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NILPOTENT CONNECTIONS
AND THE MONODROMY THEOREM :

APPLICATIONS OF A RESULT OF TURRITTIN

by NICHOLAS M. KATZ

INTRODUCTION

(o.o) Let S/C be a projective non-singular connected curve, and

s = = s — { p i , . . . , p,}
a Zariski-open subset of S. Suppose that

(0.0.0) 7T : X->S

is a proper and smooth morphism. From the (^00 viewpoint, n is a locally trivial fibre
space, so that, for seS variable and i>o a fixed integer, the C-vector spaces <c complex
cohomology of the fibre 99

(o.o.i) H^C)

form a local system on S .̂
This local system may be constructed in a purely algebraic manner, by using the

algebraic de Rham cohomology sheaves H^(X/S). For each z'^o, H^(X/S) is a
locally free coherent algebraic sheaf on S, whose " fibre 99 at each point seS is the
C-vector space H^Xg, C), and has an integrable connection V, the " Gauss-Manin connec-
tion ". From this data, the local system of H'(Xg, C) may be recovered as the sheaf
of germs of horizontal sections of the associated coherent analytic sheaf on S^^

(0.0.2) H^(X/S)®,^r1.

(o. i) Now, in down-to-earth terms, H^(X/S) is an algebraic differential equation
on S (classically called the Picard-Fuchs equations), and the local system of IT(Xg, C)
is the local system of germs of solutions of that equation.

(0.2) The Griffiths-Landman-Grothendieck "Local Monodromy Theorem95 asserts
that if we restrict the local system of the H^Xg, C) to a small punctured disc D*
around one of the "missing93 points peS—S, then picking a base point ^o6^*? ^le

automorphism T of EP(X^, C) induced by the canonical generator of ^(D*, So) (the
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176 N I C H O L A S M . K A T Z

generator being " turning once around p counterclockwise 33) has a very special Jordan
decomposition:

(0.2.0) T=D.U==U.D

where

(0.2.1) D is semisimple of finite order (i.e., its eigenvalues are roots of unity)
and

(0.2.2) U is unipotent, and (i—U^^^o (i.e., the local monodromy has exponent
of nilpotence _<z + i ) .

(0.3) We can interpret the (( Local Monodromy Theorem " as a statement about
the local monodromy of the Picard-Fuchs equations around the singular point p.
Griffiths, by estimating the rate of growth of the periods as we approach the singular
point p, was able to prove that the Picard-Fuchs equations have a " regular singular
point 33 (in the sense of Fuchs) at p.

Given that the Picard-Fuchs equations have a regular singular point at p, the
statement that the eigenvalues of its local monodromy are roots of unity is precisely the
statement that the exponents of the Picard-Fuchs equation at p are rational numbers.
(In fact, Brieskorn [2] has recently given a marvelous proof of the rationality of the
exponents via Hilbert's yth Problem.)

(0.4) The purpose of this paper is to give an arithmetic proof that the Picard-Fuchs
equations have only regular singular points, rational exponents, and exponent of
nilpotence i+i (for H1).

(0.5) The method is first to <c thicken 33

(0.5.0) X -^ S -> Spec(C)

to a family

(0.5.1) X^S^Spec(R)

where R is a subring of C, finitely generated over Z, S/Spec(R) is a smooth connected
curve which "gives back'3 S/C after extension of scalars R<->C, and n : X—^S is
a proper and smooth morphism which "gives back35 n: X->S after the base
change S->S.

For instance, the Legendre family of elliptic curves, given in homogeneous
coordinates by

(0.5.2) Y^-^X-ZKX-XZ) in Spec(cL————1)xP2

V L M1--^.]/

is (projective and) smooth over Spec C X, ———- ) =A l—{o, i}. A natural thickening
\ L X ( I — X ) J /

is just to keep the equation (0.5.2), but replace C X,———— by Z X , — — — — — ,
_ . i ^ , , r y r / 1 ^ ( T — — ^ ) 2 X ( l — — X )and replace C by Z [1/2]. L < ^J L < ^

356



NILPOTENT CONNECTIONS AND THE MONODROMY THEOREM 177

The thickening completed, we look at HDR(X/S) ; replacing S by a Zariski open-
subset, we can suppose

(0.5.3) S is affine, say S=Spec(B), and is etale over ASy (i.e., B is etale
over R[X]).

(0.5.4) M=HDR(X/S) is a free B-module of finite rank.
The datum of the Gauss-Manin connection is that of an R-linear mapping

(0.5.5) V^: M-^M

which satisfies, for /eB, meM

(0.5.6) v(^)(/m)=^.m+/.v(^-)(m).
\dAj d\ \d\j

The next step is to prove that this connection is globally nilpotent on It of exponent z+i ,
which by definition means that for every prime number p, the R-linear operation

( / r\ \p{i+l)

(o.5.7) V^)) = M^M

induces the zero mapping of M/j&M.
To prove this, we use the fact that, M=HDR(X/S) being free, we have

(0.5.8) M/^M^H^(X®F,/S®F,)

(the right hand side being an B/^B module). The problem is then to prove the
nilpotence of the Gauss-Manin connection in characteristic^; this is done in Section 5.

(0.5.9) The final step is to deduce, from the global nilpotence of exponent z'+i,
that the Picard-Fuchs equations have only regular singular points, and rational exponents,
and that the exponent of nilpotence of the local monodromy is ^z'+i.

This deduction (13.0) is made possible by the fantastic Theorem (11.10) of
Turrittin, which allows us to really see what keeps a singular point of a differential
equation from being a regular singular point.

(0.6) The first sections (1-4) review the formalism of connections. They represent
joint work with Oda, and nearly all of the results are either contained in or implicit
in [31], which unfortunately was not cast in sufficient generality for the present
applications.

Sections 5-6 take up nilpotent connections in characteristic j&>o. The notion
of a nilpotent connection is due to Berthelot (cf. [i]). We would like to call attention
to the beautiful formula (5.3.0) of Deligne. The main result (5.10) is that, in
characteristic^, the Gauss-Manin connection on H^R(X/S) is nilpotent of exponent <^ i +1
(or _<27z—i+ i , if i>%==dim(X/S)).

Section 7 is entirely due to Deligne. He had the idea of using the Carrier operation
to lower the exponent of nilpotence ofH^X/S) from z+ i to the number of pairs (/>, q)
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178 N I C H O L A S M . K A T Z

of integers with ^(X^^H^X/S, Qj^s)=|=o, and p-}-q==i, thus relating the exponent
of nilpotence to the Hodge structure.

Section 8 is a review of standard base-changing theorems, and Section 9 precises
the notion of global nilpotence. Section 10 combines the results of Sections 7, 8 and 9
to show that Hp^X/S) is globally nilpotent of exponent z+i , or (by Deligne), the
number of non-zero terms in the Hodge decomposition of H^Xg, C), s being any
C-valued point of S.

Section 11 reviews the classical theory of regular singular points, and proves
Turrittin's theorem. I am grateful to E. Brieskorn for having made me aware of the
paper of D. Lutz [24], from which I learned of the existence of Turrittin's Theorem.

Section 12 recalls the classical theory of the local monodromy around a regular
singular point. It is a pleasure to be able to refer to the elegant paper [25] of Manin
for the main result (12.0).

In Section 13 we establish that global nilpotence of a differential equation implies
that all of its singular points are regular singular points, with rational exponents (13.0).
This theorem was originally conjectured by Grothendieck (and proved by him for a
rank-one equation on P1!). Needless to say, that conjecture was the starting point
of the work presented here.

In Section 14, we "tie everything together", and give the final statement of the
Local Monodromy Theorem (14.1), with Deligne's improvement on the exponent of
nilpotence in terms of the Hodge structure. We also give Deligne's extension of the
theorem (14.3) for non-proper smooth families, proved via the systematic use ofHironaka's
resolution of singularities and Deligne's technique of systematically working with diffe-
rentials having only logarithmic singularities along the divisor at oo.

It is a pleasure to acknowledge the overwhelming influence of Grothendieck and
Deligne on this work.

(1.0) Let T be a scheme, f: S->T a smooth T-scheme, and S a quasi-coherent
sheaf of ^g-modules. A T-connection on € is a homomorphism V of abelian sheaves
(1.0.0) V : S^QL\^^S

such that
(1.0.1) ^{ge)==g^{e)+dg®e

where g and e are sections of 0^ and § respectively over an open subset of S, and dg
denotes the image of g under the canonical exterior differentiation d\ ^g-^Q^rp. The
kernel of V, noted ^v, is the sheaf of germs of horizontal sections of (<§' , V).

A T-connection V may be extended to a homomorphism of abelian sheaves

V.: ^T^s^-^W®^^

by
(1.0.2) V,((0®<?)==rf(x)®<?+(—l)\OAV(<?)
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NILPOTENT CONNECTIONS AND THE MONODROMY THEOREM 179

where co and e are sections of tig^ and § respectively over an open subset ofS, and where
O)AV(^) denotes the image of cx)®V(^) under the canonical map

0^ (9) /'O1 6?> '̂\ ^ O^+l/^i jp^2g^^s(^2g^(><^ 6} -> S.2g^ (̂  6

which sends (O®T®^ to ((OAT)®^.
The curvature K==K(<f, V) of the T-connection V is the ^g-linear map

K-V,oV: ^-^®A.
One easily verifies that

(V^oV,)((0®.)=COAK(.)

where co and ^ are sections of tig/rp and <? over an open subset of S.
The T-connection V is called integrable if K = o. An integrable T-connection V

on S thus gives rise to a complex (the de Rham complex of (<f, V))

(1.0.3) o -> g -X ^g/T®^ ̂  -^ ̂ IA ̂  ̂  • . .
which we denote simply by tig/T®^ S when the integrable T-connection V is
understood.

Let Der(SIT) denote the sheaf of germs of T-derivations of (Pg into itself. We
note that Der{S/T) is naturally a sheaf of/-l(fiy-Lie algebras, while, as (Pg-module,
it is isomorphic to Hom^(Q^, 6?g).

Let End^S} denote the sheaf of germs of f"1^) -linear endomorphisms of S.
We note that End^S) is naturally a sheaf off~1 (Ory) -Lie algebras.

Now fix a T-connection V on S\ V gives rise to an ^g-linear mapping
V : Der{SIT)-^End^)

sending D to V(D), where V(D) is the composite

€ -^ ^g/T®^ S D0^ (9^^ g^S.
We have

(1.0.4) V(D)(/.)=D(/).+/V(D)(.)

whenever D,/ and e are sections of D<?r(S/T), ^g and S respectively over an open subset
ofS. Conversely, because S/T is smooth, any ^g-linear mapping

Der{SIT)->End^)

satisfying (1.0.4) arises from a unique T-connection V.
The T-connection V is integrable precisely when the mapping Der{S/T) —^End^S}

is also a Lie-algebra homomorphism. This is seen by using the well-known fact that
for D^ and Dg sections ofZ)^r(S/T) over an open subset of S, we have

(1.0.5) EV(D,),V(D,)]-V([D,,DJ)=(D,AD,)(K)

where the right-hand side is the composite mapping
^ K . r\2 /o\ .p1^1^ /r\ (^ e> <p
6 ——> i2g^Q9^ 6 ——> C/gOO^ 6^6.

359



180 N I C H O L A S M . K A T Z

(1.1) Let (<?,V) and (^, V) be quasi-coherent ^g-modules with T-connections.
An ^g-linear mapping

0 : g->y
is called horizontal if

( 1 . 1 . 0 ) 0(V(D)(.))=V'(D)(0(.))

whenever D and e are sections of Der^S/T) and <? respectively over an open subset ofS.
We denote by MC(S/T) the abelian category whose objects are pairs (<?, V) as

above, and whose morphisms are the horizontal ones (MC= modules with connection).
The category MC(S/T) has a tensor product, constructed as follows :

(^, V)®(^-, V')=(<?®^, V"),

V" defined by the formula

( 1 . 1 . 1 ) V/"(D)^®/)=V(D)(^®/+^®V/(D)(/)

where D, e, and f are sections ofZ)^r(S/T), <?, and ^ respectively over an open subset
of S.

Each object (<?, V) whose underlying module S is locally of finite presentation
defines an internal Horn functor

A^((<r,V), ?) : MC(S/T)->MC(S/T)
as follows :

Hom^S, V), (̂ , V'))=(^m^, ̂ ), V"),

V" being defined by the formula

(1.1 .2) (V"(D)(0))(.)=V/(D)(0(.))-(D(V(D)(.))

where D, 0 and ^ are sections of Z)^r(S/T), Hom^^S^ ^r) and <^ respectively over an
open subset of S.

Allowing ourselves a moderate abuse of language, we will say that MC(S/T) has
an internal Horn which is not everywhere defined.

We denote by M/C^S/T) the full (abelian) subcategory of MC(S/T) consisting
of sheaves of quasi-coherent ^Pg-modules with integrable connections. This subcategory
is stable under the internal Horn (when defined, cf. (1 .1 .2 ) ) and tensor product
ofMC(S/T).

We remark that the categories MC(S/T) and MJC(S/T) have an evident func-
tonality in the smooth morphism f:S->T. Explicitly, if f : S'—^T' is a smooth
morphism, and

S' -'-> S

(i-i-3) / f

T -^ T

36 0



NILPOTENT CONNECTIONS AND THE MONODROMY THEOREM 181

is a commutative diagram, there is an " inverse image 59 functor

( 1 .1 .4 ) (^ hY : MC(S/T) -^MC(S7T)

(which maps MIC(S/T) to MIC(S'/T')), as follows. Let (<?, V) be an object ofMC(S/T).
Taking the usual inverse image by {g, h) of the mapping

(1.1.5) V : <?^£^®^<?

gives a mapping

t1-1^) gw->{g^r^®^g^).
The canonical mapping

( 1 . 1 . 7 ) (^W/T-^iw,

tensorized by ^(^), gives a map

t1-1^) (^ W/T®^^) -> ̂ /T^s^W

The composition of ( i . i .6) and ( i . i .8) is thus a mapping (^, ^(V)

(1.1.9) (^ A)*(V) : ^(<?) -> ̂ '^^(^

which is easily seen to be a T'-connection on ^lt((?). The inverse image {g, h)\S, V)
is, by definition, (^(<?), (^ A)*(V)).

One checks immediately that the curvature element

WW, (^ A)*(V))eHoms,(^(^), ̂ /T'®^^(^))

is the inverse image of K(<f, V)eHomg(<f, ti|^®^ (^).

(1.2) We remark that the category MJC(S/T) has enough injectives, being
(tautologically) equivalent to the category of quasicoherent modules over an appropriate
sheaf of enveloping algebras (the sheaf P-D Diff. of Berthelot [i], or, equivalently,
the enveloping algebra of Kostant, Rosenberg and Hochschild [19]).

(2.0) We define the de Rham cohomology sheaves on T of an object (<?,V)
in MIC(S/T) by

(2.0.1) H^(S/T, ^V)=RW^®^^)

where ^s/T0^ g is the de Rham complex of (<f, V), cf. (1.3), and R^/, are the hyper-
derived functors of R°/,. In particular, H^(S/T, (<^, V))^/^^). As is proved
in [17] and also in [19], the functors H^(S/T, ?) are the right derived functors of the
left exact functor

(2.0.2) H^(S/T, ?) : MJC(S/T)->MJC(T/T)= (quasicoherent sheaves on T).

361
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(3.0) Suppose now n : X->S is a smooth morphism. The natural forgethul
functor

MJC(X/T) -> MJC(X/S)
(3"0'I) (^,V)^(^,V|2)^(X/S))

allows us to define the de Rham complex of (<^, V[ Z>^r(X/S)), which we will denote
simply by ^x/s^x <^ Further abusing notation, we write
(3.0.2) H^(X/S, (^, V))=R^.(Qx/s®<p. ̂ ).

Exactly as in [31], we may construct a canonical T-connection J^ on the quasi-
coherent ^s-module H^(X/S, (<;?, V)), the "Gauss-Manin connection53, so that the
functors H^X/S, ?) may be interpreted as an exact connected sequence of cohomological
functors

MJC(X/T) -> MIC(S/T).

Remark (3.1). — There is no difficulty in checking that these functors are none
other than the right derived functors of

H^(X/S, ?) : MJC(X/T) ^MIC(S/T)

where the T-connection on H^X/S, (<f, V|Z)^(X/S)))=7^,(^VI^X/S)) is defined
by using the exactness of the sequence of sheaves on X

(3.1.0) o -> Der(XIS) -> JD^X/T) -> nDer{S/T) -> o.

(3.2) For computational purposes, however, we recall the construction given
in [31], of the entire de Rham complex Qg^^H^X/S, (^, V)). Consider the
canonical filtration of Q^/T ^Y locally free subsheaves

(3.2.0) - ^/T-F^^/T) :>FW^ . • .

given by

(3.2.1) F^x/T)= image of (^(^) ®^ ̂  -> ^x/r) •

By smoothness, the associated graded objects gr^F1^4"1 are given the (locally free)
sheaves

(3.2.2) gr^x/T) - ̂ M ®^ "x7s1-

We filter the de Rham complex ^x/T^x ^ ^Y t^le subcomplexes

(3.2.3) F^Qx/T®^ ̂ -F^^/T)®^ ̂ .

the associated graded objects are the y'"1^) -linear complexes

(3.2.4) g^x/T^x ^) ̂  ̂ (^^^("xys10^ ̂ )
(the differential in this complex is i®(the differential of ^Vs'®^^))*

Consider the functor R0^ from the category of complexes of abelian sheaves
on X to the category of abelian sheaves on S. Applying the spectral sequence of a
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NILPOTENT CONNECTIONS AND THE MONODROMY THEOREM 183

finitely filtered object, we obtain a spectral sequence abutting to (the associated graded
object with respect to the filtration of) 'SC'K^Q.^®^ <?), while

(3.2.5) Er'^R^^^gr^^R^^jTr^^)®^^^0^^))
-^/T^^S^X/S®^)
=^®^H^(X/S,(^V)).

The de Rham complex ofH^X/S, (<?, V)) is then the complex (E^3, rf;^), the q-th row
of EI terms of the above spectral sequence.

Remark (3.3). — The zealous reader who wishes to construct the c( Leray spectral
sequence 5? of de Rham cohomology for X —" S ->• T
(3.3.0) E^=HUS/T, (HUX/S, (<?, V)), ̂ )) => H£^(X/T, (<f, V))

without availing himself of the previous remark (whose truth reduces the question to
one of the usual composite functor spectral sequence) may employ the following trick,
due to Deligne.

Let 88 and V be abelian categories, S8 having enough injectives, and let N : 38-^
be a left exact additive functor. Let K* be a complex (K^o for i<o) over 3S. By
a C-E resolution with respect to N of K* we mean an augmented first quadrant bicomplex

K'-.M"

such that, for each z^o, the complex M''' is a resolution of K' by N-acyclic objects,
and such that for each j^o, the complex

H^M0'") -> H^M1'') — H^M2'*) -> . . .

is a resolution of H^K') by N-acyclic objects.
If K* is a finitely filtered complex over S8

K-^F^K^DF^K^D. . . ,

then by a filtered G-E resolution of K' with respect to N we mean an augmented first
quadrant finitely filtered bicomplex

M-^F^M^DF^M^D...
such that, for i^>o,

F\K*) -> F^M")
and

gr^K^^gr^M")

are G-E resolutions with respect to N of F\K*) and gr\K') respectively.
Proposition (3.3.1). — Let ^, 38^ V be three abelian categories, ^ and 38 with enough

injectives^ and let
L : ^->S§, N : gS^

be left exact additive functors^ such that the image of an injective by L is T-acyclic. Suppose further
that every finitely filtered complex over S8 admits a filtered G-E resolution with respect to N.
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184 N I C H O L A S M. K AT Z

Let AD F^A) D F^A) 3 ... ^ a finitely filtered object of ̂ . The spectral sequence of
a finitely filtered object for the functor L gives a spectral sequence

E^A^R^^LKgr^A) => ^-^(L^A).

For each y, we denote by E^'^A) the complex

(E^(A),^-2).
Then there is a spectral sequence

(3-3.2) E^=R^(N)(E^(A)) => R^(NL)(A).

Remark (3.3.3). — If^is the category ofabelian sheaves on a topological space S, V
the category of abelian sheaves on a topological space T, and N the functor^, where
y:S->T is a continuous map, then taking "the canonical flasque resolution" compo-
nentwise functorially provides every finitely filtered complex over B with a finitely
filtered C-E resolution with respect to N.

To apply the proposition, we take

I ^/ = complexes of abelian sheaves on X
^ Sg = abelian sheaves on S
^ ̂  = abelian sheaves on T

L =R°7r,
N-/,

A ^tlx/T0^^ with the fixation (3.2.3).

Outline of proof. — Take a finitely filtered injective resolution I* of A, so that, for
each z^o, PI9 and gr^P) are injective resolutions of F\A) and gr\A) respectively.
Put K'=L(r), F\IC)=L(P(T)). Let ]VT be a filtered C-E resolution with respect
to N of K", and define a new filtration F on M" by defining

P'(MP.?)^P-P(M^).

Now let P"=N(M"), filtered by F^P^^^F^M^^^F^M^). The desired
spectral sequence is that of the "totalized53 complex of P", with the filtration F.

(3.4) We now recall from [31] the explicit calculation of the Gauss-Manin
connection. The question being local on S, we will suppose that S is affine.

Choose a finite covering of X by affine open sets {Ugj such that each U^ is etale
over A^, so that, on U^, the sheaf ti^/g is a free (P^-module, with base {^, . . ., dx^}.

For any object (<^,V) of MJC(X/T), the S-modules R^^x/s0^^) "^Y ^e

calculated as the total homology of the bicomplex of ^g-modules

^^(^^^({UJ,^^^)

of alternating Cech cochains on the nerve of the covering {Ugj. We will now describe
a T-connection (in general not integrable) on the totalized complex associated to the
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NILPOTENT CONNECTIONS AND THE MONODROMY THEOREM 185

bicomplex ^({UJ, ^/g®^<!?), which upon passage to homology yields the Gauss-
Manin connection.

Let D be any T-derivation of the coordinate ring of S. For each index a, let
D^eDer^^, ^a) be the unique extension of D which kills dx^, . . ., dx^. D^ induces
a T-linear endomorphism of sheaves (a " Lie derivative ")

(3-4.0) D,: i^g-^a/s

by

(3.4.i) D,(/^A. . .^)=D,(A)6?<A.. .A^

where A is a section of 0^ over an open subset of U^. Similarly, D^ induces a T-linear
endomorphism

(3.4.2) D, : t^a/S0^ g -> ̂ Ua/S0^ §

by

(3.4.3) D,(G)®,)=D,(<O)®,+CO®V(DJ(,)

where o) and e are sections of O^g and <^ respectively over an open subset of U^.
Choose a total ordering on the indexing set of the covering {U3. We

define a T-linear endomorphism D of bidegree (o, o) of the bigraded fi?g-module
G^(^)=G^({UJ, ^/gOO^) by setting

(3.4.4) D| r(U^n . . . nU^, ̂ /s®^)^
if ao<oci<. . .<ap.

For each pair a, (B of indices, we define an (P^-line^r mapping of sheaves (the interior
product with D^—Dp)

(3.4.5) Wo,p: ^/sKUanU^^^KU.nUp)
by

(3.4.6) X(D)^(A^A. . .A^)=AS(-I)^(D^-Dp)(^)^A .. . A ^ A . . .A^

where A, ^, . . . ,^ are sections of C?x over an open subset of UanUo. (We put
X(D)^ p=o on ^x-) Similarly, we define an (Pylmeo.r mapping
(3.4.7) ^(DL.p : %s^x^l(UanUp) ̂  ̂ s1®^! (U.nUp)
by
(3.4.8) ^(D)^p(<o®^)=X(D)^p(co)®,.

We define an ^x-l111^1' endomorphism X(D) of bidegree ( i , — i ) of the bigraded
^g-module G"(<?)

(3.4.9) ^(D) : G^({UJ, ^/s®^) -^ ^^^{UJ, ^x7s10^)
by
(3.4.10) ^(^(^^...^^(-i^D)^^^,^^) ifao<...<a,^

366
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186 N I C H O L A S M . K A T Z

where a is the alternating ^-cochain whose value on U^ n . . . n U^ , oco< . . . < a ,
is ^ao,...,^-

Notice that {D^—D(J is a i-cocycle on the nerve of the covering {Uj with
values in £^r(X/S), whose cohomology class in H^X, Z)<?r(X/S)) is the value at
DeDer^g, ^g) of the Kodaira-Spencer map

( 3 - 4 . 1 1 ) px/s : Der^g, ^g) -> H^X, £^r(X/S)).

The cochain map X(D) is just the cup-product with the representative cocycle {D^—DJ.
"The" Gauss-Manin connection on the bicomplex G'*(<^) is given by

(3.4.12) ^ : DeDer^g, ^s) ̂  H(D)=8+X(D).

This explicit formula has a number of immediate consequences, which we will
now record.

Theorem (3.5).
(3.5.1) ̂  (D) ^ compatible with the "^ariski" filtration F^ of G"(<^),

^ar^ ^ .G^^), A^^ acts OTZ ̂  associated spectral sequence

(3.5.1.0) Er'^C^{Uj,^^(X/S, (^V)))^H£^(X/S, (^,V))

wA^ ^R(X/S, (^, V)) denotes the presheaf on X with values in MTC(S/T)

U^HUU/S,(^V)[U).

(3.5.2) ^(D) ^ not compatible with the "Hodge" filtration F^e °f G"(^)?
^Hodge^ •S.CP'?(<?), ^^ does not fl̂  o/z ̂  associated spectral sequence

(3.5.2.0) E^=IP(X, ^/g®^) => H^(X/S, (^ V)).

However, ^%(D) does r^^ ̂  ^o^ filtration on H^(X/S, (<?,V)) ^ ^ j-^ of
one, z.^.,

3iL(D)FHod,eC%^e

(<<c Griffith's transversality theorem " ) and so induces, by passage to quotients, an S-linear mapping

(3.5.2.1) ^(D) : gr^eHSRff(X/S,(^V))^gr^HS^(X/S,(^V)).

In particular, if the spectral sequence (3.5.2.0) degenerates (Ei==E^) (this is the case for
example, if X is proper and smooth over S, S is of characteristic zero, and S == (9^ with the
standard connection (cf. (8.7))), this induced mapping (3 .5 .2 .1 )

^(D) : H^(X, ^/s®<?) -> IP^X, ^/-s1®^)

is none other than the cup-product with the Kodaira-Spencer class px/s(D)eHl(X, Z)^r(X/S)).
(3.5.3) ff X is itself Stale over A^g, with iî g /r^ w^A base [dx^, ..., ̂ }, ^^

HUX/S, (^ v))==m(r(x, Qx/s®^ ̂ )).
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and, for DeDer^g, ^g), the action of J^(D) on H^(X/S, (<?, V)) ^ that induced from
the T-endomorphism D of r(X, %/s0 ̂ ):

D(co®<?) = Do(co)®<? + co®V(Do) (<?)

where D^Der^^x? ^x) zj> ̂  unique extension of D Z£^A kills dx^y . . ., (fo^, ^/zflf where co
aTzaf ^ ar^ sections of ^x/s (27^ ^ respectively over X.

4. Connections having logarithmic singularities.

(4.0) Let n : X—-S be a smooth morphism, and let i : Y<->X be the inclusion
of a divisor with normal crossings relative to S, j : X—Y<->X the inclusion of its comple-
ment. c< Normal crossings 5? means that X may be covered by affine open sets U such
that

(4.0.1) U is etale over A^g, via "coordinates" ^, . . ., x^.
(4.0.2) Y [ U is defined by an equation x^. . .x^==o (i.e., Y is the inverse image

of the union of the first v^n of the coordinate hyperplanes in A'g.
(4.1) We define a locally free ffyM.odule Q^/g(logY), by giving, as base over

an open set U as above, the elements —1, . . . , — v , ^,+1, ...,^. We define

^x/s(logY)=A^(^(logY)). Viewing ^x/s(log Y) a^ a subsheaf of j.(^x-Y)/s).
we see that the usual exterior differentiation in ^(^('x-Y)/s) preserves ^x/s^g^O?
which is thus (given the structure of) a complex (< c the de Rham complex of X/S with
logarithmic singularities along Y ").

Now let ̂  be a quasicoherent (PyM.odvile. An S-connection on ̂ , with loga-
rithmic singularities along Y, is a homomorphism of abelian sheaves
(4.1.0) v : ̂ ->a^(iogY)®^^f
such that
( 4 . 1 . 1 ) V{gm)==gV{m) + dg®m

where g and m are sections of 0^ and e^ respectively over an open subset of X. We
denote by e^7 the kernel ofV; ̂ v is the sheaf of germs of horizontal sections.

(4.2) Just as for (< ordinary " connections, we say that V is integrable if the canonical
extensions (1.0.2) of V to maps
(4.2.0) V, : t2x/s(log Y)00^ -^ ̂ (log Y)®,,^

make ^x/s(^°§ Y)®^^ into a complex (<( the de Rham complex of (e^, V) with loga-
rithmic singularities along Y 5?).

Let £)^ry(X/S) be the sheaf on X defined by

(4.2.1) Der^XIS)=Hom^,(logY), ̂ ).
r\ r\ r\ r\

Over an open U as above, Z)^y(X/S) is (P^-free on x^—, ..., x^—, ———, ..., —.8x^ ^ a^+i ^
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2)^y(X/S) is a sheaf of/'^fiy-Lie algebras, and an integrable ^-connection in JX
with logarithmic singularities along Y is nothing other than an ffl^-lmea.r mapping

(4.2.2) V : Der^XIS) -> End^)

which is compatible with brackets, and such that

(4.2.3) V(D)(^)=DC?)m+^V(D)(77z)

where D, g and m are sections of Z)^y(X/S), 0^ and J( respectively over an open subset
ofX.

(4.3) We denote by MJC(X/S(log Y)) the abelian category of pairs (^, V),
J( a quasicoherent (9^- Module and V an integrable S-connection on Ji with logarithmic
singularities along Y. (The morphisms are the horizontal ones.) Just as before
(cf. (1.2)), MJC(X/S(log Y)) has enough injectives, and has a (not everywhere defined,
cf. (1 .1 .2 ) ) internal Horn and a tensor product.

(4.4) The de Rham cohomology sheaves on S of an object ( J ( , V) in
MJC(X/S(logY)) are defined by

(4.4.0) H^(X/S(logY), (^,V))-R^,(Qx/s(logY)®^^).

Thus

(4.4.1) HUX/S(logY), (^, V))^^)

and the arguments of [17] or [19] show that the H^ are the right derived functors
of H°̂ .

(4.5) Suppose now that /: S-^T is a smooth morphism. Then fon : X-^T is
a smooth morphism, and i: Y^X is a divisor with normal crossings relative to T.
As in (3.0) there is a natural forgetful functor

, . MJC(X/T(log Y)) -> MJC(X/S(log Y))
(^,V)^(^,V)|2)^(X/S))

so that, just as in (3.0), we may define an exact connected sequence of cohomological
functors

(4.5.1) H^(X/S(log Y), ?) : MIC(X/T(log Y)) -^ MIC(S/T)

by putting, for (<?,V) an object of MJC(X/T(log Y))

(4.5.^) H^(X/S(logY),(^,V))=R^,(^/s(logY)®^<?).

(4.6) The Gauss-Manin connection is constructed as before, using the canonical
filtration of ^x/T^g Y) by the subcomplexes

(4.6.0) P(%/T(log Y)) = (image 7^(^) ̂ xWlog Y))

whose associated graded complexes are

(4.6.1) gr^x/T(log Y)) = ̂ (^) ®^ ̂ '(log Y).
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We then filter the de Rham complex of (<?, V) with logarithmic singularities along Y by
the subcomplexes

(4.6.2) F^x/rOog Y) 00^ <?) = P(^(log Y)) ®^ ̂

whose associated graded objects are given by

(4.6.3) gr^x/TOog Y) ®^ <?) = ̂ (t^) ®^ W(log Y) (x)^<?).

Then the de Rham complex ^s/T^sKUX^log Y), (<?, V)) of the Gauss-Manin
connection on H^(X/S(log Y), (<?, V)) is the complex (E^, ̂ ) of E^ terms of the
spectral sequence of the filtered (as above) object ^x/T^g Y)0^ g an(! t11^ functor R°T^.

When S is affine, the Gauss-Manin connection can be <( lifted " to a connection
on the Cech bicomplex

(4.6.4) ^({Uj,^(logY)®^^)

by exactly the same formulas as before, provided that:
(4.6.5) We use a covering ofX by U's as in (4. o. i), and use coordinates x^ . . ., ̂

on U so that Y is defined by x^. . . x^ = o.
(4.6.6) We lift DeDer(S/T) to the derivation of (9^ which extends it and kills

dx^, . . ., dx^ (so that, in particular, the lifting is tangent to Y).
The Gauss-Manin connection acts on the spectral sequence over an affine S

associated to a covering ofX by affine open sets U, verifying (4.0.1) and (4.0.2) (by
using the Zariski filtration (3.5.1) of the Cech bicomplex)

(4.6.7) Er=C^({Uj,j%,(X/S(logY), (<?, V))) => H£^(X/S(logY), (<?,V))

where jf^(X/S(log Y), (<?, V)) is the presheaf on X with values in MJC(S/T) given by

(4.6.8) U^H^(U/S(logY), (<?,V)[U).

5. Connections in Characteristic p{>o).

(5.0) In this section, we suppose the base scheme T to be of characteristic p>o,
i.e., that p(Pry=o. As before, let /: S—T be a smooth T-scheme. Recall the Leibniz
rule

n

(5.0.1) ^nW=^{Wg)Dn-\h)

where D, g and h are sections of Der{S/T), 0^ and ^g respectively over an open subset
of S. Putting n -=p, we find (being in characteristic p} that

(5.0.3) D^A)=D^).A+^(A)

i.e., that the p-th iterate of a derivation is a derivation, so that Z^r(S/T) is a sheaf of
restricted p-Lie algebras.

Let (^, V) be an object ofMJC(S/T). Since End^g} is also a sheaf of restricted
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p-Lie algebras (taking the p-th iterate of a T-endomorphism), it is natural to ask whether
or not the homomorphism

V : Der{SIT) -> End^)

is compatible with the ̂ -structures, i.e., whether or not it is the case that

V(DP)=(V(D))P

whenever D is a section of Der{SfT) over an open subset of S.
With this question in mind, we define the '^-curvature55 ^ of the connection V

as a mapping of sheaves

(5-0.3) + : Der{SIT)-^EndM

by setting

(5.0.4) ^(D)=(V(D))P-V(D^).

We remark that ^ "is" actually a mapping

(5.0.5) ^ : Der{SIT)-^End^)

(i.e., that ^(D) is S-linear). To see this, we use the Leibniz rule

(5.0.6) (V(D)r(^)=^(^)D^)(V(D))w-^(.)

where D, g and e are sections of 2)^r(S/T), (?g and S over an open subset of S. Putting
m=p, we get

(5.0.7) (V(D))P(^)=D^),+^(V(D))^.

Since we have also the (< connection-rule 39

(5.0.8) V(D^(^)=D^(^,+^V(D^(,),

subtracting (5.0.8) from (5.0.7) gives the desired formula

(5.0.9) ^DK^-^KDK.).

We recall that having <c ^-curvature zero " means having enough horizontal sections.
More precisely:

Theorem (5.1) (Carrier). — Let f: S-^T be a smooth T'-scheme of characteristic p.
(5.1.0) Let F^g: T-^T be the absolute Frobenius (i.e., the p-th power mapping on ^),

and
(5.1.1) S^-S^T, the fibre product of F^ : T->T and f:S->T. Let

F : S-^S^ be the relative Frobenius (i.e., elevation of vertical coordinates to the p-th power).
There is an equivalence of categories between the category of quasi-coherent sheaves on S^

and the full subcategory of MIC(S/T) consisting of objects (<?,V) whose p-curvature is ^ero.
This equivalence may be given explicitly as follows :
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Let y be a quasicoherent sheaf on S^. Then there is a unique r!-connection V^n, integrable
and of p-curvature ^ero, on F*^), such that

y ^ (P^))^.

The desired functor is ^ }-> (F*^), VcaJ.
Given an object (<?, V) of MIC{SIT) of p-curvature ^ero, we form ^v, which is in a natural

way a quasicoherent sheaf on S^. The desired inverse functor is

(^V)^^.

Proof. — The only point requiring proof is that, if an object (<?', V) of MJC(S/T)
has ^-curvature zero, then the canonical mapping of ^g-modules

(5.1.1.0) P^)-^

is an isomorphism. The question being local on S, we may suppose S is affine, and
etale over A^, with Q1^ free on {^, . . ., dSy}. Consider the F'^g^-linear endo-
morphism P of S^ given by

r // - \ w A r y^^'(5.1.2) p = s n -^ nv a
w i=l ^ Wi\ ] i==l \()Si)

the sum taken over all r-tuples (w^, . . ., Wy) of integers satisfying o<^w^p—i.
One immediately verifies that

(5.1.3) P(^)c^

(5.1.4) P|^=id

(5.1.5) P2=P is a projection onto <?7

(5.1.6) n Kernel of P. II V l^\ '={()},
w i=l ^) { J 9

the intersection extended to all r-tuples of integers (z^, ...,^) with o^w^p—i.
It follows that the mapping inverse to (5.1.1.0) is given explicitly by

Taylor : ^-^F{^)

te-1-" TaylorM^Sn'qp.nfv^r'M.
v 7 w i=lW,\ t=l \ \8S,) ] v /

We now develop the basic properties of the ^-curvature.

Proposition (5.2).
(5.2.0) The mapping ^ : Der{S/T) -> End^) is p-linear, i.e., it is additive, and

4'(^D)==^(D) whenever g and D are sections of 0^ and 2)^(8/T) over an open subset of S.
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(5.2.1) IfD is a section ofDer^jT) over an open subset U ofS, the three T-endomorphisms
of ^|U

V(D), V(D^), ^(D)
mutually commute.

(5-2.2) T^D ^zflfD' <zr<? ̂  ̂  sections ofDer{S/T) over an open subset ofS, then ^(D)
and ^(D') commute.

(5-2.3) ^ ̂ ^ values in the sheaf of germs of horizontal S'endomorphisms of §.
Proof. — To prove that ^ is additive, we use the Jacobson formula. If a and b are

elements of an associative ring R of characteristic p, then

(5-2.4) (a+by=a^+b^+p^ s,{a, b)

where the s^a, b) are the universal Lie polynomials obtained by passing to R[d, t an inde-
terminate, and writing

(5-2.5) (ad^A))^-1^)^ is,{a, b)t^\
i == 1

Now let D, D'eDer(S/T). Then by (5.2.4)
p-i

(5-2.6) (D+Dy^D^+D^+.S^D.D')

and, as the connection V is integrable and the s, are Lie polynomials, we have

(5.2.7) V((D+D')P)=V(DP)+V(D'P)4-S^(V(D),V(D')).

Again applying (5.2.4)3 we have

(5.2.8) (V(D)+V(D'))^=(V(D))^+(V(D /))^+PS\(V(D),V(D /)).

Subtracting, we find that ^(D+D^^D)^-^}^').
We next prove that ^ is ^-linear. For this we use Deligne's identity for (^D)^
Proposition (5.3) (Deligne). — Let A be an associative ring of characteristic p, g and D

two elements of A.. For each integer n^o, put ^(n)=(ad(D))n(^)=[D, [D, . . . [Dg]]. . .].
Suppose that the elements ^(n), for 72 J> o mutually commute. Then ^^dm^T^

(5-3-0) {&DY=gp^r>^g{gp~~l){p~~l}^.
Proof. — Reducing to the (< universal " case, we may suppose that g is invertible;

let h==g~1. By induction, it is easily seen that for each positive integer n, we have

( 5 - 3 - 1 ) (*n) ?)n=(A-lD)n=A-2n2:A^(^A(wi)Dn-sw*)
m i

the sum being over all ^-tuples of integers m== (m^ ..., mj having o.< m^m^ ...<^m^
and Sm,<72, with the A^eFp.

Consider now the special case of the ring of additive endomorphisms of the field
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d p~2

Fp(Xo, . . . , X p _ 2 , T ) , and let D = - , A=SX,T/Z'!. Then ^==0, and because
p _ 2 rp+i flT 1=0

A=D(A:) with A;=SX,———— we have ^-^DP-^^O and (A-^D^o (since
^ 1=0 (z+i ) !

Z^1D=-^). On the other hand, D, D2, . . . .D^" 1 are linearly independent over K.
uh

Putting n=p in 5.3.13 we thus find that for each integer j, o<j<p,

(5-3.2) o=SA^(n^)

the sum being over those m=(mi, . . ., Wp), 0^^^...^^ with S^==j. As

5(0)^ • • • ^^"^ are algebraically independent over Fp (their values at T=o being
Xo, . . . , Xy_2), we have

(5-3-3) A,n==o if m==(wi, ..., nip), o<,m^<,.. .<mp ^m,<p and each m,<p—\.

The only possibly non-zero A^ in (*p) are thus A^ ^ Q ) and A^.^o,?-!)- Returning
to (*J, it is immediately verified by induction on n that A(() Q)=I and
A^ ..^o.n-i)^1? so ^at (5 -3 - 1 ) with TZ==^ becomes the desired formula:

(5.3.4) {g^Y^^h-^^h-^^W+h^1^-1^)
==^D^+^(^-1)^-1)D.

(5.4) We now return to the proof of (5.2). Applying (5.3.0) to g and D in
JSWrr(^g), we have

(5.4.0) (^D)^=^DP+^(ad(D))^l(^-l).D
=^D^+^-lCf-l).D

whence

(5.4.1) V((^D)^)=^V(D^)+^D^1(^-1)V(D).

Applying (5.3.0) to g and V(D) in End^€\ we have

(5-4.2) (V(^D))^(^V(D))^^(V(D))^+^(ad(V(D)))^-l(^-l)V(D)
-^V(D)^+^D^-1(^-1)V(D).

Subtracting (5.4.1) from (5.4.2) gives the desired ^-linearity.
To prove (5.2.1)5 we remark that D and W commute, thus, V being integrable,

so do V(D) and V(DP), whence ^(D)==(V(D))P—V(DP) commutes with V(D) and VfD^^).
We now prove (5.2.2) and (5.2.3). The question being local on S, we may

suppose that S is affine, and is Aale over A^, so that Q^/rp is free, with base {ds^y . . ., dSy}.
[ 8 8 }

We denote —, . . . . — t h e dual base ofDer(S/T). Let
(8s^ 8Sy. \

(5.4.3) D = S a ^ , D ' = S ^ -
% OS^ z OS^
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we must prove that

(5-4.4) [+(D), ^(D')]=o=[^(D), V(D')].

^^(^^r'^-^(ly'and -̂̂ (ii)'
^(D), ̂ ^^[(v^, (v(^))]=o,

^(D),V(D')]=g.r^(v(^)P.V^)]=o.

Corollary (5.5). — Z^ /:S->T ^ a smooth T-scheme of characteristic p, (^,V) ^
object ofMIC^S/T), and n>_ i ̂  integer. The following conditions are equivalent.

(5.5.0) There exists a filtration of (<?, V) of length <,n (i.e , F°=all, Fn={o})
wAoj^ associated graded object has p-curuature ^ero.

(5-5- 1 ) Wherever D^, . . . ,D^ are sections of Der(SIT) over an open subset of S,
+(Di)+(D,)...^(DJ=o.

(5.5.2) There exists a covering ofS by affine open subsets U, and on each U <c coordinates 5?

u!) - ' ">u^ (i.e., sections of (Pg oy^r U ^<;A that O^p ^ /r^ o% du^, . . ., ̂ ) ^^A ^^ for
every r-tuple (w^, .. ., w^) of integers with ^w,==n,

i

( I a \ \ pwl I / a \ \ ^wrv^)) -W -
Proof. — (5.5.0) o (5.5-1) ^ clear.

( o \ / / ^\\p

( 5 -5 - i ) ^ (5 -5 -2 ) because ^ — = V — .
/̂ \ W/

(5-5- 2 ) => ( 5 - 5 - I ) by the ^-linearity of ^$ for, covering any open set by its inter-
section with the covering of (3)3 we are immediately reduced to the case in which
DI, . . ., D^eDer(U/T). We expand each D, using the given coordinates on UD'!•^,
wh.nc. ^=^^]=^{v{^)'•

and the assertion is clear.

Definition (5.6). — We say that (^, V) is nilpotent of exponent <^n when one of the
equivalent conditions of (5.5) is verified. We say that (<?, V) is nilpotent if there exists
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a positive integer n such that it is nilpotent of exponent <,n We denote by jY»(p(S/T)
the full subcategory of MJC(S/T) of objects (<?, V) which are nilpotent, by Nilp^S/T)
those which are nilpotent of exponent <n. Nilp1 consists of those of ^-curvature zero.

We record for future reference:
Proposition (5.7).
(5.7.0) Nilp{S/T) is an exact abelian subcategory of MIC{SIT).
(5.7.1) Each -ZVtIp^S/T) is stable under the operations of taking sub-objects and quotient

objects.
(5.7.2) -ZVilp(S/T) is stable under the operations of internal Horn {when it is defined,

cf. ( 1 . 1 . 2 ) ) and internal tensor product, and if A and B are objects ofNilpn{S|T) and ̂ ^{S IT)
respectively, then A®B and Hom{A,K), if defined, are in NUpn+m~l{S|T).

Proposition (5.8). — (<??, V) is nilpotent if and only if for any section D of A?r(S/T)
{over an open subset U of S) which, as a T-endomorphism of (P^, is nilpotent, the corresponding
T-endomorphism V(D) of S\V is nilpotent.

Proof. — (^) If DP=O in £^r(U/T), ^(D^^D)^ is nilpotent by assumption.
By induction on the integer v such that D^==o in Der{\JjT), we may suppose already
proven the nilpotence of V (DP) (since (D^'^o). But (V(D))P==^(D)+V(DP), a
sum of commuting (5 .2 .1) nilpotents.

(<=) take a finite covering of S by affine open sets U which are etale over Ay.
On each U, choose "coordinates" u^, . . ., u, (i.e., sections of 0^ which define an etale

/ 8V
morphism U—Ay. Then each —— ==o in Z)<?r(U/T). Let n^ be an integer such

/ / a ^V^ \ ^
that, for each i, V(.- ==o in £^(<?/U); and take n==S\ip^n^. Then (<?, V)

is nilpotent of exponent <^ n2.
Theorem (5.9). — Let f: S-^T and f : S'->T' be smooth morphisms, and

S' ̂  S

(5-9-o) f'\ \f
Y y

T' -̂ > T

a commutative diagram. Suppose T ^ o/^ characteristic p. Then under the inverse image functor

(5.9-i) {g^hy : MIC{S|T)-^MIC{Sf|T)

we have, for every integer n^ i,

(5.9-2) {g, ^-{Nilp^SIT)) cNilp^S'IT).

Proof. — The proof is by induction on n, the exponent of nilpotence. Suppose
first the theorem proven for v=i , .. .,n—i, and take an object (<?, V) in IVi^S /T).
By definition there is an exact sequence in MIC(S/T)

o -> (<?', V) ̂  (<?, V) -> (^", V") -> o
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with (^V^eA^^S/T), (^ V^elVilj^-^S/T). Pulling back gives an exact
sequence in MJC(S'/T)

(^ /W, V) -> (^ AH<?, V) -> (^ A)^", V") -> o

and by hypothesis, (^, ̂ ((T, V^elVi^S'/T), and (^, A)^', V^e^^-^S'/T),
whence, by definition, {g, A)*(<?, V^eNilp^S'/T').

Thus it suffices to prove that Nilp1 is stable under inverse image. To do this,
we make use of the fibre product to reduce to checking two cases.

Case 1. — S=SXTT', ^==pr^, f^pr^. The question is local on S, which we
suppose is affine, and etale over A^, with 0^^ free on ds^, . . ., dSy. Then S' is Aale
over A^', with f^ free on ds[, . . ., ds'^ where s[==g*{s^. By the ^-linearity of ^, it

/ a \ / / a \ \ p / a \
suffices to check that ^ — h= V — ==o in Endg,(^ (<?)). But V — eEnd^(^(^))

\^/ ^ \ W7/ \^/
is the T'-linear endomorphism of ^*(<?)^^®^^ deduced from the T-linear endo-

/ B \
morphism V ( — of € by extension ofscalars 0^—^Q^,.w

Case 2. — T'==T, A==id. We have the commutative diagram of T-schemes
(cf. (5 . i . i ) )

S' -^ S

\ \w N/

S'h) ^ §(p)

By Carder's theorem (5.1)3 any object (<?, V)eMJC(S/T) with j^-curvature zero is
isomorphic to (F*(^), V^J, where y is a quasicoherent S(p)-Module (namely ^v).
Clearly we have ^ id)*(P(^), V^)=(F'*(^'*(^)), V,,),

an object of ^-curvature zero.

We now prove the stability of nilpotence under higher direct images.
Theorem (5. ic). — Let n : X->S and f \ S->T be smooth morphisms^ with T a scheme

of characteristic p. Let n be the relative dimension of X/S, supposed constant. Suppose S is
affine^ and consider the spectral sequence (3 .5 .1 .0) associated to a covering {Ugj of"K.by open
subsets etale over Ag and an object (^, X^eA^p^X/T) :

(5.10.0) E^=C^({UJ^UX/S, (^,V)))=>H^(X/S, (<?,V)),

on which Der(SIT) acts through the Gauss-Manin connection.
(5 .10 .1 ) Each term E^'q eNilp\S /T).
(5.10.2) For each integer i^o we put

^{i)=the number of integers p with E^'^o.

Then H^(X/S, (^, V)) e2Vilp^(S/T).

(5.10.3) T(^)^^+ I5 ^d ^(^)<^2n—z-f-i.
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Proof. — To prove (5.10. i), it suffices to show each Ef^elVKp^S/T). But

(5.10.4) Er^^n^HU(Ho^-.-nU,)/S,(^V)|(U,n.. .nU^)

so that we must prove that if (<;?, V)e^V(S/T) and X is ^tale over A^, then
H^(X/S,(^V))ElV^7pv(S/T).

Let us remark first that, if X is dtale over A'g, the Gauss-Manin connection fl
011 HDR(X/S, (<?, V^^RTT^X/S^X^) ls deduced from an integrable T-connection
on the complex ^x/s0^^ (c^- (3-5-3)) which may be described explicitly as follows.
Let Qx/s be free on dx!) • • • ? dx^, and for each DeZ)^r(S/T) denote by Doe£^r(X/T)
the unique extension of D which kills dx^ . . ., dx^. Then the Gauss-Manin connection
is deduced from the integrable connection

^ : Der{SIT)-^End^^^)

given by ^(D) ((^A .. . ̂ ) ®.) = (^A ... A ̂ ) ®V(Do) (.).

Clearly we have

CS/W^nA. . .A^)®.)=(^A. . .A^)®(V(Do))^(.),

thus the hypothesis (^, V)elV^lpv(X/T) implies that, for any D^, . . ., D^eZ^S/T),
the endomorphism ^(D^). . . ̂ (D^) of ^x/s^x^ is zero? ^d l1611^ it is zero on
HD^(X/S, (<?,V)), which concludes the proof of (5.10.1).

To prove (5.10.2), notice that

(5.10.5) E^=gr^H^(X/S, (^,V)),

so that H^^X/S, (<^, V)) has a horizontal filtration with r(i) non-zero quotients, each
quotient in Nilp^S/T).

To prove (5.10.3)3 we observe first that Ef'^o, unless p^o and

o^j^n=rel.dim(X/S).

To conclude the proof, it suffices to show that E^^o (and hence E^==o)
if p>n. (The problem is that, while TT : X->S has cohomological dimension <_n for
sheaves, our E^? terms are, a priori, only the Cech cohomology of certain presheaves. But
being in characteristic p will allow us to circumvent these difficulties by using an idea of
Deligne.)

Let S -a^ S be the absolute Frobenius, X^ the fibre product of TT : X—^S and
F^s:S^S, and F : X-^X^ the relative Frobenius (cf. (5.1.0)).

The complex ^x/s^x^ ls ^meQ•r over ^'^s) ^d over (^x)^? m other words,
^(^x/s0^^) ls an ^x^)•llnear complex of quasicoherent ^x^)-Modules. Thus the
cohomology presheaves of this complex, J^F^^x/s^x<^))? are sneaves ^ quasicoherent
^x^-Modules. As we have an isomorphism of presheaves on X^

(5.10.6) FA(X/S, (^, V)) ̂ ^(F^x/s®^))
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it follows that the presheaves ̂ (X/S, («?, V)) are in fact sheaves. Furthermore, we
have

(5.10.7)

E^=IP(X, {U,}, J^R(X/S, (^ V))) =IP(X^, {F(UJ}, FA(X/S, (<?, V)))

=H"(X"", F.J^R(X/S, (<?, V)))

the last equality because F.J^(X/S, («?, V)) is quasicoherent on X'">, and {F(U )}
is a covering of X"" by a/fine open sets. As X'^/S is of cohomological dimension <^n,
we have E^'^o if p>n, which concludes the proof of (5.10.3).

Remark (5.10.8). — The interpretation (5.10.7) of the E^ term of the spectral
sequence (5.10.0) shows that the Zariski filtration it defines on the H^(X/S, (<^,V))
is independent of the choice of covering ofX by affine open sets etale over A"g. Indeed,
it shows that the entire spectral sequence, from Eg on, is independent of that choice!
We do not know if this is true when S is no longer of characteristic p.

6. Connections in characteristic p>o having logarithmic singularities.

(6.0) Let TC : X^S be a smooth morphism, i : Y^X the inclusion of a divisor
with normal crossings relative to S, and /: S^T a smooth morphism, with T of charac-
teristic p.

We define 2Wp"(X/T(log Y)) to be the full subcategory of M/C(X/T(log Y))
consisting of objects admitting a filtration which has at most v non-zero quotients, each
of /^-curvature zero. In this context, the /^-curvature of an object (S V) in
M7C(X/T(logY)) is the/>-linar mapping

(6.0.1) ^ '• 2)CTY(X/T) ̂  EndM
<KD)=(V(D))P-V(D^').

The proof of (5.10) carries over mutatis mutandis to give
Theorem (6. i)=(5.10) bis. — Assumptions as above, suppose that S is affine, and let

K=rel.dim(X/S). Let («?,V) be an object of MJC(X/T(log Y)). Consider the spectral
sequence (4.6.7),

(6. i .o) E^^=C''({U„},^^(X/S(logY),(^V)))=>H£^(X/S(logY),(^V))

which by (5.10.7), has

C 6 - 1 - 1 ) E^=H"(X^, F.Jf^(X/S(log Y), {S, V)))

and, from E, on, is independent of choice of covering. Der{S/T) acts on this spectral sequence
through the Gauss-Manin connection. Suppose (<?, V)eAr((p''(X/T(logY)). Then

(6.i.a) Each term E^ieMlp^S/T).
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(6.1.3) For each integer i^ o, put

^[i)===the number of integers p with E^'^o.

Then H^(X/S(log Y), (^ V)) E^7p-^(S/T).

(6 .1 .4 ) T(z)<z+i and r(z)^<2%—z+i.

7. Ordinary de Rham cohomology in characteristic .̂

(7.0) Let TT : X->S be a smooth morphism, z : Y<->X the inclusion of a divisor
with normal crossings relative to S. The structural sheaf 0^ with the integrable
S-connection "exterior differentiation"

(7.0.1) 4,g : ^x-^x/s

defines an object in MJC(X/S).
We denote the de Rham cohomology sheaves on S of this object simply H^X/S),

i.e. by definition

(7.0.2) HU.X/S)=R^(%/s).

Similarly, by composing (7.0.2) with the canonical inclusion tix/s <-^ ^/g(log Y),
we obtain an object in MJC(X/S(log Y)) whose de Rham cohomology sheaves on S
are denoted H^(X/S(log Y)), i.e., by definition

(7.0.3) H^(X/S(log Y))= R^.(Qx/s(log Y)).

For any smooth morphism f\ S->T, the objects of MJC(X/S) and
Mjrc(X/S(logY)) defined by (^x^ ^x/s) come via (3.0.1) and (4.5.0) from the
objects MJC(X/T) and MIC(X/T(logY)) defined by (^x^x/r)- Thus the sheaves
H^(X/S) and H^(X/S(log Y)) are provided with a canonical integrable T-connection
whenever f: S->-T is a smooth morphism.

(7.1) Suppose now that S is of characteristic p. As before (5.1.0) we denote
by X^ the scheme which makes the following diagram cartesian

X^ -^ X

(7.1.0) "(^ "
^ ^
S Fab^ S

(i.e., X^ is the fibre product of n: X-^S and F^g : S->S) and we denote by
F : X-^X^ the relative Frobenius. The diagram

(7.1.1)
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is commutative, and WoF is the absolute Frobenius endomorphism of X, FoW the
absolute Frobenius of X^. We denote by Y^ the fibre product of Y ̂  X and

TTTT

X^ -> X; Y^ is a divisor in X^ with normal crossings relative (via n^) to S. The
spectral sequences of ordinary de Rham cohomology of X/S may be written (writing ̂ q

for cohomology sheaf)
(7.1.2) E^=R^)OTF.(Qx/s))) => R^^(Qx/g)=H^(X/S)

and that for de Rham cohomology of X/S (log Y) may be similarly written
(7.1.3) Er »(log Y) = R^'OTF.(Qx/s(log Y))))

=> R^.(Q;yg(logY)) =H^(X/S(logY)).

The Eg terms have a remarkably simple interpretation due to Deligne, via the Carrier
operation.

Theorem (7.2) (Carrier). — There is a unique isomorphism of 0^p)-modules

(7.2.0) G-1 : ^)/s -^ ̂ '(F^x/s)

which verifies

(7.2.1) G-^I)^!
(7.2.2) G-^AT^G-^AG-^T)

(7.2.3) C-l{d{•W-\f))=the class of f-^df in ^(F.Qx/s).

Furthermore, C~1 induces an isomorphism of (!)y^p)-modules (by restricting G"1 to

QxW/s(log Y'")) cQ^(^-YW)/s)
(7.2.4) C-1 : QWlog YC") ^^(F.Qx/s(log Y)).

Proof. — First, we construct C"1, following a method of Deligne. We need only
construct G~1 for z = = i , for then the asserted mulriplicativity (2) will determine it
uniquely for z\>i, and for z==o the condition (i) and (P^(p)-lmea.rity suffice.

An ffl-^{p)-lmeo.r mapping

(7.2.5) C-1 : ^(^-^^(F^/s)

is nothing other than a (T^)"1^) -linear derivation of G^p) into Jf^F^x/s)* Making
explicit use of the definition of X^ as a fibre product, we have
(7.2.6) (P^p) == ̂ x^Tr-^^^'^^s) (where Tr-^^g) is a module over itself by F^J
so that such a derivation is a mapping of sheaves

8 : ^xXTrW^^1^)
21 . . . . C^)-"8^)

which is biadditive and verifies
i8(A,')=8(/,^')

(7.2.8) 8(,?/,.) ^^S^^+yS^^)
S(/, i) =the class off^df.
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We define

(7-2.9) §(/, ^)=the class ofsf^df.

The properties (7.2.8) are obvious; as for biadditivity, we calculate

(7.2.10)
^f+g^)-^f^)-^g,s)=s^f+gy-l(df+dg)-fP-ldf-g^-ldg)

=d s. Kf+gr-f^g^
[ P ]

Having defined G-1, we must now prove it is an isomorphism. The question
being local on X, we may suppose X is Aale over A^ via coordinates x^ ..., x^ such
that the divisor Y is defined by the equation ^...^=o. Then F,(tix/s) is the
C^-linear complex

(7-a. n) ^®Tp^W

where for every integer n;>i, K'(yz) is the complex of Fp-vector spaces with basis the
differential forms

<l...^n^A...A^

[o<,Wi<,p—i for i=i, . . . , %

( I<:^l<'. .<a^<7z

and differential the usual exterior derivative in n variables. Thus

(7-2.12) H^F^x/s) ̂  ̂ x^^H^K-^)).

Similarly, F,(ax/s(log Y)) is the (P^p)-lme3Lr complex

(7-2.13) ^x^^L'^^)

where for each pair of integers I^V^TZ, U{n, v) is the complex ofFp-vector spaces with
basis the differential forms

^...C^A...A<0^

l^w^<p—I for z=i, . . . , %
i_<ai<. . .<^^n

dxjx, z==i, . . . , v
dx, z=v+i, .. ., n^

and differential the usual exterior derivative in n variables. We have

(7-2.14) H^^/saogY)))^^)^11^^^))-
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What must be proved, then, is that
a) H^U^^^H^K^n))^
b) H^K'^)) has as base the classes Af~1^, z==i , . . ., n and H^I/^, v)) has as

I CO^ Z == I, . . . , V
base the classes < v?-if̂ '(o, z==v+i, . . ., n.

c ) H^K'^^AWCK^)) and H^L^, v^A^I/^, v)).
To see this, we observe that the complexes K'(%) and L"(72,v) are easily expressed

as tensor products of" i-variable 5? complexes. Namely
K-(^) =K^i)®^^®,^^

n times

L-(^ v)=I/(i,^^.. .̂ /(i, I)®^K^[^. .̂ K-(i).

v times n — v times

By Kiinneth, it suffices to show
Fp.i i==o

H^K^i))^ Fp. (class of ^-1^), z = = i
0 ^ 2

Fp.i z=o
and H,(L'(i, i))= Fp.(class of ^=dxlx) i==i

o i^2
which is clear.

This concludes the proof of theorem (7.2).
(7.3) Thus the spectral sequences (7 .1 .2) and (7.1.3) may be written

(7.3.0) E^=R^'(Q^)/s) => R^7t.(Ox/s)==H^(X/S)

and

(7.3.1)
E^(log Y)=R^^(^(^(log Y^)) ^ R^^(^(log Y))-Hg^(X/S(log Y)).

Suppose now that either of the two following conditions is true.
(7.3.2) For each pair of integers p, y^o, the formation of the sheaves R^TT^^/g)

and R^Ti^Qj^log Y)) commutes with arbitrary base change.
(7.3.3) The morphism c( absolute Frobenius 5? F^g : S-^S is flat; this is the case,

for example, if S is smooth over a field, or locally admits a " j&-base 5? (cf. 4).
Since the diagram (7.1.0)

(7.3.4)

X^

^)

w
X

S ^abs ^
—————>• 0
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is cartesian, and

(7.3.5)
^)/s =WW/s)
^)/s(log Y^) -WW/s(log Y))

either of the assumptions (7.3.2) or (7.3.3) implies that, for all p, q>_o, we have
isomorphisms

(7.3.6) E^ = R^(t^) = F:JR^(^))

(7.3.7) ^^^(^^^^^(^(^(logY^^F^^R^^^^

Remark. — When (7.3.2) or (7.3.3) holds, the above isomorphisms provide (via
Carrier's theorem (5.1)) an a priori construction of the Gauss-Manin connection on
the Eg terms of (7 .1 .2) and (7.1.3).

We summarize our findings.
Theorem (7.4). — Let n : X-^S be a smooth morphism, i : Y<-^X the inclusion of

a divisor with normal crossings. Suppose that S is a scheme of characteristic p, and that either
(7.4.°) /or each pair of integers p, q^o, the formation of the sheaves R^^/g) and

R^^^logY)) commutes with arbitrary base change', or
(7.4.1) the morphism "absolute Frobenius" F^:S->S is flat.
Then the spectral sequences ( 7 . 1 . 2 ) and (7 .1 .3 ) may be rewritten

(7.4.2) E^=F:JR^(ft^)) => H^(X/S)

(7.4.3) E^^log^-F^^R^^^^logY))) ^ H£^(X/S(log Y)).

For any smooth morphism f : S->T, these spectral sequences are endowed with a canonical integrable
T'-connection, that of Gauss- Manin, which has p-curvature j^ero on the terms Ef'9, r> 2.

Corollary (7.5) (Deligne). — For each integer i^o, let h{i) {respectively hy{i)) be the
number of integers p for which E^-^ (resp. Ej^-^logY)) is non-^ero. (Clearly h{i) and hy{i)
are ^sup(z+i, 2 dim(X/S)+i—z).) Then for any smooth morphism f: S^T, we have

(7.5.0) H^(X/S)G^^(S/T)

(7.5.1) H^(X/S(logY))EiVtlp^(S/T).

8. Base-changing the de Rham and Hodge cohomology.

We first recall a rather crude version of the " base-changing " theorems
(cf. EGA [14], Mumford [29], and Deligne [6]).

Theorem (8.0). — Let S be a noetherian scheme, and T T : X — ^ S a proper morphism.
Let K* be a complex of abelian sheaves on S, such that

(8.0.0) K^o if i<o and for i^>o.
(8.0.1) Each K' is a coherent ff^Module, flat over S.
(8.0.2) The differential of the complex K" is T^^g) -linear.
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Then the following conditions are equivalent:
(8.0.3) For every integer n>_o, the coherent 0^-Modules R^K') are locally free.
(8.0.4) For every morphism g : S'->S, we form the (cartesian) diagram

S' XgX^^pra

x
(8.0.4.0) Pri

The canonical morphism of base-change,

(8.0.4.1) ^R^(K-) -> R-pr^pr^K-))

is an isomorphism for every integer n'>_o.

(8.0.5) Same as (8.0.4) for every morphism g : S'->S which is the inclusion of a
point of S.

Furthermore, there is a non-empty open subset U of S such that, for the morphism
Try : TT-^U) -> U and the complex K; | U, each of these equivalent conditions is satisfied.

When these conditions are satisfied, we say that the formation of the R^K')
commutes with base change.

Corollary (8.1). — Let n: X-^S be a proper and smooth morphism, and suppose S is
noetherian. There is a non-empty open subset UcS, such that each of the coherent sheaves on S

(8.1.0) R^(^/s), A^o
C 8 - 1 ' T ) HSR(X/S) = R^^/g), n^o

is locally free over U.
(8.2) Let us define the Hodge cohomology of X/S by

(8.2.0) H^e(X/S)-^n^R^,(^);

it is bigraded :

(8-2-1) Hfe^(X/S)=R^,(^).

Corollary (8.3). — Let n : X->S be a proper and smooth morphism, and suppose S is
noetherian. Suppose that each of the coherent 6^-modules
(8-3.o) H^(X/S), p.q^o
(S-S. i ) H5R(X/S), n^o

is locally free.
Then for any change of base g : S'->S, the canonical morphisms of sheaves on S'

C 8^-^) ^H&^(X/S) ^^^((S'XsX)^')
C8^^) ^HSR(X/S) ->H^((S'XsX)/S')
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are isomorphisms/or all values of p, q and n. In particular, the Hodge and de Rham cohomology
sheaves of (S'XgX^S' are locally free sheaves on S'.

Corollary (8.4). — Under the assumptions of (8.1), let

i:Y^X

be the inclusion of a divisor with normal crossings relative to S. Then there is a non-empty open
subset U c S such that each of the coherent sheaves on S
(8.4.0) ^^(^/sOogY)) j^o

C8-!. i) H^(X/S(log Y)) == R^^log Y))

is locallyfree over U.

(8.5) Let us define the Hodge cohomology ofX/S(logY) by
(8-5.0) H^(X/S(logY))=^n^R^,(^/s(logY));

it is again bigraded :

(8-5. i) H^(X/S(log Y))=R^(^(log Y)).

Corollary (8.6). — Assumptions being as in (8.4), suppose that each of the coherent
sheave son S

(8-6-0) H^(X/S(logY)) p^q^o
(8.6.1) H^(X/S(logY)) n^o

is locally free.

Then for any change of base g : S'->S, denoting by Y' the fibre product of i: Y<-^X
and pig : S'XgX-^X (cf. (8.0.4.0), which is a divisor in S'XgX with normal crossings
relative to S', the canonical morphisms of sheaves on S'
(8.6.2) ^H^e(X/S(logY))^H^((S /XsX)/S /(logY /))

(8.6.3) ^HSR(X/S(logY))-^HSH((S'XsX)/S'(logY /))

are isomorphisms/or all values ofp, q and n. In particular, the Hodge and de Rham cohomology
sheaves of (S'XgX)/S'(log Y') are locally free sheaves on S'.

(8.7) It is proven in [6] that, if S is of characteristic zero, then the open subset
of Corollary (8.1) is all of S, and the spectral sequence of sheaves on S
(8-7.I) Ef'^H^X/S) => H^(X/S)

degenerates at E^.
Similar arguments, using Deligne's theory of "mixed Hodge structures95

(unpublished) allow one to prove that, if S is of characteristic zero, then the open subset
of Corollary (8.4) is all of S, and that the spectral sequence of sheaves on S
(8.7.2) Er=H^(X/S(logY)) => Hg^(X/S(logY))

degenerates at E^.
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There is an elementary proof of the fact that the H^X/S) are locally free on S,
ifX/S is proper and smooth, and S is smooth over a field k at characteristic zero. It is
based only on the fact that the H^X/S) are coherent sheaves on S, with an integrable
^-connection (that of Gauss-Manin !).

Proposition (8.8). — Let S be smooth over afield k of characteristic j^ero, and let (e ,̂ V)
be an object of MICfSfk), such that ̂  is coherent. Then ̂  is a locally free sheaf on S.

Proof. — The question being local on S, it suffices to prove that, for every closed
point seS, the module ̂ g over (Pg g is free. As e^g is finitely generated over ^g g by
hypothesis, it suffices to prove that .^=^g0^ ^s,s5 t^ completion of ^g for the
topology defined by powers of the maximal ideal of ^g g, is free over <^s. Thus it
suffices to prove an analogue of Carrier's theorem (5.1) :

Proposition (8.9). — Let 'K be a field of characteristic zero, K[[^, . . ., ̂ ]] the ring
of formal power series over K in n variables. Let M be a finitely generated module over
K[[^, . . ., ^J], given with an integrable connection V (for the continuous VL-derivations of
K[[^, . . ., ̂ ]] to itself). Then M7, the T^-space of horizontal elements of M, is finite-
dimensional over K, and the pair (M, V) is isomorphic to the pair (M^^K^, . . ., ̂ ]], i®rf)
where d denotes the <( identical59 connection on K[[^, .. ., ̂ ]].

Proof. — We begin by constructing an additive endomorphism of M. For
i == i, . . ., n, let

11
w(8.9.0) D.=V

and for each integer jj> o, let

(8.9-x) ^-T-K^ D!0)=I-

For an ra-tuple ]==(ji, • • - > J n ) of non-negative integers, we put

(8.9.2) D'^^nDW

(8.9.3) t3=Tl^j'

(8.9.4) (-I)J=.^(-I) j '•

We then define a K-linear endomorphism P of M

P : M->M
(8'9'5) F^^i^W.

One successively verifies

(8.9.6) P(/w)=/(o)P(w) for ./eK[(A, ...,(„]] and meM,
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by Leibniz's rule, so that Kernel (P) 3^, . . ., fJM

(8.9.7) W =w modulo^, . . . , f JM, so that
Kernel (P)=(^, . . . , f J . M

C8^8) PiM^id.

(8.9.9) P(M)cMV (by a « telescoping "), so
P =P is a projection onto M7

(8.9.10) p induces an isomorphism of K-vector spaces.
P : M/(^, . . . .^M^M7 .

This shows that M7 is finite dimensional, and that (by Nakayama), the canonical
mapping
(8-9-") M V ®KK[^ , . . . , f J ]^M

is surjecfive. To show it is an isomorphism, we must show that if m,, ..., m are K-linearly
independent elements of M7 then there can be no non-trivial relation

("•S-12) ^.=0 in M.
Z

Supposing the contrary, assume/, is +o. Then for some J=(A, . . .,^), we have

(W'40^
Since the OT. are horizontal, applying D^ to (8.9.12) gives

(3.9....) o=D"l(^^»2n-(l-)''^).»,
Ji • \"'»7

a relation of the form

^•'S) f&^==o, ^(o)+o.

Applying P to (7.11.14) gives a relation

^.((^"^o
which is impossible. Q,.E.D.

^(8.9.i6).-Heuristically, P(^(^ .. ., Q=m{t,-t,, .. „ t^-Q expanded
m Taylor series. In fact, the proof of (7.11) is just a concrete spelling-out of the formal
descent theory (with a section, no less), cf. [17].

Remark (8.10) (an afterthought). — Of course when S=Spec(C), X/C proper
and smooth, Y^X a divisor with normal crossings, we have isomorphisms

(8.10.1) H^X/C^H^X-.C)
HDR(X/C(log Y))^ Hi,R((X-Y)/C)s; H'CX '̂-Y""*', C).
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For S any scheme of characteristic zero, if n : X->S is proper and smooth, i : Y<->X
the inclusion of a divisor with normal crossings relative to S, j : X—Y<-^X the inclusion
of its complement, then the canonical morphism of complexes of sheaves on X

(8-io.a) ^x/s(logY)->^^_^

is a quasi-isomorphism (i.e., an isomorphism on cohomology sheaves) (cf. Atiyah-
Hodge [o]), from which it follows that the maps deduced by applying the R'T^ to (7.12.2)

(8-'0.3) H^X/SOogY)) -^H^((X-Y)/S)

are isomorphisms of sheaves on S.

9. Nilpotence over a global base.

(9.0) Let R be an integral domain which is finitely generated (as a ring) over Z,
and whose field of fractions has characteristic zero. Let T==Spec(R); we call T a
c( global of fine variety 59. Let /: S-^T be a smooth morphism.

Let p be prime number which is not invertible on S. This excludes a finite set of
primes. Put

(9-0.1) T®F^ = Spec(R^R) = Spec(R®zFp)

and

(9-o.a) S®Fp=SXzFp.

We have the diagram (in which all squares are cartesian)

S0F,

(9-0.3)
T®F,

T

Spec(F,)
Spec(Z)

(9.1) Let (e^,V) be an object of MJC(S/T), with Ji locally free of finite rank
on S. Taking its inverse image (cf. (1.1.3)) in MIC(S®Fp/T0Fp), which we denote
(«^®Fp, V®Fp), we may ask whether or not it is nilpotent, and, ifnilpotent, then nilpotent
of what exponent?
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We will say that [JK, V) is globally nilpotent on S/T if, for every prime p which is
not invertible on S, we have

(9-i-o) (^®Fp,V®Fp)e7V<lp(S®Fp/T®Fp).

Let v be an integer, v^ i. We will say that {JK, V) is globally nilpotent of exponent v on S/T,
if, for every prime p which is not invertible on S, we have

(9-i-i) (^^F^V^F^elVt^S^F^T^Fp).

Clearly we have
Proposition (9.2). — Let f: S->T and /' : S'->T' ^ ^oo^ morphisms, with T

W T' ^/oW %y^ varieties (cf. (9.0)), and suppose given a commutative diagram of morphisms

(9-2.0)

S'-^^
^^sr

T'. ^
^T

Let (Ji, V) &<? ̂  object o/MIC(S/T), w^A ̂  locally free of finite rank on S. 7^
(9-2.i) If (^,V) ^ globally nilpotent on S/T, ̂  ̂  inverse image {g, h)\JK, V)

^ globally nilpotent on S'/T'.
(9.2.2) ̂  (c^.V) ^ globally nilpotent of exponent ^ on S/T, then its inverse image

{g, hY{jy, V) is globally nilpotent of exponent v on S'/T'.
We also have the self evident

Proposition (9.3). — Let T be a global of fine variety, f: S-^T <z JWOO^A morphism,
and g:y-^S a proper etale morphism. Let {JK, V) be an object of Mrc(S'/T), w^ ̂
locally free of finite rank on S'. 77?^

(9.3.0) (e ,̂ V) is globally nilpotent on S'/T if and only if [g^, V) is globally nilpotent
on S/T.

(9.3.1) (̂ , V) ^ globally nilpotent of exponent v on S'/T z/ ̂  o^ if {g^, V) zj
globally nilpotent of exponent v o^ S/T.

10. Global nilpotence of de Rham cohomology.

Putting together sections 7, 8 and 9, we find
Theorem (10.0). — Let T be a global of fine variety (cf. (9.0)), /: S->T a smooth

morphism, with S connected, and n : X->S a proper and smooth morphism.
Suppose that each of the coherent sheaves on S (cf. (8.2))

HfeUX/S) p, q>o
HSK(X/S) n>_o
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is locally free on S {a hypothesis which is always verified over a non-empty open subset of S
cf. (8.4)).

For each integer i^_o, let h{i) be the number of integers a such that H^g^X/S) is non-^ero.
[Thus h(t) is the number of non-^ero groups H^^Xg, ^o/c) wnlcn occur in the Hodge decompo-
sition of the i-th cohomology group of the fibre Xg of n over any C-valued point of S.)

Then for each integer i^_o, the locally free sheaf H^X/S), with the Gauss-Manin
connection, is globally nilpotent of exponent h(j) on S/T.

Theorem (10.0) (log Y) — Let T be a global affine variety, f: S—^T a smooth morphism,
with S connected, TC : X->S a proper and smooth morphism, and i'. '. Y^X the inclusion of a
divisor with normal crossings relative to S. Suppose that each of the coherent sheaves (cf. (8.5))

Hfe^(X/S(logY)) p,q>o

HSR(X/S(logY)) n^o

is locally free on S {a hypothesis always verified on a non-empty open subset of S).
For each integer i^o, let hy{i) be the number of integers a with H^g^X l̂og Y))

non-^ero. Then for each integer i^o, the locally free sheaf~H.^{'X.IS{\og Y)), with the Gauss-
Manin connection, is globally nilpotent of exponent hy{i) on S/T.

ii. Classical theory of regular singular points.

(11.0) Let A; be a field of characteristic zero, and K a field of functions in one
variable over k, i.e., K is the function field of a projective, smooth, absolutely irreducible
curve over k.

Let W be a finite-dimensional vector space over K. A ^-connection V on W is
an additive mapping

(n.0.1) V : W^K/AW

which satisfies

(11.0.2) V{fw)==df®w+f^{w)

for YeK, z£;eW. Equivalently, V "is" a K-linear mapping

(11 .0 .3 ) V : Der(K/A;) -> End^W)

such that

(n.0.4) (V(D))(/^)=D(/)^+/(V(D))(^)

for DeDer(K^), /eK, and z^eW.
The connection is necessarily integrable, i.e., compatible with brackets, since

^-o.
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If (W, V) and (W, V) are two such objects, a horizontal morphism <p from (W, V)
to (W, V) is a K-linear mapping of W to W which is compatible with the
connections, i.e.,

("•0.5) ?(V(D)(^))=V'(D')(9(w)).

The objects (W, V) as above, with morphisms the horizontal ones, form an abelian
category MC(K/A:). (N.B. — This notation is slightly misleading, since, unlike what
was required in the geometrical case of a smooth morphism S—A:, we are requiring
that W be finite dimensional over K (i.e., coherent), rather than just quasicoherent.)
Just as in ( i . i), MC(K/A:) has an internal Horn and a tensor product.

(11.1) Let p be a place of K/A (i.e., a closed point of the projective and smooth
curve over k whose function field is K), ^ its local ring, m? its maximal ideal,
ordp : K -> Zu {00} the associated valuation <c order of zero at p 55. Thus
(n. 1 .0) ^={/eK|ordp(/)^o}

(n. 1 . 1 ) ntp=={/EK|ord,(/)^i}.

Let Derp(K/A:) denote the Cp-submodule of Der(K/A)

(11.1.2) Derp(K/^)={DeDer(K/^)|D(mp)cmp}.

In terms of a uniformizing parameter h at p, Derp(K/A;) is the free ^-module with

basis h . In fact, for any function yeK\ which is not a unit at p, y— is an Q -basis for
an dy p

Der,(K/^).
(11.2) Let (W, V) be an object of MC(K/A;). We say that (W, V) has a regular

singular point at p if there exists an ^p-lattice Wp of W (i.e. a subgroup of W which is a
free fi^-module of rank equal to dim^W)) such that
( 1 1 - 2 . 0 ) Derp(K/A)(W^)cWp.

MIn more concrete terms, we ask if there is a base e == ( '' ) of W as K-space, such
that \eJ

(11 .2 .1 ) V^h—\e==Be with BeM^)

for some (and hence for any) uniformizing parameter A at p.
Remark (11.2.2). — If p is a regular singular point of (W, V), there is no unicity

in the lattice Wp which "works55 in (11.2.0). We will return to this question later
(cf. especially (12.0) and (12.5)).

Proposition (11.3) . — Suppose

("•3-o) o->(V, V^-^W, V)-^(U, V^-^o

is an exact sequence in MC(K/A). Then (W, V) has a regular singular point at p if and only
if both (V, V) and (U, V") have a regular singular point at p.
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Proof. — Suppose first that (V, V) and (U, V") have regular singular points at p.
This means we can choose a K-base of W of the form

("•3-I)
e

A

ofW so that e is a base ofV, and f projects to a base ofU, in terms of which the connection
is expressed

-(,d\le\ (A 0\/e\("•3-2) ^-JLHp ^ J
with Ae'M.^{0y), CeM^(^p). The problem is that B may not be holomorphic at p.
But for any integer v, we readily compute

("•S-S) V [h
d-}dh] r̂f [ A

WB ° }c+^ Wt]
and for v>o, we have h^B holomorphic at p.

Conversely, suppose that (W, V) has a regular singular point at p, and let Wp
be an fip-lattice in W which (( works " for (11.2.0). Then VnWp is an ^p-lattice
in V (elementary divisors) which works for (11.2.0). Similarly, U n (image of Wp in U)
is an ^p-lattice in U which works for (11.2.0).

Remark (11.3.4). — The full abelian subcategory ofMC(K/A) consisting of objects
with a regular singular point at p is stable under the internal Horn and tensor product
ofMC(K//;).

(11.4) Let us say that (W, V) is cyclic if there is a vector weW, such that for
some (and hence for any) non-zero derivation DeDer(K/A:), the vectors w, V(D)(w),
^(D))2^), ^(D))3^), . . . span W over K. (We should remark that for ^eW,
the K-span of the vectors w, V(D)(w), (X^D))2^), . . . is independent of the choice of
non-zero DeDer(K/A;), and is thus a Der(K/A)-stable subspace ofW.)

Corollary (11 .5) . — Let (W, V) be an object of MC(K/A;). Then (W, V) has a regular
singular point at p if and only if every cyclic subobject of (W, V) has a regular singular point at p.

Proof. — cc Only if " by (n .3), c( if " because (W, V) is a quotient of a direct
sum of finitely many of its cyclic subobjects (so apply (11.3) again).

(n.6) Let (W,V) be an object of MC(K/A:), and Wp and ^-lattice in W.
We say that (W, V) satisfies <( Jurkat's Estimate 3? (J) at p for the lattice Wp if there is an
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integer (JL, such that, for every integer j^i and every j-tuple D^, . .., D^eDerp(K/A;),
we have (denoting by A a uniformizing parameter at p)

(".6.0) V(Di)-V(D2)...V(D,)(W,)c^(W,).

Let us reformulate this condition. Let D^ be an fip-base of Derp(K/A;). One
quickly checks by induction that for any D^, .. ., D^eDerp(K/A;), one has

V(D,).V(D,) . . . . . V(D^=^^(V(Do))v

with ^, . .., a^e 0y. Thus (11.6. o) holds for all j^ i if and only if, for some Cp-base D^
of Derp(K/A:), one has

(11 .6 .0 bis) (VCW(Wp) cA^Wp) for all j^i.

In terms of an 6^-base e ofWp, the condition (11.6.0 bis) may be expressed as
follows. For each j>i, define a matrix ^.eM^(K) by

(n.6.i) (V(Do))^=^.e.

Then (11.6.0 &^) is equivalent to

(11 .6 .2 ) ordp(5,)^(ji for all j;>i.

In applications we will speak of a K-base e of W as satisfying (J) at p, rather than
of the lattice given by its 6^-span. Also, we will usually take as 6^-base of Derp(K/A;)

a derivation A . . h a uniformizing parameter at p, although we may occasionally usej^—
U/l (fy

as base, for a non-zero^ which is a non-unit at p.
Proposition (11 .6 .3 ) . — If (W, V) satisfies (J) ^ p/or o^ base, it satisfies it for every

base.
Proof. — Let e be a base of W and [L an integer such that, for all j^ i

(11.6.3.0) ( î))^^5 ^w^
Let f be another base of W, so that

(11 .6 .3 .1 ) f=Ae, e=A-l{, AeGL^K).

We define the sequence of matrices Cj by

(".6.3.«) K^))'̂ -
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We easily calculate the C in terms of the B^ by using Leibniz's rule :

(...6.3.3) (v(^))'̂ (^))'(^)

^(-•'((^r^)^
whence

t.,.6.3.4) C,^)^)'^)).^-..

Since for any element /eK we have

("•6-3.5) ordjA^^ord,(/),

(11.6.3.4) gives immediately

(n. 6.3.6) o^(C,)^^.(ord^(^)+ord,(^)+ord,(4-1))

i.e.,

("•6.3.7) ord^(G,)^+ord^)+ord^-1).

Proposition (11.7). — 7/' (W, V) Aaj ^ r^^r singular point at p, ^TZ it satisfies (J)
^ p.

Proof. — Indeed in a suitable base e, we have

(ii.7-o) V^^e^e, 5eM,(^).
\ fly7/

As the Bj are formed successively according to the rule

(i i-7.i) ^i-^^^

we see that each B^ is holomorphic at p, i.e., ordp(l?.)^>o.
(n.8) Let a be a positive integer. In the extension field K^) of K, there is

a unique place p^ which extends p, and h1101 is a uniformizing parameter there.
Proposition (i i. 8. i). — Let (W, A) be an object of MC(K/A). Then (W, V) satisfies (J)

at p z/'^ o^ if its inverse image in MC^K^^/A;) satisfies (J) <^ p^-
Proo/. — Calculate the matrices B^ of (n .6. i), using a K-base e of W, and A—-

as fip-base, for both (W, V) and its inverse image. They are the same matrices.
Theorem (11.9) (Fuchs [8], Turrittin [34], Lutz [24]). — Let (W, V) be a cyclic

object of MC(Klk), weVf a cyclic vector, p a place of K/A, h a uniforming parameter at p,
7z=diniK(W). The following conditions are equivalent.
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(11.9.1) (W, V) does not have a regular singular point at p.
(11.9.3) In terms of the base

i w \
V^(»)

, n-1

(W)

215

of W, the connection is expressed as
0 1 0

0 0 1

0

(11.9.2.0) w° 0
0

0 I

\/o Yi fn-J

and, for some value of i, we have ordp(^)<o.
(11.9.3) For every multiple a of n\, the inverse image of (W, V) in MC^K^h1111) fk)

admits a base f in terms of which the connection is expressed {putting t == h11") as

v(4)f=5f
\ dt

(n.9.3.0) V [t- )f=B{
\dt]

such that, for an integer v^i, we have

("•9.3.I) 5=r"5_,, 5_,eM î/,),

and the image of B_^ in M^(A;(p)) (i.e., the value of B_^at p11") is not nilpotent.
(11.9.4) For every multiple a of n\, the inverse image of (W, V) in MC^K.̂ 1'1') Ik)

does not satisfy (J) at p1'" (using h1'" as parameter).
(11.9.5) (W, V) does not satisfy (J) at p.
Proof. — (11.9. i) => (11.9.2) by definition of a regular singular point.
(n .9 .2)=>(n .9 .3) . After the base change K^K(f), f=h, we have, in terms

of the given base e,

(n.9.6)

/o

Iv^-a \dt]

\/o

0

I

0

0

0

. . .

.
' I

. . . 0

\
0

0

I

Jn-1 )

e=Ce.
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By assumption, we have ordpi/a(^)<o for at least one value of i, while for every value
ofj, the integer ordpi/a(^) is divisible by n\. Consider the strictly positive integer v
defined by

(n.9.7) ^^^-OY^a^^n-j)Y

Consider the basis f of 'W^K(t), with ^=Al/a, given by

y1 \
f 0

(".9.8) f= f2" e=Ae.

0 ' .
\ ' ^(tt-lW

We readily calculate (cf. (11.9.6))

("•9-9) v('^=v(^(-le)=((^^••^•v(•^e'
^[[t^WA-^ACA-^f^Bf

and an immediate computation then yields

(ix.9.io) l-^(t-\{=Bt
a \ dti

with

B==

\
^

2V

•

(n-i)vy

/ ° r v - . r--N : \
+

\(t"-^ ft"-^ ... (C1-*-1)''/. . . . / „ ! /

° • • ^ ; •o: "" :
- 0 ' • • • °\ 0 0 ^^ t - "

By definition of v (11.9.7), we have

(n.9. n) ordpl/a(^-^-l^)-(7^-J-I)v+ord^(^)>-v

and, for at least one value of i, we have

ordpi/a^1-1-1^)^-^.
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Thus we may write B=t~>/B_^, with 5_^eM^(^pi/a). In fact, putting

(11.9.12) ^.=r-1-^, forj=o, . . . ,7z- i

so that
g^O^ia for all j
gi^m^i/a for some i^ll'9'13)

we have
/ o i . . . o

/ ° ' • . ° : \
(11.9.14) 5_^= ° ; 0 I ° | modulo p^

0 0 . . . 0 I

\ go gl • " <?n-l.

which is not nilpotent modulo p^. Indeed, we have
n-l

217

("^^s) det(T4-5_J EsT71- S &T1, modulo p^
t=0

so that B_^ is nilpotent modulo p^ if and only if each ^.entpiAz, which by (11.9.13) is
not the case. This concludes the proof that (n .9 .2 )=>(n .9 .3 ) .

(n .9 .3)=>(n.9 .4) . We use the base f to test the estimate. Writing

(11.9.16)

we have

O1 1^-1?)

K'̂ )'̂
B,^(^}S,+B,B

and one checks immediately (despite the confusing notation) that

(11.9. i8) 5, - t-^B_^ with B_^M^ia)
and B_ ̂  == (5_ JJ modulo p^

so that

(n .9.19) ordpi/a( .̂) = -^

so that (J) is not satisfied,
To conclude the proof of ( i i .9)5 we note that (n .9.4) => (n .9.5) by (11.8.1),

and (n .9 .5 )=>(n .9 . i ) by (11.7).

Corollary (11.9.20) (Manin [25]). — Let (W, V) be an object of MC(K//:), p a place
of K/A:. Then (W, V) has a regular singular point at p if and only if, for every weW, the
smallest 0^-module stable under Derp(K/A:) (cf. (11.1.2)) and containing w (if h is a uniformi^ing
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parameter at p, this is the Q^span of w, V [h —\ {w), . . . , (v [h —\ \ (w), . . J is of finite type
over ^. V ^l \ \ ^11

Proof. — If (W, V) has a regular singular point at p, then, for any element weW,

the K-span of the elements l 7 ^ , , ) ) W,i>.o, " is 3? a cyclic object of MC(K/A:)

having a regular singular point at p. Letting ^ be the K-dimension of this span, we

see by ( i i .9) that the C^-span of the elements mA—| \ (w), for z;>o, is free of rank n.
/ [ d\Y V ^ d h ! '

over 6p. (In fact, the elements V A , , (w), for i=o, .. ., ^1—1, form an Cp-base.)

Conversely, suppose that for every weW, the ^p-span of the elements

V A . (w), fori^o, isof finite type. This means that every weVf is annihilated by
\ \ d n / / l ^\
a momc polynomial in V \h—\ whose coefficients are in ̂ , hence that the K-span of the

/ / d\Y V dh'
elements I V \h—{ (w), for z>;o, is a quotient in MC^jk) of an object with a regular

singular point at p. We conclude, by (11.5), that (W, V) has a regular singular
point at p.

Theorem (n. 10) (Turrittin). — Let (W, V) be an object o/MC(K/A;), p a place of K/A,
h a uniforming parameter at p, n==dim^(W). The following conditions are equivalent.

(11.10.1) (W, V) does not have a regular singular point at p.
(11.10.2) For every integer a multiple of n\, there exists a base f of WO^IU^) m

terms of which the connection is expressed [putting t = ̂ l/a) as

lv(4)f-5f
\ dt]

(n.xo.a.o) \rf ,-vD :L ' . \ jv ' \£f==t \o_^, with v an integer >_\, and

[5_^eM^(^i/a) has non-nilpotent image in M^(A;(p)).

(11.10.3) The estimate (J) is not satisfied at p.
Proof. — The implications (n . 10.2) =>(n . 10.3) and (n . 10.3) =>(n . 10. i) are

obvious, using (11.9.16-19) and (11.8.1) for the first, and (11.7) for the second.
We now turn to the serious part of the proof.

(n . 10. i) =^(n . 10.2). We proceed by induction. (If n=i, we are in the
cyclic case.) If (W, V) has no proper non-zero subobjects, it is necessarily cyclic.
If (W, V) has a non-trivial subobject (V, V), we have a short exact sequence in MC(K/A:)

o -^ (V, V) -> (W, V) -> (U, V") -> o

with n^==dim^(V)<n, n^=dim^(V)<n.
By (i i .3.0), either (V, V) or (U, V") does not have a regular singular point at p.
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So, by induction, there exists a basis of W^K^) of the form ( l , where e is a basis

of Ve^^), and where f projects to a basis of U^K^), in terms of which
the connection is expressed (putting t^h^) as

r ^ ^i A M (A 0\ (e\(11 .10 .4 ) V u—\ =/ dt f \B C f
such that

(11.10.5)
A=t ^A_^ for an integer v^>o

A_^M^0^a)

if v>o, A_^ has non-nilpotent image in M^(A;(p)) and

C=t~^C_^ for an integer T^O
(n. 10.6)

C^M^Ia)

if T>O, then C_^ has non-nilpotent image in M^(A;(p)), and finally

(II.I0.7) V+T>0.

Replacing the basis by the basis ( ^ ) for N large, we obtain the new connection
• \I / \ h I /matrix x / v /

("•10•8> ^CH^ c°N/)(;r)
with ^4, B, C as before (but now t^B is holomorphic at p1^). Clearly this connection
matrix (n . 10.8) has a pole at p^ of order sup(v, r), and

.SUp(Y,T)/^ ° \

^5 C+N//

has non-nilpotent image in M^(A:(p)). This concludes the proof of Turrittin's theorem.

Proposition (11.11). — Let
Fc->K^L

be a tower of function fields in one variable over afield k of characteristic ^ero, with deg(K/F) <oo
and deg(L/K)<oo. Let p be a place ofLfk, p' the induced place ofKfk, and p" the induced
place of F/A. Let p^, ,. . ., p l̂ be all the places of Kfk which lie over the place p" of F/A;.

Let (W,V) ^ ̂  o^ of MC{Klk). Then:
(n.n.i) (W, V) has a regular singular point at p' if and only if the inverse image

(W^K^ ̂ L) °f W v) m ^C(Llk) has a regular singular point at p.
( 1 1 . 1 1 . 2 ) The <c direct image " (W as f-space, V Der(F/A;)) of (W, V) in MC(Flk)

has a regular singular point at p", if and only if (W, V) has a regular singular point at each place p,'
of K/A which lies over p".
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Proof. — We have (cf. (i i . i . 2))

("•"•3) Der,(L//;) ̂  Der^K/A)®^

and

(n.n.4) Der^(K//;)^Der^(F/A;)®^,^;., z= i , ...r.

To prove (i i. 11. i), observe that if Wp, is an 6^-lattice in W, stable under Der^(K/A;),
then Wp,®^,^ is an ^-lattice in W^L, stable under Der^L/A). To prove
(i i . 11.2) => (i i. 11. i), observe that if (W®KL)p is an ^-lattice in W^L, stable
under Derp(L//;), then Wn(W®KL)p is an ^-lattice in W which is stable under
Der^(K^).

Similarly, to prove (11.11.3), note that if for z = = i , . . ., r, Wp; is an ^-lattice
in W, stable under Der^K//;), then ©Wp;. is an ^-lattice in W, stable1 under
Der^(F/^). To prove the converse we simply apply the criterion (n .9.20) of Manin.

Corollary (n. 12). — Let Kfk be a function field in one variable over afield k of charac-
teristic ^ero, p a place ofK/k, k an algebraic closure of k, p the induced place o f ' K J k j ' k , (W, V) an
object ofMC(Klk), and (W^, V^) its inverse image in MC(KA/A). Then (W, V) has a regular
singular point at p if and only if (W^, V^) has a regular singular point at p.

Proof. — Use the equivalence (11.10.1)0(11.10.3), calculating with a K-base
of W, and a parameter at p.

12. The Monodromy around a Regular Singular Point.

We refer to the elegant paper [25] of Manin for a proof of the following theorem,
which ought to be well-known.

Theorem (12.0). — Let K / k be a function field in one variable, with k of characteristic
^ero. Let p be a place of Kfk which is rational, i.e. k{p)==k. Suppose that (W, V) is an
object ofMC^K/k) which has, at p, a regular singular point. In terms of a uniforming parameter t

at p, and a basis e of an (Oy-lattice Wp o/W which is stable under V [t—\, we express the connection as
\ dt!

(^•o^) v(4)e=5e, BeM^).
\ av]

Suppose that the matrix B{p)eM^k) (the value ofB at p, whose conjugacy class depends
only on the lattice Wp, not on the particular choice of a base ofWy or on the choice of the uniforming
parameter t ) has all of its proper values in k. Then :

(12.0.2) The set of images in the additive group A^/Z of the proper values of -B(p) {the

exponents of (W, V) at p) is independent of the choice of the V U-\ -stable (!) ̂ -lattice W in W.
\ at!

(12. o. 3) Fix a set-theoretic section 9 : k^ /Z—/;4' of the projection mapping A+ -^+ /Z.
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[For instance, if k = C, we might require o^<Re((p) < i.) There exists a unique Q ̂ -lattice Wp
/ d\ .

of W, stable under V \t— 3 in terms of a base e' of which the connection is expressed as
\ dt]

(12.0.3. i) v(4)e'=Ce', with CeM^)
\ av]

and such that the proper values of C(p) eM^(A:) are all fixed by the composition k+ —> k^ /Z —> k^.
(The point is that non-equal proper values of C(p) do not differ by integers.)

(12.0.4) The completion Wp of the 0 ̂ -lattice Wp ofW above admits a base e in terms
of which the connection is simply

v(,^).=C(p)...

Remark (12. i). — If we require of 9 that <p(Z)=={o}, and if2?(p) has all its proper
values in Z, then the matrix C(p) is nilpotent.

Remark (12.2).—In general, let C{p)=D+N, with [D, N] == o, be the Jordan
decomposition of C(p) as a sum of a semi-simple matrix D and a nilpotent matrix IV.
Then the conjugacy class of N is independent of the choice of y. (And the eigenvalues
of D are, modulo Z, the exponents (cf. (12.0.2)) at p.)

Remark (12.3). — Suppose kcC, and let ^nal be the local ring of germs of
analytic functions at p. Then the base e ofW^ comes by extension ofscalars O^-^O^
from a base e^ of Wp®^ ^nal. In terms of this base e^, a multivalued (( funda-
mental matrix of horizontal sections " over a small punctured disc around p is given by

(12.3.1) r^=exp(-C(p)log^).

Thus, when (c t turns once around p counterclockwise ", log(^) becomes log(<) + 2ni,
and the fundamental matrix

(12.3.2) r^

becomes

(12.3.3) exp(-27riC(p))r^

or, what is the same,

(12.3.4) exp(—27ri£))exp(--27^^7V)rz)-N.

In particular, the proper values of the monodromy substitution for (< t turning once
around p counterclockwise 9:> are the numbers exp(—2nia^), . . ., exp(—2nia^), where
(T^, . . ., cr^ are the exponents at p.

Definition (12.4). — Let VLfk be a function field in one variable, with k a field
of characteristic zero. Let p be a place of K//; which is rational, (W, V) an object
of MC(K.lk) which has a regular singular point at p. We say that the local monodromy
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at p is quasi-unipotent if the exponents at p are rational numbers. If the local monodromy
at p is quasi-unipotent, we say that its exponent of nilpotence is <^ v if, in the notation
of (12.2), we have A^==o.

Definition (12.46^). — If p is any place of K/A; {not necessarily rational), at
which (W, V) has a regular singular point, we say that the local monodromy at p is
quasi-unipotent (resp. quasi-unipotent with exponent of nilpotence _< v) if this becomes
true after the change of base k—^k==z.n algebraic closure of A;, at the induced place p
ofK.kfk.

(12.5) An example. — Let k=C, K==C(^), (W, V) the object of MC(K/k) given
by

(12.5.1) W, a K-space of dimension 2, with basis e^y e^. I11 terms of this base,
the connection

^ v(^(-)^U° -<)('•).\ ^/w w \° -^w
Thus (W, V) has a regular singular point at the place p : ̂  == o, and its exponents there
(the proper values, modZ, of2?(o)) are integers.

Although exp(27Tz5(o)) ==7, the monodromy of local horizontal sections in a punctured
disc around zero is non-trivial. Indeed, a basis of these (multivalued) horizontal sections is

(^.s-s)
Vl = ̂ 2

^= =——.(^l+^log^)-^)-
27TZ

After a counterclockwise turn around -s==o,

(^.S-l)
^1-̂ 1
(v^v^+v^.

In terms of a section 9 : C/Z->C which maps Z to o, the unique ^-lattice of (12.0.3)
is the 6^-span of the vectors

\e[=e^
(12.5.5) (^=—^

in terms of which the connection is expressed (cf. (12.0.3)) as

vWW° 'U'̂ c (''•}.\~dt]\,-j \o o]\,;] \,if

Remark (12.6). — Returning to the < c abstract " case, suppose that p is a rational
place ofK/A: at which (W, V) has a regular singular point, and Wp is an (9 -lattice ofW
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which is stable under V J f — j . Suppose the completion Wp of Wp admits a base e

in terms of which the connection is expressed as

/ d\(12.6.1) V [t- \e==Ce with CeM^k).
\dt]

If the proper values of C all lie in k, then we may rechoose the base e of Wp so that the
connection is expressed as

(12.6.2) v(A=G?, CeM^k)

and such that C is in the form

(12.6.3)

'C,
• 0

0 ' .
C.

where each C, is a square matrix of size ^ whose only proper value is X,. In terms
of the section y of A:4'—^k^ /Z, we put re,=cp(X,)—X,. Then we replace the lattice Wp
by the lattice Wp whose completion admits as base

^ \
0

0 • • e-
(12.6.4) e'

t^I /v -Sr7

In terms of the base e', the connection is expressed as
/C,+n^ \

(,,.6.s) v(^).-J ^ '. ° .-=C-.-.

\ C,+n,lJ

It follows (the proper values of C ' being fixed by <p) that Wp is the unique lattice specified
in (12.0.3) by the choice of 9. Noting that C and C ' have the same nilpotent parts in
their Jordan decomposition, we have

Proposition (12.6.6). — Suppose (W, V) has a regular singular point at the rational
place p of K/^ and there exists an (9 ̂ -lattice Wp whose completion admits a base e in terms of
which the connection is expressed as

V (^-fl e = Ce, with CeM(k).
V dt]

Then the local monodromy of (W, V) at p is quasi-unipotent of exponent of nilpotence <^ v if and
only if in the Jordan decomposition of G,

C=D+N, [D,N]=o
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with D semisimple and N nilpotent, the proper values of D are rational numbers^ and N^ == o.
Proposition (12.7). — Let F^K^L be a tower of function fields in one variable over

a field k of characteristic ^ero. Let p be a place of 'Lfk, p' the induced place of K/A;, and p"
the induced place of F/A:. Let pi, .. .5 p^ be all the places of K/A which lie over the place p"
of F/A:. Let (W, V) be an object of MC(K/A;) which has regular singular points at each place
Pi? • • • ? P^ an(! ^2^1 ^ integer. Then:

(12 .7 .1 ) The inverse image (W^L, VJ of (W, V) in MC(L/k), which has a
regular singular point at p by ( 1 1 . 1 2 ) , has quasi-unipotent local monodromy at p of exponent of
nilpotence <v, if and only if (W, V) has quasi-unipotent local monodromy at p', of exponent of
nilpotence ^v.

(12.7.2) The direct image (W as 7-space, V[Der(F/A;)) of (W, V) in MC(F//;) has
quasi-unipotent local monodromy at p" of exponent of nilpotence _<v if and only if (W, V) has
quasi-unipotent local monodromy of exponent of nilpotence ̂ v at each place p^ ofKlk lying over p".

Proof. — By making the base-change k->k==a.n algebraic closure of A:, we are
immediately reduced to the case of k algebraically closed. Let t be a uniformizing
parameter at p". / ,x

To prove (12.7. i), we choose an ^.-lattice Wp. in W, stable under V J ^ , - ) ? whose
\ dt]

completion Wy. admits a base e in terms of which the connection is expressed (putting
£(?'/?")== the ramification index) as

(12.7.3) ^(p'/p^V^^Ce, CeM^k).

Consider the lattice Wp»®^ ,0^ in W^L; its completion admits the <( same " base e,
and the connection is

(12.7.4) s(p/p / /)V^^e=c(p/p /)Ce.

We conclude the proof of (12.7.1) by applying the criterion (12.6.6) to the matrices C
and s(P/p')C.

Now let us prove (12.7.2). For each point p^ lying over p", we choose a
lattice Wp'. in terms of a base e^ of whose completion the connection is expressed
(writing e^^/p")) as

(".7.5) ^(t^\ (eJ=C(p,)e,, C(p,)eM,(/;).

Consider the 6^-lattice ©Wp. in W considered as F-space. In the natural basis of

its completion, consisting of the blocks of vectors

(12.7.6) (^e,, a=o, i, ...,£,-!, i==i, . . . , r
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the connection, stable on the span of each block t^e,, is expressed on each block as

(^•7.7) V^ (^e,)=^(qp,)+a(^e,).

Again, we conclude by using condition (12.6.6), which is satisfied by
each of the matrices C(p,) if and only if it is satisfied by each of the matrices

--(^P^+^O, with a==o, i, . . . , £ , — i.
^i

13. Consequences of Turrittin's Theorem.

We are now in a position to apply Turrittin's theorem (n. io) to the study of
globally nilpotent connections.

Theorem (13.0). — Let T be a global affine variety (cf. (9.0)) and f: S->T a smooth
morphism of relative dimension one, whose generic fibre is geometrically connected. Let (^f, V)
be an object o/'MIC(S/T), with JK locally free of finite rank on S. Let k denote the function
field of T, K the function field of S. Thus K is afield of functions in one variable over afield k
of characteristic ^ero.

(13.0. i) Suppose that [JK, V) is globally nilpotent on S/T (cf. (9.1)). Then the inverse
image of (Jt\ V) in MC(K/A) has a regular singular point at every place p of K/A, and has
quasi-unipotent local monodromy at every place p of K/yL

(13.0.2) Suppose that {J(, V) is globally nilpotent of exponent v on S/T. Then at
every place p ofT^fk, the local monodromy of the inverse image of {JK, V) in MC(K/A;) is quasi-
unipotent of exponent <^ v.

Proof. — Using (9.3.1) and (9.2), and (11.12.2) and (12.7.2), we are imme-
diately reduced to the case:

(13.0.3) S is a principal open subset of A^, i.e., T==Spec(R), and

S^SpecJRMf——l^ with g(t)eIL[t].

(13.0.4) We wish to check at the place of K==k{t) defined by t==o.

(13.0.5) M is a free R[t] I -module.
W\

(13. o. 6) g{t) = M(^), with h(t) eR[(] and j>^ i (otherwise there is no singularity
at ^==0).

And A(o) an invertible element of R (at the expense of localizing R at h{o)).

Suppose that (M, V) is globally nilpotent, but that t=o is not a regular singular
point of its restriction to MC{k(t)lk). Let n be the rank of M. Let us make the base
change (putting ^==^ l /n ')

(13.0.7) KM [—1 - RM [—1.w\ L J w\
405
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I 1.
ISBy (9.2), the inverse image of (M, V) on R[z] \—— is still globally nilpotent, but by

[§W\ i
Turnttin's theorem (11.10), there exists a basis m of M over an open subset of
. / ^ -F i 1\ . . . , V

, which, by " enlarging " g, we may suppose to be all ofSpec Rk]

Spec^R^]

(13.0.8)

('s.o.g)
(13.0.10)

g^
j , in terms of which the connection is expressed asg^)

/ d\
V(^ •m^-'^+^m, ;x^i

^4eM^(R) non-nilpotent

BeMlR[z] (and h(o) invertible in R).
h^

An immediate calculation then shows that, for each integer j~>_i, we have

(13.0.11) (v(^)) m=^(^+^,)m with ^eMjR^f^lV

Now let p be a prime number. Recall that in Der(FJ^]/F.,) we have (^-^1==^-^
\ <k] dz

Thus the hypothesis of global nilpotence is that, for every prime number p, there is
an integer a.{p) such that

a(p)

^-V^l McpM(13.0.12) V z -
;̂; ^^

or, equivalently, using (5.0.9), that, for every prime number p

(13.0.12 bis) (^w^+^)-^-^A+^B))^EpMlR.[^ \-1]}.
\ Wl ]

Hence looking at the most polar term, we conclude

('S-o-iS) A^^epM^R) for every prime p.

Now look at the characteristic polynomial of A, det(X7^ — A). According to (13.0.13),
its value at every closed point of T=Spec(R) is X71, and hence

(13-0.14) det{X^-A)=Xn

which implies that A is nilpotent, a contradiction. This proves that t = o was a regular
singular point of the inverse image of (M, V) in MC{k(t)lk).

We now turn to proving quasi-unipotence of the local monodromy at t=o.
By definition of a regular singular point, there exists a basis mofM (over an open subset
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of Spec R [t] —, , which by " enlarging " g, we may suppose to be all of Spec (R [t]\ -l— | ]

in terms of which the connection is expressed as

(13.0.15) v[t-\m={A+tB)m
\ dt]

with ^eM,(R), BeM^R[t] -. ), and A(o) invertible in R.

By adjoining to the ring R the proper values of A, and perhaps localizing the
resulting ring a bit, we can assume that the Jordan decomposition is defined over R,
i.e. that

(13.0.16) A==D+N, [D,N]==o

Z)eM^(R) diagonal
7VeM^(R) nilpotent super-triangular.

Suppose that (M, V) is globally nilpotent. For each prime number p, we thus have

/ / / //\ ̂  / / / \ \a^
(,3...,,) ((v^))-v(^)) McfM.

As before (13.0.11), an immediate calculation shows that, for each integer j>_i

(13.0.18) rr^)) m=(^+^)m

with ^eM^R[q—— | ) , h{o) invertible in R.
\ l-WJ /

Now using (5.0.9) and looking at the constant term of the matricial expression
of (13.0.12), we find

(13.0.19) (Ay-Ay^epM^R) for every prime p.

Writing A==D+N (cf. 13.0.15), we have (because [D,N]=o)

(13.0.20) O==(A^-A)^^{D^-D+NP-N)^ modulo pM^R)

and, looking at the diagonal terms, we find

(13.0.21) {D^D^epM^R).

Let d be a proper value of D; then dis a quantity in an integral domain R of finite type
over Z, whose quotient field is of characteristic zero, such that at every closed point p
of Spec (R), the image ofrf in the residue field R/p at p lies in the prime field. As is well-
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known, this implies that rfeRnQ. This proves the quasi-unipotence of the local
monodromy.

Now we must estimate the exponent of nilpotence of the local monodromy, assu-
ming (^, V) globally nilpotent of exponent v. At a closed point p of R of residue
characteristic p^ we have (2) being diagonal)
(13.0.22) T^ssZ) mod p

so that (13.0.20) gives (since we may take oc(^)==v for allj^)
(13.0.23) (A^—A/YESO mod p.

But N is nilpotent; let us write
(13.0.24) (^-^=(-1)^(1--TV^-1)"

and notice that (I'—A^"1^ is invertible in My,(R), so (13.0.23) is equivalent to

(13.0.25) A^somodp for every closed point p

which implies that N^=o in M^(R). Q.E.D.

(13. i) A counter-example (d'apres Deligne). — Let TT : S—^T be a smooth morphism.
There is a bijective correspondence between T-connections V on ^g and global sections
ofQ|yT. Namely, to a T-connection V on ^g

(13.1 .0) V : ^g-̂ g

corresponds the global section of 01^
( 1 3 . 1 . 1 ) co=V(i).

Conversely, to a global section co of Ql/rp corresponds the T-connection V^ on ^g,
defined by

(13 .1 .2 ) V<o(/)=^/+/CO.

The curvature K^ of the connection V^ is

K, : ^->"I/T
K.(/)=/^.^S.1^)

Thus V^ is integrable precisely when <o is closed.
Suppose that T (and hence S) is a reduced scheme of characteristic p, and let co

be a <:foW global section of ^/r- What does it mean that the connection V^ be nilpotent?
First, since ^g is free of rank one, S is reduced, and the ^-curvature ^(D) of a local
section of 2)^r(S/T) is a nilpotent fl^g-linear endomorphism of ^g, it means that V^ has
p-curvature ^ero. By Carder's theorem (5.1)3 the ^g-span of the horizontal (for V^)
sections of(5g is all of^g, and hence there exists an open covering {Uj ofS, and sections^-
of 0^ over U^ such that^- is horizontal for A^, i.e.

(13 .1 .4 ) ^==-Wi on U,.
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Thus, if T==Spec(Fy), and S is an elliptic curve E over Fp, and co is a (non-zero)
differential of the first kind on E, then V^ is nilpotent if and only if the (( Hasse invariant "
of E is i, i.e. if and only if

(13-'-S) Card(E(Fp))=o modulo p

where E(Fp) denote the group of rational points of E. By the Riemann Hypothesis for
elliptic curves,

(i3-i-6) V^-i^VGard(E(F,,)).<Vj&+i.

Thus if j&i>7, and ifE(Fp) has a non-trivial element of order two (so that Gard(E(Fp))
is even), (13.1.5) and (13.1.6) are incompatible, and so V^ is not nilpotent. Thus
may we construct counter-examples to the converse of (13.0).

Example (13.2). — Let a, beZ, with a2 =(=4^. Consider the projective and smooth

elliptic curve E over Spec Z————— 1 given in homogeneous coordinates X, Y, Z
, ,, . \ \W(a—4.0) \by the equation v Lo ' A /-' /

(13.2.1) Y2==X(X2+^XZ+^Z2).

Then the connection in Q^ given by

f^df+f^

(where co = </(X/Z) /(Y/Z) is the differential of the first kind on E) gives a connection on
the function field of EQ for which every place is a regular singular point (indeed not a
singular point at all) and has quasi-unipotent monodromy (namely none at all). However,
the connection, far from being globally nilpotent, induces on the structure sheaf of the
fibre over every closed point of the base a non-nilpotent connection.

Remark (13.3). — If we project this example to the A:-axis, we get a rank-two
counter-example over an open subset ofA^, whose inverse image on Q^{x) has singular
points precisely at o, oo, and the roots of x2 + ax + b. (These are the points over which
the ^-coordinate is not ^tale; compare with (12.7.6-7).)

(13.4) In the c< positive " direction, Messing (unpublished) has shown that, if
a, b, ceQ,, then the rank two module over

Z A:, ——-———- [neZ. so chosen that a. b, cei - |
[ n-x{x-i)\ \ [n\]

corresponding to the hyper geometric differential equation with parameters {a, 6, c], is
globally nilpotent. Of course here there are only three singular points, x=o, i, or oo.

14. Application to the Local Monodromy Theorem.

(14.0) Let S/C be a smooth connected curve, and let TT : X—^S be a proper
and smooth morphism. Clearly there exist:
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(14.0.1) A subring R of C which is finitely generated over Z.
(14.0.2) A smooth connected curve S/R, which <( gives back "S/C after the base

change R<-»C.
(14.0.3) A proper and smooth morphism n : X->S which <( gives back "

n : X->S after the base change S->S.

Combining (10.0) and (13.0)3 we find
Theorem (14 .1 ) (the Local Monodromy Theorem). — Let S/C be a smooth connected

curve, K/C its function field, TT : X-^S a proper and smooth morphism, X^/K the generic fibre
ofn.

For each integer i^>_o, let h[i) (cf. (10.0)) be the number of pairs (p, q) of integers with
p^-q=i and hp1q^^}^)=^\myW^^, ̂ /^^rank^R^^^/g) non-zero. Then the
inverse image of H^(X/S), with the Gauss-Manin connection, in MC(K/C) (or what is the same,
the Vi-space H^^XK/K) with the Gauss-Manin connection) has regular singular points at every
place of K/C {indeed has no singularity at any place in S) and quasi-unipotent local monodromy,
whose exponent of nilpotence is _<A(z).

(14.2) Let K/C be the function field of a smooth connected curve S/C, and let

(14.2.1) TT : U-Spec(K)

be a smooth morphism (not necessarily proper).
By Hironaka [i8], there exists a finite extension L/K, a proper and smooth morphism

p : X-> Spec(L), and a divisor, i: Y<-^X, with normal crossings relative to Spec(L),
such that the morphism

(14.2.2) TCL : UL==UXKL-^Spec(L)

is the morphism

(14.2.3) P l (X-Y) : X-Y->Spec(L).

Clearly there exist
(14.2.4) A subring R of C, finitely generated over Z.
(14.2.5) A smooth connected curve S/R, the generic point of whose fibre over

the given point Spec(C) -> Spec(R) is L.
(14.2.5) A proper and smooth morphism p : X—^S, and a divisor i: Y<—»-X

with normal crossings relative to S, whose fibres over the given point Spec(L)—^S are
p : X-^S and i : Y^X respectively.

Applying (10.0) (logY), (13.0), (8.10), the fact that

H^((X -Y) /L) - H^(U XKL/L) = H^(U/K) ®^L,

(n . 12. i) and (12.7. i), we find
Theorem (14.3) (Deligne) (The " Open " Local Monodromy Theorem). — Assump-

tions and notations being as in (14 .2 .1 -3 ) , let n : U -> Spec(K) be a smooth morphism. For each
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integer i^o, let h^{i) (cf. (io.o)(log Y)) be the number of pairs {p, q) of integers with p+q=i

and dim^H^X, t^/i/logY)) non-zero. Then the object of MC(K/C) given by H^U/K)

with the Gauss-Manin connection, has regular singular points at every place of K/C, and at each

the local monodromy is quasi-unipotent, of exponent of nilpotence ^hy^i).
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