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A COUNTEREXAMPLE TO THE RIGIDITY CONJECTURE
FOR POLYHEDRA

by Robert Gonnelly (1)

1. Introduction.

Are closed surfaces rigid? The conjecture that in fact they al] are rigid—at least
for polyhedra—has been with us a long time. We propose here to give a counter-
example. This is a closed polyhedral surface (topologically a sphere), embedded in
three-space, which flexes. (See Gluck [5] for definitions and some references for the
history of the problem.)

Certain ambiguities arising from definition 10 of the eleventh book of Euclid's
Elements have led many to conjecture the rigidity of closed surfaces. In 1813 Cauchy [2]
proved that strictly convex surfaces were rigid, and this result is the basic tool for many
other rigidity theorems. Recently Gluck [5] has shown that almost all simply connected
closed surfaces are rigid. On the other hand we have shown [3] that there are immersed
surfaces which flex. The ideas in [3] are part of the motivation behind the example
described here.

The first step is to find an example of an immersed flexible sphere that is not only
immersed but has just two singular points in its image. Locally the singular points
look like two dihedral surfaces that intersect at just one point in their edges. The next
step is to alter the polyhedron only in the neighborhood of these singular points in such
a way that the dihedral surfaces flex as before, but one dihedral surface is c < crinkled "
such that near the intersection point it is pushed in. When this is done the resulting
polyhedron still flexes, but the singular points have been erased; no new ones have been
created, so it is embedded.

2.. A flexible octahedron.

The construction of flexible immersed spheres and the crinkle depend on the
flexible octahedra described by Bricard [i] in 1897.

We first describe a flexible octahedron (9^ that lies in a plane TT. As 6\ flexes it
moves out of TT, but we are interested at the instant it is in TT. Of course Q^ in this
description will be highly singular and will not even be immersed.

(1) Supported by an NSF Grant.
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334 R . C O N N E L L Y

Let <j&i,^25^3> be an equilateral triangle in TT. Let it be placed so that the
origin is on the perpendicular bisector of p^p^ on the same side as ^3, outside of the
triangle <A,^2?^3>- Let ?i, ^35 ?3 be the reflections of p ^ p ^ p ^ respectively about
the origin. Then Q^ is determined by then taking the cones from ^3 and ^3 over the
rectangle p^p^q^q^ (See Figure i.)

Fig. I

It is easy to verify that 6^ is flexible (see Connelly [3], § 4, p. 969). It belongs to
the first type discovered by Bricard.

It is easy to check that the disk determined by the cone from ^3 over the quadri-
lateral j&i, ̂ 3, yi, q^ flexes. A simple calculation then shows that the line L through the
midpoints of <j&i, q^ and (p^, q^ is perpendicular to <j&i, q^> and <^p^, ^>, since
the quadrilateral has opposite sides equal. Thus if p^ is reflected through L to ^3 as
the ps disk is flexed, the quadrilateral is reflected into itself, and thus we get a flex of
the whole octahedron.

3. The immersion.

Proposition 1. — There is a flexible immersed surface^ y^ in three-space such that the image
of the singular set is a finite number of points (two in fact). In addition these points occur in the
interior of 1-simplices of y.

Remark. — The above is a variation of [3], and the explicit nature of the proof
below is a somewhat easier version.

Proof. — Note that Q^ constructed in section 2 is topologically two disks mapped
on top of each other into the rectangle p^y p^ q^ q^. Each disk is made up of four
triangles, the cone from ^3 or ^3 over each edge of the rectangle.
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A COUNTEREXAMPLE TO THE RIGIDITY CONJECTURE FOR POLYHEDRA 335

Now consider n as being in 3-space, and we shall describe e$ ,̂ which will be immersed
and have only 2 singular points in its image. For the p^ disk say, let <^,j^, z ) ==a be
one of its triangles. Find some point r(c), lying on one side of7r, lying over the interior
of cr. Replace the triangle (2-simplex) a with the cone from r(cr) over the boundary
of (T. Do this for each of the 4 triangles of the p^ disk where r(<r) each time is on the
same side of TT. Next, do the same for the ^3 disk but choosing the cone points on the
other side of TT. It is easy to see that the resulting surface y is then immersed with
only two singular points in its image. These are the points {^i}=<j&35 ^2) ̂ ^ Pi)
and {^}==<A^?i>^<?3^2>-

y flexes because (9^ does. Each of the cones over the boundary of a triangle is
flexed rigidly. This finishes the proof.

Remarks. — i) As y flexes the image of the singular set changes from two points
to one circle, but this does not bother us.

2) It is easy to see that by subdividing y it can be arbitrarily closely approximated
by embeddings, but what is not immediate is that any of these approximations will
be flexible.

3) There is no way the technique described above (and used more generically in [3])
can be made to yield an embedding. It turns out that for any of the Bricard flexible
octahedra, if the i-skeleton is embedded, the boundaries of some pair of 2-simplices
(triangles) topologically link. So there is no way to fill in the holes to get an embedding.

The following is a picture of the local character of a singular point x,

Fig. 2

4. Another flexible octahedron.

Here we describe a special case of the second type of flexible octahedra as defined
by Bricard. Let TT again be a plane in 3-space. Let C be a circle about the origin with
two points p^ and ps on it. Let p^ and p^ also be on C such that the directed arc on G
from j&i to p^ has the same angle as the directed arc from p^ to p^. Note that p^ can be
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336 R . C O N N E L L Y

chosen as close to p^ as desired. Let N, S be two points on the line perpendicular
to TT through the origin (the center of G) equidistant from TC on opposite sides. The
octahedron Q^ obtained by coning the self-intersecting quadrilateral ^1,^3, p ^ p ^ from N
and S is flexible. (See Gonnelly [3], p. 969, § 3.) It retains a symmetry about a plane
during its flex. (See Figure 3.)

Kg- 3

5. The crinkle.

Here we regard a dihedral surface as the union of two half-planes that meet along
their common edge.

Proposition 2. — Let D be a dihedral surface and x a point on its edge. Let U be any neigh-
borhood of x in 3-space R3. Then there is an embedded flexible polyhedral surface K (the crinkle)
that agrees with D outside U, extends the natural flexing ofD, and misses any predetermined set F,
closed in R3, F—{x}Cone complementary domain of R3—D.

Note. — The natural flexing referred to above means the flex obtained by keeping
the dihedral surface as a dihedral surface and simply changing the dihedral angle which
is not 180°.

In our application F is another dihedral surface meeting D at x.

Proof of Proposition 2. — Let TT be a plane bisecting the two half planes of D. Let H
be the half plane of TU that D projects onto by orthogonal projection. (We assume D
is not bent at i8o°.) Choose p^ and p^ on either side of x close to x along the edge E.
Choose 0 in H along the perpendicular bisector of ^1,^3 close to E. Let N, S be the
points on D that project onto 0. If 0 is close to E, then N, S, are also in U. Next
consider the circle G in n with center at 0 through p^ and p^. Choose p^ on C outside H
and close to j^, and let p^ be as before. Choose p^ on G, inside H, so that the length
of <Pl,P2> is the same as <^3?^4>-

As in Section 4, N, S, j^, p^ ^3, p^ determine a flexible octahedron. However,
we shall define a slightly different surface. Let

Z=(E-<^,j&3»u<^,^>u<^,^>u<^,^>.
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Let the image of K be (D-({N, S}* <A,A») u ({N, S}* Z) (A*B denotes the join
of A and B, the set of all line segments from A to B).

Clearly K flexes as D does on the overlap, since p^ and p^ need only be kept at a
fixed distance, and D takes the place of <A,A> in ^2. Since topologically Z is an
embedded line, the suspension (the join from N and S) will be embedded also. So K
is embedded.

If F—{x} is not on the same side of D as H, then slide K over until x is near ^3.
If^is close to^, Kwill miss F. If F—{A:} is on the same side asH, slide Kover untile
is near x and K will miss F again. Clearly all the above alterations to D can be done
close enough to x so that K will agree with D outside U. This completes the proof.

6. The example.

Theorem. — There is a flexible embedded surface.

Proof. — Let y be a surface as in the conclusion of Proposition i. I.e. e97 has only
a finite number of points x^ ..., ̂  as the image of a singular set, and locally near
each x^y looks like two dihedral surfaces meeting at one point as in Figure 2. We
apply Proposition 2 n times at these points, where U, is some small neighborhood at x.
in the complement of the simplices that miss x^ F, is one dihedral surface near x^ and
D = D, is the other. The final crinkled surface is embedded and flexes as y does. Done.

Remark. — It is easy to check that both (9^ and 0^ define(c o 5? volume (see Gonnelly [4]
for the notion of generalized volume and the proof that flexible suspensions have o
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generalized volume). Thus y and the crinkled y in the final example both have
constant volume (>o) as they flex. In other words if one were to pour water into the
interior of one of these examples it would still flex. It still is an open question as to
whether all such flexible surfaces (embedded or not) preserve (generalized) volume.

In higher dimensions the question of whether there is a closed polyhedral n—i
dimensional surface which is flexible in %-space is still unknown for n ̂  4.

N. H. Kuiper also has pointed out that the problem of the existence of flexing
C^isometrically embedded 2-spheres or other surfaces in 3-space remains open.
Recall, however, that in the category of C^isometric embeddings, the flexibility seems
about as large as the differentiable (non-isometric) flexibility by the work of Kuiper [6]
following Nash.

The author thanks the Institute des Hautes Etudes Scientifiques and Dennis Sullivan
very much for their steadfast support and encouragement while he was working on this
and related problems. It is greatly appreciated.
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