore homotopy -
equivalent to S". Because of X11 = A11 for H + { i } and (5.10) X is a homotopy
representation. Let F : X -̂ - Y be an extension of/ (which obviously exists). Let P be
a j&-Sylow subgroup of G. By Smith theory degF1* =(= omodp implies deg F ^ omodp.
Since F1' ==./p, (5.11) implies deg F1' and hence deg F is prime to p.

6. Swan-Modifications

We show in this section that the homomorphism (3. y)

D: y(G,A°°) ->Pic(G)

is an isomorphism. We have already seen in (3.8) that D is injective. Using the
structure of Pic (G) as described in (3.6) we see that D is surjective if we can find a map
/ ^ X - ^ Y between homotopy representations such that its degree function (3.3)
(H) t-> degree/11 = d{f)(H) has given values prime to | G|.

We achieve this aim by modifying a given homotopy representation Y so that the
modified sphere X admits a map /: X -^Y with suitable degree function. A basic
ingredient in this modification procedure will be taken from Swan's paper [23]. There-
fore we call X a Swan-modification of Y.

Here are our assumptions.

(6.1) Y is a generalized homotopy representation with the following properties.

i) Iso(Y) is closed under intersections.
ii) A-dim Y11 == dim Y11 whenever

H e So(Y) : = {K e Iso(Y) | A-dim Y1^ < 2 }.
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iii) If H eIso(Y), H ^So(Y) then for all H < K, H + K
A-dimY11^ ̂ 11^+2.

It follows from (6. i) i) that to each H C G with Y11 =f= 0 there exists a unique minimal
m{H) eIso(Y) such that HCw(H). This is used in the sequel.

(6.2) Let z e G(G) be a function with the following properties (depending on Y):
i) z{H) == z{m(H)) for each HCG with Y11 4= 0.

ii) z(H) == i if HeSo(Y).
iii) ;?(H) is prime to |G[ for all HCG.

Theorem (6.3). — Let Y be a generalized homotopy representation satisfying (6.1) and
zeC{G) a function satisfying (6.2). Then there exists a homotopy representation X with
Dim X == Dim Y and a G-map f: X -> Y with degree function z.

The proof of 6.3 will be given by induction over orbit types. The next proposition
is used in the induction step.

Proposition (6.4). — Let Z be an n-dimensional G-complex which is homotopy-equivalent
to S" (n^ 3). Suppose Z is obtained from its (n— i)-skeleton Zn-i ky attaching cells of type
G X Jy. Let k e Z be prime to | G [. Then there exists an n-dimensional G-complex B obtained
from Z^_i by attaching cells of type G X D"-1, G X D" and a G-map 9 : B -> Z such that:

i) B is homotopy-equivalent to Sn.
ii) degree 9 = k.

ui) ? | B ^ _ 2 = i d {note: B^ = Z^).

Proof. — Let Z, = H^(Z; Z) be the ZG-module where s : G -> Aut(Z) indicates
the G-action. Then there exist free ZG-modules Fi and Fg and a ZG-isomorphism

a: z, e Fg -> Zg e FI
of degree k, i.e. the composition of 9 with the injection Z -> Z ® Fg and the projection
Z®Fi ->Z is multiplication by k. This is proved as Lemma (6.1) in Swan [23],
using the left ideals (r,N,)CZG with N, = S s(^) g e ZG and r^ = imod|G| .
The cellular chain complex geG

o^Z,-.G^C,_,->...

ofZ can then be modified by Swan [23], Lemma (2. i), so as to yield an exact sequence
o^Z,-^®F^C,©F,->G^-^...

so that the obvious projection onto the complex C^ is a chain map of degree k, i.e. induces
multiplication by k on Zg. We now realize this chain complex and this chain map
geometrically (compare the example at the end of § i). Attach cells of type G X D""1

to Z^_i by trivial attaching maps, one cell for each element of a ZG-basis of Fg. Let
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B^__i be the resulting space. Let [a^ |jeJ) be a ZG-basis of C^<9F^. The image
of d is contained in H^_i(B^_i). Since ^ ^ 3 we have a Hurewicz isomorphism
A : T^n-i^n-i) ^ H^_i(B^_i). For each j ej we attach a cell of type G x D'1 to B^_i
using h~ld{a^ e Tc^_^(B^_i) as class of an attaching map <pj : { i } x S""1 ->• B^_i. The
resulting space B has the correct cellular chain complex and is therefore homotopy-
equivalent to S". The identity obviously has an extension 9' : B^_i -> Z^-r An
extension of 9' over the n-cell corresponding to a^ is given by a map

9,: (D-, S-1) ^ (Z,, Z,,_,)

such that 9, | S'1"1 == 9'9j and 9,*(i) = P1'̂ -) e G^ == H^(Z^, Z^_i). Using the
Hurewicz isomorphism 7^(Zy^ Z^_^) ^ Hy^Zy^ Z^_i) we can find 9, having these
properties. The resulting map 9 : B -> Z induces the correct chain map and therefore
has degree k.

Proof of Theorem (6.3). — For each closed family F of subgroups we construct a
G-complex X(F) and a G-map fy: X(F) -> Y with the following properties:
a) Iso(X(F)) == F n Iso(Y).
b) For K e F the space X(F)K is homotopy-equivalent to Y1^ and

din^F^A-dimY^

c ) For K eF the map^ has degree z{K).

The set So(Y) is a closed family. We put X(So(Y)) = U Y11 and/g^) shallH e So(Y)
be the inclusion. Now let F 3 So(Y) be closed. Take a maximal H not in F and put
F' == F u (H). We want to show the existence of fy,: X(F') ->Y satisfying a)-c).
If H ^Iso(Y) we simply take fp' ^fy If H eIso(Y) we apply (5.9) to theWH-map
/H : X(F)11 -> Y11. We obtain a WH-space X'(F') and a WH-map /': X'(F') -> Y11.
But f may have the wrong degree. Let t be its degree. By Smith theory / is prime
to | G|. Choose k such that kf = z{H) mod | G|. We apply (6.4) in case X'(F') for Z
and WH for G and obtain a WH-map 9 : B —>• X'(F') of degree k. The construction
of (6.4) shows BDX(F)11. We use (3.1) in order to alter f 9 so as to obtain a map
/" : B -> Y11 of degree k which coincides with/j? on X(F)11. Now we apply (4.11) to/"
and obtain the desired map/p..

Theorem (6.5). — The homomorphism
D: y(G,r) -^Pic(G)

is an isomorphism.

Proof. — We have already mentioned that this follows from (3.8) and (6.3).

Theorem (6.6). — Let Y be a generalized homotopy representation satisfying (6.1). Then
Y is G-homotopy-equivalent to a homotopy representation.

Proof. — Apply (6.3) to the function z with constant value one.
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7. Finiteness obstructions and finite approximations

Our aim in this section is to compare V(G, h) and V(G, A30). Needed are conditions
under which a G-complex is homotopy-equivalent to a finite G-complex. The obvious
tool for expressing these conditions is an equivariant generalization of the Swan [23],
Wall [26] finiteness obstruction. The straightforward generalized definition for the
equivariant finiteness obstruction does not relate well to the geometric aspects of our
homotopy representation groups and moreover does not give an additive function on
these groups. We obtain more insight using the definition (7.23).

We consider G-complexes Y having the properties (4.13)-(4.15) which we recall
for completeness
(7.1) Y11 is i-connected whenever

H ^ So : == {H C G | dim Y11 <_ i }, H e Iso Y.

(7.2) H,(Y11) is finitely generated for all HCG.

(7.3) dim Y11 < oo for all HCG.

(7-4) Y(So) : == U Y11 is a finite G-complex.
H G So

Under these assumptions there exists ^finite approximation f: X ->Y which is a G-map
from a finite complex X such that for all HCG
(7.5) /R is m-connected (m> dimY given).

(7.6) H^M"; Z/r) =o, (r = o mod | G | given).

See Theorem (4.16).
Let r be a given multiple of |G|.
Let K()(G, r) be the Grothendieck group of finitely generated ZG-modules M with

M ® Z / r = = o . (If o ^ A - > B - > G - > o is exact, then B = A + C in Ko(G,r).)
Since a module M with M ® Z/r = o has projective dimension less than or equal to i
(see [24]) there is a natural homomorphism
(7.7) T : Ko(G,r) -^Ko(G).

Here K()(G) is the Grothendieck group of finitely generated ZG-modules of finite projective
dimension and K()(G) the quotient of this group by the subgroup generated by free
ZG-modules.

When X is a finite-dimensional pointed G-complex with base-point XQ e X° and

(7.8) H?(^) = H?(X, ^o) has finite projective dimension over ZG for all j
(and is finitely generated for allj)

resp.
(7.9) H,.(X;Z/r)=o for all j\

355



^S T A M M O T O M D I E C K A N D T E D P E T R I E

we define

(7.10) x(X) = 2(~ i^X) e &o(G)

resp.

(7 .11 ) x'(X) = S(-- i^H^X) eKo(G,r).

Note that (7.9) implies H^.(X) ®Z/r = o by the Universal Coefficient Theorem. Note
also

Lemma (7.12). — %(X) is defined whenever ^'(X) ^ defined and ^(X) = T%'(X).

The essential elementary fact about ^ is this: If G, is a chain complex of finitely
generated projective ZG-modules such that each homology group H.(CJ has finite
projective dimension, then

(7.i3) S(- 1)^(0,) ̂ (-i)1^

in Ko(G). The left hand side is zero if the G, are free. In particular, if X is a finite
G-complex such that G acts freely on X\{^} and (7.8) holds then ^(X) = o.

Lemma (7.14). — If A C X is a G'subcomplex and H,(-; Z/r) == o on two of the
three spaces A, X or X/A then ̂  is defined on all three and

X'(X) = )G'(A) + x'(X/A).

Proof. — Use the long exact homology sequence for A -> X -> X/A.

Notation (7.15). — K(G) = II Ko(WH).
(H)G(p(G)

For a G-space X and a subgroup H of G we put
(7.16) X?: ={^eX|HCG,CNH,H+GJ.

Lemma (7.17). — If H,(M11; Z/r) = o for all H, ̂  H^M"; Z/r) = o /or ^/ H.

Proof. — Use M^ n M1- = M1^^ and the Mayer-Vietoris sequence.

Corollary^. ̂ .—Whenever H^M^Z/r) = o for allViandan integer r == omod|G[
then x'(M11), '̂(M?) and ^(M^M^) are defined as elements o/Ko(WH, r)/or all H <zW

^(M^^M^+^MW).

Coro^ (7.19). — If H,(M11; Z/r) = o for all H, r = o mod [ G |, ̂  M is a
finite G-complex^ then

^/M^o^M^^M?).

Proof. — WH acts freely on M^M". Use the remarks following (7.13).
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Definition (7.20). — Let Y be a G-complex satisfying (7. i)-(7.4). Let /: X -> Y
be a finite approximation. We define o-(Y,/) CK(G) by

a(Y,/)(H) = ̂ Mf) -^) e Ko(WH).

We are going to show that <r(Y,/) is independent of/and is the obstruction for Y being
G-equivalent to a finite complex. The first observation is the following consequence
of (7.19).

(7*21) If Y is a finite complex then (r(Y,/) = o for any finite approximation
/:X-^Y.

Proposition (7.22). — Let f: X -> Y and /i: X^ -> Y be finite approximations to Y.
Then o(Y,/) == a(Y,/,).

Proof. — There exists a finite approximation /': X' -> Y such that (/')11 is
(2 + dim X)-connected for all H (see Theorem (4.16)). Then there exists a map
h: X -^X' such that f ' h is G-homotopic to/. Now apply (4.1), (7.18), and (7.19)
to show that <r(Y,/) == (r(Y,/').

Definition (7-23). — Define thefiniteness obstruction cr(Y) eic(G) for the complex Y
satisfying (7.i)-(7.4) to be o(Y,/) for any finite approximation /: X ->Y.

Theorem (7.24). — Let Y be a G-complex such that

i) dimY11 is i -connected whenever dimY1^ 2.
ii) Y11 is finite whenever dimY11^ 2.

iii) dim Y11 is finite for all H.
iv) H^(Y11) is finitely generated.
v) CT(Y) = o.

Then there exists a finite G-complex X which is G-homotopy-equivalenf to Y and such that
dim X11 = dim Y11 for all H.

Proo/. — By induction it suffices to prove the following proposition.

Proposition (7.25). — Let Y be a i-connected G-complex of dimension at least 3. Suppose
^(YJ, ^i(Yg) and H^(Y, Y,) are finitely generated. Suppose moreover that or(Y)(i) == o.
Let f: A = Ag ->Y^ 6^ a G-homotopy-equivalence. Then there exists a G-space X obtained
from A ^ attaching a finite number of cells of type G X D^ A <_ dim Y flnfi? a G-homotopy-
equivalence F : X —>• Y wz'̂ A F | A =/.

Proof. — Let TZ == dim Y. By (4.7) we can find h: B -^ Y such that A is (^ — i)-
connected and (B, A) is a relative G-free complex of relative dimension n — i. This
implies that H,(M^) is zero for i^n and H,(M^) = o for H = ( = i . Then M = H^(M^)
is a projective ZG-module. (See proof of (5.3).) Infact o = ^(Y)(i) = ± M (=Ko(G).
(Grant this for the moment.) Thus M is stably free. Add cells of type G x D'1"1 to B
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with trivial attaching map to make H^(M^) a free module F. Apply (4.2) with A
replaced by B and ^ the identity map of M. This lemma produces a complex X from B
and an extension f: X ->Y of h which satisfies (4.2) (i)-(ii). From (4.4)-(4.6) and
H^_n(MJ == o, we see H^(M^) == o. Since ^{f) ==• o, i<^ n— i, f is a homotopy-
equivalence.

To see that ± M = cr(Y)(i), let /' : X' ->-Y be a finite approximation (4.12)
with 7^(M11) ==o for i _< 7% > DimY(i). This exists by (4.16). Then there is a
G-map k: X —»- X' such that f^f'k. Use the cofibration Mj^ ->• My -> My. and the
corresponding one for Ag,/g and/g to show <?(¥,/) = <r(X', A) + (r(Y,/'). This requires
(7.12) and (7.14). By (7. ig) a(X'y k) == o because M^ and M^ are finite complexes.
Since fs = ̂  is a homotopy-equivalence (because A11 is for H 4 = 1 ) 5 /(My) == o.
Thus o(Y)(i) = o(Y,/') = cr(Y,/) = x(M,) = db M.

Here is a brief comparison of (r(Y) with the Wall-Swan type definition for an
equivariant finiteness obstruction. Consider the relative chain complex C^(Y, Yg) and
let jf:P^-> G^(Y, YJ be a chain-homotopy-equivalence where P, consists of finitely
generated projective ZG-modules. (The existence uses (7.2).) Then

(/(YKi^S^i^eK^G)

is independent of the choice of/; moreover, (Y, Yg) is relative Yg G-homotopy-equivalent
to a finite complex (Y', YJ if and only if (j'(Y)(i) is zero. We put
(7.26) c/(Y)(H) == <T'(YH)(I) e Ko(WH).

It is not difficult to see that CT'(Y) == o(Y).

8. The product theorem for finiteness obstructions

The aim of this section is to convert CT(Y) into a function p(Y) which is additive
for homotopy representations and vanishes when Y is G-homotopy-equivalent to a finite
homotopy representation. Since a and p are defined in terms of the ̂ ' from the preceding
section, we first develop some additional properties of ^'. Let p ^ : X^ -> Y^ be a finite
approximation (7.5) (7.6) considered as an inclusion and let ^'(Y^, X^) denote ^'(M^.).
Additivity of/' (compare (7.14)) gives
(8.1) /(Yi x Y,, Xi x X,) = /(Yi x Y,, X, x Y, u Yi x X,)

+ /'(Xi x Y^ X, x X^) + x'(Yi X X^ Xi x X,).

Lemma (8.2). — x'(Yi X Y^ Xi x Yg u Y^ x X^) = o.

Proof. — Using the Kunneth-formula for H^(Yi X Yg, Xi X Yg u Yi X Xg) we
see that it suffices to show the following:

H,(Yi, X^) ® H,(Y^ X,) and Tor(H,(Yi, X^), H,(Y,, X,))

define the same element in Ko(G, r). This is proved in the next lemma.
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Lemma (8.3). — Let M and N be finitely generated ZiG-modules which are torsion groups
with torsion prime to r. Then M®zN = Toiz(M, N) in Ko(G, r).

Proof. — Let o - > F - > P - > M - > - o be a resolution with P finitely generated and
projective and F free. Then we obtain the exact sequence

o -^Tor(M,N) - > F ® N - > P ® N — M ® N - > o .

Moreover there exists an embedding F -> P with cokernel B = P/F of order prime
to the order ofN (see Swan [22]). This gives Tor(B, N) = o, B ® N = o and therefore
F ® N ^ P ® N. The exact sequence above now yields the desired result.

Note
(8.4) ^'(Z x (Y, X)) = S(- 1)^(2 x (Y, X))

=2(-I) i+^(Z;H,(Y,K)).
^» 3

Let G,(Z) denote the cellular chain complex of Z. Then H,(Z$ H,(Y, X)) is the
homology of C^(Z) ®H,(Y, X); so that we obtain
(8.5) S(- i^H^H^Y.X)) =S(- lyC^OOH^Y.Z)

and from (8.4) and (8.5)
(8.6) ^'(Z x (Y, X)) = S(- iy'(S(- I)t^(Z)) ®H,(Y, Z).

In order to deduce from (8.6) a more conceptual result we need an action of the
Burnside ring A(G) on K.o(G, r). This is defined as follows. Let S be a finite G-set
and F(S) the free abelian group on S considered as ZG-module. Let M be a ZG-torsion
module of torsion prime to r. We put
(8.7) [S][M] : == [F(S) ®z M] e Ko(G, r).

By exactness of F(S) ®z ^is is additive in S and M and yields a well-defined module
structure
(8.8) A(G)®Ko(G,r)^Ko(G,r) ,

written x ®jy \-> xy.
Coming back to (8.6) we note that in A(G) the relation S(— i)1^] = [Z] holds,

where S, is the G-set ofi-cells ofZ. Therefore we obtain from (8.1), (8.2) and (8.6)

Proposition (8.9)
X'(Z x (Y, X)) = [Z]x'(Y, X)

and /(YI X Y,, X, x X,) == [YJx'(Y^ X,) + [YJx'(Yi, XJ.

As to the second equality we remark that Y, defines an element in A(G) because
Y" and Xf have the same Euler-characteristic and X, is a finite G-complex. (Compare
torn Dieck [4], [8].)
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Suppose Yi, Y, are homotopy representations with finite approximations /,: X, ->Y,.
In order to study finiteness obstructions we can assume that /, is an inclusion. If we
write the join A • B as A x CB u CA x B with A x C B n G A x B = A x B (CA is
the cone on A), the additivity of -^ applied to this decomposition gives:

(8.10) ^'(Y, * Y,, X, * X,) + /(Y, x Y,, X, x X,) - ̂ '(Y,, X,) + x'(Y,, X,)

so that ^'(Yi x Yg, Xi x Xg) is responsible for the deviation from additivity. Using
(8.9) we can rewrite (8.10) as follows

(8 .11) ^(Y, * Y,, X, * X,) = (i -[Y,])^(Y,, X,) + (i - [YJ)^(Y,, X,).

If we identify elements in A(G) (via Euler characteristics of fixed point sets) with functions
in C(G) (see torn Dieck [4], [8]) then i - [Y] for a homotopy representation [Y] is the
function (H) ^ (- i)D"nY(H)^ ^^g ^ ^ ̂ ^ ^ ̂ ^ ̂ ^ ̂  ̂ ^ ̂  ^^ ^^
that

(8.12) ^(YI^Y,) =.(Yi).(Y,).

From (8.11) and (8.12) we see that
(8.13) .(Y))C'(Y,X)

is additive for pairs (Y, X) under the join operation.

Remark (8.14). — The reader should keep in mind that ^'(Y, X) and ^(Y, X)
depend on the choice of X. In the sequel we have to use the fact that the finiteness
obstruction (T(Y) can be computed from ^'-invariants of fixed point sets.

If H < G we have a restriction homomorphism.
(8.15) res^: Ko(G,r) -^ Ko(H, r)

and an induction homomorphism

(8.16) indl: Ko(H,r) -^Ko(G,r)

the latter being induced by M h> ZG ®^H M-

Proposition (8.17). — There exist integers a^, HCG, LCNH, depending only on
the structure of G such that for jiny finite'dimensional G-complex Z such that H,(Z11) is finitely
generated/or all HCG and H,(Z11; Z/r) == o for all HCG the relation

x'(z•)=»,,2C..'"••Lmd^rKi'"x'(z"'

holds. (Here Z11 is considered as NH-space.)

Proof. — Let X be a G-complex which is covered by finitely many subcomplexes X^
a eA, in such a way that for each g e G there exists b eA with gX^ == X^. We
put b == ga in this case and obtain a G-action on A. For BCA we put Xg == fl X^.

6GB
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Suppose for all BCA we have H,(XB; Z/r) == o, so that /'(Xg) is defined. Put
SB = {g e G | gK = B}. Let P(A) be the set of subsets of A with its induced G-action.
Then one has, using additivity of ^',X'(X)=,„S»„(-•)'"'X''GX»•X''•
We apply this to X, being the union of the X11, H + i.

Now we use ^{GXm1^1) = ind^X^Z11) and observe that Z11 n 7^ == Z™,
where HK is the subgroup generated by H and K.

Using (8.17) and the additivity of (8.13) we now define a new invariant
6(Y, X) e Ko(G, r) for a homotopy representation Y with finite approximation XCY.
We put

6'(Y, X) = ̂ '(Y, X) - ̂ '(Y,, XJ

and

(8.18) 6(Y, X) = .(Y)^'(Y, X) - S^Lmdgres^^Y^^^Y11, X11).

Lemma (8.19). — r6(Y, X) is independent of the choice of the finite approximation X.

Proof. — Using (8.9), e(Y) == i -- [Y] and [X] = [Y], we obtain
6(Y, X) = 6'(Y, X) - 6'(X x (Y, X)).

Since T6'(Y, X) = (r(Y)(i), (7.22) and (7.23) show T6'(Y, X) is independent of X.
Let X' be a second finite approximation to Y. Then [X'] = [X] in A(G) $ so by (8.9)
and (8.17), 6'(X x (Y, X)) = 6'(X' x (Y, X)).. Altogether this shows that r6(Y, X)
is independent of X.

In view of Lemma (8.19) we define
(8.20) P(Y)EK(G)

by p(Y)(H) = Te(YH, X11) e Ko(WH). From the additivity of (8.13) we then obtain

Proposition (8.21). — Let Yi, Y> be homotopy representations. Then we have
p(Yi*Y,)=p(Y,)+p(Y,).

Proposition (8.22). — A homotopy representation Y is finite if and only if p(Y) == o.

Proof. — Suppose p(Y) = o. Let SCS(G) be a closed family. We show by
induction that Y(S) == U Y11 can be assumed finite. Let K e S(G)\S be maximal

H G S
and let Y(S) be finite. Then also Y^ considered as WK-space is finite. It is sufficient
to show that YK is finite as WK-space. Therefore we need only consider the situation
K = i, WK == G, Y^ finite. Then we can find a finite approximation XDYg to Y
such that X^^Y" for H + i. In this case therefore o(Y)(H) == o for H+ i
and <?(Y)(i) == T^'(Y, X). This follows from (7.20) and (7.23) using (7.12) and
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^Mf) == %(Y, X) (after/is made an inclusion). Similiarly p(Y)(i) = r(<?(Y)^'(Y, X))
by (8.18). Since e(Y) is a unit in the Burnside ring, )C'(Y, X) == o; so cr(Y)(i) = o.
As (r(Y) is then zero, Y is G-homotopy-equivalent to a finite homotopy representation
by (7.24). The converse is obvious.

As a corollary to (8.21) and (8.22) we obtain

Theorem (8.23). — The assignment Yl->p(Y) induces a homomorphism

p: V(G,A°°) ->K(G)

and the sequence

o -> V(G, h) -> V(G, A00) ~> K(G)p
is exact.

As a first application of (8.23) we show

Theorem (8.24). — Let Y be a generalized homotopy representation. There exists a
homotopy representation Z such that Y • Z has the G-homotopy type of S(V) for a representation
space V of G.

Proof. — Since K(G) is a finite group there exists an integer n such that the n-fold
join X = Y * ... * Y is finite. IfX is finite we have an equivariant Spanier-Whitehead
dual DX and a duality map X * DX -^ S(V) for a suitable V (see Wirthmiiller [27]).
Then DX must be a finite homotopy representation and the duality map must be a
G-homotopy-equivalence.

A more abstract approach to the concepts in this section has been presented in
torn Dieck [29].

9. Functorial properties

If H is a subgroup of G, then restricting the group action from G to H induces a
homomorphism

res^: V(G,X)->V(H,X).

(See section 2 for the possible X.) There is an induction homomorphism in the other
direction. The relation between induction and restriction is an important part of the
structure of these groups. This will be evident in section 10.

If X is a homotopy representation of H, ind^X is the homotopy representation
of G defined by the obvious action of G on

(9.1) ind^X= * ^HXnX.x:f ' H ^HeG/H6 H
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An immediate consequence of (9.1) is

Proposition (9.2). — Let H and K be subgroups of G and let G/H == UK/K, be the
decomposition of G/H into its K-orbifs. Then l

Dim(ind|X)(K) == SDim X(K,) == S Dim X(gKg-1 n H).

TAij last sum is over the double cosets KgH e K\G/H.

The construction (9.1) induces a homomorphism
(9-3) ind^: V(H,X) -^V(G,X)

and makes V(G, X) a module over the Burnside ring A(G) via the following formula:
(9.4) [G/HJ.^ind^res^

for x eV(G, X) and [G/H] eA(G). Actually V(G, X) has the structure of a Mackey
functor in the sense of Dress. Since this is not needed here, the proof is omitted.

10. Dimension functions

In this section we compute the dimension of V(G) ® % which is the same as the
rank of Dim V(G) C C(G). Here V(G) == V(G, A°°). From our previous results it is
clear that the V(G, X) for X = h and A°° all have the same rank. By linear algebra,
determination of Dim V(G) ® %C C(G) ® % amounts to finding all linear relations
that hold between fixed point dimensions of homotopy representations. Universal
relations of this type are provided by the following theorem ofBorel [i]. Reformulated
it gives an upper bound for the rank ofV(G).

Theorem (10.1) (Borel). — Let G == Z / p x Zip, p a prime. Let H,, o<i<,p
denote the subgroups of order p in G. Then

p Dim X(G) == S (Dim X(H,) -Dim X(i)).

Let H' denote the commutator subgroup of H. Note that H/H' is not cyclic if
and only if there exists a normal subgroup K of H (written K < H) such that
H/K ^ Zip x Zip for some prime p. Let ^ : C(G) ® Q^ -> % be evaluation at H.
If H/H' is not cyclic, we obtain from (10. i) linear forms ̂  of the type

^H = ^H + S flj^IO ^K e %
K^ H

such that ^(Dim X) == o for all homotopy representations X. This shows that the
corank of Dim V(G) in C(G) is at least the cardinality of the set

B = { ( H ) | H/H' is not cyclic}.

We show that equality holds. This then shows that there are no more relations between
fixed point dimensions than those already obtained from (10.1).
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The main result of this section is

Theorem (10.3). — The rank ofV(G) is equal to the cardinality of{{H) [ H/H' is cyclic}.

Using formal properties of V(G), we reduce the proof of (10.3) to the following
geometrical result. Compare Dovermann-Petrie [30].

Theorem (10.4). — Let G be a finite group such that G/G' is cyclic. Then there exist two
homotopy representations X and Y such that Dim X(H) == Dim Y(H) if and only if H =4= G.

The structure of the proof is as follows: We construct a G-manifold X such that
Dim X coincides with a linear dimension function except for its value at G. Then we
show that X satisfies the hypothesis of our general Modification Theorem (5.8), i.e. we
must show the existence of WpH-maps t(V[,p) : X11 -> S(V,/>) of degree prime to p for
each primer. When this is done, (5.8) asserts that X can be converted to a homotopy
representation having the same dimension function as X. A version of this procedure
was used in Petrie [31] to construct free metacyclic group actions on homotopy spheres.

The manifold X will be given as a Brieskorn variety. We use the following notation.
Let V be a complex representation of G with invariant scalar product < , >. Let
y :V->C be a G invariant polynomial. Then

B(VJ-) ={^EV|/(^)==O, <^>=i}.

We recall that if f is weighted homogeneous and has an isolated singularity at o, the
intersection of the hypersurfacey"1^) with the unit sphere S(V) ofV is transverse and
therefore B(V,y) is a closed G-manifold of real codimension 3 in V. See Milnor [i8],
Since a weighted homogeneous polynomial is a polynomial which is invariant under a
C* action on V and C, it is natural for us to treat polynomials invariant by the group
G - C x G.

First we deal with a suitable representation. Let r^ denote the regular repre-
sentation of G. View r^ as a representation of G. It is a subrepresentation of r^
whose complement we denote by TQ—ro^'-

Proposition (10.5). — I Gr'|. (r^—r^) is a direct sum of representations which are
induced from one-dimensional representations of cyclic subgroups of G'.

Proof. — For a cyclic group A of order a we define a class function T^ by T^(J) == a
if s generates A and T^(J) = o otherwise. Set L^ = ^{d)r^ — T^ where 9 is the
Euler function. For A == i, L^ is o. For class functions / and ^ on G set

^y^-IGI-1 S^)x(^)
gCG
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and let ig denote the trivial representation of dimension one. Since TQ == ind0!^
Frobenius reciprocity gives <^, r^ = 4>(i ) . Since r^{g) is |G/G'| if g e G' and o
otherwise, |G'| <^, r^>G == S; ^). Thus

yeG'

^ <^|G'l(^-^)>==|G'l+(i)- S ^).
yeG'

We show this is the same as

b) ^ <+,ind^>G

where the sum is over all cyclic subgroups of G'.
Again using reciprocity, we find

<+, H<LA>O = ?(^(i) - <res^, TA>A.

Since <p(^) is the number of generators of A

^-lo'l.
By definition of < , > and T^

<res^,T^= S +(^)
^GA*

where A* is the set of generators of A; so

S<res^;T^= S ̂ ).
y£G'

These facts imply a) =b); so Sind^L^ is [G'l^-r^). Since L^ is a direct sum
of one dimensional characters ofG by Lang [17], p. 477, the proof is complete.

We now assume that G/G' is cyclic. Then it is the product of cyclic groups Z^,
i == i, 2, ... r where q(i) is a power of a prime p,. Let W, be a one-dimensional
representation of G/G' with kernel of index ̂  in G/G'. By (10.5)

IG'KrG-^-^ind^U,

where C,CG' is cyclic and U, is a one-dimensional representation of C.. Let
r

x = H p ^ c

where Cj = [C^.j and c is the least common multiple of the c ' . Let U. be the one-
dimensional representation of C, whose restriction to Cj is Uj and whose restriction
to C* is defined by having t e C* act by multiplication by t^j. Similiarly define a
G representation W, whose restriction to G is W, and whose restriction to C* is defined
by having t act by ^pt. Then

(10.6) V = © ind| U, ® (©W,)
3 ^
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is a representation of G. We make C a representation of G by having G act trivially
and t e C act by multiplication by t\ Note

(10.7) V'^o and ^'=0.

Lemma (10.8). - dim,, Vs ̂  i if and only if G' CH and H has prime power index
in G; and V" = o if and only if H = G.

Proof. - For HCG we have dim^-r^ = JG/HJ - |G/HG'|. This is
zero if and only if G'CH. Hence dimV^i implies G'CH and H fixes exactly
one W. and conversely. The latter happens if and only if H C Ker W. for exactly one i
and this requires |G/H| to be a prime power. By inspection V" = o if and only if
H = G.

We now find a suitable G-invariant polynomial /: V ->-C. I f n ^ G M C . j " 1

and gi, • • • gn is a system of coset representatives of C, in G, then a point a; in ind0' U,

has coordinates {^eC}. TTie polynomial /(^) == S ̂  is G-invariant. Let"' w.
be the complex coordinate in W,. Then '~1 ' '
(Io- 9) /®, {w,}) == 2:̂ (g.) + S <••

3 i

is a G-invariant polynomial from V to C, which has an isolated singularity at o and the
hypersurfacey-^o) intersects S(V) transversely. Note

(.o.,o) DimB^/KH)^111^-2 ifvH+o

[DimSV(H) if-v^o.

Here are afewwords to justify (10.10). The restriction/' of/ to S(V) is transverse
to o e C. This trivially implies that /'H : S(V)11 ̂  C is transverse to o. This means
the differential of/'" at p maps TpB(V,/)° surjectively onto C with kernel T B(V /)"
for each ^eB(V,/)11. Thus dimB(V,/)11 = dim S^^-a whenever B(V/)11 is
not empty or B(V,/)11 is empty and dim S^^-a < o. These two conditions hold
exactly when V11 + o. To see this note that /H is a complex polynomial so
dim(/ ) ^^dimcVS-a. See Milnor [i8], § 2. If dinicV^ i, there is a
nonzero ^ 6 (/^-^o). Then tz e {f^o) for any feR* because/is G-invariant.
For a suitable t, tz e B(V,/)11 since the norm of tz is an increasing function of t. Thus
B(/,V)" is not empty if dimcV^ i. If dim^ = i, /H = <•• for some i by
the proof of (10.8). Then (y11)-1^) = o and B(V,/)"==0; so

Dim B(V,/) (H) = Dim SV(H) - 2.

Proposition (10.11). — Let G be a compact Lie group and U and C be complex represen-
tations of G with G acting trivially on C. Suppose f: U -> C is an G-invariant polynomial
whose kyperswfacef-\o} intersects S(U) transversely. Then /H : Vs -> C is an NH-insariant
polynomial and B(U,/)11 = B^11,/11) is a smooth manifold.
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Proof. — Invariance of/11 is clear. The action of G on B(U,/) is smooth; so its
H-fixed set B^Vyf^ is a smooth manifold.

Lemma (10.12). — Let L be a compact Lie group and U, W and C be complex representations
ofL. Suppose o is the only point in each fixed by L and dim W == i. Let f: U <9 W —> C
^ ̂  L-invariant polynomial having the form f{u, w) == h(u) + ̂  for u e U fl̂ rf w e W.
Suppose B(V©W,/) =B ij a JTTZO^A manifold. Then there is an L'map f: B ->S(U)
M/AOJ^ <3fcgr̂  divides q.

Proof. — This is essentially in Bredon [2], V. g. Let u e U, w e W and (t/, w) e B.
Since U°* == o, the norm of tu is an increasing function of t e R4' C C*; so there is a
unique t with || ̂ o u ]| e S(U). Set 9(^5 w) == tu for this t. The arguments of [2] V. g
show 9 is the orbit map of the Z/y-action on B defined by g(u, w) == (u, <^w) <o a q^-root
of i and g a generator ofZ/y. This uses the fact that^is L-invariant. Since the compo-
sition of the homology transfer homomorphism and 9, is multiplication by y, degree 9
divides q.

Proposition (10.13). — For each HCG and prime p there exists an 'Nti-represen-
tation U(H,̂ ) and an 'NpHi'map t(H,p) : B(V,/)11 -> SU(H,^) of degree prime to p.

proof. — 'Let K be NyH and B = B(V,/). If B1^ is not empty, let W be the
representation of K on the tangent space to a point x in B^ The map which collapses
the complement of a K-invariant disk in B11 centered at A: to a point gives a K-map of B11

to S(V11) of degree i.
We now treat the case where B1^ = 0 but B11^ 0. Since B1^ == 0 implies

dimV^^ i by (10.10), G' is contained in K and G/K is cyclic of order qr for some
prime q by (10.8). There are two cases q === p and q =1= p. We rule out this former
as follows: We have H < K < G. Let K^ be the smallest normal subgroup of K of
^-power index. Then K^ is a characteristic subgroup of K hence normal in G. The
^-group G/K^ = L must be cyclic otherwise L/L' is not cyclic by [14] III Hilfssatz (7. i).
Then G/G' would have TL^p X Z i / p as a quotient group. Since G/G' is cyclic, this can't
happen; so G/K^ is cyclic. Since K^CH, G/H is cyclic of^-power order. But then
B11 is empty by (10.8). Since B11 is non-empty by assumption, this case doesn't occur.

Thus we have p 4= q. Note that W, with p^ == q is contained in V11 because
pq divides the index of H in G which implies HCKer(W,). Let U === V11 — W, so
V11 == U ©W,. Observe that /H : V11 -> C has the form h{u) + w^ by (10.9). Apply
(10.7), (10.11) and (10.12) to/^V11-^ to produce a K-map .̂•B^11,/11) -^S(U)
whose degree divides q and is so prime to p.

Proofof (10.4). — Let B == B(V,/) and S(V) — S(ic) = S where icis the one-
dimensional trivial representation ofG. By (10.10) and (10.8) Dim B(H) == Dim S(H)
if and only if H == G. By (5.8), there is a homotopy representation X with
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Dim X == Dim B. Then X * S(ic) and S(V) are homotopy representations of G whose
dimension functions differ only at G.

Proof of Theorem (10.3). — From section 9 we recall that V(G) is a module over A(G)
which satisfies
(10.14) resg { x ' X) == resg {x). res^ (X)

(10.15) Dim([G/H].X)(G) == Dim X(H)

for x G A(G) and XeV(G). See (9.2) and (9.4). The rank of this module is
determined by its localizations at the prime ideals <?(H) = ker(^g : A(G) -> Z) for
H C G through this formula:
(10.16) dimQ(V(G) ® %) = S dim^ V(G),(H).

(H)

In order to prove (10.3) we show

Proposition (10.17). — diniqV^G)^ is i z/^H/H' is cyclic and zero otherwise.
The proof of (10.17) is a consequence of the following lemmas.

Lemma (10.18). — dimQV(G)^o) < i.

Proof. — dim.Q V(G)^Q) = diniQ Dim V(G)^Q) <_ diniQ A(G)^Q) because locali-
zation is an exact functor. Since q(G) == ^^o), o eZ, A(G)^Q) is Z localized at o
i.e. %.

Lemma (10.19). — V(G)^Q) = o if and only if there are integers a^y HCG with

OQ 4= o and S^ Dim X(H) == ° f07- al1 x e ̂ C^)-

Proof. — Suppose integers exist as claimed. Then x = S^H^/^] ^ y(^") b111

^(^.DimX) = o for all X eV(G) by (10.15). Choose z e A(G) such that e^{z) = o
for H 4= G and e^z) == o. This is possible because A(G) is a subgroup of finite index
in C(G). Since neither x nor z is in y(G), both become units in A(G)^Q). Since
^(^.DimX) = o for all H and all X eV(G) we see that x.z.DimV{G) = o.
Since x. z is a unit in A(G)^), Dim V(G)^) == V(G)^ == o. Conversely if V(G)^) == o,
there is an x i q(G) with A:. Dim X == o for all X e V(G). Then e^x.Dim X) = o
gives the desired linear relation among the integers Dim X(H), HCG by (10.15).

Lemma (10.20). — ^^^(^g^^dimQV^)^).

Proof. — V(G) -^V(H) ^V(G) is multiplication by [G/H] ^(H), hence
becomes an isomorphism on localizing at y(H).

Lemma (10.21). — H/H' cyclic implies dimQV(G)^H) == i.

Proof. — By (10.4) we can find a non zero X eV(H) with Dim X(K) == o if
and only if H + K; so by (10.19) V(H)^ =(= o. Consider Y=resHind^X.
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By (9.2) Dim Y(H) = | WH [. Dim X(H) + o and Dim Y(K) = o for K =f= H.
Thus Y is not zero in V(H)^ by (10.19); so ind| X =|= o in V(G)^. Thus
dimQV(G),(H)== i by (10.18).

Lemma (10.22). — H/H' not cyclic implies V(G)^) = o.

Proof. — By (i o. 19) and the remarks after (i o. i), V(H) ̂  = o. Now use (10.20).
Finally we note that (10.3) implies

Proposition (10.23). — All dimension functions for G are linear if and only ifG is nilpotent.

Proof. — It is shown in torn Dieck [7] and [34] that for a nilpotent group G all
dimension functions are linear.

Now suppose that all dimension functions are linear. Then the subgroups H
such that H/H' are cyclic are precisely the cyclic subgroups (by (10.3)). We have to
show that this implies: G is nilpotent. By induction over G we can assume that all proper
subgroups of G are nilpotent. If G/G' were trivial then G would be cyclic, a contra-
diction. Hence there exists H < G such that G/H ^ Zfq for a prime q. We know
that H is nilpotent hence the product H == T?Q x ... X Py of its Sylow subgroups P^.
Suppose PQ is the Sylow y-group. Then Pi X . . . X Py is normal in G and we have a
semidirect product

i -> Pi x . . . x P, -> G -> Q -> i.
Each P^ is (^-invariant. It suffices to show that a subgroup of the type

i ->P,->H,-.Q^i

is nilpotent, i.e. Qacts trivially on P,. By induction we can assume that Q,== Z^r. If
P^ were cyclic then HJH '̂ were cyclic hence H, cyclic. So assume that P^ is not cyclic.
Then there exists a unique minimal normal subgroup K of P^ such that P^/K is an
elementary abelian j&-group (Z/jS^ for some p and t^ 2. Moreover K is characteristic
in P, hence normal in H^. Let (Zip)1 ^ A^ X ... X Ag be a decomposition into
isotypical Q;modules, and let B^CP^ be the preimage of A^. The Ay. generate P^.
If A, is a non-trivial Q^-module then a subgroup of the type i -> Bj -> K^ -> Q^ -> i
has K-/K- ^ Q^, hence K.̂  would be cyclic: a contradiction. Hence s = i and A^ is
a trivial Q;module. Then all maximal proper subgroups of P^ are Q^-invariant and by
induction have a trivial Q^-action. Hence Q acts trivially on P^ so that H^ is nilpotent.

ii« Abelian groups — Examples

In this section we discuss some examples. These should convince the reader that
apart from the general theory developed so far the internal algebra and geometry of
homotopy representations deserves further study.

To begin with we relate the homomorphism p of (8.23) to the Swan homomorphism
(n. i) .0: (Z/|G|r^Ko(G).
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This homomorphism is zero on ± i; so SQ factors through the quotient by this group. The
resulting homomorphism is denoted also SQ. By definition SQ maps the integer r mod | G |
to the class of Z/r viewed as a ZG-module with trivial G-action. (This module has
projective dimension one.)

We first remark that for even homotopy representations (see (1.13)) the finiteness
obstructions p and a coincide. This is clear from (7.21), (7.23), (8.17), (8.i8) and
(8.20). Moreover, since homotopy representations with the same dimension function
have the same orientation behavior we can, by stability, work with even homotopy
representations if we deal with y(G, A00). Using these remarks and the canonical isomor-
phism ^(G, A°°) ^ Pic(G) we obtain from the finiteness obstruction a homomorphism

(n.a) a: Pic(G) ->K(G).

This being a homomorphism between algebraic objects we ask for its computation in
algebraic terms. In principle this is achieved using Proposition (8.17).

Suppose A;ePic(G) is represented by the invertible degree function f l f eG(G) ;
this means rf(H) is prime to | G | for all H C G and x e Pic(G) = y(G, A00) is represented
by Y -—X such that there exists a map /: X ->Y with degree /H = d(H). Using
the notation of (8.17) we claim

Proposition (11.3). — The finiteness obstruction o{x){i) equals

SQ(Zld{i)) - S ^H.L indg res™ ̂ (Z/^H)).
1 + H. L C NH

Proof. — Let h: A -> X be a finite approximation. Then fh: A -> Y is a finite
approximation too. Therefore by (4.1) and (7.14)

o(Y)(i)~o(X)(i) =x(M,)~x(M^).

Now use (8.17).
For abelian groups the homomorphisms ind and res do not appear because all

fixed point sets are G-spaces. Moreover the formula of (11.3) can be made more
explicit. We recall the computation of Pic (G) from torn. Dieck [6], Theorem 5 and torn
Dieck-Petrie [9] (3.33). Let G = C(G), n = |G|. Let ^ •• (C/^G)* ~> (Z/^)* be
evaluation at H. Define ̂  inductively by

(11.4) ^H-II u^.
K. 2 H

The composition of u^ with (Z/yz)* -> (Z/|G/H|)11' is also called u^. Then we have:
The product u: (C/yzC)* -> II(Z/| G/H|)* of the Mg factors through the canonical map

(H)
(CInC)* -> Pic(G) and induces an isomorphism

u: Pic(G)^ n (Z/lG/H|r/{±i}.
H C G
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Proposition (11.5). — The following diagram is commutative

Pic(G)
II/ \0

g(Z/|G/H|r/{± 1} 5^ IlKo(G/H).

Proof. — Let x == Y — X e Pic(G) be represented by the invertible degree
function d e (G/wC)41. We may suppose that X is a finite homotopy representation;
so <r(X) == o. Then

(TW(H) == a(Y)(H) == ^(Mf) -^(M^) == ^(M^M^.

For an abelian group we have
(11.6) /(M«) = S ^(M^M?)

K>H

in K,(G/H, |G|). Solving (11.4) resp. (n.6) for Uy resp. ^(M^M^) we obtain

(11.7) MH== n d^
K 2 H

(n.8) xWM?) = S ^/'(M^
K 2 H

with the same integers a^ in (11.7) and (11.8). Hence

^^^(^ == ^"G/H 11 rf^ = S flK^G/H^K
K 2 H K 2 H

== S ^^(M^ = x(MH/MH) == <rM(H)
K 2 H

as has to be shown.

Corollary (11.5). — x ePic(G) is represented as the degree function d{f) for some
f: X ->Y with X and Y finite homotopy representations if and only if S[i(x) == o.

This corollary expresses the relations which exist among the values rf(/)(H), HCG
when/is a mapping between finite homotopy representations. Note that (A is entirely
determined by the subgroup structure of G through (11.4) and s is determined by the
Swan homomorphism on quotient groups of G.

We consider the group G == Zip x Z / p in detail. Let H o , . . . , H p be the
subgroups of order p. Then from (11.4)

P
u^ ==rfi II d^ d^ u^ = d^dQ\ UQ == dQ.

i=0

The Swan homomorphism for cyclic groups is zero. The kernel of the Swan homo-
morphism for ^-groups has been determined by Taylor [25]. For G == Zip x Zip this
kernel is precisely the {p— i) -torsi on of (Z/[G|)*. Let X be an even homotopy repre-
sentation for G. Since by torn Dieck [7], dimension functions for G are linear one can
see that there exists a complex representation V and a G-map /: X —>- S(V) such that
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degree /H == ± i for H =h i. The G-homotopy-type of S(V) is uniquely determined
by these conditions. Then degree f = d(f){i) == u-^d(f) e(Z/|G|)*/{± 1} measures
the deviation of X from linearity; i.e. X is linear if and only if degree f is one mod | G |.
There exist non-linear finite homotopy representations; namely X as above is finite if
and only if degree/is a^-th power modj&2 (because the {p— i)-torsion of (Z/IGJ)* is
the subgroup of p-th powers).

In terms of generalized homotopy representations, the non-linearity is easy to
explain. Let X be such that only { i } and G are isotropy groups and i: X° -> X has
degree d prime to |G|. Then X represents a non-linear element in V(G,A°°), finite
if d == dP modp2 for some a. If we want to realize homotopy representations by smooth
manifolds then non-linear one's cannot have fixed points. Suppose the manifold X has
the dimension function of S(Vo®Vp), where H^ = kernel V,, dim^V^ 2 i == o,p.
Then we have

Proposition (11.9). — X\X11 is a generalized homotopy representation and X is G-homotopy"
equivalent to X11 * (X\X11), where H is Ho or Hy.

Proof. — Suppose H = Ho, H == K. Using duality X\X11 is seen to have the
homology of a sphere of dimension ofS(Vy); moreover X\X11 is simply-connected; and
the only non-trivial fixed point set is X^ Therefore X\X11 is a generalized homotopy
representation. One has (as in the Spanier-Whitehead theory) a duality map

d: X -> X11 • (X\X11)

which is a G-map and a homotopy-equivalence on all fixed point sets, hence a
G-equivalence.

Using previous notation we study the inclusion i: X1^ -> X\X11. The degree
of i measures deviation from linearity and has, moreover, the following geometric
interpretation.

Proposition (n. 10). — The degree ofi is equal to the linking number of X11 and Xs1 in X.

Proof. — The linking number may be defined through the following composition

H^X^ ^ IT(X, X-X^ -T-^-^X-X^ -^IP-^X11)

where n — i == dim X11.
Using (11.9) it is easy to see how the degree of i is related to the degree of

/: X -.S(Vo®Vp) with deg(/11) == deg^) == i, namely one has
deg/deg i = i modp2.

Remark (n. n). — It does not seem easy to show that there exist manifolds X which
realize non-trivial linking numbers. The naive surgery methods do not work because
for S(Vo©Vy) the so called gap hypothesis (Petrie [20]) is not satisfied. But there are
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natural candidates with which to start the surgery: Brieskom varieties. We mention
the following examples.

Let V'(A) be the Brieskom variety consisting of points (,?„, ...,,?„) e C"'1"1 such
that

4+^i+ ... + ̂  - o
Kl^... +M2=I

and with G-action induced by the representation A : G -»• 0(n) C U(n) acting on the
coordinates z^, . . ., z^. The map

<p: V^A) ^S(A)

(^••.^^(Sl^l2)-"2^,...,^)

is equivariant and has degree d. It induces an analogous map between H-fixed point
sets. If d is prime to | G | then by (5.8) we can modify V^A) by attaching cells so as
to obtain a homotopy representation X^A) and a G-map

f{A,d) =f: Xd(A)^S(A)

with deg/" ==d ifA^^}

deg/" = i if AH={o}.

Proposition (it.is).—If G is abelian v{G, A") is generated by the S(A) - X^A) as A
ranges over representations of G and t over integers prime to \ G\.

Proof. — We use the isomorphism (6.5) of v(G, A°°) with Pic(G) which sends Y — X
to the class of d{f) in Pic(G). Here /: X -^ Y is any G-map with invertible degree
function. (See also section 3.) It suffices to show then that Pic(G) is generated by
the function d(f{A,f)).

Let mC(p{G) be any subset with characteristic function c(ffi) : <p(G) -r{o, i}.
Let M{m, d) e Pic(G) be represented by the function (H) )-> d^^. Note that
M(m, d)~1 = M(m, e) where de s i mod |G|. One has

(11 .13 ) M(OT2)M(OTi)-1 = M(m^\m^ for m^m^

M^M )̂ = M(OTI n m^M(mi u m^.

More generally suppose that m = m^ n ... n OT,. Then using the combinatorial
identity

^c2,...,,'--''^^--^
and abbreviating U w, == m^ e{A) = (— I)IA1-1 we obtain

J £A

( 1 1 . 1 4 ) M(m) === n M^)6 .̂
0 + A C { l . . . . , n )
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If V is a representation of G we put
^-{(H^V^o}}

and our claim is that the M(w(V)) generate Pic(G). This is equivalent to the state-
ment that all M(w), mC<p(G), can be generated. If V is irreducible, then
m(V) = = { H | H c Gy: = kernel V}. If we put, for HCG, A(H) : == { K | K c H}
then m(V) == ^(Gy) and k{H) == fl w(V).

Gy2H

Hence using (11.14) we see that M(^(H)) are obtainable from M(w(V)). Using
c(m^ u ... u nty) = c(m^ u ... u Tytr-i) + c{mr) — ^((^i u • • • u mr-l)mT) we see ^y
induction over r that M{k(H^) u ... U ^(Hy)) are obtainable. Finally using (n . 13)
we see that M(wn) is obtainable where m^ = H. This finishes the proof.

12. Metacyclic groups — Examples and computations

Periodic groups play a special role in our theory. This is indicated by the following
proposition.

Proposition (12.1). — There exist homotopy representations X and Y such that
DimX(H) ==DimY(H) for H+ i, DimX(i) + DimY(i) if and only if G has periodic
cohomology. If such X and Y exist then the period of G divides Dim X(i) — Dim Y(i).

Proof. — IfG has cohomology with period q then there exists by the work of Swan [23]
a homotopy representation X with Dim X(i) == q and with free G-action. The result
follows with Y the empty set.

Conversely assume that X and Y are homotopy representations with dimension
functions differing only at {i}, say

n + k == dim Y(i) + k = dim X(i), k > o.

BY (5-9) ^d its proof, we can attach cells of type G X D\ n<_i<_n-{-k— i t o Y
to obtain a homotopy representation W which has the same dimension function as X.
The relative cellular chain complex of (W, Y) yields an exact sequence

o -> Z -> C^_,(W, Y) -> ... C^_,(W, Y) -> Z -> o

with free ZG-modules C^(W, Y). This gives a periodic resolution of period k.
The special types of metacyclic groups that are singled out by our theory are those

with cyclic Sylow subgroups. Namely we have

Proposition (12.2). — Dim V(G, A°°) C G(G) has maximal rank if and only if all
Sylow subgroups of G are cyclic.

Proof. — By Theorem (10.3) rank V(G, A°°) = rank G(G) if and only if for each
H < G the quotient H/[H, H] == L is cyclic. If this condition holds for the Sylow
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subgroups they have to be cyclic. If the Sylow subgroups are cyclic then obviously L
must be cyclic.

The groups G in question have the following structure (Wolf [28], (5.4.1)):
Generators A, B with relations

A^^B"-!, BAB-^A',
((r— i)n, m) == i, ^ == i mod m.

The commutator subgroup is generated by A, and G has order mn. Having determined
the rank of Dim V(G, A) it is necessary to ask for other relations that dimension functions
have to satisfy. Obvious relations come from this observation: If X is a homotopy
representation then res^ X must have an NH-invariant homotopy-type. For metacyclic
groups as above all additional relations are of this type (see [34]). We consider an
example: m and n odd primes and m == i mod n. Let H be generated by A and K be
generated by B. We have <p(G) == { i , H, K, G}. The group G has n one-dimensional
irreducible representations, lifted from K; and (m—i)ln Tz-dimensional irreducible
representations induced from H. The Galois group of mn-th roots of unity acts on these
irreducible representations with three orbits. Representatives i, V, and W of these
orbits have the dimension functions

i

DimS(i) i
Dim SV i
Dim SW n

H
i
i
o

K
i
0

i

G
i
0

0

Here we consider complex representations (even homotopy representations) and divide
dimensions by 2. There exists a homotopy representation of dimension 2n—i with
free G-action. Hence

H | K | G
DimX

i

n

H
o

K
0

G
0

The functions DimS(i), Dim SV, Dim SW, DimX generate a subgroup of C(G) of
index n. There can be no more dimension functions because for any homotopy repre-
sentation Y the relation

dim Y = dim Y3^ mod n

holds. This follows from the fact that res^ Y must be G/H ^ K-invariant using the
known classification of H-homotopy representations. The Burnside ring A(G) C C(G)
consists of functions z such that

z{G) = 2(H) mod n
2:(H) E= z{i) modm
z(K) = z{i) modn.
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Using this one shows that the map

(CImnGY 4- (ZInY x (Z/^)' x (Z/n)* = A

z^ (^H)^(G)-1, ^(i)^(H)-1, ^(i)^(K)-1)

induces an isomorphism

(12.3) Pic(G)^A/co* (See (11.4).)

In general terms the first factor of A is (Z/[ WH [)* and the last two factors give (Z/| Wi |)*.
As in (11.5), we find a == S[L, s == J^H x ^wi^ moreover ^g === o because WH is
cyclic. If |G| is odd <x)* is cyclic of order 2 generated by — I = ( — i ? — i ? — i )
and the kernel of SQ consists of n-th powers mod m. Thus V(G, h) is the quotient of
{ ( < z , 6 ) e (Z/n)* X (Z.lmn)*\b == ^ mod m} by the subgroup generated by — i . Taken
altogether we have a complete description of V(G).
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