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THE TOPOLOGY
OF INTEGRABLE DIFFERENTIAL FORMS NEAR

A SINGULARITY
by GESAR GAMAGHO, ALCIDES LINS NETO

INTRODUCTION (1)

Here we consider integrable difFerential i-forms (Q defined in an open subset U
ofR" or C":

n

(o == S a^{x)dx^ (x) A fifco = o.

The equation

(o = a^x)dx^ + • . • + ^{x)dx^ = o

can be considered either as a total differential equation in the unknowns ^5 ..., x^
or as a plane field TC, of codimension one, outside the set of singularities:

Sing(<o) = {p e U \ a,{p) == o for all i == i, . . . ,%}.

The solutions of this equation are the integral manifolds of TC and by Frobenius9 theorem
define a codimension one foliation. This foliation plus Sing(<o) will be called the singular
foliation of co. A natural problem to consider is the search for a significant class of
integrable i-forms co for which the induced singular foliation is susceptible of a topological
description. Next, one would wish to characterize among these forms those which are
stable in the sense that all nearby integrable i-forms induce foliations which are equivalent
up to homeomorphism, the reason for this being to augment the set of integrable i-forms
whose induced singular foliation can be understood. Dimension two is special since
the above equation becomes in this case an ordinary differential equation. The answer
to this problem is then well-known: the first jet of co at a singularity being hyperbolic
characterizes the topology of the singular foliation associated to any i-form close to G).

(1) Most of the results in this paper were announced by M. Rene Thorn at the meeting of the Academic des
Sciences on March 3, 1980.
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Starting in dimension three, however, the problem has a different nature, and, as we
will see, the first jet of co at a singularity does not give enough information about many
integrable i-forms.

A natural way of defining integrable i-forms with singularity p eC" is to write
co == gdf where f is a holomorphic function with a critical point p and g is holomorphic
with g{p) =(= o. We say that g~1 is an integrating factor of co. The family of i-forms
defined in this way is quite general; in fact, it was shown by B. Malgrange [7], that
the germ at p e C " of a holomorphic integrable i-form co, co(^) == o, admits an
integrating factor provided that the set of singularities of G) has codimension >: 3. It
is easy to see in this case that co is stable in the space of holomorphic i-forms if and only
if p is a nondegenerate critical point for f and so its topology is characterized by the
i-jet of <x) at p. More general criteria for finding integrating factors have been studied
by J. F. Mattel and R. Moussu [8], [10].

A different family of integrable i-forms is the one induced by Lie group actions.
For instance, the integrable i-forms in R3 given by

co = ̂ x^dx^ + \x^dx^ + ̂ x^dx^, \ + X, if i +j

have as leaves the orbits of a linear action of the group R2. These i-forms and their
perturbations were thoroughly studied in [6]. They have a remarkable property: the
first jet at o eR3, ^(co)^, vanishes, and this is a stable property under G^perturbations
of co which are null at o e R3.

That many integrable i-forms arise from Lie group actions is a consequence of
Theorems i and 2 of Chapter II, where we concentrate on dimension three.

Consider the power series development of a holomorphic i-form co with a singularity
at oeC3:

(0==<^+(0^+0)^3 + ..., k^I,

where the coefficients ofco., j^_ky are homogeneous polynomials of degree j. Then:
Suppose oeC3 is an algebraically isolated zero of d^ and k ̂ 3. Then there is

a holomorphic change of coordinates f and holomorphic vector fields X and Y such that

f*^ == co ;̂ = i^iy{dx^ A dx^ A dx^) and [X, Y] = Y. In fact X = ,—— I, I(A:) == x, and
d^ == i^(dx^ A dx^ A dxo).

In other words, co embeds in an action of the group of affine transformations of
the complex line. When k == 2 one obtains that co^ embeds in an action of the group C2.
These homogeneous i-forms co^, k>_^, are also stable in the following sense:

For any integrable i-form 73 sufficiently C^close to co^ near o e C3, there exists a point p{r^)
near o e C3, such that the (k — i)-jet ofr\ atp{f\) vanishes^ i.e. T] starts with order k. Moreover^
p{f\) is continuous and /^(co) = o.

This is Theorem 5 for dimension three; it gives an idea of how thin the space of
differential i-forms can become after the integrability condition is imposed. The
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corresponding versions of the above theorems in the G00 case in R3 are also valid. As
a consequence of this we show in Theorem 6 that:

For any ^^3 there exist homogeneous integrable i-forms co^ of degree k in R3 which
are (^^structurally stable.

By this we mean that all integrable i-forms close to o^ in the G^-topology are
equivalent up to homeomorphism. However, co^ is not stable in the G^" ̂ topology.
In fact, for any e>o there are i -forms /.(o^ which are s—G^^-close to co^, where
f is a C°° function vanishing in a small neighborhood of o e R3.

On the other hand, integrable i-forms in the complex domain with a singularity
at oeC" are in general unstable for 72^3. One can see this for the i-forms

n

o) = ̂ \^i... -?< . . . z^dz,, \ i RX, if i +j,

where ^ means that ^ is omitted in the product. Then:
The equivalence class of {Xi, ...,\JCC under the action of Gl(2, R) is the only

topological invariant of the real codimension two filiation with singularities defined by co. This
is Theorem 7.

The homogeneous forms considered up to this point constitute examples of regular
forms, a notion which will be introduced now and which, as it turns out, endows a form
with stability properties. We write H^ to denote the set of homogeneous p-forms of
degree k on C" and for co G H^ let

Tf: H^->H^,_i and S": C^H^i

be Tj°(a) == a A rfco + <*> A da and S"^) == L^co, the Lie derivative of co along a. Then
we say that co eH^ is regular if: a) co is integrable, b) Ker(Tj0) ={0} for j^k—2
and c ) Ker(T^_i) == Im S0. Although this concept has a technical character, the
mappings involved in its definition appear naturally in the integrability condition. For
instance, if ZS == UQ + (^i + • • • + ̂  is a polynomial integrable i-form, T^^^-i) = o
is the term of degree 2k — 2 of the equation S A dZ = o. On the other hand, one
can identify many integrable i-forms which are regular. For instance, when n == 3
and co e H^ is such that </co has an algebraically isolated zero at o e C3, then co is
regular. (Lemmas 2 and 3 of Chapter II.) Also the i-form in C"

CO S X^i...?,... z^dz,, \ + ̂ . for i 4=j,
i=l

is regular (Proposition 4), although afco has no isolated zeros for n^:3.
Chapter III is devoted to the study of homogeneous regular forms and is prepa-

ratory to the stability theorem proved in Chapter IV, which goes as follows:
Let ^(R^ be the set of regular homogeneous i-forms of degree k. Define

^(R^ = {o e ̂ (R") [ dim In^S") =^}.
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Let I^U), r^^k, be the space of integrable i-forms of class G*" endowed with the
uniform G^topology and let co e Ir(U). A singularity p e U of <o is called regular
of order k^ i if the k — i jet of <o at p vanishes, i.e. j16'1^)? ̂  o, and ^(co)? is a
regular homogeneous i-form.

Let M^(co) be the set of regular singularities of co in U and
Mj[((.) = {p e M,(o) [/(co), e ̂ (R")}.

Then Theorem 5 asserts:
Mj[(ci)) C U ^ <z% embedded submanifold of codimension t and is stable in the following

sense: for any relatively compact subset PCM^((x)), there exists a neighborhood N of co, such
that if T] e N then MJ^T)) has a relatively compact subset P diffeomorphic and close to P.
A similar version holds for C".

We start Chapter I with a recollection of the de Rham division theorem as it
will be used frequently throughout this paper.



I. — PRELIMINARIES. THE DE RHAM DIVISION THEOREM

Throughout this paper we use the letter K to denote R or C.
Let A^(n) be the set of germs at zero of differential p-forms of class C°° (A == oo),

analytic or holomorphic (A == H) in a neighborhood of zero in Rn or C1. Then A^(n)
is a module with coefficients in A°^{n).

Definition. — We say that <o e A\{n) has the division property (in A^(n)) if for any
i<_p<_n—i and aeA^(n) such that o ) A a = = o there is peA^"1^) such that
a == G) A p.

It is clear that co has the division property if and only if the following sequence,
where G)'(a) == (x) A a, is exact for i <_ p <^ n — i

A^W-^AW-^A^n).

Definition. — An r-tuple {a^, ... 3 Oy) of elements of A°^{n) is called regular if
(i) a^ is not a zero divisor in A^(n) and (2) for any i ̂ i^r— i the class of fl^i
in the quotient A°^{n) /[^, .. .3 flj is not a zero divisor. Here [a^, .. .5 flj denotes the
ideal generated in A°^{n) by a^, .. .3 a^.

n

One says that a germ co = S ̂ rf^ e M^) defines a regular sequence if after

reindexing the a^ {a^, ..., flj is regular.

Theorem (de Rham [4]). — If u e A\{n) defines a regular sequence then co has the
division property.

n

Definition. — Let <x) = S a^dx^eA^n)^ a^o) == o for i<^^. We say that

zero is an algebraically isolated zero of <o if the vector space A^(n)/[^, ..., aj has finite
dimension.

A proof of the following theorem and its corollary can be found in [10] or [n].

Theorem. — Let <o eA\(n), co(o) == o, with an algebraically isolated zero at o. Then
co has the division property.

n

Corollary (Parametric division). — Let ^y = S a^{x,y)dx^ where ( x ^ y ) e K" x K"1

and a^ is analytic, \<_i<_n. Suppose that o e K71 X K^ is an algebraically isolated zero
of^Q. If a is a p-form i <_ p <_ n — i in K^ depending analytically on the parameter y e K^*

9
2
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and ayACt)y==o then there exists an analytic {p-—\)-form (3y, depending analytically on the
parameter y, such that <Xy== (OyA (By, for any y in a neighborhood of o.

Another fact which will be used is the following:

Proposition. — Let coeA^w), a^o) == o for i<_i<^n. Let S be the complex!-
jication of co. Then o e K^ is an algebraically isolated zero of u if and only if o e C^ ij a
topologically isolated zero of S.

The proof can be found also in [io] pg. 181.
We proceed to show a dual version of the de Rham division theorem.

n B
Definition. — Let X == S X,—, X(o) == o, be the germ at zero of a G00, analytic

i -1 8x^

or holomorphic vector field in K^ We say that X has an algebraically isolated zero at
oeK" if the vector space A°^)/[Xi, ...,XJ (or A^)/[X^ ...,XJ) has finite
dimension.

Definition. — The vector field X has the division property if for any i <_ p <_ n —• i
and aeA^(w) such that ^(a) = ° there is peA^^n) such that a==ix(P)-

By ix we denote the interior product ixW^i^ • • • ? ^p-i) === ̂ ^ ^i? • • - 3 ^p-i)?
where a eA^(w) and z/i, ..., Vp_^ are vector fields.

Theorem. — Let X be a G00 or holomorphic vector field in R" or C" o^A a» algebraically
isolated zero at o. TA î X has the division property.

Proof. — Let * : A^(ro) -> A^"^) be the Hodge star operator. If

^=^<s<^A••• lAA•••A^eA^
then »Y] ̂ ^^^^S11 ̂ ^...^^^ • • • A ̂

where (t\, ..., ^,^1, .. .^Jn-p) is a permutation o- of (i, ..., n) and sgn a == i if <r
is even, sgn a === — i if a is odd. Then the following diagram commutes

Ai-^n) -^ Al(n) —^ AI^^)

A^-P+^n) ^> Ar^n) -̂ > Al-^^n)

where i ^ ^ ^ w — i , *(o== ix(^*i A ... A <&„) and (o'(a) = co A a. It follows that
(A has an isolated zero at o. By the de Rham theorem the first horizontal sequence
is exact. This implies that the second sequence is exact. •

10



II. — INTEGRABLE i-FORMS IN DIMENSION THREE

Here we consider integrable i-forms co in K3. For such forms we can write
Ax) = Y^g A dXQ + YgflfA-3 A dx^ + \^dx^ A ̂

3 8
or Ao = iy(A;iA A"aA ^3) where Y === S Y. —.

1=1 ^

The vector field Y is called the rotation of co and will be denoted by rot (o. We say that
o e K3 is an algebraically isolated zero of Ao if it is an algebraically isolated zero for rot co.
When this happens we say that co is simple at o e K3. It is easy to verify that this condition
is independent of the coordinate system.

From the integrability condition co A du = o one obtains
i^{<^)du — o A ty^/co) == o.

Thus tY(co)rf(o = o

and if co is simple at o e K3 we have ty^) == °? ^^ rot (0 ls tangent to the leaves of <o.

i. Integrable i-forms and Lie group actions.

An integrable i-form is called homogeneous when all its coefficients are homo-
geneous polynomials of the same degree.

Theorem 1. — Any integrable i-form (o^ homogeneous of degree k, ^^3, and simple
at o e K3 can be written

<o^ == IX^Y^)) ^ = dx^ A dx^ A dx^

where Y=rot(o)fc) and X{x^, x^ x^) = — — { x ^ x ^ x ^ ) .
K -j- I

Proof. — One has iy^ = o. Then by the de Rham theorem c^ === iya = z'x^Y^
where X is linear, X(A:)=A.A:. Moreover,

tyQ = rfco^ = ̂ (z'x^Y^) = Lx(iY^) —• IX^Y^) == Lx(tY^)

or tyti == ?[X,Y]^ + iyLxflL

Now, Lx 0 == d {e^Y Q == d (det ^A) | . Q = tr(A). 0/if , -» /// i . o</f
77
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Therefore iy Q- = ^[x, Y] t2 + tr (A). z'y Q and so
[X, Y] == XY, X == i - tr(A) and X{p) = A .p.

Since [I, Y] == (A — 2)Y where I(A?) == x, one has

^-^l-0-
The following lemma shows that X = —^—L ^c^ X = i — tr(A) = i — 3X one

i ^ — 2 y f e — 2
obtains X = ——— I. •

A+ i

Remark.—When A =2 the same proof shows that 002== ixiyW where X and Y
are commutative vector fields. In fact, if k = 2, X and Y are linear and [X, Y] == XY.
So XY-YX=XY and tr(X-YXY-1) = gX. Thus X = o.

Lemma 1. — Let Y be a homogeneous vector field of degree k — i ̂  2 ZTZ IC* J^A that
o e K" ZJ fl% algebraically isolated zero for Y. Z^ B be a linear vector field such that [B, Y] = o.
Then B = o.

Proo/. — Assuming B and Y complex, let v be an eigenvector ofB with eigenvalue (JL.
Since

DY(y) .B(y) --BY(^) = o for any v
we have (JiDY(y). v = BY(y).

By the homogeneity of Y, DY(z/) .v = (A — i)Y(y). So
BY(y)==^(A-i)Y(y).

Since o e C1 is an isolated zero ofY, Y(^) is an eigenvector of B with eigenvalue (JL(A -— i).
Similarly Y^y) is an eigenvector ofB with eigenvalue [s.{k — i)3. Since k — i ̂  2

this implies that (JL == o. So all eigenvalues o f B vanish. Therefore B^^o for
some o <_ I <_ n — i. We proceed to show that £ == o.

If on the contrary f>o, there exists z e C " such that B^+o. Since
Y{etBz)=etB\{z), we have

yL + fSz + ... +|̂  = fl + ffi + ... +^B^Y(^)

or dividing by t^1^

^ + • • • + (^B'-2) + '̂2) -^(i + - +^)YM.
Taking limits as t-^co, we obtain Y(B^) = o which is absurd. Then / = o. •

Remark. — The existence of homogeneous integrable i-forms co, simple at o eK3,
can be shown as follows. For any k >_ 3 find a volume preserving vector field Y,

12
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i.e. Ly^ = o, such that Y is homogeneous of degree k and has oeK 3 as an algebraically
isolated zero. Then the form co = t^yO satisfies

Ao = di^iyO, = LI?Y^ = ?[I,Y]^ + ^Y^I^

Using Lit2 = 3^2, obtain

rf(0 = i^y^O. + HyO. == ^fc+^Y^-

Therefore rot(co) === (^ + i)Y.

2. Finite Determinacy.

Here we consider integrable i-forms in K3 which can be written as co = co^ + R,
where lim [.yj'^R^) = o, and ^Jc==jk{(^)o' Clearly co^ is integrable. We say that
o e K3 is a simple singularity of order k of co when o e K3 is an algebraically isolated zero
for rf(x)fc.

Theorem 2. — Let o be an integrable i-form of class V defined in an open set UC K3

{r == oo or analytic if K = R and r == holomorphic if K = C). Suppose that o e K3 is
a simple singularity or order k ̂ 3 of co, where ^((0)^== co^. Then there exists a CY local
diffeomorphism f such that f{o) == o and f*{(^) = (*)fc (1).

Remark, — The theorem is also true for k == 2 in the following case. Let
(Og^j^ci))^ and Y=rot cog. In this case Y is a linear vector field in K3 and (Og can
be written as u^=i^i^{Q,)y where X is linear. If we assume that there is a linear
combination aX + b\ satisfying non resonance conditions in the G00 case or Siegel's
conditions in the analytic case (cf. [13] and [12]), then Theorem 3 is true for co.

Proof of Theorem 2. — Let Y==rot(<o). Since iY(co)=o there is, by the de
Rham division theorem, a 2-form T] such that co=iY(7])- But —7]==ix(Q), where
Q = dx^\ dx^\ dx^. Therefore G) = ix Zy(t2) and similarly ^==i^iy{0.) where by

Theorem i X(A:) == -——x and Y==rot (x^ . Let f be a local diffeomorphism
k + i

/(o) = o, such that ^(/^ == identity and /*(X) = X. Now /*(co) == i^W where

Y== det(D/) ./"(Y) = rotate). This implies as in Theorem i that [X, Y] = —^Y
_ — — ~*~1

or [I, Y] = (k — 2)Y, where l{x) = x. Therefore Y is homogeneous of degree k — i,
Moreover ^"^(Y^ =jk~l(V)Q==\, because ^(V^o == identity. Therefore/*co = co^. •

(1) A particular version of this theorem was obtained independently by Cerveau and Moussu.

13
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3. Polynomial Integrable Forms.

Here we study integrable i-forms whose coefficients are polynomials of degree
^^3- Such a form is written

(0 == Q)o + COi + . . . + COfc

where o)y is homogeneous of degree j.
The main result of this section is that under the hypothesis that o e K3 is an

algebraically isolated zero of d^ then o is, modulo a translation, a homogeneous form
of degree k.

Lemma 2. — Let co^i be a homogeneous form of degree k — i and <o^ as above. Then

(1) (Ofe-^A d^ + ̂ k^ ^fc—l == °

i/* anrf ow/y i/' <0fc_i = Î (ct)^) /or .yom^ a e K3. ^r^ L<,(co )̂ is the Lie derivative of co^ in
the direction of the constant vector field a.

Proof. — By Theorem i we have ^==^^{0) where </co^= iy(£2). Then
?x(^o)fc) == (*)fc. From (i) we obtain
(2) ^(^-l)^—^-!7^^--^^^^-!)^^.

Using the interior product iy in (2) we get

— ̂ (^-i)^ + i^x^k-i)^ == °-

Then ^(^fc-1 — ^x ̂ fc-1) == °-

This means that ^jc-i — ^x ̂ k-i== ^Y a ^or !some a e A2(K3). Now, a = — ^(^)?
therefore

^fc- I -- ^X ̂ Jk- 1 == ̂ ^fc

where y is constant.
We obtain:

^x ̂ fc-1 == ^x^t,(rf(o&) = ~ ̂ (^)
and ^x^-i) = -^(^fc)-
Then ^-i—^x^-i)—^^-!) == ^(^fc) + ̂ >fc),
i.e. (o^.i—Lx^-i^^^fc-

i A
But X = -——I, so Lx(0fe_i==-——^/c-i an(l

A + I ^ + I

(^-I==L,O),,, fl==(A+i)^.

Conversely, since co ;̂ A rfco^ == o we have
L^CO^A d^ -[- ̂ ^ fi?(L^co^) == o.

Therefore if (o^_i= L^O)^ we obtain (i). •

14
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Lemma 3. — Let o^ be as above and let c .̂ be a homogeneous form of degree j , o <^j <^ k — 2
such that

(3) <^j A rfco^ -\- ̂ f\ d^ == o.

Then c .̂ == o.

Proof. — As in Lemma 2 we have ty((0j—^x^i) == ° ^d then
c0j — ^x^0;) == ^Y ̂  a e A2(R3).

However, since Y is homogeneous of degree k — i and (Op i^{d^) are of degree j<k—iy
we have

^—^(^j^o-

Consequently, ixC0^') === ° an<^ di^^==o. Therefore co. == Lx<»>,. Since X == •——I,
• i •v T" I

_ J + I , •
Lx0>y=,——<0j. So coj == o. •

Lemma 4. — Let ̂  be a homogeneous differential form of degree k in K/* and f^(x) == x + b.
Then

(4) /^(^&) = ̂  + IA) + Sfc_a + . . . + SQ

where 5, ij homogeneous of degree j .
n

Proof. — Let co = S f^dx^ where each P,(^) is homogeneous of degree k. Then

f,{x + b) = P<W + DP,W .6 + ̂ W ^ + ... + ̂ D^P^) .b\

/;(o),) =^P^ + i)^ =^S S^D^P.W .^'^

= S S ^DiP^).^^=o).+ SDP,(A:).&^+R.2
,-o»-ij! <'"i

=(Ofc+L^^+Rfc-2.

where Rfc_a is a polynomial form of degree k—2. •

Theorem 3, — Let <o be a polynomial integrable form of degree k in K3. Write co as a
sum of homogeneous forms <0j:

CO == COo + (Oi + . . . + (0&-1 + <*>fc

flnrf assume that <o^ î  simple at o e K3.
r^n ^r^ ^ a G K3 ^t^A that (o =ĵ *((o^), J^(A?) = ̂  + a.

Proof. — Since co A Ao == o, we have

co^ A rfo^ = o and co^ A d^_^ + ̂ jfe-1A ^fc == °«

25
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By (i), c«^_ i=I^(c«^). From (4) we obtain

/;(<o) = S/<>, + <o,_i + R,_, + co, + L,co, + R,'_2.

Taking b = — a, we get

/;(CO) = <0fe + (Ofc-2 + . . • + (Oo

where c .̂ has degree *̂. By the integrability of co

(o^_ a A Ao^ + ̂  A rfco^_ 2 == o.

Then by (3), co^a^0-
Similarly (0^3 = = . . . = coo == o. Then /!^(co) = co^. •

Remark. — Observe that the main properties about o^ that we have used in the
proof of Theorem 3 are:

(5) (x)^ is integrable.

(6) If a is a homogeneous i-form of degree j^k—i such that
a A d^ + (O^A dv. == o then a == o if j<_ k—2 and a = I^(c«^) for
some a e K3, if j == A — i.

In § i, Chapter III, we shall see examples of homogeneous i-forms in K", n> 3,
which satisfy conditions (5), (6). This motivates the following definition.

Definition. — Let co^ be a homogeneous i-form of degree k in K". We say that
(^ is regular if it satisfies conditions (5) and (6) above.

With the same proof of Theorem 3, we have:

Theorem 3'. — Let co = (OQ 4- • • • + ̂  be a polynomial integrable i-form in K",
where ̂  is homogeneous of degree j and co^ is regular. Then there is a e K'1 such that co =/^(c^),
/aW = ̂  + a.

16



III. — REGULAR INTEGRABLE FORMS

The notion of regularity plays a fundamental role in the study of stability properties
of integrable forms. In this chapter we derive its main properties.

!• Regular Homogeneous i-forms.

Let E be a vector space over the field K (K = R or C) and let T] be a p-form
on E. We say that T] is homogeneous of degree k if there exists a linear coordinate system
on E in which T) is expressed as a homogeneous p-form of degree k, i.e. all coefficients
of the expression of T] in this coordinate system are homogeneous polynomials of degree k.
Of course, if T] is homogeneous of degree k in some linear coordinate system, then the
same is true for all linear coordinate systems on E. We denote by H^(E), or simply H^,
the set of all homogeneous p-forms of degree k on E.

The condition of regularity, given before can be expressed as follows. Let <o e H^«
Consider the linear operators T^:H^->H^^i and S0: K^-^ Hj^ defined by
T^a) = a A rfco + (OA da. and S°(a) == L^(co). Then <o is regular if and only if <o is
integrable and satisfies the following conditions
(7) Ker(Tf)={o} i fo<j<^-2 .
(8) KerCTj^^MS-).

Observe that the integrability condition, <o A <sf<o = o, implies that
L<,((o) A rfco + co A ^(L^(co)) =0, a e K",

i.e. In^S") C Ker(T^_i) for every integrable <oeH^.
We use the following notations:

^(E) = ̂  = {<*) e HJ^ | co is regular}
^(E) ==^={(0 e^ldim(Im(S°)) ={}.

Now we can state the results.

Proposition 1. — (̂E) is open in the set of integrable homogeneous i-forms of degree k
for any k>, i.

Definition. — Let co e H^(E). We say that <o can be written with m <_ n variables if there
m

is a linear coordinate system x = (^1, ..., x^) in E, such that <o = S A^i? • • - 5 xjdx^

17
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in this coordinate system, that is, co does not depend on ^+1, ..., x^. The rank of co
(rank(o))) is the minimum number of variables in which co can be written.

Proposition 2. — Let <x) e^. Then rank(<o) =/'.

Proposition 3. — Let coeH^K^ be integrable and du =j= o. Let l>_2. Then
co e ̂ [(IC*) z/'^rf only if there exists an t-dimensional sub space E C K^ .y^A ^A^ ̂  restriction
<o/Ee^(E).

Corollary. — Let G) e ̂ (K"1) w^A ^<o =(= o. ^ /: K" -> K^ ij Z^r W surjective
then /^e^K").

Before proving the results we give some examples.

Example 1. — Let co = df where /: K^-^K is homogeneous of degree k + i.
Then co e ̂  if and only if k = i and / is a non-degenerated quadratic form in K".
This is true because if k ̂  2 then any form co^ = df admits perturbations of lower
order (see Theorem 3').

Example 2. — Let oj be an integrable homogeneous i-form of degree k>_ 3 in K3

such that o eK3 is an algebraically isolated zero of ^co. Let /: K^K3 be defined
hy /(^i? • • • ? ^) == (^ ^23 ^3) and (o* ==/*((*>). Then, by Proposition 3, <x>* e^^K").

Example 3, — Homogeneous i-forms defined by linear K/1""1 actions on K".
Let <o be the homogeneous i-form of degree n— i defined by

n

(9) <o = S a^... ̂  ... ̂ ^.

Where a^ e C and the symbol ;?, means omission of ^ in the product. Every
form of type (9) is integrable and in fact they are induced by C""1 linear actions on C",
in the following sense.

Let X^, ..., X^_i be linear commutative vector fields in C". Assume
X î, ...,A:J=(a^, ...,a^J, aJeC, i<_i<_n, i<.j<^n-i.

Define <*> == ^x^A.. .AX„_^( a)5 ^here ti = rf^A ... A dx^. Then it is easy to see that
co has an expression like in (9), where fl, = ± det(A,) and \ is the (n — i) X (n — i)
minor obtained from (aj)^^_^ by deleting the i-th column. This case corresponds
to the canonical form for an open and dense set of linear C""1 actions on C". In the
case of linear K1'1 actions on R" we can in the same way induce an integrable i-form co
and the canonical form is

(10) o =f{x, u, v) [ S a^ + i [u] + v])-1 [(a,̂ , + ̂ )du,
|^-i x^ j-i -.

+ (- ̂  + a,̂ .)̂ .]

18
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for an open and dense set of actions, where x = {x^, ..., ^), u = (u^ ..., u^),
y = = ( ^ , . . . , ^ ) , k+^==n and / (^^y)=^ . . . ^+yS- - - (^+^) .

If we complexity (10) then it can be reduced to the form (9) which is easier in
handling algebraic computations. So we assume in the real case that co is complexified
and is like in (9).

Observe that (9) or (10) can be considered as i-forms in K/", where m>_n. We
have the following.

n

Proposition 4. — Let co = S a,x^...;?,.. .x^dx, be a i-form in C^ where m>, n>_ 2.

If ^=(=^.=1=0 for i^j\ o<_i, j<_n, then coe^.^C^).

(i. i) Proof of Proposition 1. — Let <o e ̂ (E) and consider as before the operators
T^(a) = a A rfco + co A </a, a e H^1 and S°(a) = L^o>), fl e K". By definition we have
that
(7) Ker(T^)={o} \fo^j<_k-2 and

(8) Ker(T^) == ImCS-), dim(Im(S-)) = ̂ .

We want to prove that (7) and (8) are true for all T] eH^, integrable, sufficiently
near (x).

First of all observe that the maps T] l-> TJ1 and T) i-̂  S71 are continuous. Since
the set of one to one linear operators of H^ into H^_i is open in the set of all linear
operators we get that if T] is sufficiently near o then Ker(TJ1) == {0} for o <_j <_ k — 2,
so that (7) is true for T],

Let us consider (8). Since ^H-T^.i and 7]h»S71 are continuous, for T) sufficiently
near co, we get
(8 a) dim Ker(T^) <_ dim Ker(T,°_i) == / and

(8 b) dim Im(S71) ̂  dim Im(S") = /.

Now, if T] is integrable, then Im(S71) CKer(T^_i), so that

t = dim Ker(T^_i) ̂  dim Ker(T2_i) ̂  dim Im(S71) >. dim Im(S°) == .̂

Hence Im(S71) = Ker(T,?_i) and dim Im(S71) == t. •

(i.a) Proof of Proposition 2. — By example i we can suppose that rfco ^ o.
Let (OG^K") and a eKe^S") -{o}. We proceed to prove that in this

case o can be written with n — i variables. By a linear change of variables we can
n ^A

suppose that a=B/a^. If co = S AW^ LO^) = ° implies that -^ = o, there-

fore A==A(^ •••^n-i). i^^^- We have to prove that AE2 o- we write

n—l
z=(^, ...,^_i), y=x^ p^p and a=^A(z)^,, so that w=a.+p{z)dy.

19
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Since a does not depend on y we get pdcx. == dp A a and a A rfa == o. From this get
pd<^ = dp A (o. We need a lemma.

Lemma 5. — Let p be a homogeneous polynomial of degree j\ o <_j <_ k. If co e ̂ (K"),
fifco ^ o flwrf ^rfco == ̂  A co ^n p =.0.

Proof. — If j ==o we get j&rfco == o and since Ao =j= o then p ==o. If Q<j<^k
then the equation j&rfco == ̂  A co implies that dp^du==o or ^ A Ao + co A flf(^) = o
and since co is regular we get dp == o if O < J ^ A — I and ^==L,,(co), yeK^, if
j === A. In the case o < j <_ k — i we get p == o because p is homogeneous. Let us
consider the case j = k. In this case Ls,(co) = dp implies that L^(rfco) = o and
pdu == dp A co implies

L,(̂ CO - L,(MO) == L,(^A CO)

= rf(L^)) A co + ^A L,(co) = </(L,(^)) A o.

Since Ly(^) has degree k — i it follows that L^) == o.
n

Now let X(^) = S X^IBX^. Then dp /\^ == pd<^ implies that

kpu — qdp = i^(dp A (o) = ^x(/>^(o) =^x(^()t))

where ^ == ^x((o) ls a homogeneous polynomial of degree ^ + I- We have

ix(A*>) = LX^) ""• ̂ x^)) = (^ + I)(o — ̂
because (o is homogeneous of degree k. Therefore

pw ===pdq—qdp.

Applying 1^ to both members of the equation we get
p d p = p d r — r d p

where r = L^(y) is a homogeneous polynomial of degree k. Applying z'x to both
members of the equation we have kp2 ==pi^{dr) — riy^dp} =p(kr) — r{kp) = o. Hence
p = o. This finishes the proof of the lemma. •

n—l
By Lemma 5 we get G) = a = S A(^i, . • .5 x^_-^dx^.
Now I = dim In^S^) == codim Ke^S"), so that applying Lemma 5 inductively it is

/
possible to find a linear coordinate system (^i, ..., x^) such that co = S <^(x^, ..., ̂ )rf^.

On the other hand, suppose we could write co with m < t variables. In this case
it is easy to see that codim Ke^S") ̂  m < ̂  which is a contradiction. Hence
rank(o)) = i. •

(1.3) Proof of Proposition 3. — Suppose first that <o e^^K^). In this case, by
/

Proposition 2, co can be written with t variables, (O==SA(A*I, ...,^)^,. Take

20
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E = {(^, ..., A:^, o, ..., o) | x^ . . . , Xf e K}. So <o/E has the same expression as co and
it is not difficult to verify that co/E G^(E).

Suppose now that there exists an /'-dimensional plane E C K", such that
(O/E€^(E). We can suppose E ={(^ o) [ x eK/}. Let E, ={{x, o ) ) x eK^'} and
7 .̂ == (O/E^. The idea is to prove that ^ e ̂ [(E,), by induction on j = o, ..., n —/'.

For j == o the assertion is clear. Suppose the assertion true for j>,o and let
us prove that it is true forj +1. First of all we prove that T]..̂  can be written with
f+j variables. If xe'E^-^ we write x == {z,y) where zeEj and yeK. In this
coordinate system 7].^.i can be written as

^•+1 = a& +^-i + . . . +.AO +/^j0^

where p is a homogeneous polynomial of degree k and a, is a homogeneous i-form of
degree i which does not depend on y and dy.

Then 7},+ i/Ej = o^ = ̂  e ̂ (E^.), by induction. Set a = BjSy = (o, i) and let
^:E^->E^ be defined by &(2:)==^+^. Then ^(^+1) == afc+ • • • + ̂ o === PC

Since a^ is regular, by Theorem 3' there exists veEj such that A*(^) = a^
where A(^) = 2: + v. We define /: E^i ->E^i by /(^j^) = {z +jyv,jy). Then it is
not difficult to see that /"(•^-n) = a& + ?(^j0^ where ^ is homogeneous of degree ^.
We write q(z,y} = y^(^) +^&-i(^) + • • • +^^0 where ^ is homogeneous of degree i,
o<_i<_k. Now the integrability condition applied to /<l('y},+l) implies that

^rfa^ = fif^ A a^, o <^ i' <^_ k.

Suppose first that da.^ ^ o. In this case, by Lemma 5, we get ^ == o, o <^ i <_ k,
and then /*(•%+1) = o^.

If doi^ = o then, by Example i, k = i and a^ = rf^ where g is a non-degenerate
quadratic form. In this case <o = dg + A == S a^x^dx^ where A/E == o and the

r.»
matrix (flyj has rank^:^ +J^:/^: 2. If A 4= o we have in fact rank(a,J ̂  3.
The idea is to show that in this case ^A = o so that du == o which contradicts the
hypothesis. In fact, suppose that we had ^A =t= o. In this case d^ =f= o and it can
be shown that the matrix {a^) has rank at most 2 (see [5] or [9]). This proves that
daLj^ ^ o in any case.

By the above argument we can suppose that ^^.^== o^, does not depend on y
or dy. Let peH^(E^i) be such that

(*) |3 A dv.^ + a^ A rfp = 0.

We write

P=^+^.-i+...+rPo+?(^)^

where q has degree m and (^eH^E^.). Then it is not difficult to see that (*) implies
that p, A dv.^ + oc^ A d^ == o for o <_ i <^ m. Since a^ e ̂ (Ej) we get P» == o for
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o<_i<_k— 2 and ^_i=L,,(a^) (if m = = ^ — i ) . Consequently, for m<k—i we
have (3 == q^^y}dy and for w = k — i we have (B = L,,(o^) + q^^y)dy. We write

y(^j0 = ̂  +J^-î ) + .. • +^?o

where ^ is homogeneous of degree i. Now, equation (*) implies that
(jidaLjc + o^ ^dq^=o, o <^ i ̂  m.

Since m<^k — i we get by Lemma 5 that ^ == o so that (3 = Lu(oc^) if m == A — i
and (i == o if m<k — i. This ends the proof. •

n

(1.4) Proo/* o/' Proposition 4, — Let co == S a^... ̂  ... A^rf^ where a, =(= 0, 4= o,

i <^ i, j <_n, be considered as a i-form in C™, m">_n. By Proposition 3 it is sufficient
to consider the case m == w.

Let a be a homogeneous i-form of degree j such that

(*) a A d(^ + (0 A dy. = o.

We want to prove that a = = o if o ^ j ^ n — 3 and a = Lo(co) if j =n—2.
n

We can write a = S S b^x^dx^ where (T = ((TI, ..., oj, A:0 = ̂ 1... x^ and
i-l |o|"j

J C T J = CTI+ .. • + ̂ n' ^Llet us wrlte a ln another way:

a=S S ^C^0-^'^
i=l |ol»J+l

where G? = o if cr, == o, CT(G? = ^~<?t if o,> o and CT — <?, = (<TI, ..., (T, — i, ..., orj.
Differentiating a we get

Ac=S S a^C^x^^-^dx^dXf
k<f ||o|-^+l

where %= C^—C^. In the same way we can write
n dx,

<o==^. . .^S^—
»-1 ^

dxjc A ̂
and acx) == A:i.. . x. Zi fljk/————

"^^ la x^

where ^ /==^—fl&. Now equation (*) implies that
0 == a A du + co A flfa = x^ . . . ̂  S ^^o-et-eA;-<?/^ A ̂  A ̂

I ̂  A \ »
|o|»j'+l

where ^=^ +/& + ,̂ ̂  == ̂ C?^ + ̂ CT^(%- Then ^ = o, i<,i,k,l^n.
Now suppose that o^ j^n—3. In this case for any a with | < ? | = = = j + 1

there exist k + / in { i , ..., n} such that a^ = Q{ == o, because a-^+ ... + a^<_n—2.
Therefore we get for such c

o == e^ == ̂ C?^ = (T,G?(^ - ̂ ).

^
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Since a^ — a^ =(= o, we have G^ == o, z === i, ..., w, which implies that a = o.
If j = n -— 2 and o is such that ^ == CT^ = o, k^l^ we get in the same way

G,° === o. Therefore if Gf + o, cr must be of the form a == (i, ..., i) —^ for some /'
and in this case we have

o = ̂  == G?^ + C,°̂  + ̂ G?,.

Therefore a^C^= a^C^ i <^ iy k <^ n, which means that the vector G° == (G^, ... 3 G^) is a
scalar multiple of the vector a == (^5 .. .3 aj, say G° == X^fl, where cr = (i, ..., i) —^/.
Therefore we can write

n I n B \
a = i?!̂ !?!̂ "̂ .̂ 1 • • • ̂  • • - ̂ ))^ == :I (̂(0)

n a
where v == S Xj—, as can be verified directly. •

2. Reduction of variables for analytic integrable i-forms.

Let co be an integrable i-form defined in an open set UCK". Given an open
set V C U, we say that co can be written with i <_ n variables in V if there is a diffeo-
morphism /: V ->/(V) C K" such that f{p) =p and

/
/'((*))= SO\(A:I, ...,^)rf^.

The rank of <o at p is the minimum number of variables in which co can be written in a
neighborhood of p. We use the notation rank (co) for the rank of <o at p.

Geometrically the fact that rank (co) ==w<n , means that the foliation defined
by co is locally equivalent at p to the product of a codimension one singular foliation
in K^ by K"-^

Examples

1) If <o is a regular homogeneous i-form of degree k^ then ranko(co) = dim Im^S"),
where S^a) = I^(co), aeK^ (cf.Prop.2).

2) If co is an integrable i-form such that c0y = o and Aop + o, then ranky(co) = 2
(cf. bL [9])-

3) Let co e Ir(U) (r^ 4) and suppose that there exist p e U and a 3-dimensional
plane F C K" such that p e F andj& is a hyperbolic singularity of the vector field rot(co/F).
Then rankp(co) = 3. The proof can be found in [6].

It is an open question to know whether a i-form co e r(U) with .P""1^)? = o
and Jk{^)p e R^ can be reduced to / variables near p. Along this direction we have
the following result.

22
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Theorem 4. — Let o be an analytic integrable i-form defined in an open set UCK^.
Suppose that there exist p e U and a ^-dimensional plane F C K^ J^A ^A^ ^ e F and p is
an algebraically isolated singularity of the vector field rot(co/F). Then rank (o>) == 3.

Proof. — The idea is to prove that if c>> can be written with i variables,
4<^:<w, then it can be written with t — i variables. More specifically, if

/'(o) = S (o,(^, ..., Xf) dx, for a diffeomorphism /: V —/(V) C K", /(o) == o,
then we shall construct a diffeomorphism 5^V'->^(V') , 5(0) = o, of the form
g{x^, . . ., x^) == (,?i(^i, . . ., ̂ ), ^+1, . . ., A-J where ^i: Vi C K/ -> K/ and such that

(/o^(<o)==5V(o)))= S1^, ...,^_i)^.
» — i

So we can suppose that £ -=n and all the steps of the induction procedure will
be similar to this case. We can suppose also that p == o and F = {{x, o) e K/1 [ x e K3}.

In order to prove that co can be written with n — i variables we shall construct
an analytic vector field X in a neighborhood W of o, such that X is transversal to the
plane F^^o^eK'1-1} and i^(du) = o.

Suppose for a moment that we have constructed such a vector field. Let V C K^
be a neighborhood of o e K^ and /: V ->/(V) CW be a diffeomorphism such that
/*(X) = ̂ /^= ̂ . If T] ==f*^), then we have i^dr^) == o and the integrability
condition T] A df\ = o implies that ^ (•/]) = o and so

Lj7))=zJ^)+rf(^))=o.
n

Therefore the coefficients of-/] do not depend on ^, so that T] = S •^(^1, . . ., x^_^)dx^
Using that ^ (•/]) = o we get •/]„ = o. Hence a> can be written with n — i variables.

3

Now we construct the vector field X. Suppose X == S A,a/a^ + B/B^. The
condition i^{du) == o is equivalent to

(*) AI<O^ + Agco^. + A^. + (Onj =o, i <j<_ n

where rfco = S (*)yrf^ A rf^, co,. == — (o^.
I'̂ Kî n

Now observe that the three conditions

—A2C^2+A30)3i=(0^

(**) AiCOi2-A3COa3=(02^

—Ai(03i+A2<x>23==^3n

are equivalent to the conditions (*).
In fact, to obtain (**) it is sufficient to make j = i, 2, 3 in (*). On the other

hand, if the conditions (**) are true, it is sufficient to apply the relation Ao A du == o
to obtain (*) for j^:4. For more details see [6].
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Now we write the conditions (**) in another way. Let Y be the vector field
(^23^/^1 + ^31^/^2 + ^12^/^3 and a be the 2-form

— Airf^g A dx^ — Agfl^ A dx^ — ^dx-^ A dx^.

3
Then (**) is equivalent to ^ == ̂ (^ where ^ == S ̂ ndx^. Therefore to obtain A^,

i==l

Ag and Ag it is sufficient to prove that there exists a 2-form a such that ^ == Zy^). Since
^Y^) = ()l)a3(oln+(03lc>)2n+(0^2(03n::= ° (because ^(x) A rfco = o) the proof of the theorem
is reduced to the parametric version of the de Rham division theorem, which can be
applied in this case because o e K71 is an algebraically isolated zero of Y(^, o) = rot(co/F).
This finishes the proof. •

25
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IV. — STABILITY OF INTEGRABLE FORMS

i. Stability of regular points.

Let o) be an integrable i-form of class 07 defined in an open subset UCK"
(Gr == holomorphic if K=C), where r^k. Then we can consider the A-jet of co
at peU, ^(co)?, as a polynomial i-form so that

^Wp = ^O + (0! + • • • + ^k

where c .̂ is a homogeneous i-form of degree j. If j^-^o))^ o then it is not difficult
to see that ^==jk^)y is a homogeneous i-form of degree k.

Definition. — Let co eI^U), r>_ i. A singularity^ of co is called regular of order
k^i if ^-^(c^^o and^((o)p is a regular homogeneous i-form.

Write M^(<o) to denote the set of regular singularities of order k of co and
M^(co) = {p e M,(co) |/((o), E ̂ (K-)}.

Denote by G^M, N) the set of all C8 maps from the manifold M to N, endowed with
the G^uniform topology.

Theorem 5. — Let coer(U), r>, 2k. Then M^(G)) is an embedded codimension t
submanifold of class C7'"^64"1 {holomorphic if K == C). Moreover, if we fix a relatively compact
open subset PCM^(co), then there exist neighborhoods Ncr(U) of <o and V, PCVCU,
such that for any 7]eN there exists an embedding h^:P->U of class Cr~k+l such that
h^(P) == M^T]) nV. The map 7]h>^ eG^^'^^P, U) can be chosen so that it is continuous.

(1.1) Proof of Theorem 5. — Let J1 be the space of i-forms in K" whose coef-
ficients are polynomials of degree <_i. A form x e ] 1 can be written as a sum
x = XQ-{- x^ + • • • +^ where x^ is a homogeneous form of degree i. Given x andj/
in J2^ define

^(^jO =- S (^ A ̂ . +J/. A dx,), 772 ̂  2A.
l+J^Wl
t',ĵ ;0

Notice that if co is an integrable form and x ^^((x))^ then F^(A:, A:) = o for,
i <_ m <^ 2k.

Define also
F(^) =(F,(^), ...,F^^))

and G(x^) === (F,(^j/), ..., F^_i(^j/)).

^
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Let TT rj^-^p"1 be the projection defined as

TT^o + . . . + ̂ J = XQ + . . . + A^_i

and consider the algebraic variety

^=={^rk\^x)=o}

and its projection V^-^TrCV^) ==V. The tangent space to V^ at x eV^ is by definition

T^VJ^eJ^lF^^o}.

T^w^ 6. — Z^ (o e F(U), p e M,(co) and j^\ == x° = co, + co^i + ... + co^,
wA^ c .̂ is homogeneous of degree j\ k<_j<_2k. Then

^(V^)) = Im(S,) = W) 1 G(^ ^) == o}.

By Sp we denote the operator Sp(<z) = L^(c>)^), a e K".

Proof. — Let x == XQ + . . . + x^. Then

Fm(^ ;vo) = S (^ A AO. + (»>iA (/̂ ) 772 = I, . . ., 2k.
i+j-m
i,j^_0

For 77i < k we have F^(^ A:°) =. o.

For m==k, F^(^ A;°) = ^o A ^fe-

Then F^(^, x°) = o implies by assumption that XQ == o. Since

Ffc+l^ ;co) = ̂ i A flfCt) ;̂ + C^A ̂

again F^^i(.v, A:0) = o implies ^1=0. So by induction we obtain

XQ == X-^ == X^ === . . . == A*^_ 2 == 0.

Finally
F .̂.!̂ , A:0) = ̂ _i A AO^ + ̂ fc A ^fc-l

then if F^_^(x, x°) == o we have ^_i==L^co^, aeK^. This implies that

{L,(O, 1 a e K-} = 7r(T^(V^)) = {7r(^) | G(^ x0) = o}. •

Z^TTia 7. —Let p e M^(co) W ^2fc(^)p == ^° = <4 + • . • + ̂ eV^. Let
F = Tc(T^(V2^)). T^TZ dimF=^ and if J^CJk~l is a codimension £ sub space such that
J^-^EOF then there is (JL>O such that if \x—x°\<^ x eV^ and Tr^eE then
^x) = o.

Proof. — Let x sVg^ be written as x == x° + AA;°. Then

F(^° + A^°, ^0 + A^°) == 2F(A^°, ^0) + F(A^°, A^°) = o

and 2G(A^°, x°) + G(A^°, A^°) == o.
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We define
H(^ z ) := 2G{z+z, x°) + G{z+z, z + z )

where z e E and z == x^ + ... + x^. Clearly H(-s', ^ ) = = o when AA:° == 2' + .̂
Then we have from the definition of G that H(o, z ) == o and c\H(o, o). z == 2G(i, x°).

Since 7r(A;°) = o then G(i, A:°) = o implies F(i, A:°) = o and so z e F. Conse-
quently ^iH(o, o) is one to one and so H is locally one to one as a function of z e E. This
means that if | z\, \ z ' \ < (A and \z\ < [L with z = XQ + ... + ̂ _i, z ' = XQ + ... + ̂ _i,
^== ^A + • • . + ^2& ^d H(-2;, 2') == H(-2'', z) then 2; == 2''. In particular if | -2'j < (JL,
[ ^ [ < ( J L and H(-2', z ) == o == H(o, z ) then z == o. Therefore if ^x°=z-{-z, i.e. if
x == z-\-z-{-x° eV^y \Z\,\Z\<[L and n{x)eJL, then -2: = TT(A:) == o.

Z<wma 5. — Let co e r(U) ^nrf p e M^((o). £^ /"^co) : U -^f-1 be the (k - i)-jet
section ofu. Then there is a neighborhood V of p such that M^(co) nV = C^"'1^))'"1^) nV.
Moreover M^((o) nV is an embedded Q^^1 submanifold of codimension t ofV {holomorphic
if K=C).

Proof. — Define h: U ->]^ by h{q) =^(00)3. Then
^)=^+...+^ :=^eV^.

Consider the map ^ : U ->Jk~l given by g == TT o A, where TT : J2^ -^J^"1 is the natural
projection. Then g{p) = o and D^(^). v = n(Dh{p) . v) -==- Ly(<o^), y e K^. Since
J&-1==E®F, F=7r(T^(V2fc)) ==Im(Sp), it is clear that g intersects E transversely
at o ej^-1. Therefore if W C J^-1 is a small neighborhood of o eJk~1 and V = ̂ (W)
then ^(E) nV^^-^E nW) is a G^4-1 codimension /' submanifold of U. By
Lemma 7 we know that ifW is small enough, then jJC~l{u)q G ̂ (V^) n E n W if and only
if /-^(co)^ o. This implies that ^(E) nV-^-^co))-1^) nV^^-^o) nV, so
that (J&-l(^))~ l(o) nV is a codimension /' submanifold ofV. Since ^(K") is open
in the set of homogeneous integrable i-forms, then

(/-^r^nV^M^nV

if V is small enough. This ends the proof. •
Now Theorem 5 follows from the transversality theory.
For ^er(U), define ^:U^T-1 by g^p) ==jJC-l{^

Lemma 9. — Let co eP(U) and RQ e M^(<o). Then there exist neighborhoods V of RQ
and N of co in Î U), such that for any Y] e N, ^.^(o) nV= M^T]) nV is a codimension f
submanifold of U. Moreover if Q^ is an I-dimensional submanifold transversal to M{(<o) at ?Q,
then M^(Y]) nVnQ^ contains exactly one point h(r^) e Mf(7]) nVnQ,. The point h(^r\)
is characterized by the property h{r\) e M^Tj/Q^nV).

Proof. — The first part of the lemma follows easily form the transversality theory
and Lemma 7. Let ECJ^-1 be such that EQF^J^-1, F = Im(D^Q&o))- Th^11
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g^ intersects E transversely at p^, so there exist neighborhoods V of ?Q and N of co such
that if T] eN then ^/V intersects E transversely. Using Lemma 7 it is not difficult
to see that ^(E) nV= M^T]) nV.

Now observe that if o, =/(<<, then co,/T^(QJ =/(co/QJ^. But o>, e ̂ (K^
so that, by Proposition 3, c^/T^(QJ e ̂ (TJQJ). Therefore ^ £ M^co/QJ. Let us
denote co/Q^= ZS. Then Lemma 9 is reduced to the following:

Lemma 10. — Let SeP(QJ where dim(QJ ==/'. Suppose that ^eM^(S). Then
there exist neighborhoods V of po and NofK such that if T] e N ^TZ T] Aflj <z zm^ singularity
p{r\) e M^(QJ nV. Moreover the map T] er(QJ -> p(j\) ̂  ^ continuous.

Proof. — We can assume j^o61^- For ^^^Q.) let ^ : Cl-^"1 be

defined by ^(^) =/-l(^. Then F=Im(D^(o)) has dimension ^ I fECJ^ - 1

is such that Jp"1 == E ® F, then ^3, intersects E transversely in a unique point. There-
fore there exist neighborhoods Vofo and N o f S such that if T] e N then ̂ /V intersects E
transversely in a unique point p[r]) =^1(E) nV. •

End of the proof of Theorem 5. — Let P be a relatively compact subset of M^(co)
and consider a tubular neighborhood TC : W -> P. We can suppose that the fibers
Q^-^"1^ P^ are C00.

Given p e P, let Vp and Ny be as in Lemma 9. Since P is compact, we take
m m m

j&i,...,^ such that UV^.DP. Let V=Wn(UV^.) and N=^N^.. Take

the restriction % = TT/V and the fibers Q,p=^~l(^), j^eP. Now, if 7]eN then,
by construction, for any p e P, there exists a unique point ? == A(Y],^) e Qp, such
that /-^/d^o. Define h^p)=h{^p). By Lemma 9, /-^^p) = o,
therefore ^(P) = M^T]) nV. Now, Lemma 10 implies that T] i-> ̂  e G^^^P, U)
is continuous and Theorem 5 is proved. •

2. Structural Stability.

Here we consider a class of integrable forms in R3 which are locally structurally
stable.

Theorem 6. — Let o be a Gr integrable i-form defined in an open set UCR3, where
r^_2k. Let p eU be a simple singularity of order k ̂ 3 of co. Suppose that <*)& =J (<*>)p
^ j^ ^Aa^ (*)/JS2 fl?^^ a structurally stable singular filiation on S2 z^A^r^ S2 is the unit sphere
in R3. Then the germ of co at p is G'-structurally stable.

We observe that the case k = 2 was already studied in [6].

pyoo^ — First of all we note that by Theorem 5 there exist neighborhoods Wof j&
and N of co in the C7' topology such that for any T] e N, T] has a unique singularity of
order A, p{f\) eW. If N is small enough then for any 7]eN, J^)?^) == ̂  is such
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that o e R3 is an algebraically isolated singularity of rot(^) and so p^) is a simple
singularity of 73. We can suppose that p[r\) = o. So it is enough to prove that if
C O = = ( O ^ + R and 73=7^+11, where lim [^["^R^) = lim [^["^R^) == o, then co
and T] are locally equivalent at o eR3, provided that co ;̂ is close to T^.

By the hypothesis, there is p > o small such that if S^ denotes the sphere of radius p
centered at oeR3, then co/S^ and T)/S^ are topologically equivalent. This follows
from the fact that (x^/S^ is structurally stable. Let h: S^ -> S^ be an equivalence
between <o/S^ and T}/S^. Now the idea is to extend A to B^^eR 3 !^ )^?} using
vector fields tangent to the leaves of <o and T],

3

By Theorem i we know that (0^(1) = ^(1) == o where I(x) = S x^\^. Using

this it is possible to construct vector fields X and X in B such that o e R3 is a sink for
both of them and <o(X) == 73 (X) = o. Let X^ and X< be the flows of X and X respecti-
vely. Given x e B, let t < o be such that X^x) e S^. We define h[x) == X_((A(X((A:))).
It is not difficult to see that h is an equivalence between co and T], This finishes the
proof. •

Remark. — It is not difficult to see that for any k>_ 3 there exist i-forms co^ as
in Theorem 6. In fact, for k = 3 the set of structurally stable homogeneous i-forms
is dense in the space of homogeneous simple forms of degree 3 [14].
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V. — REGULAR HOLOMORPHIG FORMS

i. Homogeneous i-forms.

In contrast with the real case, integrable forms in the complex domain are in
general not structurally stable in C^ n>_ 3. For one of the families of regular forms
given in this paper this remark follows from the more general theorem:

Theorem 7. — Consider the integrable form co in C1, n>_ 3
n

C0=^\^...?,...^^

such that
\ff:R\j for i+j.

Then the equivalence class of

A={Xi,^, .. . ,XJCC

under the action of Gl(2, R) is the sole topological invariant of the real codimension two filiation
with singularities defined by co on (? (1).

Proof. — The leaves ofco are the same as the orbits of the C^" ̂ action 9 generated
by the commuting vector fields

Z^^r^-y^ j=2,...,n.

In fact, one has (X^ ... Xj-^ = ^A...AZ^IA ... A ̂ ). Let ^ be the C'-^action
» ^

induced in the same way by the form 5 = S X,^ ...?,.. .^^, and suppose there

is an isomorphism a e Gl(a, R) such that u{\) =^ for ?=i, ...,». This induces
an isomorphism ST: (R2)"-1 ̂  (R2)"-1 by H'= {u, ..., u) {n-i times). Putting

t3"^®^. where E, = { ^ e C" | Zy == o for j + 1} we obtain that V preserves the isotropy
groups, i.e.: M"(G,) = G,, i = i, ..., n, where

G^={geCn-l\^g,p)=pe•E^-{o}},

G^={geCn-l\^{g,p)=pe•E.^-{o}}.

(1) This theorem was obtained independently by B. Klares in the context ofC^1"1- linear actions on C".
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This allows us to define a conjugacy between 9 and ^ on each E^:

^ 0 ?(^ P) = ?%). ̂ )). ^ e ̂

From this and the linearity of 9 and ^ it follows easily that h = [h^ . . .5 AJ is a
conjugacy between <p and ^, i.e.

A?(^)=?(^)^)) pEC\

Conversely, suppose there is a local homeomorphism, h: (C^, o) —> {C1, o) around
n

o e (y, which is a topological equivalence between co = S X^ .. . ̂  . . . ̂ dz^ and
n i=l

(o^Sx^...^...;^. Let F^^eC1] ^=0} and F^.= {z eC | ̂  = ̂  == o}.

Then Sing(<o) = Sing(co') == .U.F^ and we can assume without loss of generality that

A(F,,)==F,,. Let F,=F,—UF,, . Then F, is a leaf of both co and G)' homeo-\ i] / tj » i ± i "
morphic to R""1 X T71"1. So its holonomy is a linear action of Z""1 in the transverse
section S,=={(i , ..., i, z^ . . .3 i) | ^eC}. By hypothesis the holonomy of F^ is not

n

trivial. On the other hand, the holonomy of a leaf of <o or G)' contained in C" — (J F,

is trivial. So A(F,) = F^ for some ^, and since A(F^) == F,j for i =^=j, then A(FJ == F ,
and A(F,)=F,. The holonomy of F, is generated along the curves y^.: S1-> F^,
Y^(6) == (i, ..., i,^, i, ..., ̂ ne, i, ..., i) and since A(F^.) = F .̂ then

'̂ 3
^([Y,])-^] for alii+j.

For simplicity we assume that A(^) =A where p^ = (i, ..., i, o, i, ..., i), o in
the i-th place. Then h induces by projection along the leaves of co', a germ of a
homeomorphism A,: (S,, o) -> (S,, o) conjugating the holonomies of co and o)'. If
^,^' : S,->2^ are the generators of the holonomies of <o and co' relative to Yy we must
have y^)=exp(-27ri^/X,).^ ^.'(^) = exp(-27r^7\') .^ and h.of^f^h, for
all j + i. By the first part of the theorem we can take \ = \[ == i and Xg == Xg = i.
We show now that \ = ^3, ..., \ = 7^. We write X, = .̂ + y .̂ and Xj = x\ + iy^.
The holonomy of F^ is generated by:

for co: /̂ i) =^.^i. f^i) -e^.e-^.z^ j>_3;

foro': /a^i)-^.^. f/W=^.e-2mx^^ ^3.

We need the following lemma.

Lemma 11. — Let h:C->C, A(i) = i, be a homeomorphism such that for any
(m^y mg) e Z2 and z eC

hW^z)=^^h{z)
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where ^ 4= o =(= (AJ for j = i, 2. TA^

log |^|^ log 1^1
log|^| logl^il

provided that |(JiJ 4= i.

Proo/. — First observe that G == {^m1^ \m^m^e Z} is a subgroup of the multi-
plicative group C—{o}. Therefore either G is discrete or i is an accumulation point
of G. In the first case it is not difficult to see that there exists (m, n) e Z2 — {0} such
that ^m^ == i = ̂ m^, so that

__ m ̂  log|^l ̂  log 1^1
n log |^| log|(J4|'

In the second case there exists a sequence (m^ n^ e Z 2 — { o } such that

^(1^1 +k|)= oo and ^^^=i.

Then A(i) == lim ^(pir^?) == 1™ ^(4^ = i.
fc ->-00 fc ->00

This implies

Hjn^ (m^ log | (AJ + ̂  log | ̂ |) == Hĵ  (^ log | (Jii| + ̂  log | ̂ \) == o

and l^-"^^^10^. .
fc->°° ^ log|(JiJ log|p4|

Since h^of^==f^oh^ taking A = 2, p.i = ^27C, ^=J^35 ^2 — exp(—2^.), we
obtain by the lemma that:

log^-Q _ log(^)
log(^) = log(^) •

So Jj-=J^ for all j^:3.
We use the same argument for Fg. The holonomy of F^ is given by

for o): ^) =.-2".^, g^^e-^.e-2^.^ ^3

for co': ^(^) =.-27^.^ ^2) ==^-2^^-2^.^, ^3.

Since h^o gj,== g^o h^ taking ^ = 2, ^==^-2", and k =j>.3, ^ = exp(— 27rX,),
we obtain

log^-^^log^-2^)
log(.-2") log^-2") •

So A'j === x'j for j^ 3 and this means ^j==\ ' for all j^3. •
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2. Topological determination in three dimensions.

Proposition 5. — Let co be a holomorphic integrable form with a singularity at o e C3 such
that in a neighborhood of o e C3 co is written as

<o == Xi^^i + Xa^fibg + X3^i^^3 + R(^)

wA?r^ lim l^l"2]:^) = o and \^RXj for i ^ p j . Then co is topologically equivalent to
cog ̂ ^(o))^ near o e C3.

Proof. — The proof consists in finding an equivalence between rot <o and rot 0)2
sending leaves of <o to leaves of co^* The vector field rot co is in the Siegel domain,
i.e. the convex hull of the eigenvalues of J1 (rot (0)0 contains oeC. Modulo a holo-
morphic change of coordinates (see [3]) we can assume that the coordinate 2-planes
{z e C3 | ^ == 0} are all invariant by rot co. The integral complex curves of rot co passing
through points z with ^ 4= o for all i, are closed subsets of C3 at a positive distance
from oeC3. The intersection of these integrals with each C^ =={z eC3 [ \z^\ = 1}
gives a real i-foliation with a closed integral y, == {z e C3 | | z^\ = i and z. == o for j 4= i}
which is hyperbolic of saddle type for all i. From this it is clear that the integral of
rot (o passing through a point z e ' B = { z \ 1-2'J^i} leaves as intersection with ^B a
closed curve provided o < | ̂  | < i for i <_ i' <_ 3.

Let S = GI n Cg and So = S n {z \ z^ == o}. It follows from [3] that any homeo-
morphism h: S -> S with A/So = identity can be extended to a topological equivalence
between rot co and rot cog. In our case the foliation induced by co/S is completely
characterized by the holonomy of So, i.e. by a Z^action 93 on C whose linear part is
the Z^action p3 generated by the diffeomorphisms

fi{^) = exp 27ri.1) z^ f^) == expjsTii-2) ^3.
\ ^3; \ ^3/

So it is enough that A be a conjugacy between 93 and p3. Since such an h clearly exists
the proof is finished. •
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