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GENERIC ONE-PARAMETER FAMILIES OF VECTOR FIELDS
ON TWO-DIMENSIONAL MANIFOLDS

by J. SOTOMAYOR

INTRODUCTION

In this paper we present a study on the theory of the topological variation of the
phase space of one-parameter families of vector fields (differential equations, flows).
This theory, also called bifurcation theory, has been developed since H. Poincare from
several points of view; see, for example, [i, 2, 3, 4]. Here, we will be mainly interested
in a collection of one-parameter families of vector fields which has the following properties:
a) it is large with respect to all the families, and b) its elements exhibit a topological
variation which is amenable to simple description.

Collections with properties a) and b) are currently called <( generic 5'; they were
introduced in the global qualitative analysis of differential equations by M. Peixoto [7],
S. Smale [9] and I. Kupka [12]. See S. Smale [10] for a thorough survey on this topic.

In this work we restrict ourselves to the case of two-dimensional compact manifolds,
where a very complete characterization of the set S of structurally stable vector fields
has been given by M. Peixoto [8]. The way S is imbedded in the space 3£ of all vector
fields and the study of <( generic 9? one-parameter families of vector fields are closely
related. A vector field is structurally stable if its phase space does not change topologically
under small perturbations; a one-parameter family of vector fields exhibits the simpler
phase space topological variation the larger the intersection it has with S, or equivalently,
the smaller the intersection it has with its complement X—S.

In this paper, in Part I, we define a set S^, densely contained in 3£—S. We
prove that S^ is an immersed Banach submanifold of codimension one in the Banach
manifold X. Also, we describe the variation of the phase space of vector fields in a
neighborhood of Sr In Part II, we prove that the <c generic " one-parameter families
of vector fields meet S^ transversally at points where they are not vector fields of Kupka-
Smale [12, 11]. See Theorems i (5, Part I) and 2(1, Part II) for a precise and complete
statement of these results.

Whether or not S^ coincides with the (< regular (differentiable, or even Holder)
part " of codimension one of X—S immersed in 3£, remains an important non-trivial
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problem, related to delicate questions of " closing lemma " type [8, 20], involving the
innermost structure of recurent trajectories.

The conception of the submanifold S^ was motivated by [14], where we treated
the concept of first order structural stability, introduced by Andronov and Leontovich [13].
Part I extends the results of [14].

In section 6 of Part I we comment on first order structural stability and relate it
to Sr In section 3 of Part II we define the concept of structural stability for parametrized
families of vector fields and formulate some related conjectures.

In a forthcoming paper some of the methods, results and concepts of the present
paper are pursued to manifolds of higher dimension.

The main results of this work answer questions raised by M. Peixoto. We are most
grateful to him, to S. Smale and to I. Kupka for fruitful conversations and manifold aid.

An announcement of the results in this work appeared in BAMS.y 19683 Vol. 74, No. 4.
Pictures and references appear at the end of the paper.



I. — THE SUBMANIFOLD T,[

i. Preliminaries

Let X be a Banach manifold of class G" defined as in [15, p. i6], i.e., X is locally
homeomorphic to an open set of some Banach space, the changes of coordinates being
G00 functions. °

Definition (1.1). - A subset ScX is said to be an imbedded Banach sub-
manifold of class G' and codimension k of X if every peS has a neighborhood N where
a C'-function /: N-^R* is defined so that:
a ) Wp '• Xp-^'R", the derivative of/ at p, is onto and
bjf-^^nS.

Definition (1.2). — ScX is said to be an immersed Banach submanifold of class 0s

and codimension k of^ if there is a sequence {SJ, ,=i, 2, ..., of imbedded Banach

submanifolds of class C8 and codimension k of X such that S,cS.+, and S==.U S..

It follows from the Implicit Function Theorem [15, p. 15] that a submanifold S,
as denned in (i. i), has an atlas of class G' which makes the inclusion S-^C an imbedding
in the usual sense [15, p. 20]. Also, ifS is an immersed submanifold in the sense of (i 2)
the union of the atlases of S, defines on S an atlas, which makes it a manifold and makes
the inclusion S-^X a one-to-one immersion in the usual sense [15, p. 19]. In this work
the Banach submanifolds will be defined through ( 1 . 1 ) and (1.2).

Let M2 be a compact two-dimensional G" differentiable manifold Denote by r
the space of tangent vector fields of class G- defined on M2, endowed with the CT-topology
3£ is a Banach manifold in the sense of [15]; its atlas is given by the collection of identity
mappings ofr Banached by the G'-norms associated to finite coverings ofM2 by compact
coordinate neighborhoods.

If Xer, fc : M^R^M2 will denote the flow generated by X; <px is charac-

terized by ^P,t)=X^(p,t)), (A^eM^R and ^(p,o)=p. ^{p, ) : R^M2

is the orbit ofX passing through p; the image of an orbit, oriented but with no distin-
guished parametrization, is a trajectory of X.

Definition (1.3). — X and Ye^ are said to be fopologically equivalent if there is a
homeomorphism of M2 onto itself mapping trajectories of X onto trajectories of Y. If
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X has a neighborhood N in 3T such that X is topologically equivalent to every YeN,
then it is called structurally stable.

The set of structurally stable vector fields will be denoted by 27; its complement
in 3P" will be denoted by 3Q. It has been shown by M. Peixoto [8] that 27 coincides
with the collection of vector fields X such that

a) X has all its singular points and periodic trajectories generic;
b) X does not have saddle connections; and
c ) the a and co-limit sets of every trajectory of X are singular points or periodic

trajectories.

The collection of vector fields X satisfying a) and b) have been studied by
1. Kupka [12] and S. Smale [i i] in a more general context; it will be denoted by [K-Sy.

For future reference we recall some definitions of [5].

Definition (1.4). — a) A trajectory ofX is called ordinary if it has a neighborhood N
r\

in M2 such that X | N is topologically equivalent to the horizontal field — in R2. A
^x!

connected component of the (open) set of ordinary trajectories of X is called a canonical
region of X.

b) A critical region of X is a neighborhood Nofa generic critical element (i.e. singular
point or periodic trajectory ofX) 8x5 sucn ^at for Y close to X, Y has only one critical
element 8y in N and Sy is generic and of the same type of 8. See [5, p. 144].

2. Periodic trajectories

Since the evaluation map (X,^)l->X(^) is of class G^ on ^xM2 [16, p. 25],
it follows from [15, p. 94], taking X as parameter, that <p : ̂ xM^xR—^M2 defined
by {x,p, ^)->9x(A ^) ls of class G^

Preliminary definitions (2.1). — Let U and S be G00 arcs transversal to Xe^T;
i.e., U==M(I), S=^(I), where u, s are G°° imbeddings of I==[—i, i] into M2 such
that u1 {x) and X(^(A:)), (resp. s ' { x ) and X(^(^))) are linearly independent. Assume that
u(o)==p^ s(o}==q and PxO^^^?* ^Jet (^15^2) be a system of coordinates around q'y

a
assume that x-^{q)==x^{q)==-o, —=X, x^os==ld, and x^os=o. By continuity, x^(^{u,t))

8x^
is defined in a neighborhood of (X,j&, T)e3C'xUxR; also, ^i(<px(A ^))==o and:

a
. -^lOpxG^))-1-

By the Implicit Function Theorem, there is a unique function T :BoXUo-^R such
that T(X,^)==T and x^{u, t))==o for (Y.^)eBoXUo only if t==T(^,u). Define
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TC : BoXUo^-S by 7c(Y, u)==^{u^ T(U, u))', thus, n as well as nY==n(Y, ) : VQ->S
are of class G^ If y is a periodic trajectory of period T of Xey, j^ == ^ey? an<^ U = S,
^x : Uo->U is called the Poincare transformation associated to Uo, U, j^, y. y is called
generic if | ^x( o ) l+ I 5 i^ ^xC0) == I ^d ^C^+o, or if 7^(0) =--i and (^^(o) =t=o,
Y is called quasi-generic. The derivatives of n^ are computed in ^-coordinates of U. It
is easy to verify that the above definitions do not depend either on u or j^sy- Also,
Y is two sided (i.e. has a trivial normal bundle) if and only if 7Tx(o)>o.

Proposition (2.2). — Denote by Q^ the set of vector fields Xe^, r^3 such that:

1) X has one quasi-generic periodic trajectory as unique non-generic periodic trajectory.
2) X has only generic singular points and does not have saddle connections,
3) The a and u-limit sets of any trajectory of X are singular points or periodic trajectories.

Then., Q^ is an immersed Banach submanifold of class Gr~l and codimension one of X7';
furthermore, every XeQ^ has a neighborhood B^ in Q^ so that every YeB^ is topologically
equivalent to X.

For the sake of reference, the concepts of generic singular points and saddle
connection involved in the statement of (2.2), are reviewed in (3.1) and (3.4). The
proof of (2.2) depends on several lemmas.

Lemma (2.3). — Let y be a quasi-generic periodic trajectory ofVi. Then y has a fundamental
system of closed neighborhoods {N^}, where © is a small real number. If y is one-sided (resp.
two-sided) ^N© is a closed curve (resp. the union of two closed curves) transversal to X.

Proof. — If y is two sided, it has a tubular neighborhood diffeomorphic to a plane
annulus N. Therefore X may be assumed to be a (plane) vector field on N. The
conditions Tr^0)"^? 7T^)(o)=t:::o imply that y is orbitally semi-stable, i.e. y is the a-limit
set of the trajectories on one of its sides and the co-limit set of trajectories on the other
side. By properly rotating X in N by a angle ©, two periodic trajectories of the rotated
vector field are obtained. These trajectories are obviously transversal to X and bound
a neighborhood N@ of y« This follows from [i, p. 18].

Ify is one sided, it has a tubular neighborhood diffeomorphic to a Moebius band N,
/N>> f>^

with orientable double covering P :N->N, where N is a plane ring. Gall y and X
the liftings ofy and X; y as well as^ are orbitally stable or unstable depending on (^^^(o)
being negative or positive. In either case, by rotating X of an angle 0, a periodic tra-
jectory of the rotated vector field is obtained [i]. This trajectory and ̂  bound an open

set NQ. The N© ==Int(P(NQ)) give the desired system of neighborhoods. ^N© is trans-
versal to X by construction.

Lemma (2.4).—Let XeX^ ^2, have a quasi-generic periodic trajectory^ of'period r(X)
such that 7T;x(o)==i and 7^(0) =)=o.
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Let s and To be given positive numbers. Then there are neighborhoods B ofK. and N of yx?
aW ^ Cr~l function y:B->R J^A ^^

1) ^N ^ union of two closed curves C^ and Gg, transversal to every YeB.
2) YeB has one periodic trajectory which is quasi-generic, contained in N if and only if /(Y) =o;

if /(Y) <o, Y has two periodic trajectories, both generic, contained in N; if /(Y) >o, Y has
no periodic trajectory in N. Furthermore, /(X)==o and rf/x+o.

3) The period of any periodic trajectory of YeB contained in N is within e of r(X). ^4^o,
every trajectory of YeB meeting N jj&^<fe ^r^ <z ^m^ greater than To.

Proo/. — Define Gi:BoXUo->R by Gi(Y, z/)=7r(Y, ^)—^, where TT, Bo and UQ
O/"^ r\2 ̂ 1

are defined in (2.1). ——1 (X, o) =7Tx(o)— i =o and ——-L (X, o) ̂ ^(o) +o; therefore,cu Su
by the Implicit Function Theorem, there is a neighborhood B of X, BcBo, and a

f\/-^
unique (J "function Gg :B->UcUo such that G2(X)==o and ——^(Y, ^)=7Ty(z/)—i==o
for YeB, only if ^==Ga(Y). ^

For definiteness assume 7^^)(o)>o; the case TC^(o)<o is similar. By continuity,
f2.r^

it is possible to assume that B and Ui satisfy —^(Y, ^)>o, for (Y, ^)eBxUi, and
Gi(Y,^)>o, for ^eBUi. a^

Furthermore, Ui may be taken so that U\==UonN where N=NQ (see (2.3))
for some small ©; B may be taken so that every YeB is transversal to ^N.

Define /(Y)=Gi(Y, Ga(Y)); from the construction above, it follows that/(Y)
is the minimum of ^(u)—u, ueU-^'y also, TCY(A:)<I for A:<Gg(Y) and n^{x)>i for
^>Ga(Y). Thus, Try has one fixed point, G^Y), only if /(Y)=o; if /(Y)>o, it has
no fixed point; if V(Y)<o, by the Intermediate Value Theorem, it has two fixed points,
both generic, one on each side of G^Y).

Obviously /(X)=o$ we prove that df^o.

fe(V)^(X,o)^(X,o)^(X)-^(X)

(?TC ^7T

^av^'0^' smce 'su^0^1'
r\

For V=^— , where (A:i, x^) is the coordinate system in (2.1) and g is a bump function
^2 g

with support in |A:J<8, <^(V)= <?(^i5 o)dx^o. In fact,
J — 8

8n d d
^(X,o)=^7r(X+XV,o)|^o=^^x(PW)lx=o=P'(o),

dx
where [3(X) is the solution of -r^ ==^-g{x^, x^) passing through x^=—8, ^2=0; the

dx-^
expression for fi^x(V) === (3'(o) follows from a known formula for the derivative of solutions
of differential equations depending on parameters [15, p. 94].

10
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^jj c

/(Y)<o /W=o /(Y)>o

FIG. 2 . 1 . — Quasi generic periodic orbit

This proves (i) and (2), since the fixed points of Try and the periodic trajectories
ofY contained in N are in one-to-one correspondence; (3) is immediate by continuity,
since it is satisfied for Y==X. See Fig. (2.1) for a graphical illustration.

Remarks (2.4.1). — a) Assume YeB points inward (resp. outward) N on G^
(resp. Cy. Thus for f(Y)>o when Y has no periodic trajectory, (py defines a (T-mapping
oy : Ci-^Gg; (3) implies that the arc of trajectory of Y joining m to Sy^), meC-^, spends
in N a time greater than To. See Fig. (2.1).

b) If f(V)<_o, the o) (resp. a)-limit set of every trajectory ofY passing through C^
(resp. Cy, is a periodic trajectory ofY contained in N. This is obvious by the Poincare-
Bendixon Theorem.

c ) If M2 is endowed with a Riemannian metric and LQ>O is given, B of (2.4)
may be taken so that the length of every arc of trajectory ofY, /(Y) >o joining m to Sy(m),
meGi, is greater than L.o. This is obvious since the length of Y(j&) is bounded away
from zero in N, say greater than K>o, and the length of the trajectory is greater
than ToK.

Lemma (2.5). — Call Q^^n) the set of XeQ^ (notation of (2 .2)3 (2.3)) such that
its quasi-generic periodic trajectory^ yx? ls two-sided and has period T(X)<^.

Q^(?z) is an imbedded Banach submanifold of class G'~1 and codimension one of 3P\ Also,
every XeQ^^) has a neighborhood B^ in Q^^(n) such that every YeB^ is topologically equi-
valent to X.

Proof. — Assume the notation in (2.4). Take £<TZ-—T(X) and TQ>H. Call M^
the manifold with boundary M^—Int N. For YeX', call Yi=Y|Mt. Xi is trans-
versal to ^M^===^N, has only generic periodic trajectories, and satisfies conditions (2)
and (3) of (2.2). Since these conditions are open and characterize 27 in M^, B may
be taken so that Y^, YeB, is topologically equivalent to Xi; denote by Ai(Y) the homo-
morphism of M^ onto itself mapping trajectories of Xi onto those of Y^; ^i(Y) can be
arbitrarily close to the identity of M^ by properly reducing B. The above assertions
follow from [5, 8].

Thus if y(Y)<o, from (2.4) and the characterization of 27 it follows that Ye27.

11



12 J. S O T O M A Y O R

If /(Y)>o every periodic trajectory ofY (if any) which meets N has, by (2.4), period
greater than T^n. Therefore, /-'(o^BnQ^). If YeBnQ^)=Bi, Ai(Y) can
be extended to M2, mapping trajectories of X onto trajectories of Y.

This is done below, following [5, p. 153]. Call AeG,, i==i, 2, the points of
intersection of BN and U. Call pi=h^(Y){p,); let U be a C1 arc close to U joining p^
to j?2. U is transversal to ^N and Y, for Y close to X, since then p^ is close to p^.

To extend Ai(Y) to A(Y) defined in Int N, map the trajectory ofX through noeC^
(resp. €3) onto the trajectory ofY through T^ ̂ i00 (^o) in the following way. 9x(^o? f)
and <py(%o? ^) meet, for t>o (resp. ^<o), Int U and Int U respectively in monotonic
sequences n, and ^, z=i , 2, . .., tending respectively to j^yx^U and /p=^c\V.

Map the arc ^^,+1 (resp. ^_i^) onto %%+i (resp. ^-1% by ratio of arc length, i.e., n is
^ ^~^k r^i "̂"̂

mapped to ^ if |^|/[ W+J = | ^|/|^%+i| where the bars indicate arc length of the
corresponding arc, measured in the positive sense from the left extreme of the arc. Finally,

r> ^
map ^=pq onto ^=={!q' by ratio of arc length. Since every point of N belongs to
one trajectory, A(Y) is a one-to-one mapping of N onto itself, sending trajectories of X
onto those ofY. A(Y) is a homeomorphism; it is continuous outside of yx by standard
continuity of trajectories on initial data, it is continuous on yx as m [5? P- 153} by a
lemma in [5, p. 153] (this lemma will be used several times in this work, for the sake
of reference it is stated in (3.9.1 b)). This ends the proof of (2.5).

Lemma (2 .6) .—Let Xe^, ^3, have a quasi-generic periodic trajectory ̂  of period ̂ {^)
such that 74(0)==—-i and (^^(o) 4=0. Then, given s>o, there are neighborhoods B o/X
and N q/'Yx an(^ a (^r~l function f : B->R such that:

1) 8'N is a curve transversal to every YeB.
2) YeB has one periodic trajectory, which is quasi-generic and one-sided, contained in N

if and only if /(Y) =0$ if /(Y)>o, Y has two periodic trajectories both generic, only one being
one-sided, contained in N; if f(Y)<o, YeB has one one-sided periodic trajectory, which is generic,
contained in N. Furthermore, /(X)=o and rf/x+o.

3) Aperiodic trajectory of YeB contained in N has period within s O/T(X) if it is one-sided,
and within s of 2r(X) if it is two-sided.

Proof. — Assume that (^^(o^o; the case (rcD^o^o is similar. Let
GI : BoXUo-^R be defined, as in (2.4), by Gi(Y, u)=n(Y, u)-u. Gi(X, o)==o and
r\r^

——^(X, o)=7Tx(o)—i=—2. Therefore, by the Implicit Function Theorem, there is a
Su

neighborhood B of X, Be Bo, and a G' function k :B-^U^cUo such that A(X)=o
and Gi(Y, ^(Y))=-n:Y(A(Y))—^(Y)=o, for YeB. Thus k(Y) is the unique fixed point
of Try contained in U\.

By continuity, B and U"i can be taken so that n[u)<o and (^^(Y^o for
YeB and ueU^, and 7T;^(Ui)cUi. The last choice of U\ is possible since TTx^—i

12
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implies (^^(c^^o, and TT^ and n^ are (topologically) contractions since ['Tce^)(3){o)<o,
Ui can be taken so that Ui==NnUo, where N=NQ for some small © (see (2.3)).

Define /(Y)=-n;y(A(Y))+i. If /(Y)^:o, ^y and ^y have A(Y) as unique fixed
point; k(Y) is a generic fixed point of Try only if /(X)>o. If y(Y)<o, TT^ has three
fixed points: k{Y), ^i(X) and ^(^O^^Y^lOO)? a^ generic. The negation of any of
these assertions is not compatible with (TT^)^<O.

For Ver, <//x(V)- ̂ (X, o)+^(V) .^(V). Let V=^,^)^ where

(A:I, x^) is the coordinate system of (2. i) and g is a bump function with support |^|^8.
A straightforward computation similar to that in (2.4) shows that rf^xC^)=:o and:

^TT r 8
^^(X,o)=-J_^, 0)^+0.

Thus rffx(V)+°-
The last assertion of (2.6) is immediate, by continuity of T defined in (2.1).

Lemma (2.7). — Call Q^^(n) ^le se^ °f X^Q^ (Prop. (2.2)) such that its quasi-generic
periodic trajectory, YX? ls one-sided, with period T(X)^^.

Q^2 (n) is an imbedded Banach submanlfold of class G^1 and codimension one of 3P'.
Furthermore^ Q^(^) is open in X[ and every 7LeQ^^{n) has a neighborhood B^ in Q^,^(n)

such that every YeB^ is topologically equivalent to X.
Proof. — Similar to the proof of (2.5), using (2.6) in this case. The construction

of the topological equivalence is formally that of (2.5), but in the present case £N=G
and the trajectory through n^eG meets Int U in a sequence {^J such that {^J ls

decreasing and {^4-1} is increasing, both converging monotonically to p === y^ n U. The

same holds forY, jF(Y)==o, and its corresponding sequence {5?j in U; the map of/Zg^g^i

onto %2»^2t+i ^d Tx onto TY by ratio of arc length produces the desired topological
equivalence in N. The openness of Q^^(n) follows from the fact that every Y close to X,

y(Y)=)=o, is in 27, since Y is so in M^ and N, N being an attractive region (sink).
Proof of Proposition (2.2).—Take S^Q^^uQ^) for z = = i , 2, . . . ; by (2.4)

Remark a)., (2.5), and (2.7), Ŝ - is an imbedded submanifold of class G^'"1 and codimension
00

one of y. Since Q^^.US^, (2 .2) follows (see (1.2)).

Remarks (2.8). — a) Since each Q^) is open in 3^, Q^(o)= U Q^) is an
imbedded submanifold of class G^1 and codimension one of 3T, open in 3£.

b) Gall Q^2 the subset of Q^, of fields X which satisfy the additional following
axiom:

4) The quasi-generic periodic trajectory of X is not both a and o-limit set of
either saddle separatrices or of any trajectory different from itself.

13
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Obviously,
0.2(0)00.2.

Proposition (2.2) holds for Q^, changing immersed by imbedded. Furthermore, (̂  ^
open in 3£^.

This follows from the openness of each C[g (n)= 0,2° Q^)? a^d the openness
°f 0.2 (°)- I11 fact, if XeQ^) and yx is? ^Y? the <^-limit set of saddle separatrices,
which a fortiori meet C^, then all the trajectories through Cg have the same 6)-limit
set, a generic singular point or periodic trajectory L^ contained in a critical region N1,
with BN1 transversal to X (see [5], or (1.4) for the definition of critical region). We
can assume in this case that Gg is part of ^N1. Therefore, when /(Y)>o, Sy : Ci-^Cg
is defined and Ly, the generic singular point or periodic trajectory of Y in N1, is the
co-limit set of all trajectories through NuN^N^, which works as a critical region
for Ly. Thus, since Y is in 27, in M2—!^ N2 (X is so), it is in 27 in M2; the decom-
position ofM2 in critical and canonical regions ofY is the same as that for Y in M^—Int N2

plus the critical region N2.
When/(Y)<o, Ye27, also when X(=Q^(%). This follows from a similar analysis

using N^N and taking into account (2.4) and Remark b) in (2.4.1). This shows
that BnX^BnQ^^^/'^o); hence the assertion above is proved.

c ) Ifyx is both the a and co-limit of saddle separatrices it can be shown that there
is Y, /(Y)>o, arbitrarily close to X, which has saddle connections meeting N which,
by Remark c ) after (2.4) have length arbitrarily large.

d ) If there is a trajectory T] of X which has y^ as a ^d ^-limit set, either all
trajectories of X have this property and M2 ==T2 or K2, or X has saddle separatrices
which have yx as a ̂ d co-limit set. This is shown by looking at the canonical region R
ofX which contains T); R is either a cylinder with boundary C^uGg where the flow
is parallel, or is a region bounded by arcs of G^ and Gg and saddle separatrices meeting
GI and Gg.

In the first case, it can be shown that there is Y, /(Y)>o, arbitrarily close to X,
which has non-generic periodic trajectories meeting N. When M^T2, Y can be
found with irrational rotation number, thus exhibiting recurrent orbits dense in T2.
This is shown by considering the rotation number py ofY relative to Cg, which is defined
when/(Y)>o, and showing that ^y—^co when Y->X, thus passing through irrational
values and also through rational values for Y at the boundary of 27, and the assertion
follows for M?=T2. For M^K2, the assertion, left as an open question in [14],
has a more delicate proof communicated to us by I. Kupka (unpublished work).

e ) We summarize d ) . ^= 0,2— 0,2 is ^^ in 0.2 and- ^s intrinsic topology
is finer (has more open sets) than its ambient topology.

The fact that for XeQ^ and s>o small /-^(—s, o)) c27, while/-^(o, s))
is not completely contained in 27, can be expressed by asserting that 27 u ̂  is a submani-
fold of 3T with boundary (^.

14
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3. Singular Points.

Preliminary Definitions (3.1). — [V, X] stands for the Lie bracket of V and X.
Let peM2 be a singular point of Xe3C', r^i. For any Ve^T, [V,X]Q&) depends
only on V{p), as follows from a straightforward computation taking into account that
X(^) = o. Thus, it is possible to define an endomorphism DXp of the tangent space Tp
ofJVPat^; DX^)==[V,X](^), where V{p)==v. The determinant-and trace of DXy
will be denoted respectively by A(X,j&) and (?(X,j&).

A singular point p ofX is called simple ifDXp is an isomorphism, i.e. if A(X,j&) 4=0.
It is called generic ifDXy has eigenvalues with nonvanishing real parts. If the eigenvalues
are real and have opposite sign, p is called a saddle; if they have equal sign, p is called
a node. If the eigenvalues of DXy are complex conjugate, p is called a yoc^.

Assume r^2. Call X^ and Xg the eigenvalues of DXy. Let Xi==o and Xg+o.
Denote by T^ and Tg the eigenspaces ofDXp, associated respectively to \ and Xg. Call
TT^ : T»,->Ti the projection of T onto T^ parallel to Tg. For veT^y y=t=o, define
Ai(X,j&, v) by T^[V, [V, X]](^)==Ai(X,j&, v)v, where Ve^ is an extension of y.

Ai(X,j^, y) does not depend on V, as it is easy to show. Also,

Ai(X,A^)-^(X,jM),
for any k 4= o. If Ai(X, p, v) 4= o for some (and for all) v 4= o, p is called a saddle-node ofX.

Assume the notation above. Denote by u the covector on Tp such that n-^=vu'y
denote by X% y1 and u^ respectively, the components of X, v and u, with respect to a
system of coordinates, (A:i, A^), around^?. Then:

o2vz

A^(X,A .)=4V, [V, X]](^=2—_Q))^.
^j,fc (7X.d^

In particular, A^ does not depend on V. This follows from a straightforward
computation.

Lemma (3.2). — Let p be a saddle-node of Xe3C', r^2. Then there is a neighborhood B
o/X, a neighborhood N of p, and a Cr~l function f: B->R such that:

1) YeB has a saddle-node as unique singular point in N if and only if y(Y)=o; if
y(Y)<o, Y has two singular points, both generic, one saddle and one node, in N; if ̂ (Y)>o,
Y has no singular point in N. See Fig. (3.1).

2) /(X)==o and df^o.

Proof. — Let (^, x^) be a system of coordinates around p; assume that:
^i{P)=^{p)=o

r\

and —(^)^T^ (notation of (3.1)). In these coordinates the components of X, X1

i ^X1 ^X1 ^X2

and X2, satisfy —— (o, o)=—— (o, o)=o, —— (o, o)=cr(X,^), and:
€X^ CX^ €X^

^'(.,o)»A,(x,A^w).

^J
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/(Y)<o

In other terms:

(3-2.1)

where:

/(Y)>o

J. S O T O M A Y O R

Si (Y)Si (Y)

u(Y)

S2(Y)

u(Y)

FIG. 3.1. — Saddle-node

X1^, x^) = ̂ x[ + bx^ + cxi + M\x^, x^)

X2^, x^)=(jx^ + ax2 + (̂ 2 + Y^j + M2^, Xg),

•M^{x„x,)=o{x2,+xl).

Assume for definiteness that (r(X, p) <o and Ai X, p,— {p) >o. Let No and Bo
\ ^i /

r\

be neighborhoods ofj^ and X such that for Y==SY'—eB; the following relations are
verified in No. ^

B Y 2 .
a) ^<0;

a2^ /aY2\-l aY2
6J Ai (Y,yy)= S — — — 4 4 ^ Y > 0 ; ^re, y^^ 4== —

i, J, fc <7A:. (7^ ax, BXi

^Y2\-2 8Y2 aW
"1= i+ ^0^; ^ a^a;
finally,

aY*
^ °(Y)=2:^<0•

>o, and uj=-
aY1 / aY2\-l / / aY2\-2 / m\-1

I+8x^ \ 8x^ i 8x. a^,

The existence of the neighborhoods No and Bo for which the above relations
are satisfied follows from continuity, since they are satisfied for X at p.

n n / av2\ — i ayi
Take Vy=^v\r—, Wy==TiW^—, and u^ ="Lu] dx^. Here ^= —— ——,

Y i 8X, i QX, i ' ' \^] 8X^

2^4 == i. If ^eNo is a singular point ofY and A(Y, ^)=o, then v^{q) is an eigenvector
associated to the zero eigenvalue ofDY^; Wy is an eigenvector associated to d(Y, ?)==t=o$
also, ^(q) is the covector in (3.1) {^^=1, u^^w^^o). These assertions follow
from a straightforward computation. Thus, by b) and c ) , any non-generic singular

16
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noTo'ff0 ofYeBO issuchthat CT(Y^<0 and W^)>^ i.e.. is a saddle-

Define F:BoXN^R by F(Y;^, x,)=Y2^, .,). F is of class C-since it is

an evaluation map [.6]; also, F(X;o,o)=o and ^(X;o, o)=^(o, o)=.(X,^)<o.

By the Implicit Function Theorem, there are neighborhoods B,x2!, of (X o) and I
of o and a unique C- function F, : B.xÎ L, such that: / 2

F,(X, o) =o and F(Y; x,, x,) =y2{x„ x,) =o

for (Y,^)eBi and x,el, only if x,=-F,(Y,x^). Define:

F^B^xI^R by F,{y,x,)=yl(x„•F,(x„y)).
A straight forward computation shows that:

yp
e ) -^=("lY)-lA,(Y,^)>o.

Since ̂  is of class G- ^(X,o)=o, and ^(X,o)+o, there is a neigh-

borhood B of X, BcB, and a unique C- function F; : B Î, such that F(X)=o

and ~8xi,(Y)xl)=o fbr YeB' ^i61 ^yif ^i=F3(Y). This foUows from the Implicit
Function Theorem.

definite F^3^ by/(Y)=F2(Y'F3W)=Yl(F3(Y)^.(Y,F3(Y))). From the
defimtionofF .-i 2,3, YeB has a singular point (^,^)eN=I,xI, if and only
if^=F(Y,^and F,=(Y,^)=o. Since A,>o and .<o, d) and .; imply tlj
J(Y) is the minimum of F,(Y, x,} x-,el Thus if/•CV'i'^n v k • i
in N-if ^m-n vi, ,̂ '' ' •/(Y)>0' Y ̂ s no singular point
in IN, n ./^-o, Y has a saddle-node as unique singular point in N If f(Y\<o
the Intermediate Value Theorem implies that F,(Y, ̂  has two zeros r(Y) and y(Y);

r(Y)<F,(Y)<^(Y); by d), the first corresponds to a node A(Y)>o (̂ o), and the

second corresponds to a saddle, A(Y)<o (^>o). This holds bLTuse A(Y)(.,) is

decreasing since -g is increasing, by .;, and ^<o, by a). This proves i). A

straightforward computation shows that ^(^Z^o, o), for Z=2:Z<-i and 2)
follows, t ^A;.'

Z .̂ (3 3). - Let p be a saddle-node of X^r, r^. Assume that a(X,p)<o

^YTB^TY^'T^;/ ^^^oods^and^of^ can be ckosen so tkat
JOT YeB with f(Y)<_o the following assertions hold.

17
3



18 J. S O T O M A Y O R

1) There.is a unique point z/(Y)eaN such that (py^Y), ^)eN for t<o; the set s(Y)
of points qe8N such that <py(^, ^)eN for t>o is an arc whose extremes we call ^(Y), ^(Y)-

2) 8N is a differentiable curve, transversal to every YeB at points of neighborhoods U
ofu{X.) and S of J(X).

3) ^(Y), ^i(Y) W .^(Y) depend continuously on Y.

Proo/. — From (3.2.1), the coordinate expression for X in (3.2)3 and [17, p, 319],
it follows that X has one separatrix, y, whose a-limit set is p, and is tangent to T\ at p\
also X has two separatrices S^, Sg whose co-limit set is p and are tangent to Tg at p.
See Fig. (3.1). Take N,=={(^, xj; x^+x^r); BN, is given by x^=r cos 6, x^y-sinO,
6e[—7r,7r]. Since T^, Tg are transversal to ^N, so are the separatrices, provided r is
small; Y meets BN at a point we call u(X); §1, §3 meet ^N at points we call ^(X), ^(X).
The existence and continuity of u follows from the continuity on Y of neighboring tra-
jectories, as for the case of saddle points [5, p. 147]; the continuity of^ follows [163 p. 137],
where the trajectory tangent to the eigenspace of smallest (negative) eigenvalue is given
by an integral equation which depends continuously on the field.

r\^ axr .On BN,:

i-v|^^-qAlCos3e+^s^

+Ysin 36- M1 cos 6 + M2 sin 6\

M1

Since for 6 == n the expression in brackets is equal to — A^ + —, , there are v and p
,» •

s o tha f i f r^p and [6—Tc|<v, it is less than —-^. For 7r—^>| 6 [ >Tc/4, the expression

in brackets is negative since cr<o and ——— is unbounded for these values of 6, while
r

all the other terms are bounded. Thus, for r small, X is transversal to 8'N and points
inward N on [ 6 |^7r/4. The arc joining ^(X) to ^(X), contained in | 6 |>7r/4 is defined
to be j-(X). This shows the existence ofj(X); the existence of U, S, s(Y) follows by
continuity.

Remark. — Ifp is a saddle-node ofX with <s(X,p)<o, the stable manifold ofp is
a two-dimensional manifold with boundary tangent to Tg at p. The unstable manifold
is one-dimensional with boundary p, tangent to Tg at p. If (r(X,^)>o, the remark
holds with the obvious change of stable for unstable.

Definition (3.4). — A saddle connection is a trajectory whose a and co-limit sets are
saddle or saddle-note singular points and is not interior to the two-dimensional invariant
manifold of the saddle-node.

18
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In terms of transversality, a saddle connection is a trajectory along which the
invariant manifolds of saddle and saddle-node singular points fail to meet transversally

JMow we state one of the main results of this section.

Proposition (3.5). - Denote by ̂  the collection of Xe^, r^2, such that:

1) X has a saddle-node as unique non-generic singular point.
2) X has only generic periodic trajectories.
3) The a and ^.limit sets of any trajectory of X are singular points or periodic trajectories.
4) A has no saddle connections.

Then:
a) Q,\ is open in X[.

b) It is an imbedded Banach submamfold of class C--1 and codimension one of r- and
c) Every XeQ.\ has a neighborhood B, in Q1, such that every YeB, „ fopologically

equivalent to X. -^ ^ f s '•v

The proof of (3.5) depends on some lemmas.

Lemma (3.6). — Assume the hypothesis and notation in (3.2) (3 3) Let U cU be
a neighborhood ofu{X). Then, S and B can be chosen so that for YeB with /-(Y^o q,
defines a ^mapping ^ : S->U,; h^q) is the point where ^{t, q), t>o, meets U, for the

l7\v Moreooer-lf sl " a closed arc contained ^ I"t ̂ (X), given s>o, B can be chosen
so that \h'^q)\<s for qeS^ and YeB.

Proof. - Let S be an arc so that .(X) cint S and the trajectories of X through
S-.(X) meet V,. This choice of S is possible by a continuity property at ..(X) on
hyperbohc sectors [19, p. 167]. The first assertion of (3.6) follows from continuity
on Y ot the trajectories passing through the extremes of S; for Y with /YY)>o no
trajectory through S remains in N, since this would imply the existence of a singular
point in N, by the Poincare-Bendixon theorem. Thus for qeS there is a t (Y) such
that ^^N for o<^(Y) and 9.(^(Y))eU, ,,(,) is defined to be
Vy(^ ^(Y)); by (2 .1 ) hy is of class G''.

A known formula in differential equations [17, p. 204] implies that:

^(?)=L,(Y)exp(JW.(Y,^(^,))^.

L,(Y) only depends on the angles between Y and 8N at q and hy{q) :

IsinaJ/jsina^L/Y),

where a.-angle (Y(y), 3N), a,=angle (Y(^)), 8N). Since <^(X^)<o, wemay
assume that the integrand in the expression for ̂  is less than o/2<o in N for every

^VM^T0' we may assume that for ?6S1 ^^/CYRo, ^Y)>^=21og^ wherel-^ff^J IS1- CT \L/

19



20 J . S O T O M A Y O R

The last inequality for ^(Y) is justified as follows. For <?eSi there are neigh-
borhoods 1̂  of y and B^ of X such that ^Y(r,t)(=Int'N for o<t<k, rel^, YeB^. This
follows by continuity since it is obvious for Y=X on Sj^. Gompacity of S^ ends the
argument. A straight forward computation, replacing ^(Y)>A into the integrand
above, shows that \h^[q)\<.z.

Lemma (3.7). — Assume the hypothesis and notation in (3.3) and call L^ the u-limit
set of Yx? lb,e unstable separatrix ofp (vx^^x^O^-), t), |^[<oo). If Lx4=j&, let L^ be
contained in a neighborhood N' whose boundary is transversal to X, X pointing inward N'; if
Lx==^, let Yx be interior to the stable manifold of p. Then yx ^as a neighborhood N2 which
contains L^, whose boundary is transversal to .X.

Proof. — Take U^, of (3.6)3 small so that every trajectory ofX passing through it
meets ^N' transversally at points of an arc A; if Lx=^, A is assumed to be contained
in Int^(X). Gall j^e^N, the extremes of S (3.6), and call A^ the arc of trajectories
of X joining p^ to ^eA. S together with A^ and W (when L^+J^), bound a neigh-
borhood of Yx whose boundary is transversal to X except on A^. Replacing A^ by
arcs A^, G^close to them, joining p^ to A, and smoothing corners at the extremes of A^,
the desired neighborhood N2 is obtained. The change of A^ by the arcs A^ is possible
since X is parallel, in suitable local coordinates, in a neighborhood ofA^.

Lemma (3.8). — Assume that in (3.7) L^ is'.

a) a generic singular point or periodic trajectory'^ or
b) a saddle-node 'L^==p.

In case a), assume that N is a critical region associated to L^ (see (i. 4), b)).
Then B of (3.2) can be taken so that for f(V) 4=0, Y is structurally stable in N2, Y being

transversal to ^N2. If y(Y)^>o, for case a), Ly, the only generic singular point or periodic
trajectory of Y in N' corresponding to L^, is the u-limit set of every trajectory of^ Y passing through N2;
for case b), there is in N2 one periodic trajectory o/"Y, generic and orbitally stable which is the c^-limit
set of every trajectory of Y meeting N2.

If /(Y)<o (resp. /(Y)=o), call r(Y) and y(Y) (resp. p(Y)) the nodal and saddle
points (resp. the saddle-node) of Y in N (3.2). In case a) r(Y) (resp. ^(Y)) is the ^-limit
set of every trajectory ofY meeting Intj-(Y) and of one unstable separatrix of q(Y) (resp. of all
trajectories ofY meeting ^(Y)); Ly is the u-limit set of every trajectory of Y meeting cBN^—^Y)
and the unstable separatrix of q(Y) (resp. of p(Y)) passing through z/(Y) (3.2). ^(Y) is the
u-limit set of its stable separatrices passing through ̂ i(Y), ^(^O* ^n case b)^ ^(Y) (resp. j^(Y))
is the (j^-limit set of every trajectory meeting N2 except ^(Y) and its stable separatrices through ^i(Y),
^(Y) (resp. of every trajectory meeting N2).

Proof. — For Y close to X, the mapping Try : Ul==UnN2—^SlCA (notation,
Proof of (3.1)), is defined. For case a), /(Y)>o, every trajectory through (^—S
meets ^N1, for Y near X (since they do so for X), and the trajectories through S define

20
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the map 7^0^ : S-^cAc 3N1, by (3.6); therefore, every trajectory through <)N1 must
have Ly as co-limit set. For case b), /(Y)>o, S^cAdnt ,(X), and g^^hy : IL-^U,
is defined.

Taking B so that \^\<k in U, and |^|<^-1, by (3.6), ̂  is a contraction

having in U one fixed point, generic and orbitally stable. Since every trajectory through
N2 meets Ui, its co-limit must be the generic periodic trajectory through the fixed point
ofgy.

For /(Y)^o, a) and b) follow directly from continuity ofa(Y), ^(Y), ^(Y), and
standard continuity of trajectories with respect to Y and initial data.

Lemma (3.9). — Assume the notation in (3.2). Then, given s>o, B and N may be
chosen so that every arc of trajectory of Y contained in N has length less than s, provided f(Y) =o.

Proof. — In the coordinate expression (3 .2 .1) for X, in Proof of (3.2), a and A^
a i

are taken so that ^-<^; this is obtained by changing coordinates ̂  to (A^, ̂  to ̂ ,

where ;. satisfies !^<^. Call P(Y)=(^(Y), ^(Y)) the saddle-node of Y in N,

call (i, v) the components of Vy, the eigenvector associated to the zero eigenvalue of
DY at P(Y).

Denoting A-.-^Y) by ^, ;=i,2, Y can be written:

Y1^, x,) =a(^-^) +A^ +^ + |̂

Y^.^o^-^+a^ +P^+YSl,

where A^-A^, e-cy, o, ^(Y) tend to zero as Y tends to X; b, c, p, y are functions
uniformly bounded on N.

Divide N into two regions:

Ni={|A^||^|5(^-^)} and ^={\\^\^\a^-u^)\}.

On NI the trajectories of Y satisfy the following equation:

fa _ 5(^-0 M +a/Ai +P^/A^i +yJ;j/A^

^1 a(^-^i)/A^ + i +^/A^i +^J/Ai^ '

Since in N^, | ̂  | /) ̂  | = | ̂ - ̂  + ̂  | /| ̂  |̂  ^ ) ̂  [ + ] „ | by nî ^g ̂  and B small,

the numerator of | dx^dx^ \ can be made less than 2 and the denominator greater than i /2.
Thus, | dx^fdx-^ | < 4.

On N3 the trajectories ofY satisfy:

dx, _ a[q + A^/CT(^-^) +^^^(^-^i)+^/a(^-^)

^ i+(^/A,)(A^i/5(^-^)) +^W^-v^) +jW^-v^ '

21



22 J . S O T O M A Y O R

Since on N3, \^\l\^-^i\<.^+Wi\l\^-^ \Wl\^-^\^\+\v\\c\l\^

and l^l/l^-^il^l^l+I^IISil+lyn^l/IAJ, by making N and B small, ^ can

be made less than 4, making its numerator less than 2 and its denominator greater
than 1/2, in absolute value. The lemma follows immediately from the expression for
the arc length of a curve, taking account that the interval of integration does not exceed
the diameter of N.

Remark (3.9.1). — a) Lemma (3.9) is similar to [5, Lemma 7, p. 143], proved
for the generic saddle singular points. (3.9), and the next result b) also due to [5],
are important tools for the construction of topological equivalences in canonical regions
which contain saddles, saddle-nodes, or periodic trajectories in their closure.

/^~^ ^~^
b) [5, p. 150]. Let A()BO be an arc and A^, i==i , 2, . . . be a sequence of arcs

converging uniformly to AyBo in such a way that | A^BJ—^| ApBo], when z—^oo. Then:

1) A point M,eA,B, with ratio of arc length ^= |A,MJ/|A,BJ converges to

a point MgeAoBo if and only if ^-^^==[AoMo[/[AoBJ.

2) Considering A^ and Ayl^o parametrized by ratio of arc length, A,B^ converges
/^^uniformly to A^B^ when i->co.

Proof of (3.5). — Take XeQ^ and assume the notation in (3.8). Call:

M^-M'-IntN2,

and take B such that Y^==Y[ M2, YeB, belongs to 27 in M2, and no saddle separatrices
ofY^ meet ^i(Y), j2(Y)e3N2. This choice ofB is possible since the conditions imposed
are open and hold for Y==X. Hence, by (3.8) and (3.2), Ye57 in M2 if and only
if /(Y)=t=o, and therefore X[^=^^B==f-l{o). This proves a) and b) of (3.5).

To prove c ) , a topological equivalence between X and YeBi^BnQ^ must be
constructed. Obviously a topological equivalence ^i==Ai(Y) between Xi and Y^ can
be constructed; here, care is taken so that h^\ ̂ N2 maps ^(X) to ^(Y), i==i, 2. We
proceed to show how to extend h^ to h=h(Y) defined on M2.

For case a ) , (3.8), N2 is divided into two canonical regions R.i(Y) and R2(Y)
ofY and one critical region N^ which contains Ly. See Fig. (3.2).

The construction of A from R2(X) onto Ra(Y) is performed in [5, p. 152] for the
case where p is a saddle point; such construction is carried mutatis mutandis for the present
case, by (3.9). See Remark (3.9.1). The construction of h from N^ onto itself is
done in [5, p. 154]. We proceed to define h from Ri(X) onto Ri(Y): Map the arc of

r\ ^"^
trajectory ofX, mp, passing through mes(X.), onto the arc of trajectory ofY, mpy passing
through % = h^(m) e^(Y), by ratio of arc length (see proof of (2.5)). Since every point
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of R-i(X) belongs to a unique trajectory, this defines a one-to-one map of R-i(X) onto

R^(Y), which by (3.9.1) is a homeomorphism. In fact (3.9) implies that \m-^p\ is

close to | m^p \ and | %i^y I ls close to | Tn^p^ \ provided m^p is uniformly close to m^p and

fn^py is uniformly close to W^Y? m our case ^is holds when m^ is close to m^ by continuity
of h^ and standard continuity of trajectories on initial data. That is, the hypothesis
of (3.9. i, b)) is satisfied for these arcs. This implies continuity of A and A"1, since they
preserve ratio of arc length and uniform convergence on arcs of trajectories, which
by (3.9.1, b)} amounts to preservation of convergence. Finally, we remark that the
definition of A on Ra(X) mentioned above coincides with our construction on the common

boundary, s^(X)pu s^(X)p, with R.i(X), since there it is performed by ratio of arc length.
For case b) and YeB^, N2 is divided into two canonical regions R^(Y), Ra(Y)

of the same type. See Fig. (3.3), where (z, j) is (i, 2) or (2, i), according to Yx^J^}
being a two-sided or one-sided curve.

We proceed to define h from Ri(X) onto Ri(Y). Map ^(X)j^, s,(X.)p and ^==PP

respectively onto ^(Y^y? ^OOj^Y ^d YY^J^Y^Y? by ratio of arc length. Let T] be a

continuous monotonic increasing function from ^(X)^(X) onto [o, i]; let:

^=\^^Y\l(\^^y\+^

23
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We define a closed curve Gy in R.i(Y) from py to j^y as follows: take weint ^i(Y)^(Y)
and take the point m^ on the arc of trajectory through m such that

lSl/ffi=(I~^^ l(Y)(^))^Y)+^A^ l(Y)(m)).

Gy is the curve which assigns m^ to m, and py to J(Y) and ^(Y) $ it is continuous,

on Int j-i(Y)^(Y) by continuity of trajectories on initial data and at ^i(Y), ^(Y)
by (S-9)- Gy divides Ri(Y) into two regions R^(Y) and R^(Y). Map the arc of

trajectory of X through meint Ji(X)^(X) onto the arc of trajectory of Y through

%==Ai(Y)(w)eIntj-i(Y)^(Y), as follows: map mm^ onto mm^ and m^p onto ^i^y? res"
pectively, by ratio of arc length. This defines a one-to-one map of RICX) onto RI(Y),
z=i , 2, which by (3.9) is a topological equivalence, as follows from an analysis similar
to that performed in case a). An identical construction works for Rg(X). This ends
the proof of (3.5).

The composed focus (3.10). — Letj^ be a singular point of Xe^; assume that the
eigenvalues of DXy, have non vanishing imaginary parts (i.e., (o-(X, p))2—4^(X, j^^o).
Let (^i, ^2) be a coordinate system on a neighborhood U ofp'y assume that x-^{p) =x^{p) ==o.

r\

Define G:rxU^R2 by G(Y, ?)=(Y1^), Y2^)), Y=SY1—. G is of class C
1 a^ BG

since it is an evaluation mapping [163 p. 25]; also G{x,p)={o,o) and —(X,^)=DX(y).
^y

Since det DX==A(X,^) =(=o, there is a unique Cr U-valued function P defined on a
neighborhood B of X such that P(X)=^ and G(Y, q)={o, o) for YeB only if q=P(Y).
This follows from the Implicit Function Theorem.

BY1 BY2

Define / : B->R by /(Y) = <r(Y, P(^)) = —— (P(j/)) + —— (P(j.)): / is of class G-1

- cx^ ox^and:

^A !̂) .̂ ^^(,)+^(,,,
\ (7^ C/^/ OX^ OX^

as follows from a straightforward computation; in particular, if <r(Z, j&) 4= o and
Z(P)=o, rfPx(Z)=o and df^{Z)=:a{Z,p) =t=o.

Let P(Y)=(Pi(Y), Pa(Y)), and take polar coordinates p, 6: ^—Pi(Y)==pcos6,
x^—P2(Y)=p sin 6. The orbits of Y satisfy the following equations:

do dQ
— =Y1 cos 6 +Y^ sin 6 =Ry(p, 6) and p— =Y2 cos 6-Y1 sin 6 = Oy(p, 6),
at at

where Y^Y^P^+p cos 6, P2(Y)+p sin 6) and ©Y(p, 6) are of class G' in BxIxR,
where I=[—fl, a], a small; also, they are periodic of period 2n in 6. The hypothesis

^©x<y—4A<o implies that ——(o,6)=ho, for all 6. By continuity we may assume that
Bp

24



GENERIC ONE-PARAMETER FAMILIES OF VECTOR FIELDS 25

^(p, 6)+o in BxIxR. Define ©yby ©y(p, 6)== f ^(p^, Q)ds. © is of class CY-1

^p __ Jo ^P
and ©(p, 6) ==-©(?, 6), for p+o; also:

P
©Y(-P. e+7r)-©y(p, 6) and Ry(-p, 6+7r)——Ry(p, 6).

This implies that (Ry, ©y), for YeB, is a vector field in IxR, invariant under the
mapping pi : (p, 6)->(—p, Q-{-n). Since Ry(o, 8)==o, p=o is a trajectory of (Ry, ©y).

Let u{x)=={x,o), U==Ix{o}, and s{x)=={x, 27r), S=Ix{27i:}. Call py : Uo->S
the mapping associated to u, s and T==27T defined by the flow (Ry, ©y) as in (2.1).
(Y, x)\->^{x) is of class C7'"1 in BxUo. Also, as a straightforward computation
shows, py(o)==i if and only if o(Y, P(Y))==o.

Definition (3.11). — Assume that Xe3P', r^4, has a singular point p with
(?(X,^)==o and A(X,^)>o. If, with the notation above, (px)^^0) =t=°5 P ls called a
composed focus.

Proposition (3.12). — Denote by Q^ the set of vector fields Xe3r, r^4 such that:

1) X A(ZJ a composed focus as unique non-generic singular point.
2) X has only generic periodic trajectories.
3) The a and c^-limit sets of any trajectory of X are singular points or periodic trajectories.
4) X has no saddle connections.

Then:
a) Q^ is open in 3Q.
b) It is an imbedded Banach submanifold of class C?"1 and codimension one of^r; and
c) JSzwy XeQ^ has a neighborhood B^ in Q^ ^0 ^^ ^ is topologically equivalent to

every YeBr

The proof of (3.11) depends on the following

Lemma (3. i2).—Let Xe^T, ^43 have a composed focus p. Assume that (px)^0)^0-
Then there is a neighborhood B of X, a neighborhood N of p and a (T""1 function f : B-^R
such that:

1) ^N ^ a closed curve transversal to every YeB.
2) YeB has one singular point P(Y)eN. P(Y) is generic if and only if /(Y)^,

it is asymptotically stable (resp. unstable) iff{'Y)<o (resp. /(Y)>o).
3) Y has one periodic trajectory^ generic and orbitally stable^ in N only when /(Y)>o.

See Fig. (3.4).

Proof. — Assume the notation of (3.10). Call No the quotient manifold:
(IxR)/^->R/^;

No is a Moebius band. Gall ]i the quotient mapping IxR-^N^.
Let Y=D(Ji(Ry, ©y) and let 'U==^OS==[LQU. py : Uo->U is equal to the square

25
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/(Y)>o /(Y)=o /(Y)<o

FIG. 3 .4 . — Composed focus

of the Poincare transformation associated to the periodic trajectory YY=P l{{o}xl^} OI

period n of Y. Now, the proof is reduced to (2.6), with /(Y)=CT(Y, P(Y)) and N
the neighborhood of p bounded by G={^=p(6) cos 6, x^== p(6) sin 6; Qe[o, 271:]}
where p == p(6) is so that {p(6), 6} is the lifting to I xR of the boundary of the neigh-
borhood N of Yx given in (2.6).

Proof of (3.12). — Similar to (2.5). Assume the notation of (3.12). Call M^
the manifold with boundary MP—IntN. Xi=X|M^ is structurally stable, and B
can be taken so that every YeB is such that Y^=Y|M^ is topologically equivalent
to Xi; ^i(^), the homeomorphism of M^ mapping trajectories of Xi onto those of Y^,
can be made arbitrarily close to the identity of M^ by properly reducing B.

By openness of 27 in M^, when /(Y)+o, Ye27 in M2, by (3.12). Thus
f~l{o)=^n'S. For YeBi=Q^nB, A^(Y) can be extended to a topological equivalence
between X and Y. This is done as for the case of generic focus [5, p. 153]. This
proves (3.12).

Remark (3.13). —By (3.5) and (3.12), 0,1== C&u Q^ is an imbedded submanifold,
open in 3^.

Calling the saddle-node and composed focus quasi-generic singular points, (3.5)
and (3.12) can be stated in one Proposition changing in condition i), in either one,
saddle-node or composed focus by quasi-generic singular point.

4. Saddle Connections.

Definition (4.1). — A saddle connection y of X (see (3.4)) whose a and o-limit
sets coincide with a saddle point p is called a loop', it is called a simple loop if ^(X, p) 4=0.

Proposition (4.2). — Let (^3 denote the set of vector fields XeX", r^2 such that:
1) X has one saddle connection, which in case of being a loop is a simple loop.
2) X has only generic singular points and generic periodic trajectories.
3) The a and u-limit sets of every trajectory of X are singular points, periodic trajectories,

or loops.
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Then 0,3 is a Banach submanifold of class G7'"1 and codimension one immersed in y;
furthermore^ every XeQ^ has a neighborhood B^ in (^3 such that every YeB^ is topologically
equivalent to X.

The proof of this proposition depends on several preliminary lemmas.

Lemma (4.3). — Let p be a saddle point of XeX^ r>_i. There is a neighborhood B
ofK and a neighborhood N of p such that:

1) YeB has one singular point j^(Y), which is a saddle point, in N; SN is a differentiable
curve.

2) The stable (resp. unstable) separatrices of p^V) for Y|N meet ^N in two points ^i(Y),
jg(Y) (resp. ^(Y), ^>(Y)) ^o ̂ ^ the functions ^ : B-^N (resp. ^ : B->N) ^ of class C7'"1.
.4/jo, ^r^ tî  ^/oW arcs S^ (resp. U^), wA^A contain ^(B) (resp. ^(B)), OTZ which YeB z'j-
transversal to ^N.

Proo/l — i) Follows as in (3.10) from the fact that A(X5^)4=o, by the Implicit
Function Theorem. If N is small, 2) is valid for X, since the stable and unstable
manifolds are tangent, atj&, to the eigenspaces of DXp (see (3.1)), which are transversal
to ^N$ the continuity of ^(Y) (resp. ^(Y)) is proved in [5, p. 147]; differentiability
relative to a parameter is shown in [16, p. 151]; 2) follows taking Y as parameter; the
existence of S^, U^ follow from continuity.

A construction (4.4). — Assume the notation and hypothesis in (4.3).
a) The point ^(Y) divides Ŝ . into two closed arcs S^(Y) and S^(Y), which have

j^(Y) as unique common point. See Fig. (4.1). S^ is taken small so that every trajectory
of YeB which enters N through A;eS^(Y)-—{^(Y)}, leaves N through a point k^[x)e\]^
This follows as in the first part of Proof (3.6), by continuity. Furthermore, the map-
ping k^ : S^(Y)—^U^, defined above for ^=)=^(Y) and equal ^-(Y) for ^(Y) is continuous.
This follows from the continuity property on hyperbolic sectors [19, p. 167].

b) The mapping 4 is differentiable of class C7 in Sf(Y)-{^(Y)}, and if
dk^

cr(X,^)<o, for any given £>o, N, S^ and B may be taken so small that ——(^) <s.
dx

S? (Y) 81 (Y) sl (Y)

U2(Y)

FIG. 4. i
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This follows from a well-known formula for the derivative in terms of (T, in the same
way as in (3.6).

c ) Finally, the length of the arc xk^(x) contained in N tends to the sum of the

arc lengths of separatrices in N, pUj(X) and ^(X)j^, as Y—X and x->s,{X.).
See [5, p. 149] for a proof of this fact.

Let p^ and p^ be two saddle points of X (the case p^p^ is not excluded). Let
m>o be less than the lengths of the saddle separatrices leaving or approaching p^ andj^g.
Denote by B', N', U}, Sj, ^J(Y), jj(Y), j=i, 2, the objects associated to ?=?„ i=i, 2,
by (4-3)- Let X have a saddle connection y^ J0111111^ ^(X) to ^f(X), with length £>o.
For YeBinBg, call Try-T^Y, ) : U^Sf, the map defined by the flow of Y (see (2. i)).
Define /(Y)=7r(Y, ^(Y))-^(Y).

Lemma (4.5). — Ay^m^ ̂  notation above. Given o<e<m, Y ̂  a saddle connection yy
^W?^ ^(Y) and ^(Y), w^ ^^A wz^m s o//', zyW OTZ^ ?y/(Y)==o; otherwise any saddle
separatrix passing through any of these points has length greater than f+m, for YeB=BinB2
small. Furthermore, df^ =|= o.

Proof. — The first part follows from continuity (on Y) of the length of arcs of
trajectories far from singularities, and from the continuity property (4.4) c ) in N1, N3.
IfV is defined as in the proof of (2.4) in a small neighborhood of ^(X), ^c(V)=)=o,
as follows similarly to (2.4).

Remark (4.5.1). — Trajectories of Y passing near ^(Y) or ^f(Y) which do not
connect them also have length greater than f+m by the same arguments as in the
first part of proof of (4.5).

On simple loops (4.6). — Assume the notation in (4.4) and (4.5) and suppose
that YX is a ̂ P °f XeX', r>i, p^==p^=p. Let CT(X,^)<O and take N^=N2=^
^(X)=^(X), j-(X)==^(X), and BcB^nBg small so that for YeB, |TTY|<K in U=V^
Also, take £=(i/2)K-1 in (4.4, b)), so that k^^k^ satisfies \ky\<[i /2)K-1 in
S(Y)=Sl(Y)cS,=S.

Take some orientation in ^N, say, counterclockwise in Fig. (4.1); thus, Ay
reverses orientation. Define pY=TCyo^Y : S(Y)-^S.

There are two cases: a) ny reverses orientation, and b) TTy preserves orientation.
Assume first case a ) , where py preserves orientation. If /(Y)=o, Y has one

loop YY J011111^ UW to ^(Y), which is the o-limit set of all trajectories of Y meeting
S(Y)—{^(Y)}. This follows from the fact that py is a contraction, i.e.:

|PYW-PYOOI<(I/2)|^-A ^eS(Y).

If /(Y)<o, obviously py(S(Y)) cint S(Y), and py has one fixed point, P(Y),
generic and orbitally stable; thus, through P(Y) passes a periodic trajectory, Fy, which
is the co-limit set of all trajectories ofY meeting S(Y)--{^(Y)} and of the saddle separ-
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atrices through ^(Y). Moreover, [ P(Y)—z/(Y) |<2/(Y), as follows from the evaluation
of P(Y) as the limit of iterates of py.

The separatrix through s(Y) meets Int U^(Y) in ^(Y)^^^^)), and the closed

arc ^(Y)^(Y) is mapped into S(Y) by ^y; thus Fy is also the co-limit set of trajectories

of Y passing through the arc J^(Y)^(Y), open at ^(Y).
If /(Y)>o, py has no periodic point; in this case, the separatrix through u(Y)

meets Int S^(Y) at ^'(Y)==7Ty(^(Y)), the separatrix through J(Y) meets successively U^(Y)

and S(Y) at points ^(Y^y^Y)) and ^(Y^PY^Y)). The closed arc s\Y)s(Y)

is mapped by py onto J(Y)^(Y). See Fig. (4.5) for a graphical illustration of case a).
Consider now case b)^ where py reverses orientation. If /(Y)==o:

py: S(Y)-^S?(Y),

has s(Y) as unique fixed point, and ^opy : S(Y) -> Ug(Y) is defined. Call yy ^e
one-sided loop through s(Y).

If/(Y)<o, py(7r^M^))C7ry(<^ since:

Ry(.(Y)) == 7TyO^(.(Y)) == T^(Y)),

and hence |pY(7ry(^Y)))-7ry(^Y))| = |pY(^^(Y)))-py(.(Y))]<(i/2)|7ry^(Y))-.(Y)|.

Therefore, since pyis a contraction, it has a unique fixed point P(Y)eInt 7ry(^(X))j"(Y),
since | P(Y)—J>(Y) |</(Y). The separatrix through s(V) meets successively Uj:(Y), S(Y),
and U?(Y) at points ^(Y) = TTy^^Y)), ^(Y) = pY l^(Y)), and ^(Y) = TT-^^CY)). The

arc ^(Y)^(Y) is mapped by Tiy onto ^(Y)^(Y) which is mapped by py onto

7ry(z/(Y))J(Y). Thus the periodic trajectory Iy of Y, passing through P(Y), which

obviously is generic and one-sided, is the o-limit set of all trajectories through ^(Y^^Y).
If /(Y)>o, py(S(Y)) Cint S^(Y), and py has no periodic points. The separ-

atrices through s(Y) and z/(Y) meet U^Y) and S^(Y) at points ^(Y^TTY^Y)) and

^(Y)=7Ty(^(Y)) respectively, py maps j•l(Y)^/(Y) onto ^(Y)^(Y); S(Y) is mapped
into IntU^(Y) by Try1. See Fig. (4.6).

Canonical Regions for fields in 0,3 (4.7). — Take XeQ^. In case a) of (4.6),
Yyu{^}, which is a two-sided loop, has on its (orbitally) stable region a differentiable
closed curve C, arbitrarily close to the loop, transversal to X, which together with
Yyu{^y}, when /(Y)==o, bound a region N(Y) homeomorphic to a cylinder. G meets
S == S (X) transversally in a point m^, which we regard as the lower extreme of S. Further-
more, YyU {j^y} is the co-limit set of trajectories ofY meeting Int N(Y). See Fig. (4.2) I'.

For X, these assertions follow from [i], taking 0=^, where Z is a vector field
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FIG. 4.2. — Canonical Regions in (^3

obtained from X by a small rotation (in a neighborhood of ^^{p} diffeomorphic to
a plane region). For Y close to X, they follow from continuity and results in (4.6),
case a). Obviously MQ is taken to be P(Z).

For future reference we will distinguish two cases.
A) All the trajectories ofX meeting C have the same a-limit, which afortiori must

be a generic singular point of nodal or focal type, or a generic periodic trajectory.
B) There is some saddle separatrix of X which meets G.
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A) and B) are the unique, and mutually exclusive possibilities; in either case,
N(X) will be regarded as a critical region associated to the loop ^^{p}'

The other canonical regions that contain YX u {?} on Aeir closure and are possible
for XeQ^ are shown in Fig. (4.2).

This follows from making all the compatible identifications of edges and/or vertices
in the fundamental polygons in Fig. (4.3).

For instance, II is obtained from a), identifying^ and p^\ III is obtained from a),
identifying 61 and 8^, and p^ and q\ IV is obtained from a) identifying S^ with 6^, i = i, 2.

( c )

FIG. 4.3

V is obtained from b) identifying S and y? VI ^d VII are obtained from c ) making
the identifications indicated in Fig. (4.2).

Consider the decomposition of M2 into canonical and critical regions of X. YY
belongs to the common boundary of two such regions, except in cases V, VI, VII,
Fig. (4.2), where it belongs to only one; call M(X) the union of the (closed) regions
which contain y^. Call M(X) the union of M(X) and the critical regions of X which
intersect saddle separatrices on the boundary ofM(X).

The complement of Int M(X), denoted N(X), is the union of a finite number of
critical and canonical regions of X; these regions are of structurally stable type and
such that, for Y close to X, to each canonical region of X corresponds one of Y of the
same type; the critical regions of Y are the same as those of X. Call N(Y) the union
of such canonical regions ofY. Following [5], each canonical region ofN(X) is mapped

r<^
by a topological equivalence onto its corresponding canonical region of N (Y); gluing
these partial mappings, a topological equivalence results, defined from the complement
of all critical regions of N (X) onto the complement of all critical regions of N (Y); this
topological equivalence is defined on the boundary of all critical regions, except on
that of those contained in M(X), where it is defined only on the boundary of M(X).
Below we show that when f(Y)=o, a topological equivalence can be defined from
M(X) onto M(Y)==M2—IntN(Y), extending the above mentioned equivalence,
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which thus becomes defined on the boundary of all critical regions ofX. This topological
equivalence is extended to the interior of the critical regions by the method of [5].

We proceed to show how define a topological equivalence between M(X) and
M(Y). In Fig. (4.4), M(X) is made up of one region of type I and one of type III,
Fig. (4.2); M(X) is the union of M(X) and the critical regions of sources oci, ocg and
sinks coi, cog of generic type.

^~~^ ^~^
For region I, map by means of a homeomorphism A^, k-^f^ onto k-^^'y also map by

^~^ ^-^ ^-^ r\ r\
ratio of arc length S^=k^, y^AA^ ^^A^ QI^I?? ^2=^2 onto their corre-
spondents in I, 81, Sg, ©i, ©2; it should be remarked that this definition coincides with
the above mentioned topological equivalence, which, following [5], takes saddle separ-
atrices onto saddle separatrices by ratio of arc length. Divide every arc of trajectory

^~^-̂ "̂
of X (resp. Y) joining melntk^^ (resp. %==Ai(m)eInt ̂ i) to nek^^ (resp. ^e^)

^ î
r^ ̂ /into three arcs S^m)=mm^ ^(m)=m^m^ S^m)==m^n (resp. ^(%)=%%i, 7(%)==%i%a.

/(Y)>o /(Y)<o

/(X)=o

/(Y)=o

FIG. 4.4. — Saddle connection
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~ ~ C^
8,(%) =m^), in the following way. Take a continuous monotonic increasing function T)

^—^ /""^
from Vi onto [o, i] (resp. ^o^-i :A^[o, i]); call <^=| o,[(|8,|+jy[ + |^j)-i

^iQiKlQxI+lQ.I)-1, ^=M(M+|8,|)-S ^=i (resp. call ̂ ,%^=i, the

obvious analogous for T^Take ̂  such that | ̂ (|m|)-^(i-^))+^)

and take ^ such that |S|(|S|)-1=^(I-^))+^(„) (^sp. take %, and %,
m the analogous way). Map \{m), y(m) and W, respectively onto ̂ (%), ^(%) and
W, by ratio of arc length. Thus we have defined a one-to-one map from I to I which
by (3.9.1) and the same arguments in the proof of (3.5), is a topological equivalence
between Xj l and Y|T that can be made arbitrarily close to the identity for Y close
to X [5], and extends to I the above mentioned topological equivalence. Of course
this construction works for regions II, III, and IV, obtained from I by proper identi-
fications Also, when region I is modified to having three saddle points ?„?„ p, joined
by saddle separatrices y,, y,, or two saddle points ^, ^joined by a saddle separatrix ^
which, respectively, are the cases of VI and VII, and V, it is clear how to construct
the topological equivalence.

The extension of this map, now defined in 6V, to Int I' is done in a similar way as in
the case of the stable part of a periodic trajectory (2.5). (Here, G^C, yx=Yx^},

and U=S(X)=»v(X").) See Fig. (4.5).
For /(Y)+o, YeSY except in case B), when ^u{p} is the co-limit set of saddle

separatrices: for the case where ̂  is not a loop, this follows by continuity of saddle
separatrices and maps ̂  in (4.4); in this case M(Y) has three canonical regions respect-
ively joining a to co,, a, to co,. and a. to co,, (,J)=(i, 2) or (2, i) according to the
sign of/(Y). See Fig. (4.4) (of course in the case of region V, a=oc,, a, and c.=^, ̂ )
^^r case ̂ ^-^^ ^P^ following (4.6) a), we have that when /(Y)>o
M(Y) has a region of type R,(Y), Fig. (3.2), with the sense on the trajectories reversed:

the separatrix through .(Y) meets G at a point ^(Y). The other region is bounded

/(Y)<o /(Y)>o

FIG. 4 .5.— Two sided loop

/(Y)=o
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by the separatrices through ^(Y) and u(Y) of py and the separatrices entering and
leaving q^ (the correspondent of q). See Fig. (4.5). When /(Y)<o, Fy (see (4.6))
is contained in a critical region bounded by C and G'=rz,, where Z' is a rotated field
like the one used to construct G; the canonical regions of M(Y) are similar to those
for the case y(Y)>o, with the sense of the trajectories reversed, replacing G by G'.
See Fig. (4.5).

Thus in case A), /(Y)4=o, and in case B), /(Y)<o, Y is in 27 as follows from
the above assertions and arguments similar to those in (2.8). For the case B), y(Y)>o,

S^yCU) 3=1^(0)

QI q^ s3 u s1

/(Y)<o

FIG. 4.6. — One sided loop after perturbation

?(Y) winds around G when Y—^X and meets infinitely many times, for fields Y arbi-
trarily close to X, all the unstable separatrices which (by hypothesis) intersect C.

For the case of one-sided loops following (4.6) b ) , we have the canonical and
critical regions on M(Y) as shown in Fig. (4.6).

Remark (4.7.1). — Given any number L>o (resp. T>o), B can be taken so
that any trajectory ofY meeting C has length (resp. spends a time) greater than L (resp.
T before closing, if it closes at all). This assertion is obvious by continuity arguments
since it holds for X.

We summarize (4.7) in the following lemma.

Lemma (4.8). — Call Q^s{n) the set of XeQ^s of Proposition (4.2) whose saddle
connection yx nas l^gth less than n. Then:

a) Q^3 (n) is a submanifold of class G'~1 and codimension one imbedded in 3T, and
b) every "KeQ^^n) has a neighborhood B^ in Q^sW suc^ t^t ^very YeB is topologically

equivalent to X.
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Proof. — Take L>n in (4.8.1) and £<^—|yxl m (4-5)- Take B as m (4-8),
(4.8. i) and (4.5); a) follows from (4.8. i) since /-l(o)= Q^) nB==Bi, for all saddle
connections, if any, of Y, /(Y)>o, must have length greater than L>%; b) is proved
in (4.7).

Proof of Proposition (4.2). — Immediate by (4.8) since Q,3== UQ^(7z) and
Q^)cQ^+i).

Remarks (4.8.1). — Call (^3 the subset of (^3 consisting of fields X which present
case A) defined in (4.7). The following is proved in (4.7).

a) Proposition (2.2) holds for (^3, changing immersed by imbedded. Furthermore (^3 is
open in X[.

^ ) Q^Q.s '̂Q^ ls open in (^3 and its intrinsic topology it finer than its ambient
topology.

c ) The fact that for XeQ^ and s>o small, /-^(—s, o))c27, while/-^(o, s))
is not completely contained in 27, can be expressed by asserting that 27 u (^g is a subma-
nifold of y with boundary Q^.

d ) From (2.4.1) and (4.7.1) it follows that Q^) u Q^) u Q^(%) is an
imbedded submanifold of 3C'.

5. The Manifold 2: .̂

We define S,==Q^u ̂ (^ u Q:̂ ?) u Q '̂). By (3.13) and (4.8.1) ^, S, is an
imbedded submanifold of X7'. Hence, 2^ = U S, is an immersed submanifold of 3?'.

Theorem 1. — a) 2^ defined above is an immersed Banach submanifold of class Cr"1 and
codimension one of X7', ^4.

b) 2^ is dense in 3£^.
c) Every Xe2^ A^ <2 ^-neighborhood Bi, i.e., ^ neighborhood in the intrinsic topology

of 2^, j^cA ^Aa^ X ^ topologically equivalent to every YeBr
Proo/'. — Part a) follows from definition of 2^; part c ) follows from Propositions (2.2),

(3.13), (4.8. i) d ) . Part b) follows from a sequence of approximations similar to those
used in [8] to get density of 2!; the steps leading to b) are more suitably stated in Part II,
Remarks (2.1.1), (2.2.3), (2.3.1).

6. On First Order Structural Stability.

A field Xe3^ is said to be first order structurally stable if there is a neighborhood N
of X in the subspace 3Q with the induced C^topology, such that every YeN is topo-
logically equivalent to X.

This concept is due to A. Andronov and E. Leontovich, see [12]. We will denote
by 2^ the set of first order structurally stable vector fields.
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After (2.8), (3.13), (4.8.i) it follows that Q^, €[2, ^3 are contained in 1 ,̂
and since each one is open in 3^, Q,iU Q^ 0,3^2^. By suitable C^approximations,
it is not hard to show [14] that no field of 3Q, outside Qj.uQ^uQ^, can be in S^.
That is, S[=Q^u Q^gU Q^g. Thus, since each Q^ is also an imbedded submanifold,
Z^ ̂  <m imbedded Banach submanifold of class CY ~1 a^rf codimension one of 3 ,̂ r^ 4, open in 3Q.

It is obvious how to define the set S^ of n-th order structurally stable vector fields
as well as S^ (an ^-dimensional version of S^); the characterization of these sets seems
most important for a generic theory of families of vector fields depending on n parameters.

II. — GENERIC ONE-PARAMETER FAMILIES OF VECTOR FIELDS

!• Preliminaries.

Let J===[^,&] be a clos'ed interval. Denote by O7' the space of G1 mappings
S ^J—^. Under the G1 topology, 07' is a Banach manifold; its elements will be called
one-parameter families of vector fields, ^ej is called an ordinary value of ^e^ if there is
a neighborhood N ofXo such that E;(X) is topologically equivalent to S(^o) ^or Gwry XeN$
if XQ is not an ordinary value of ^, it is called a bifurcation value of ^. Obviously, if
^(Xo) £27, Xo is an ordinary value of ^; equivalently, if XQ is a bifurcation value of ^, then
S(xo)er,.

Examples (1.1). — a) Let ^ (X)==( i ,X) in M^T^R^Z2. Every \e[a, b] is
a bifurcation value of ^. This follows from the fact that the rotation number of SW?
which in this case is X itself, is a topological invariant of ^(X).

b) Let ^ be transversal to 2^. Every XoeE;'""1^) is a bifurcation value of ^. This
follows from the results in Part II, where the topological change of the phase space
of Y==^(X) is described in a neighborhood of X==^(Xo), according to the sign off(Y)
defined there; the transversality condition implies that foE, is monotonic on any neigh-
borhood of XQ, on which, therefore, we find X's for which ^(X) is not topologically equivalent
to S(Xo).

Two preliminary lemmas (1.2). — The following lemmas have a straightforward
verification. We recall that, since J is manifold with boundary, {a, 6}, ^ is transversal to Q^
if it is so when restricted to {a, b) and also when restricted to {a, b} (i.e., ^{a), ^(^)^Q^,
if Q^ has codimension >o).

Lemma a). — Let Q^be an imbedded Banach submanifold of^. Call ^(QJ the collection
of ^e^ such that:

1) ^(J) and ^Q/=(GlosQJ—Q^ are disjoint^ and
2) ^ is transversal to Q^.

Then <I>(QJ is open in O^
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Lemma b). — Call ^[ the space of C^1 mappings î .•JxMP-^M2) such that
^^\.{\P))=P for all X, p\ TT stands for the projection ^T(M2) onto M2. O^ zj endowed with
the G^1 ^ .̂ For ^e<S>[ define ^{\)=^(\, ) : M^T^M2). 7 ,̂ ^eO^ <W
E;il->S is a continuous linear mapping whose image is dense in Q7'.

Theorem 2. — Assume r^4. Call P" the set of one-parameter families of vector fields ^
such that'.

i) s^cEK-sru^.
2) ^ is transversal to 2^.
3) The set of ordinary values of ^ is open and dense in J and coincides with ^~l(T^r).

Then P' contains a Baire subset of ̂ y in particular, 1^ is dense in <S)1'.

2. Proof of Theorem 2.

The proof of Theorem 2 depends on several propositions.

Proposition (2.1). — Denote by ^(Q^i) the set of ^e^ such that:

1) ^(J) and ^Q,i==(GlosQ^)--Q^ are disjoint and
2) S ^ transversal to Q^.

77^% ^(Q^i) ^ ^% and dense in C^.
Proo/'. — The openness of 0(Q,i) follows from (1.2) a). Let ^e^; we will

show that it can be approximated by 7)eO(Q^)$ this will prove the density of 0(Q,i).
By (1.2) b), we may assume that SWW==Si(^^) for Si^I- By density of trans-
versality and density of 57, we may assume that ^ is transversal to M2, the zero section
ofT(M2), andthat^), ̂ e^. ^(^-S^) is a one-dimensional 0 +1 submanifold
of JxM2, which depends continuously on ^ (in the G r+l sense); S(^) is transversal
to {Xo}xM2 at (^A))6^^) if and only if RQ is a simple singular point of S (^o) 5 since
^^eSy, S(Si) is transversal to {a}xM2 and {&}xM2.

Letj&o be a singular point of^(Xo), call ^(X, ̂ , x^), i=i, 2, the components of ^
in a coordinate system (^1,^2) around j&o.

^ is transversal to M2 at {\,po) if and only if the Jacobian matrix of ^(X, ̂ , x^)
has rank 2 at (^o,po)< When po is not a simple singular point of ^(Xo), the coordi-
nates (^15^2) may be taken such that x^(po)==x^{po)==o and the Jacobian matrix of
^(X, A:i, ^2) has one of the following forms:

( 2 . 1 . 1 )
/^ 6: 0\ /<;2 0 0\

\^2 0 O/ Vi ^ O/

In either case there is a neighborhood N5={ |X—Xo|<8, |^|<S} such that

S(i;i)nN§ isgivenby X^X^g), x^==x^{x^ for |^|<S, with — (o)=—2(o)==o. Thus,
dx^ dx^

it may be assumed that \^{X^)—\\,\X^X^\<SQ for |A:a|<8, S^<8.
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Let s be a regular value of X^); let 9 be a bump function: 9=1, for [ ̂ I^Sp;
<p=o, for |^21 ̂ 81; So^i^8- Define \{x^) by \{x^==Ux^—^{x^x^ by Sard's
Theorem, s can be taken so small that [^(^a)—^ol^S f01' \x^\<S. Define ^eO^
by ^(X, ̂ , A;2)=^i(^+29(^2)^2 9 ^D X2)' For s small, ^1) is G7'4'1 close to ^; also, in
GlosN^, S(^) isgiven by X==Xi(^), x^=x^), x^=x^ outside N^, ^==^', thus,

if [^a l^^o an(! -T-L(•?(:2)=05 then ——(^2)=^=05 by construction of Xi . Therefore, indx^ dx^
Glos N^, S^^) has only a finite number of non-simple singular points, one corresponding
to each critical point ofX^. Since these critical points are non-degenerate, this situation
is not changed by small perturbations of ^1).

The set of non-simple singular points of ̂  is compact and can be covered by a
finite number of neighborhoods N§1, N§2, . . ., N§A: with N§z cNgi cN§z, i=i, 2, . . ., k,
As indicated above, we approximate ^ by ^1) on N§1$ then with the same criterion,
we approximate ^1) by ^2) on N§2, without destroying the non-degeneracy conditions
(which are open) already obtained in Clos N§1 $ next we approximate ^2) by ^3) on N§3
without destroying what was already obtained in Clos {N§iu N§2}, and so on. In this
way we obtain ^w with only a finite number of non-simple singular points (^1,^1),
(Xg,^), . . ., (X^,j&J, corresponding to the critical (non-degenerate) points of the pro-
jection of S^i^) onto J. By further modification, if necessary, we get:

a<\<\^<.^<\<b.

Next we modify ̂ ) to makej^ a saddle-node of^^) $ this is done by a small perturbation
on the linear and quadratic terms of ̂  around p^. Gall T]^ the family thus obtained;
7j°(^ i=i, 2, . . . , T Z , has the saddle-node j^ as unique non-simple singular point.
We approximate T^ by T]^ which, at \, satisfies condition (i) of Prop. (3.6), Part 1$
the other conditions, 2), 3), 4)3 of this proposition are obtained for ^(X^) by the approxi-
mation techniques introduced by M. Peixoto [8] to obtain the same conditions.

Thus, ^(^sQ^; furthermore, at the saddle-nodes p^ of -y^1^), the transversality
of T]^ to M2 at {\ypi) is equivalent to the transversality of T]^ to the local submanifold
associated to p^ and ^(X^) defined in (3.2), Part I; actually, ^ of the first expression
in (2.1.1) (which corresponds to saddle-nodes), is such that ^/x(V)==^=f=o, for

^(i)
X=7)(l)(\), V=——(\) where/is the function defined in (3.2), Part I.

oh
Obviously, •^^(Qj:). In fact, •/^(^eX,)^, X=t=\, implies that in every

neighborhood of-y^X) there are fields ofQ^, which is not possible since for X=t=\, ^(X)
has only simple singular points (and this holds for fields in a neighborhood of •^(X)).

Now we show how to approximate T]^ by 7]eO(Qj).
Let PQ be a simple singular point of ^(X^) as in (3.10), Part I. Let K be a

neighborhood of \ such that -/^(B^cB. Let P(X)==P(7](1)(X)), (see (3.10), Part I)
and let ^(^(^^^(^(X)); obviously, S(7](l)) n ( K x U ) = { ( X , P(X)); XeK}.
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Take neighborhoods K^cK^cK of\, and U^cUoCU of p, such that:
Glos 14 c Int Ko, Clos Ko c Int K, Glos U^ c Int UQ ,

Glos UoC Int U, P(Ko)cUo1.

Take bump functions v, (p : v = = i on K^, v = = o outside K^; 9=1 on U^ and 9=0
outside Uo. Take coordinates (^,^3) in U and define:

S(x)(^, ̂ —-^i-PiW)?^ ̂ W.
where Pi(X) is the first coordinate of P(X), and c is a regular value of a{rp). For s
small, T^T^+S is close to T^; also T^T^ outside KoXUo, S(73(2))=S(7](1)),
and G{^)W=G^)(\)-e for XeGlosK;.

Thus, when (T^^^O, then ^(-/^'(X) =t=o, and T]^ has only a finite number of
non-generic singular points on S(•y3(2)) n ((Clos K^) x U^); T]^ |Glos K^ is transversal to the
local submanifold f=o defined in (3.10), Part I.

The set of simple non-generic singular points of T^ is compact and can be covered
by a finite number of neighborhoods K^(i) xU^(i), i=i, 2, . . ., m, with the properties
of K^xU^ above; obviously K(i), z=i , 2, . . ., m, is disjoint from ('^^^(Ql). We
approximate ^{1) by T]^, as above, on Clos K^(i) xU^(i) ; next, in the same fashion,
we approximate r^ by T]^ in Glos K^(s) XU^(2) without breaking the transversality
conditions (which are open) obtained in K^(i) xU^(i); we repeat this process on
K^(3)xU^(3), . . ., K^m) xV^m) and obtain ^{m+l) with finitely many non-generic
simple singular points (X^,^), (X^j^), . . ., (X^,^), '^m+l} being transversal to the local
submanifolds /==o associated to p=pi and X^'/]^4'1^) of (3.10), Part I. After
a further small modification, we may assume that a<\^<\^<.. .<\<b. Now we
approximate -y^4'3^ by T] which at \ has p^ as a composed-focus; this is done by a small
change in the coefficients of the terms of second, third, and fourth order atj^. (see [21]
for a coordinate expression of p^(o) defined in (3.11), Part I). Further modification
leads to 'y](\)£Q2!; this is done as indicated above for the case of saddle-nodes, using
the approximation techniques in [8] to obtain conditions 2), 3), and 4) of (3.12)3 Part I
(condition i) is already satisfied) for T](\). As in the case of Q^, it follows that
7]e(D(Q2l)nO(Qll)=$(QllUQ2l)=0(Ql). This ends the proof of (2.1).

Remark (2.1.1). — Gall Q°̂  the set of vector fields in 3C', which have non-generic
singular points. Then Q^ is dense in Q°i.

For instance, if p^ is a non-generic singular point of XeQ^, we can find X^
G^close to Xi which has a quasi-generic singular point at ?Q as unique non-generic
singular point; ifj&o ls a saddle-node (resp. composed-focus) ofXi, there is an Xg, G^-close
to Xi, which belongs to Q^ (resp. Q^). This follows from arguments similar to those
in the proof of (2.1), using [8].

Remark (2.1.2). — If ^eO(Q^), ^(O^i) has a finite number of points \, . . ., X^;
we may assume that \ has a neighborhood K^ such that ^(KJcB^, a neighborhood
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of X,==i;(\) which, by (3.13), Part I, can be taken disjoint with 3^—0,1. Thus,
^ has a neighborhood ^C<I>(Q^) such that every T]G^ is such that 7](KJcB,, and
hence 7]|K,e(&(Q^)) nd^Q;^)) n(&(Q^)), for every ^=1,2... Therefore, to
approximate S by ^^(Q^)) ̂ (Q^)) ̂ (CLW)? i1: Is sufficient to do so on
J—UK^cUjj, where Jj are closed intervals whose extremities are a, b, or the extremities
of K^. By continuity, every r^e'9' can be assumed to have only generic singular points
on Jj and to be structurally stable on the extremities of J.

Remark (2.1.3). — a) Let (9 be an open set of3C' such that every Ye(P has only
generic singular points. Gall r(Y) the minimum of the periods of all periodic trajectories
of Y$ T(Y)=OO, if Y has no periodic trajectory.

It follows easily that T is a positive lower semicontinuous function; see, for
example, [6, p. 219].

b) Under the same hypothesis in a), the minimum of the length of saddle separatrices
(resp. connections) of Ye (9, ^(Y) (resp. ̂ i(Y)), is a positive lower semicontinuous function,
as follows from (4.5), Part I. Here we are assuming that a saddle separatrix whose a
or co-limit set is a generic node or focus has infinite length, and that^(Y) (resp. ^(Y))
is infinite when X has no saddle separatrix (resp. no saddle connection). Obviously,
^<i.

Proposition (2.2). —^(Q^)) an(^ ̂ (Q^))? defined as in ( 2 .1 ) according to (1 .2 ) a),
are open and dense in O7'.

The proof of this proposition depends on two preliminary results. Some notation
is introduced first.

Assume that i^eO^; let y be a periodic trajectory of period T of X==^(Xo) and
let TT :BoXUo->U be the mapping defined (in (2.1)3 Part I) in a neighborhood of
{X}x{^}, J^ey. Suppose that s>o, a neighborhood N of y, and a positive integer n
are given; then Bo and UQ can be taken so that every arc of trajectory of YeB^ joining
ueUQ to 7r^(^)eU spends a time within s of m and is contained in Int N. Take
neighborhoods N^ and No of y ^d UoCUo of p, such that Glos Nodnt No,
Glos No C Int N, No n Uo = Uo, and Glos Uo C Int U^ c UQ ; also take neighborhoods
Ko C Ko C K of Xo such that Glos KQ C Int K^, Clos K^ c Int K, and ^(K) c Bo. Define
7^:KxUo-^U by n^\,u)==n^(\),u).

Lemma (2.2.1). — Assume the notation above.
a) If^f is two-sided, n^ can be G +1 approximated by 7^ such that T^ = TT^ outside Ko X UQ ,

7^(X, u)—u restricted to GlosKoXUo has zero as regular value, and when 7Ti(X, u)=u and
^7Ti , , , f^TTi ,
-^(X,^!, then -^(X.^+o.

b) If^ is one-sided, we may assume that S(^)? XeK has only one one-sided periodic trajectory
meeting Uo at a(X) (=^(^(X)) of (2.6)3 Part I). TC^ can be G^1 approximated by ̂  such
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that n^(\,u)==u only for u=a{\), 7^=7^ outside K^xl^, and at every XeGlos KQ with

—(\,u)==—i at u==a(\), then ——^(X^+o and —^(X, ^(X, u)) 4=0 ^ u==aCh).
ou oh ou cu

Proof. — Follows from Sard's Theorem.

Lemma (2.2.2) (Kupka). — In the space of CY4'1 functions from K()XU() to U, with
the G^1 topology, there is a neighborhood V of ̂  where a continuous <S>\-valued mapping rc->^
is defined so that n^==n in ClosKoXUo, 7^==^ outside K^xU2 and ^==^ outside
KoXNo.

Proof. — Similar to [12, p. 464].

Proofof (2.2).—Given ^eO^ we will approximate it by ^^(Q^)) n<I)(Q/2(/^))•
We may assume that ^ has only generic singular points and that $(^), S(^)e27, by
Remark (2 .1 .2) ; also, we may assume that every periodic trajectory of ^ has period
greater than T()>O, by Remark (2.1.3), a). Gall P(%) the following set:

{(X,j&)eJxM2 , such that ^(X) has a non-generic periodic trajectory y of period <TX
through j&}.

P(%) is a compact subset contained in IntJxM2; the subset P^)cP(^) of
points for which y is one-sided, is also compact.

First we will approximate ^ by Y]£<D(Q^(%)). For X^eJ, ^(Xo) has at most a
finite number of one-sided periodic trajectories YI? Y2? • • • ? Tfe- Take ^==2, £<TO,
and N(i) ==N(Y^) disjoint neighborhoods of y^ i=i, 2, . . ., A. B() is taken as above
with the additional conditions that every periodic trajectory of YGB() has period >T()
(2.1.3), a), and that, on IVF—UNo^YeBo has only either periodic trajectories of
period >n or two-sided periodic trajectories of period <n. K = K(\)), Kp == Ko(Xo), etc.,
are taken as above. Take a finite covering Ko(Xi), K^Xg), . . ., KQ(\J of the projection
of Pi(n) on J, and take No(\)(r), No(\)(2), .... No(X,)(^), the corresponding neigh-
borhoods of the one-sided periodic trajectories of S(\). On each Kg(Xi) xNo(Xi)(i),
z = = i , 2 , . . . ,^ i , approximate ^ (using (2 .2 .2 ) ) by Y^ such that 7r^^=7ri of (2.2.1) , b)
on Ko^xU2^) and ^=^ outside Ko(Xi) X (UNo(Xi)(i)). Then, with the same
criterion, approximate 7)i by ^ on each Ko(Xg) X'No{\^){i), z== i , 2, . . . , k^ , without
breaking the regularity conditions (which are open) obtained for n^ on Glos Ko(Xi).
Iterating this procedure for Ko(Xg), ^(^4), . . . , K()(\J, we obtain ^=^ which has
finitely many non-generic one-sided periodic trajectories of period <n, which are quasi-
generic; furthermore, if^(X'), z = = i , 2, . . ., A, has one such trajectory -f, ^ is transversal
at Y" to the local manifold /==o defined in (2.6), Part I, associated to X==7](X1) and
Yx == Y^ Ihus we may assume (after a small change, if necessary) that a O^O^ . . . <)f<b
and that 7](i) has y1 as unique quasi-generic periodic trajectory, of period <_n. By a
further small change on T] to ( i+Q)^? we get period -f<n; if ©>o is small, no
new non-generic one-sided periodic trajectory of period <_n is created. Finally, the
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approximation techniques of [7] lead to ^ satisfying i), 2), 3) of (2.2), Part I, at X\
i=i, 2, . . . , k. Obviously ^e^Q^)).

It follows from (2.7), Part I, that there are neighborhoods J' of ^ such that
TjlJ^e^Q^^)); hence it is sufficient to approximate T] by ^^(Q^)) on intervals J
contained in the complement of Uj\ where T] has only generic one-sided periodic
trajectories of period <n. Take now TZ>^/TO, and £<TO^—n. For XgeJ, consider a
finite covering No(yJ of the compact set of two-sided periodic trajectories of ^(Xo) of
period <n\ the neighborhoods N^) are taken as at the beginning of this section.
Eg is taken so that YeB^ has only periodic trajectories of period >T() and, through
M2— U No(Y^), Y has only periodic trajectories of period >n or generic one-sided periodic
trajectories of period <_n, Ko=K(Xo), Ko=Ko(Xo), etc., are taken as above. Take a
finite covering K^(Xi), K^Xg), . . ., Ko(\J of the projection of P(%) into J. For K()(\),
i=i, . . ., m, take the corresponding neighborhoods No(yi)(z), N^y^)^'), . . ., N^y^.)^')
which cover the two-sided periodic trajectories of T](\) of period <_n. Start with
K.o(Xi). On K.o(X) xN(Yi)(i) approximate T] (using (2 .2 .2 ) ) by T^ such that n^==n-^
of (2.2.1), a) on Ko(Xi) xU^(i), and ^==T] outside K.o(Xi) xNo(yi)(i); then with the
same criterion, approximate 7]i by ^2 on Ko(Xi) xNo(Xa)(i) , without breaking the
regularity conditions obtained for TC^ on Clos K.o(Xi) xNo(y2)(i), and so on for
Ko(Xi) xNo(Y,)(i), z=3, 4. • • -^i. and afterwards for Ko^), K^), . . ., Ko(Xj, thus
obtaining T] which has finitely many non-generic periodic trajectories of period <_n,
which are two-sided and quasi-generic. This last assertion can be shown as follows.
Every two-sided non-generic periodic trajectory of period <_n of T) must be contained,
for some i, in LJKo(\) xNo(Yj)(i) (otherwise it would have period >n) and therefore
corresponds to a fixed point of 71^=7^ on K.o(\)xUo(j) otherwise, since T^ has no
periodic points of period >i, for it is orientation preserving, it would contain a simple
arc which spends a time greater than:

^.(period y^)—£>^T()—£>^

and hence it would have period greater than n.
Now, further small modifications of T] (which is also transversal to the local mani-

folds f==o of (2.4), Part I) similar to those indicated above for Y], lead to 7]eO(Q^(yz))
on J and therefore on J. Thus 7]e<I>(Q^(^)) n^Q^)) and approximates ^.

Remark (2.2.3). — Gall Q^ the set of vector fields XeX^ which have non-generic
periodic trajectories.

Approximation arguments similar to those used in the proof of (2.2) show that
Q^2 (defined in (2.2), Part I) is dense in Q^.

If X has one non-generic periodic trajectory y? we fi^t make it quasi-generic
for Xi G^close to X, using adequate versions of (2 .2 .1 ) and (2 .2 .2) . Then we use the
approximation techniques of [8] to get XgeQ^, G^close to Xi, with y as quasi-generic
periodic trajectory.
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Proposition (2.3). — 0(Q^(^)), defined as in (2 .1 ) according to ( 1 . 2 ) 3 a), is open and
dense in 0^

Proof, — Openness is obvious, by (1.1), a ) , we prove density. Let ^e^;
by (1.1), b) and Remark (2 .1 .2) we may assume that ^e^>[ and that all its singular
points are generic. Also we assume that S(^), ^(&)eS7'.

Let m>o be less than the length of any saddle separatrix of ^(X), XeJ; the
existence of m follows from (2.1.3), b).

Let A(^) ={XeJ; S(^) has some saddle connection with length <_l}. A(^)clntj
is compact. For ^eA^), let {yj be the saddle connections with length <i of X == S(^o) \
for Y^ consider the neighborhoods N^, N^ and B,, of the saddle points connected by y»
and X=S(\)), so that /^^^(^(Y))-^) is defined for YeB, by (4.4), Part I;
Tr^U^Nt-^caN^

Also consider neighborhoods N^, N^, N^ of the arcs of -f joining ^(X) to
^(X)$ assume that Clos N^cint N^, ClosN^cN', and that the arcs of separ-

atrices ^(Y)^^)) and (Try-^Y^Y) are contained in Int N0,3 for YeB,.
The N/s are taken disjoint. Take neighborhoods Ko(Xo), Ko(Xo), K(\)) of X, with
GlosKo(Xo)cIntK.o(Xo) and Clos Ko(Xo)cInt K{\) such that S(K(Xo)) GBcHB,.
Assume that B is such that all saddle separatrices of YeB, different from those through
^(Y), ^(Y), have length greater than ^, and also that the saddle separatrices through
^(Y), ^(Y) for /^(Y)+o have length greater than ^+w, where ^= lengthy".
See (4.5), Part I, and (2.1.3), b).

The K^Xo)3;? form an open covering of A(^); select a finite subcovering Ko(Xi),
Ko(X,), . . . ,Ko(Xj .

Gall yL Yi? • • - 9 Y^- t^ saddle connections of ^(Xj), with length ^/'. Take K(X^)
and y^ and approximate^ by ^(1) such that ^l)(K(Xl))cB, ^^^ outside K^\) x (LJNo,)
and such that zero is a regular value of/^^^X)), for XeGlos K^(Xj. This is achieved
by a procedure similar to that described in the proof of (2.1), using here a version of
(2 .2 .2) suited for saddle connections [6, p. 221]. For K(Xg) approximate ^(1) by ^(2)

as above, taking care not to destroy the regularity conditions (which are open) obtained
in Clos Ko(Xi). Do the same for Xg, . . ., \ and obtain ^=r^.

Start with ^==3772/2, then T\ obtained above has a finite number ofX's:
a<\<...<\<b,

such that, after a small change on T], T)(\) has only one saddle connection y1 with
length <_l\ each one corresponding to a zero ofy^T^X)); hence T] is transversal at \ to
the local manifolds f^ == o defined in 4, Part I. Notice that there may be other saddle
connections Y fo1' ^(^i) but, by construction of T], they will have length greater than:

m 4- length y^ 2m>l.

By a further small change, we may assume that T](\) eQ^/). This, as an (2. i) and (2.3),
is achieved by the approximation techniques in [8]. Now, all the saddle separatrices
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of 7](X), X=)=\, have length greater than 37^/2. Each \ has a neighborhood J^ such
that "y](X), for XeJ^, X=|=\? has only saddle connections (if any) with length greater
than n, (4.7.1)5 Part I. Hence, it is sufficient to approximate T] restricted to the comp-
lement of Uj^, where all saddle separatrices have length greater than m^= 3^/2.

Repeat the above procedure for each of the intervals J on the complement
of Uj^, now for ^==3^/2 ̂ ^/s)2^ and so on. Thus after k—i steps we obtain
(== (3/2)fc77^>7^, for k big enough. It follows as in (2. i) and (2.3) that the one parameter
family thus obtained belongs to $(Q^3(^)).

Remark (2.3.1). — Gall Q^ the set of vector fields Xe3Q which have saddle
connections or non trivial recurrent orbits and all its singular points and periodic orbits
are generic. The set Q^O^s (defined in (2.2) and (4.2)3 Part I) is dense in Q^,
as follows from arguments similar to those employed to prove (2.3). In fact, if XeQ^g
has a saddle connection y? it is ^-approximated by X^eQ^ that have the same saddle
connection, which is a simple loop in case y is a loop. This is done by a local pertur-
bation of X around the saddle points. If X has a recurrent orbit, it is approximated
by X^, G^close to it, which has either a saddle connection, if X has some recurrent
saddle separatrix, or a quasi-generic periodic orbit, ifX has none. The first alternative
follows from the " closing lemma " in [8, p. 114]; the second happens only if M^T2

(torus) and X has no singular point.
The first case was treated just above, the second is handled as follows.
There is a cycle S1 transversal to every Y in a small ball V centered at X. Let

Y^eSYnV and call p(^) the rotation number of X(^)==^Yi+(1—•y)X, relative to S1.
Notice that p(o) is irrational and p( i ) is rational. Gall ^ the g.l.b. of:

{je[o, i]$ p(|>, i])=p(i)}.
Clearly o<^<i.

Since p is continuous p(^) = p( i ) is rational, and X(^i) has periodic orbits. These
orbits are necessarily non generic, otherwise for all small non negative s, X(^i—s) will
have generic periodic orbits and p(j"i—s) will also be equal to p(i) . Contradiction.
Now we approximate X(^) by XieVnQ^, according to Remark (2.2.3).

Notice that X^Q^uQ^uQ^. Remarks (2 .1 .1) , (2.2.3), (2.3.1) indicate
how to approximate fields in 3Q by fields in S^=Q^uQ^uQ^.

Proof of Theorem 2. — Take a countable dense set ofj, {^}, zeN, which contains
the extremes a, h\ call O^) the set {^e^; ^(fl^eSY}. O(^) is open and dense in O;
(I)(S,)==(I)(Q^^)n <I)(Q^2(j)) n$(Q^3(j)) is also open and dense in 0^ by (2.1), (2.2),
(2.3). Thus ^=n(0(^)n$(S^)) is a Baire set; we show that S8iV\ In fact, if
^e^?, ^"^(S^ is open and dense, since it contains {^J and ^ is transversal to S^$ this
proves that ^ satisfies 2) and part of 3) of Theorem 2. We show that it satisfies i ) $ in
fact, if X^""^^) and ^(^^[K-S]^ ^(X) has a non-generic singular point, a non-
generic periodic trajectory, or a saddle connection and then ^(X)eS^. To complete
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the proof that S; satisfies 3), it is sufficient to observe that every Xo^^""1^) is a bifurcation
value; if ^[\o)e^[ this is obvious by ( i . i ) $ if ^^e^-S]^ it has a non trivial
recurrent trajectory and can not be topologically equivalent to ^(^) for ^ close to \.

3. Structural Stability,

In this section we formulate the concept of structural stability for vector fields
depending on a parameter, and state some related conjectures.

Definition (3.1). — a) ^, ^eO7' are said to be topologically equivalent if there is a
homeomorphism h:J->] and a continuous family of homeomorphisms, H:J->HomM2,
ofM2 such that for very XeJ, H(X) is a topological equivalence between ^(X) and T](A(X)).

b) ^e<y ig structurally stable if it has a neighborhood N such that i; is topologically
equivalent to every T]£N.

Obviously this definition makes sense when J is any manifold. When J={^, a
point, this definition reduces to plain structural stability, (1.3), Part I.

Also we may require that N be such that h and H be s-close to the identity (ofj
and M2 respectively), for s given beforehand.

Gall S(J) the set of structurally stable elements of 0^
It seems quite possible to show that S^cP*. Also that I\cS(J), where

r,={^r; sCDc^u^}.
More delicate questions are the following:
a) Prove that FgUSJ) is open in ^r and dense in r^^er"; ^(^cS'uS^}.
b) Prove (or disprove) that there are elements ^eS(J) such that:

^n^K-sr-s^o.
c ) Characterize S(J). Is it dense in y?

An answer for b) and c ) should require a deep understanding of the (< generic 5?

type of non trivial recurrent orbits and of the <c part of codimension one " of [K-Sy—27.
A basic question in this direction is ifQ^p, the set of vector fields in T2 without singularities
and irrational rotation number p, contains an open dense manifold of codimension one.
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