
PUBLICATIONS MATHÉMATIQUES DE L’I.H.É.S.

PETER DONAVAN

MAX KAROUBI
Graded Brauer groups and K-theory with local coefficients

Publications mathématiques de l’I.H.É.S., tome 38 (1970), p. 5-25
<http://www.numdam.org/item?id=PMIHES_1970__38__5_0>

© Publications mathématiques de l’I.H.É.S., 1970, tous droits réservés.

L’accès aux archives de la revue « Publications mathématiques de l’I.H.É.S. » (http://
www.ihes.fr/IHES/Publications/Publications.html) implique l’accord avec les conditions géné-
rales d’utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou im-
pression systématique est constitutive d’une infraction pénale. Toute copie ou impression de
ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=PMIHES_1970__38__5_0
http://www.ihes.fr/IHES/Publications/Publications.html
http://www.ihes.fr/IHES/Publications/Publications.html
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


GRADED BRAUER GROUPS
AND K-THEORY WITH LOCAL COEFFICIENTS

by P. DONOVAN at Sydney and M. KAROUBI at Strasbourg (1)

The Bott periodicity theorem shows that the real K-theory, KO, and the complex
K-theory, KU, are generalised cohomology theories graded by Zg and Zg respectively.
Our aim is to define a (c K-theory with local coefficients 5? K^X) (K denotes either KO
or KU) which shall generalize the usual groups K^X), yzeZg or TzeZg.

The ordinary cohomology with local coefficients H^X, a) is defined for
(n, o^eZxH^X.Z^). At least when X is a connected finite CW-complex, KO^X)
is defined for aeZgXH^X, Z^xH^X, Zg) and KU^X) is defined for

oceZ^x H^X, Z^) x Tors^X, Z)),

and these may be called K-theory with local coefficients. The sets which index K-theory
appear here naturally as cc graded Brauer groups " associated with the space X; these
groups were essentially studied by Serre [7] and Wall [17]. These graded Brauer
groups, together with another less important set (§ 2), seem to index all reasonable
<c K-theories with local coefficients 3?.

One motivation for this work is that it gives a complete satisfactory c< Thorn
isomorphism 5? theorem in K-theory. More precisely, if V is a real vector bundle on X,
the KO-theory of its Thorn space is isornorphic to KO^X), a~1 =(W(V), ^i(V), w^(V)),
where rf(V) ==dirn(V) mod 8 and where the ^(V) are the first two Stiefel-Whitney
classes of V. However not all oc are of this form.

GBrO(X), the real graded Brauer group of X, is in fact the direct sum of Zg
with an extension of H^X, Zg) by H^X, Zg) if X is a connected finite GW-cornplex (2).
(The extension splits set-theoretically only.) If oc, oc'eGBrO(X), there is a product
KO^X^KO^X) ^KO^X); this is constructed by means of Fredholm operators
in Hilbert space. So (DKO^X) is a graded ring; GBrU(X), the complex graded

a

Brauer group of X, has analogous properties.

(1) Both authors were partly supported by National Science Foundation grant GP-7Q52X at the Institute
for Advanced Study.

(2) This result has been found independently by R. R. PATTERSON.
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More generally, ifGBr(X) denotes either GBrO(X) or GBrU(X) (as appropriate),
the tensor product of bundles of algebras induces a composition:

® : GBr(X)xGBr(X') -> GBr(XxX').

Then one can define a (( cup product ":

Ka(X)xKa '(X /) -.K^^XxX').

The same techniques enable us to define (< Adams operations ":

^ : KU^X) -> KU^X) ®H,

for odd n, with ^=Z[co]/(0^((o)), where <!>„ is the n-th cyclotomic polynomial. For
7z=i(mod4), there are also operations:

y : KO^X) -> KO^X) ® ̂ .

If a==o, these operations are essentially the ordinary ^n operations.

i. Graded algebras

k will denote either of the fields R or C. By a graded k-algebra we shall mean a
Zg-graded associative y^-algebra A=Ao©Ai with unit and of finite dimension as a vector
space.

The graded radical r(A) of A is defined to be the intersection of its maximal left
graded ideals. It is a graded ideal. The graded radical ofA/r(A) is o and so A/r(A)
is said to be semisimple. The same argument as that used for ungraded algebras in
Chapter 4 of [2] shows that:

Lemma i. — A semisimple graded k-algebra is a product of simple graded k-algebras.

The simple graded ^-algebras A may be classified as follows. If Ai==o and
A:=R, A must be isomorphic to M^(R), M^(H) or M^(C) for some integer n. If Ai==o
and A;=C, A must be isomorphic to M^(C) for some integer n.

Otherwise, according to Lemma 3 of [17], either A is simple (as an ungraded
algebra) or Ag is simple and there exists an element ^eZ(A)nAi such that A^=AQ.U
and ^=i (Z(A) denotes the centre of A). In either event, if A:==R, either
Z(A) nAo=R and A is central in the sense of [17], or Z(A) nAo==C and A is a simple
central graded C-algebra. If A:=C, A is necessarily central.

In [17] Wall has classified the central simple A:-algebras; a list of their isomorphism
classes is given below. Note that if u is an element of an algebra A such that ^==±1,
we write Z{u)=[aeA\a.u=u.a} and V{u)==[aeA\a.u=—u.a^\ H denotes the
quaternion division R-algebra and i, i,j, k is its usual basis; i [-> i and i\->i will specify
an embedding C-^H; /„ will denote the nXft unit matrix.

Simple central graded R-algebras are classified by their type (an element of Zg)
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and their size (either a positive integer n, or an unordered pair of positive integers (/», y)).
The eight types are as follows:

[ i ;»] A=M^(C); Ao=M^(R); A^-.M^R).

[2; »] A = M«(H); Ao = M,.(C) = Z(M) ; Ai = Z*(»); M == i. /„.

[3; w] A=M,(H)®M^(H); A<,=M^(H); A^M.M^H).
(Here aeZ(A)nAi is such that y^i.)

[4; p, q] A=Mp^(H); Ao=Z(a); Ai=Z*(a).
(Here u is the diagonal matrix whose first p diagonal entries are i and
whose last q diagonal entries are —i). Let [4;n]=[4;n, n\. Let
[4;«,o]=H,(H).

[5; n\ A = MJC); Ao = M (̂H); A^ = M . M,,(H).
(The embedding Ao-^-A is specified thus: for each AfeM^R) cM^(H):

/At o \ /(Af o \
M^[ \; i.M^{ . 1 ;

\ o M] \o — iM]

f o M\ I o iM\
j.M^[ ; k.M^

\—Af o / \iM o /
y=!'./2».)

[6; n] A=M^(R); Ao=Z(M); Ai=Z*(M).
/o I\

(Here M is the matrix where 1=1 .)
V °7

[7; H] A=M,(R)®M^(R); Ao=M^(R); Ai=M.M^(R).
(Here aeZ(A)nAi is such that y^i.)

[8; p,q\ A=My+,(R); Ao=Z(t<); Ai=Z*(a).
(Here u is the diagonal matrix whose first p diagonal entries are i and
whose last q diagonal entries are —i) . Let [8; »]=[8; n, n\. Let
[8; w,o]=M^(R).

Simple central graded C-algebras are classified by their type (an element of Zg)
and their size (either a positive integer n, or an unordered pair of positive integers (/», q)).
The two types are as follows:

( i ; n) A=M,(C)®M,,(C); Ao=M,.(C); Ai=M.M^(C).
(Here MeZ(A)nAi is such that 1^=1.)

(2; p, q) A=M^,(C); AQ=Z(M); Ai=Z*(M).
(Here u is the diagonal matrix whose first p diagonal entries are i and
whose last q diagonal entries are —i) . Let (2; n)==(2; n, n). Let
(2; K,O)=]ML(C).
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If A and B are two graded A;-algebras, their graded tensor product G==A®B has
underlying graded vector space A®^B and has its product subject to the rule:

(fl®^.).(^®6)==(-i)^(a.^)®(^..&) for a,eA, and b^.

For example, [t; n]®[t'; 7^ /]==^+^; a(t, ^.TZ.TZ'], where a(t, t ' ) is i, 2, 4 or 8.
The following lemma is Theorem 2 of [17]:

Lemma ss. — The graded tensor product of two simple central graded k-algebras is simple
and central.

It may be verified that the type of such a tensor product is the sum of the types
of the factors. Both the lemma and this additivity property are valid also for simple
central algebras A with Ai==o provided that M^(H) is assigned type 4eZg, M^(R) is
assigned type oeZg and M^(C) is assigned type oeZg.

Let V^R^9 equipped with the quadratic form:

Q î, ..., x^,)=-xi-...-x2,+x^+... +^.

The Clifford algebra G(QJ==GP '<Z is defined to be the quotient of the tensor algebra T(V)
by the ideal generated by all elements of the form x0x—Q^{x). It is naturally
Zg-graded. It has dimension 2p+q; CP '<^®C r ' s=CP+r t<^+ s . See [9] for more details.
As G^^C and G^-ROR, C^ is a simple central graded R-algebra of type p—q.
Complex Clifford algebras can also be constructed.

2. Bundles of simple central R-algebras

Let X be a paracompact connected space. Let A be a graded R-algebra. Let
Aut(A) be the Lie group of R-automorphisms of A. A bundle of A's on X is a fibre
bundle with base X, fibre A and group Aut(A). The isomorphism classes of these
bundles form the set H^X, Aut(A)), where the underline denotes c< sheaf of continuous
functions ". If A is one of the algebras mentioned explicitly in the last section, it is
possible to find a compact closed subgroup Auto (A) of Aut(A) such that the induced
map H^X, Auto(A)) -> H^X, Aut(A)) is bijective for all X. (This follows from the
theory of p. 51 of [8] and some explicit checking; the details will not be needed.)

Consider first bundles of M^(R)'s and M^(H)'s over X (for all n). The auto-
morphism groups are PGL^(R) and GL^(H)/R'1' respectively (by the Skolem-Noether
theorem; see p. 66 of [2]). The exact sequence:

i ̂ R^GL^(R) -^PGLJR) ̂  i

defines a coboundary map ^ : H^X, PGLJR)) -> H^X, R^H^X, Zg); ^ is
similarly defined in the quaternionic case. If ^ and 3S are two such bundles,
so is j^/®^?, and an argument similar to the proof of Lemma 4 below shows that
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w^®^)=w^)+w^). A bundle ^ of M^(R)'s is said to be negligible if it is
of the form END(E) for some real vector bundle E or equivalently if w^)=o.

The isomorphism classes of such bundles form a commutative monoid under ®;
the classes of negligible bundles form a submonoid. The orthogonal Brauer group of X,
BrO(X), is defined to be the quotient. There is an injective homomorphism, natural
in the obvious sense, <D : BrO(X) -^©H^X, Z^). (This shows that BrO(X) is in
fact a group. 0 is defined as the product of w^ with the map which assigns oeZg to
bundles of M^R)^ and leZg to bundles of MJH)'s.)

This remains valid if X is paracompact and has finitely many components
provided that Zg is replaced by H°(X, Zg) where appropriate; analogous situations
later will not be commented on. The following theorem will be proved in § 4:

Theorem 3. — Let X be a finite G\V'-complex. Then:

0 : BrO(X) -> H°(X, Z^eH^X, Z^)

is an isomorphism.

The automorphism group of A==[8; 7z]==M^(R) is that subgroup of

Aut(M^(R))=GI^(R)/R*

which leaves invariant the subspaces A() and A^. Gall it E^. It may be verified that

E,=E,/R*, where E,=F,uF,cG4,(R), and where F,=H °) a^eGLJR)), and
fo a\ } [\° b ' J

F^== a, 6eGL^(R) . Finally, G^ is defined by the exactness and commutativity
\b of J

of the diagram:
i i

i —> R* —> F, —> G. —> i

i —> R* —> E: —> £„ —> i

Z, = Z,

i i

Hence, if ^ is a bundle of [8; n]'s on X, this diagram defines its characteristic
classes ^(jaQeH^X, Zg) and ^(^eH^X, R^^H^X, Z^).
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A bundle ^ of [8$ n^s on X is said to be negligible if

^o==HOM(V, V)®HOM(W, W) and e<==HOM(V, W)®HOM(W, V)

for some real vector bundles V and W. The exact cohomology sequences obtained
from the diagram show that s/ is negligible if and only if both w^{^/)==o and w^{^/)==o.

Let HO(X) be the set H^X, Z^xH^X, Zg). The rule:

(^).(a',^)=(^+^+^+^')

gives it the structure of a 4-torsion abelian group; it is an extension of H1 by H2. Then,
for s^ as above, set w[^)=(w^s^)y z^(J^)).

Lemma 4. — If^ and SS are bundles of [8; %]'s and [8; T^'J'S respectively on X, then
w(^0^)==w^).w{^).

Proof.—The maps E^—^Zg and E^—^Zg will both be denoted by a\^a. Choose
an open cover U=={UJ of X such that the restrictions of ^ and 3§ to each U^ are
product bundles. Set U^==U,nUj and U^==U,nU,nU^. It is convenient to use
the same symbol for a function as for its restriction to a smaller domain of definition.
Hence there exist functions ay : Uy->E^ such that: i) oc^==i; 2) a^.a^=i; and
3) ay.a^.a^==i on U^. These functions determine s^ up to isomorphism in the
usual way. Now choose functions a^: Uy->E^ such that: 4) ^==i; 5) ^•.^==i;
and 6) fly \-> a.y under the morphism E^->E^. Then fly.^.^=A^ : U^-^R* and
the set {A^J forms a Cech 2-cocycle. Note that z^(J^) is specified by the Cech
i-cocycle {^} and that w^{^/) is specified by the Cech 2-cocycle {Ay;J. Let iy and B^
be the corresponding objects for S8. If ^ = ̂ /®SS has corresponding objects ̂  and G,̂ ,
^=(^®i).(i®^.). Hence ^==^+^, which shows that w^)=w^)+w^S§).
Further:

G^=(^®i).(i®^).(^®i).(i®^).(^®i).(i®^^^^
==(A^®I).(I®B^).(^.^+^.^+^,.4.),

where the field Zg is considered as a subgroup of R*. The result that:

w^) = w^) + w^SS) + w^). ̂ (^)

follows from the fact that the third bracketed term represents the cup product.

If ^ is a bundle of [t; n]'s on X, and 88 is a product bundle of [Q—t; n ' ] ' s on X,
the above lemma shows that w^®SS) is independent of n ' . This is defined to be
w{^)=={w^^/), ̂ (^/)). Likewise, if ^ is a bundle of [4; p, q^s or [8$ p, q^s on X,
w(J^) is defined; in this case w^{^)=o if p^=q. Likewise, if ^ is a bundle ofM^(H)'s
or MJR)^ on X, w{^} is defined to be (o, w^{s/)). Now Lemma 4 implies:

Lemma 5. — ̂  <^ ^fi? SS are bundles of simple central graded fi-algebras on the para-
compact space X, w {^ ® OS} == w (e^). w [SS}.

10
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The set of isomorphism classes of such graded bundles is a commutative monoid
under 00; the set of classes of negligible bundles is a submonoid; the orthogonal graded
Brauer group of X, GBrO(X), is defined to be the quotient. (Note that the same group
is obtained by considering only bundles of [t; n] 's for all t, n.) If X is connected, let
T : GBrO(X)-^Zg be the homomorphism (c type 5?; define Y to be T X W . Note that Y
is injective. Let i : BrO(X) ->• GBrO(X) be the obvious injection. Then the following
diagram, in which the right hand vertical arrow is the product of the standard injections,
commutes:

BrO(X) -̂ -> Z^eH^X^)

GBrO(X) -^ Zg©HO(X)

The definition of Y and the commutativity of the diagram immediately extend
to the case when X is paracompact and has finitely many components.

Theorem 6. — Let X be a finite CW-complex. Then".

Y : GBrO(X) -> H°(X, Zg)®HO(X)
is an isomorphism.

Proof. — It is already known that T is injective, and it suffices to assume that X
is connected. For aeH^X.Zg) and AeH^X^g) it is required to construct a bundle ^
of [8; 7z]'s on X such that w{^/)=={a, b). By Theorem 3 there exists a bundle S8
of M^R)^ such that v(^)=b', the diagram shows that w^®[8; i])==(o, b),
where [8; i] is the product bundle of [8; i]'s. Let V be a real line bundle on X such
that w^(y)=a and let W be the Whitney sum of V with XxR7. Then Lemma 7
below shows that w(G(W))==(<z, o). Now Lemma 4 shows that w(G(W)®^)==(fl, 6),
proving the theorem.

If V is a real vector bundle on the compact space X, its Clifford bundle C(V)
([9], § i. i) is a bundle of central simple graded R-algebras. This construction defines
a homomorphism c : KO(X) —>-GBrO(X); c need not be surjective. In fact, if c is
surjective, the classical fibration

B Spin(Tz) -> BSO(TZ) -> K(Z^ 2)

has a cross-section for every n. This is clearly impossible (use Steenrod squares for
instance).

Lemma ^• — Let V be a real vector bundle on the paracompact space X, provided by a
negative definite quadratic form. Then z^(V)==z^(G(V)) for z = = i , 2.

Proof. — Clearly either ^(G(V))=o for all X and V or ^i(C(V))=^(V). To
show that the first alternative is false, consider the case when X==P^(R) and V is the

11
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Hopf line bundle. Then C(V)==i®V and ^==C(V)®[7; i] is such that j^o==ieV
and w^{^)==o. (An easy direct check shows that w^C(L))==w^C(L)®[j; i ])==o for
any line bundle L on any X.) As V is not stably trivial, j^o cannot be isomorphic
to HOM(W, W)®HOM(W, W) for any vector bundles W, W. Hence ^i(C(V)) +o.
Similarly, there exist universal constants a, beZ.^ such that w^{C(y))==a.w^(V)2-{-b.w^(V).
Consider the case when X^K^ZgXZg, i) (or its 3-skeleton); let L^ and Lg be line
bundles on X such that n^==w^(L^) and ^ ==^(1^) generate H^X^g). Then, if
V-L^CLa,

^(7T,+7^2)2+&.7^,.^=^(G(V))=^(C(Ll)®C(4))
==^(C(4))+^(C(4))+^(C(L,)).^(G(L,))=7r,.^.

Hence a == o and b == i, as required.
Remark. — We will not deal with bundles of non-central simple graded R-algebras,

i.e. with bundles of ( i ; %)'s or (2; p, q)^ considered as H-algebras. It is possible to define
equivalence classes of these and obtain a <( graded Brauer set " on which the graded
orthogonal Brauer group acts. This set has no group structure.

3. Bundles of simple central C-algebras

Again, X will denote a paracompact connected space. If A is a graded C-algebra,
a bundle of A's on X is defined analogously to the real case.

Consider first bundles of M^(C)'s on X (for all n)\ M^(C) has C-automorphism
group PGL^(C). The lower exact row of the commutative diagram:

i —> Zn —— SL,(C) -^ PGL,(C) -̂  i

e GL,(C) PGL,(C)

defines a coboundary map v : H^X, PGL^(C)) -> H^X, CT^H^X, Z). The upper
row shows that the image of v is yz-torsion. Once again it may be proved that
v^®SS) ==v{^/) +y(^). A bundle ^ ofM^(C)'s is said to be negligible if it is isomorphic
to END(E) for some complex vector bundle E or equivalently if v{s/)==o.

The isomorphism classes of such bundles form a commutative monoid under ®;
the classes of negligible bundles form a submonoid; the unitary Brauer group ofX, BrU(X),
is defined to be the quotient and is indeed a group. The following theorem will be
proved in § 4:

Theorem 8 (Serre). — Let X be a finite GW-complex. Then v : BrU(X) -> H^X, Z)
is injective. Its image is the torsion subgroup.

12
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The automorphism group of A =(2; n) is that subgroup of

Aut(M^(C))=:GL,,(C)/e

which leaves invariant the subspaces AQ and A^. Call it E^ (no confusion will arise with E
of§ 2) and construct E^, F^ and G^ as before. Then a diagram like the first diagram of § 2
but with C* replacing R* may be used to define maps ^ : H^X, PGLJC)) -> H^X, Zg)
and ^.•H1(X,PGL,(C))-^H2(X,C)=H3(X,Z). Hence if ^~isT bundle of (2; ^'s
on X, its characteristic classes ^(^eH^X, Zg) and ^(^eH^X, Z) are defined. As
u^)==v{^), where j^* is the bundle ofM^(C)'s underlying j^, 2%.^(^)=o.

A bundle ̂  of (2$ ^'s on X is said to be negligible if

^o=HOM(V, V)®HOM(W, W) and J<=HOM(V, W)®HOM(W, V)

for some complex vector bundles V and W. Once again, ^ is negligible if and only if
both u^)=o and ^(J^)==o. Let HU(X) be the set H^X, Z^xTors^X, Z)). If
P : IP(X, Zg) -> H^X, Z) is the Bockstein, the rule {a, b). (^, bf)={a+af, b+b'+^a.a'))
gives it the structure of a torsion abelian group; it is an extension of H1 by Tors(H3).
Then, for ^ as above, set u{s/)=(u^), ̂ (^)). The following lemma is proved in
the same way as Lemma 4:

Lemma 9. — If ̂  and S8 are bundles of (2; ^'s and (2; n'}\ respectively on X, then
u^®^)==u{^).u{^).

As before, this lemma enables us to define u{^/) when ^ is a bundle of ( i $ nVs,
(2$^, qYs or M^(C)'s. Now Lemma 9 implies:

Lemma 10. — Ifs/ and 38 are bundles of simple central graded C-algebras on the compact
spacer u{^®^)==u{^/).u{^).

As before, the unitary graded Brauer group of X, GBrU(X) may be defined.
If X is connected, a homomorphism Y : GBrU(X) -^Z^@'H.U(X) and an injection
i : BrU(X) -> GBrU(X) may be defined. Once again, the following diagram commutes:

BrU(X) ^ Tors^X^))

GBrU(X) -^ Za®HU(X)

Theorem n. — Let X be a finite CW'-complex. Then:

Y : GBrU(X) -> H°(X, Z2)®HU(X)
is an isomorphism.

Proof. — The proof is analogous to that of Theorem 6 and so will be omitted.

13
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4« The existence theorems

This section is devoted to the proofs of Theorems 3 and 8. Throughout it X
will denote a finite connected GW-complex. Note that the injectivity of O and v has
already been proved.

Lemma 12. — If V is a k-vector bundle on X, there exists a vector bundle W on X such
that V0W is trivial.

Proof. — Let X have dimension d and V have rank r. Then ([V]—r)eK(X) is
nilpotent (see p. 127 of [3]). Let N be an integer such that ([V]—r)^ =o. If

^^^-l-^'\{[V]-r)+...+{-l^~-l.{[V]-r^-l,

M.A:. [V]=M.rNeK.(X), where the integer M is chosen such that M.A: has rank
p=M.rN"~ l>fl?. So there exists a vector bundle W such that [W]—n==M..x for
some positive integer n. Now the injection 0(p)—^0(p-(-%) induces isomorphisms
7c,(0(p)) -^7T;,(0(p+7z)) for i<,d, and hence induces a bijection [X,Bo^] -> [X,Bo(p+^].
Hence there exists a vector bundle W such that [W]==M.A:. As [X^W^M.r^^,
V®W is trivial. (If k==C, 0 must be replaced by U in this proof.)

Now, for definiteness, assume that A:=R. Let K'PO(X) be the quotient of the
commutative monoid of isomorphism classes of R-vector bundles on X with composition
induced by the tensor product by the submonoid consisting of the classes of trivial
bundles. By Lemma 12 it is a commutative group. Further, it is divisible. For if m
is an integer and with the notation of the above proof, the formal binomial expansion
of rv~l.mN~l.(N—I)! • ( T "KEV]—r)/r)1^ may be used as above to construct a vector
bundle V^ such that V^^ is a multiple of V. Further, it is torsion-free, and hence is
a Q-vector space. For if V is a vector bundle such that V^ is trivial of rank r^ Lemma 12
shows that there is a vector bundle W such that T^W^V^-^er.V®^--2^.. . Cr^-1)
is trivial and [V®T]=[r.T]eKO(X). So again, for a suitable positive integer M,
M.V®T» M.r.T, and so V has image o in KTO(X).

Let KPO(X) be the quotient of the commutative monoid of isomorphism classes
of bundles of M^(R)'s on X (for all n) with composition induced by the tensor
product by the submonoid consisting of the classes of trivial bundles. As the tensor
product of such a bundle with its opposed bundle is negligible, Lemma 12 shows
that KPO(X) is a group. The endomorphism bundle construction induces a homo-
morphism i : K'PO(X) -^ KPO(X). The characteristic class w^ defines a homomor-
phism Wa •' KPO(X) -> HP(X, Zg). The sequence:

o -> K'PO(X) ̂  KPO(X) ̂  H^X, Z^)

is clearly exact. Now the group PO^O^/Zg acts on Rn®Rn in the obvious way;
hence a bundle ^ of M^(R)'s on X induces a vector bundle of rank n2; this construction
induces a homomorphism 2/:KPO(X) ->K'PO(X). As j.i==i the sequence splits.

14
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If X=SP, the ^-sphere, w^ is surjective. This statement is trivial unless p==2.
If j^= C(V)®[6; i] (considered as a bundle ofM^R)^), where V is the Hopf complex
line bundle (considered as a real 2-plane bundle) on X^S^P^C), Lemma 7 shows
that w^) is the non-zero element of H^X, Zg). Now KTO(), KPO( ) and H^ , Zg)
are all half exact homotopy functors; a theorem of Brown (see p. 7.1 of [5]) shows
that j@w^: KPO(X) --^K'PC^QH^X.Zg) is an isomorphism for all X.

It suffices to prove Theorem 3 in the case when X is connected. The surjectivity
of w^ implies the surjectivity of 0, which therefore is an isomorphism.

Remark. — Brown's theorem and the " Pontryagin character " may now be used
to show that K'PO(X.) w Tl H^X, QJ. This yields the periodicity of the homotopy

i>0

of the direct limit PO of the groups POy^.
As Theorem 8 is proved in [7] we will omit the modifications needed to make

the above argument work in the case k=C.

5. K-Theory with local coefficients

Let ^ be a bundle of A's on the compact space X, where A is a graded
A-algebra (§ i). Denote by <?^(X) the category of graded A-vector bundles which are
projective j^-modules in the obvious sense, with morphisms of degree o. <?^(X) is
the category whose objects are those of X but whose morphisms are not necessarily
of degree o. Both <^(X) and <?^(X) are "prebanach categories" (see [i i]) and the forgetful
functor 9 : <^(X) -> ̂ (X) is a Banach functor. The Grothendieck group K^(X) is
the K-group K(<p) of the Banach functor 9. For example, if s/==k (the product
bundle), K^(X) is isomorphic to the well-known group K(X). More generally, if
^=0^, K^(X) is the group KP '<^(X)=KP-<^(X) introduced in [n].

If aeGBr(X) (which means GBrO(X) if k==VL, GBrU(X) if A=C), and if ^
is a bundle of central simple graded A-algebras of class a, it will be shown later that K*^(X)
depends only on a. It is defined to be K^X).

If r^ denotes the graded radical of ̂  where A:eX, ^==Ur^ is a sub-bundle of
graded ideals ofc^ and ^\Si is a bundle ofA/r(A)\ i.e. ofsemisimple graded A-algebras.
Define a functor 6 : <^(X) -> <T^(X) by the formula 6(E)=(^/^)®^E for Ee^(X).

Proposition 13. — The functor 6 induces an isomorphism Q^: K^(X) -> K^^X).
Proof. — Following § 2 . 1 of [9] we give another description ofK^(X) for every 38.

Consider triples (E, s^, 83) where E is a ^-module and where e^ and £3 are gradings ofE.
This means that s^ and £3 are two involutions of E (regarded as an ordinary bundle)
such that e^b==b^ for beSS^ and ^b==—b^ for be8§^. Moreover (E, ej is assumed
to be a graded projective module over S3. A triple (E, s^, £3) is called elementary if e^
is homotopic to £3 among the gradings of E. The group K^(X) is then the quotient
of the monoid constructed with such triples by the equivalence relation generated by

15
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the addition of elementary triples (see § 2 . 1 of [9] for a proof of an analogous statement).
The cosuspension ̂ 39 of^? (not the suspension of [13]) is defined to be G°'1®^?. A graded
projective module over 39 may be thought of as an ordinary projective module over S .̂
Hence every element of K^(X) can be written (E, s^, £3) where £==(2^)" for a
certain n and where s^ is the grading induced by the canonical generator of C°'1. In
this context, 6^ is simply defined by the formula 6^(2^)^ e^ e^)=={(^{^ A^))"? ̂  ^2)?
where i, is the image of s. Let T](^) be a homotopy between 7](o)===£^ and 'y](i)==^2-
The argument of Lemma 1.3 of [14] shows the existence of a continuous family ^{t)
of gradings of (SLa^ such that ^)===7](^) and ^(o)=£i. If we put X(^)=i+^( i )£2 ,
X(^) is invertible by Nakayama's lemma. Then the homotopy ^(t) given by ^)==^(2^)

for o^^- and ^(^^(^(s^—i))"1^!)^^—!) for -.<^i connects ^ and £3 m

the set of gradings of E. Hence 6^ is inject! ve. Now, for every bundle 3S of graded
algebras, let F(^ S3) be the Banach space of endomorphisms s : ̂ LSSY—> ̂ LS§Y such
that £^=(—i)^£ for every beSS.C^gS. Let Grad(7z, ^) cF(7z, <^) be the subset of
endomorphisms s such that ^=1. There are obvious maps F(^, ^/) -> F(%, ^/ fSS) and
Grad(7z, J3^) -> Grad(/z, ^ / / S S ) ; £1 is a canonical base point for Grad(7?, s/) whilst ^ is
one for Grad(%, ̂ /^). If r^eF(n, j^/^) and if Y=7)^l5 Y^==^Y for every be^l^.
Hence F(^, e^) -> F(TZ, j^/^) is surjective. Let ((S^/^))^ Fi, Y]) be a triple which
specifies an element of K^^X). Now there exists an eeF(7z, cQ^) such that iF=7]

and e^i+^5 where A:eM^(^) is nilpotent. So the square root \/{i-{-k)=i-}--k—...

exists. Put S^SV^I+A:); then O^^j^)^ e^ £2)==((S(^/^))n, i'i, T]). Hence 6, is
surjective and the proof is complete.

Remark. — In order to calculate K^(X) it is now sufficient to assume that ^ is
semisimple. As K^^X) is isomorphic to K^(X)©K^(X), it is further sufficient to
assume that all the simple factors of the fibre of ^ are isomorphic. It is false, unfortu-
nately, that all bundles of semisimple graded /;-algebras are products of bundles of simple
graded A;-algebras.

The definition of K^(X) may be generalized in many directions in the usual
way. First of all, we introduced relative groups K^(X, Y) when Y is a closed subspace
of X (consider triples (E, s^, £3) such that S I J Y ^ ^ I Y as m § 2 - 1 °^ [9J)5 ^or ^
empty we recover the definition of K^(X). If V is a Banach category, ^-vector
bundles may be considered instead of ordinary vector bundles (cf. [9]). Denote by
K/^X; %') (K^(X, Y; %") in the relative case) the group so obtained. An interesting
example (see below) is the category %?=J^7 of [10]. Finally, if G is a compact Lie
group acting continuously on X and J3 ,̂ we may consider <( G-^/- vector bundles "
(i.e. there is the relation g . {a.e)={g.a). {g.e) for geG, CLGS/^ ^E^p, ^eX). In this
way a group K^f(X) is obtained. A slight generalisation may be obtained by consi-
dering augmented groups as in [15].

16



GRADED BRAUER GROUPS AND K-THEORY WITH LOCAL COEFFICIENTS 17

K^(X) is a homotopy invariant in the following sense. Let e^xl be a bundle of
algebras over X x I, where I is the unit interval. The inclusions i^ X -> X x{o) cX X I
and Zi:X->Xx{i}cXxI are homotopic. If^isanelementofK-^^XxI), i^d) ==i^a).

6. The Thorn isomorphism

By (< abus de langage5? let us denote by e ,̂ E, ... the inverse images /W,/*E, ...
for any map /:Y-^X. As in [9], there is a homomorphism:

t : K^(X; ^) -> K^(XxD1, XxS°; ^)

defined by the formula ^(E, £1, £3)=^', ^(O), £3(6)). Here E' is E regarded as an
^-module and £,(9) is the grading of E' defined over the point eeD^lo,^] by
£,(6)==£cos 6+£,sin 6 where ^C^cG0'1^^ is the canonical generator of C°'1.

Theorem 14. — For every Banach category %', t is an isomorphism.
Proof. — The proof is analogous to that of Theorem (2.2 .2) of [9].

Remark. — IfSX denotes the pair (XxD1, XxS°), the theorem takes the striking
form K^^X) «K^(SX). No analogue of this theorem in algebraic K-theory is known.
Theorem 14 is, of course, still true for all the generalizations mentioned in § 5. Also,
if V is a vector bundle on X with a positive quadratic form Q, the methods of [9] define
a homomorphism t: K^^X; ̂ ) -> K^(B(V), S(V) $ ^).

Theorem 15. — The generalised homomorphism t is an isomorphism.
Proof. — This may be proved as in [9] by using Mayer-Vietoris arguments (cf. [18]).

To show that K^(X), where ^ is a bundle of simple central graded A-algebras
on X, depends only on the class of ^ in GBr(X), it is convenient to interpret K'^(X)
as the graded Grothendieck group of the category <^(X) (cf. § 2.1 of [9]).

Theorem 16. — Let E==Eo<9Ei be a Z^-graded k-vector bundle on X with graded endo-
morphism bundle END(E). If ^ is a bundle of graded k-algebras on X, the additive functor
9 : ̂ (X) -> ^®END(E)(X) defined by <p(F)=F®E is an equivalence of graded Banach
categories. In particular, 9 induces an isomorphism ^ : K-^(X) -> K^^^^X).

Proof. — As the question is local there is no loss of generality in assuming that
Eo==Xxkp and Ei=Xx^. So ^®END(E)=Mp+^(j^) with a certain grading.
If [L' is a homomorphism from y(F) to <p(F'), linear algebra shows that (JL' is of the
form 9 (pi). Hence 9 is fully faithful. It remains to prove that 9 is essentially surjective;
it suffices to prove that J^®END(E) is isomorphic to some 9(F). For F=J^OOE,
this is satisfied.

Definition 17. — For aeGBr(X), K^X) is defined (up to canonical isomorphism) as
the group K^(X) for any ^ with class a. (This is justified by Theorem 16.)

17
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Let 9 : %)-»<^/ be a quasi-surjective Serre functor (in the sense of [9]) between
two Banach categories. As in [9] and [14] we can define a connecting homomorphism
8 : K^(XxDS XxS°; ̂ ) -> K^(X; 9). This yields an exact sequence:

K^(XxD1, XxS°; ̂ ) -> K^(XxD1, XxS°; %") -^
-^ K^(X; 9) -> K^(X; %-) -^ K^(X; ̂ ').

The homomorphism t of Theorem 14 may be used to obtain the theorem:

Theorem 18. — There exists an exact sequence:

K^(X; V) -^ K^(X; ̂ ') -> K^(X; 9) -> K^(X; %-) -^ K^(X; ̂ ').

The following theorem is proved in the same way:

Theorem 19. — If ^ is a bundle of graded k-algebras on the compact space X and Y is
a closed sub space of X, there exists an exact sequence:

K^(X; V) -> K^(Y; ̂ ) -^ K^(X, Y; ̂ ) -> K^(X$ V) -> K^(Y; ̂ ).

7. The multiplicative structure

As in [10], let J^ be the Banach category of A-Hilbert spaces and let ^ be the
Banach category with the same objects as J^but with ^(Hi, Hg) == ̂ (H^ Hg) /^C(Hi, Hg)
where ^C(Hi, Hg) is the space of all completely continuous maps H^-^Hg; 9 : ̂ ->^
will denote the canonical functor and € is the Banach category of finite dimensional
A-vector spaces; X again denotes a compact space.

Let K : K^(X; S) -> K^(X; 9) be defined (as in [10]) by K(E, e,, ^)=(E, ̂  s,).
Then the following is proved in the same way as Proposition 5 of [10]:

Proposition 20. — K is an isomorphism. Also

K-1. a : K^(X; e^) -> K^(X; S) w K^(X)

is an isomorphism.

More generally, if we have an exact sequence of prebanach categories (cf. [13])
Q—^(e'->(e—y(e"->Q^ there is an exact sequence:

K^(X; ̂ ') -> K^(X; ̂ ) -^ KS>S/(X; ̂ ") -^ K^(X; ̂ /) -> K^(X; ̂ ) ̂  . . .

In particular, if^ '^flabby (c( flasque 59, see Definition 3 of [13]),

Ksta/(X;^")»K^(X;^').

Hence there is an isomorphism K^(X; ̂ ) w ̂ ^(X; S^) for every Banach category V.
As in [10] we can define a group K-^(X) by considering self-adjoint Fredholm

18
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operators. More precisely, consider couples (E, D), where E is a Hilbert bundle on X
which is a graded J^-module (i.e. a Sc^-module) and where D : E-^E is a quasi-
graduation of E. This means that D is a continuous family of self-adjoint Fredholm
operators commuting with elements of (Sj^)o and anti-commuting with elements
of (Sj^)i. Then K-^(X) is the Grothendieck group associated to the commutative
monoid ofhomotopy classes of such couples. Using spectral theory as in [10], we can
define an isomorphism u : K^(X) -^ K^^X; 3V}. Eventually the following analogue
of Theorem 6 of [10] is obtained:

Theorem 21. — j=^~ l . ( ) .u : K^(X) -> K-^X) is an isomorphism.

The methods of [12] give an explicit inverse to this isomorphism. This fact is
not needed here.

The groups K-^(X) enable a cup product to be defined:

K^(X)®K^(X') -^K^^XxX').

The formula (E, D)u(E', D')==(E®E', D®I+I®D') is used, where® means the graded
completed tensor product. The multiplication is associative and distributive with respect
to the addition. It is commutative in the following sense: define T : s / ® ^ / ' ->s^'®^^
covering the canonical isomorphism XxX'-^X'xX, by T{x®xf)=={—I)8{x)8{xl}.x'®x,
where 8 denotes the degree. Define T' : E®E'-^E'®E similarly. Then the pair (T, T)
define an isomorphism.

In particular, if X = X' and ^ and ^ ' are bundles of central simple graded
A-algebras, this product composed with the restriction to the diagonal defines a product
K^X)®!^^) -^K^X), where a, a' are respectively the images of j^, ^ ' in
GBr(X).

Remark. — In the case when s^ and ^ / ' are Clifford algebras of vector bundles,
the cup product is usually defined by using the Thorn isomorphism (Theorem 15).
The methods of [10] and [14] show that all reasonable compatibilities between the
two definitions hold.

8. Adams operations

Let ^ be a bundle of graded A;-algebras on the compact space X, An action
<»s

of the symmetric group 2^ on ^(x)n is defined by the formula (in which the elements ^
are supposed to be homogeneous):

a. (^®^®. . ̂ ^)={-if.a^a^.. .®^,

where N==N((T; a^ a^ ..., aj is the number of inversions induced by a of two a^s of
odd degree. Note that:

N(r; a^ a^ .. ., ^)+N((T; ̂ , ̂ , ..., a^) ==N((TT; a^ flg, . . . , aj (2);

19
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this states that an ©^-action is indeed defined by this rule and may be verified by exami-
ning the case when j^==C1'0 In this case the action of S^ on j^^r^G^0 is simply
that induced by the action of ©„ on R".

Definition 22. — The symmetric tensor power <p^ : K^(X) -> K|̂  (X) is defined by the
formula:

9 ^ ( E , D ) = ( E @ n , D 0 I ® . . . ® I + . . . + I ® . . . ® I ® D ) .

Remarks. — The action of ^0n on E®71 is given by the formula (in which the
elements are homogeneous) (^®. . . ®aJ . (^®. . . ®^) == (— i)^ a^®. . . ®a^ where
M==M(ai, . . ., a^\ e^ . . ., <?J is the number of inversions of odd degree elements in
the permutation (^, ..., a^ ^, ..., e^) l-> (^, ^, Og, ^, ..., ̂ , ^). (The example ofG1'0

considered as a module over itself shows that this is well-defined, and that, if creS^,
Xe^", ecE^, a. (X.^)==((T.X) . {a.e). Hence ^ is well-defined.) Note that if ^ is
a Clifford bundle C(V), (p^ is the algebraic translation of the map K(V)->Kg (V^)
of [4] (cf. [15]).

It is now convenient to make the following definition. Let y:B->G be an isomor-
phism of algebras. Let P be a B-module and Q^be a G-module. A group (iso)morphism
/: P->Q will be called an (iso)morphism of modules if f(\. x) =/(X) .f{x) for XeB and
xeP. The example that we are interested in is when B==(ea^(§)^')®.. .§)(^f®^')
(n copies); G==(^®.. .®^)®(^'®.. .®j^') (n copies in each bracket); P^E^E')0"
and Q^E^E'®". Here E is an j^-module, E' an c^'-module and ^ and ^ ' are
bundles of graded A;-algebras on X and X' respectively. y:B->C is defined by
the formula f{a^a[®.. .®^0 <)=(--1)^^®.. .®aJ®(^(§).. .®^) with M as
above, and the isomorphism f is defined by an analogous formula. Hence there is

^ ^ ^
induced a canonical isomorphism T : K'l^'^XxX') -> K^®"®^'®"(XxX').
Then the operations <?„ are seen to have the multiplicative property expressed by
the commutativity of:

K^(X)xX^'(X') ————> K^®-^'(XxX')

<x^' K^®^®"(XxX')

I7^ ^ ' ^
K^"(X)xK^"(X') —^ K^"®^'®"(XxX')

/N
__ /o,

The groups K^ (X) seem to be very hard to compute in general. For example,
if X is a point and j^==G1'0, the explicit determination of this group is related to the

20
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explicit determination of the representation ring of a certain group g^, which double
covers (3^. Part of this task has been done by Schur [16].

In order to define more acceptable invariants, the following basic idea is useful.
Let G be a subgroup of ©„ such that there exists a homomorphism (A : G-^U^®")
(U denotes the group ofinvertible elements of degree o) such that a.a=^(<j) .a. pi (a"1)
for aeG and ae^/^. Then we can "twist" the action ofGon every G-^^-module P
in the following way: set CT*m==pl((7 - l)(y.m. Note that for all meP, aeG, reG and
ae^/®", a*(T*m)=(CTT)*m and (5*{am)==a{a*m).

Lemma 23. — If ̂ x " is the category of graded G~^/® ̂ modules with the trivial action
^\ /c-\

of G on ^®n and if K^ " is the associated graded Grothendieck group (G is as above), the graded

categories ̂ n and S^®' are isomorphic. In particular, K^^X) wK^0".
'"*» ^s

Proof.— Define 9 : ̂ "(X) ̂  ̂ @n by <p(P)=P' and 9(/)==/', where P'is P
as an ^^"-module with the action *ofG and where/' coincides with/on the underlying
j^^-modules. Since pi (or) is of degree o, the new action of G is of degree o and the
functor is well-defined. Likewise, an inverse 9' to 9 may be constructed.

Two cases are of special interest. Firstly, that when G==Z^, the cyclic group
generated by the permutation g={i 2 . . . n)', n will always be taken to be odd, if
further n == 4.? +1, the second case is when G ==2^, the dihedral group generated by g
and the permutation t == (i 4.?) (2 4p— i ) . . . {2p 2p +1). Z^ is normal in ?)„; the quotient
group is Zg and it acts on Z^ by inversion. 2)^ is generated by g and t with the relations
^=^=1 and tg=g~lt.

Lemma 24. — Let ^ be a bundle of central simple graded k-algebras on X. If n is odd,

there exists a homomorphism [L : Z^-^U^0^ such that G.a==[L{(j)a[L{a~1) for aeZ^ and

aes/®". If n=4p+i, there also exists a homomorphism [L' : D^->U(J^®n) extending [L such
that (7.a=(J(/(Gr)^/((7-1) for creS^ and ae^^.

Proof. — The Schur multiplicators H^Z^, R*), HP(Z^ CT) and H2^, CT) are all
zero; [16] and a little calculation show that H2^, R^^ZgQZ^ and that the
restriction to H2^, If^Zg maps the element corresponding to % to o. The Skolem-
Noether theorem and some explicit checking show that if A is any of the algebras listed
in § i, all automorphisms o- of A are induced by conjugation by a unit xe\uA^,
determined up to a central homogeneous unit. As ^^i, its action must be induced
by a unit xe\. As t is the product of an even number of conjugate elements of ©„,
its action must also be induced by a unit xe\. The result now follows from the theory
of projective representations.

^ ^K

Denote by v : K^xn(X.) -> K^^X) the isomorphism of Lemma 23 for G=Z^
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or !)„ and n as above. Then it is easily seen that the following diagram
commutes:

K^^xKf^X') —> K^^XxX') ^ K^^XxX')

K^^xK^hx') -^ K^^'^XxX') ^ K^^XxX')

We now treat in detail the case when k==C and G=Z^. The case when k==IL
and G==2)^ will be dealt with later.

The following lemma (which may be generalised to the case when Zy, is replaced
by any other finite group) is proved in the same way as Proposition (2.1) of [4], i.e. by
use of the canonical projection operators in the group algebra.

Lemma 25. — Let F be a complex Hilbert bundle on X with an action of the cyclic group Z^.
Then the bundle F splits into the sum Fo®Fi©. .. ®F^_i. The generator gofZ^ acts on F^ by
the multiplication by (x/, where 6)==exp(27n7^).

If D : F->F' is a morphism of Z^-bundles, we shall write D^ : F^-^F^ for the
restriction ofD to F^ and F^.. Let ̂  be the subring of C generated over Z by the above <o.
In other words, ^=Z[co]/(0^(co)), where 0^ is the yz-th cyclotomic polynomial.

Definition 26. — If (F, D) is an element of KU^J^X), Tr(F, D), its trace, is the
n—l ^

element S (F,, D,)®^ of KU^^X)®^-
r=0

Proposition 27. — The ^trace function" Tr is multiplicative. In other words,

if (F,D)eKU^J"(X) and (F', D^eKU^X'), the elements Tr(F, D)uTr(F', D')

and Tr(F®F',D®i+i®D') are equal when we identify KU^^^^XxX') and

KU^^^XxX') by the canonical isomorphism.
Proof. — The proposition is a direct consequence of the definitions and of the fact

4.1-, a A. , .TI , .m _ . .M + wimai (o co == (o •

Lemma 28. — Z^ fi?> i 6^ a divisor ofn. Let the couples (G(), D()), . . ., (G^_^ D^_^) 6^
& y m § ^ and suppose that the generator g of 7.^ acts on (F,D)=(Go®. . .®G^_i,Do®. . .®D^_i)
^ ̂  matrix y^T^ ^^ ̂  0^ nonzero ̂  are YIO=TO. Y21-Y1. • • •, Yd-i ,d-2=Td-2
a^ Yo.d-^Yd-r 7%^ Tr(F,D)=o.

Proo/. — As Go and G. can be identified by the isomorphism Yi-r • -Yo? there is
no loss of generality in assuming that G()==G,, D()=DI= .. . =D^__^ and that each ^
is the identity. Then Ker^—co^)«Go. As Sco^^o, Tr(F,D)=o.

r
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Definition 29. — The <( Adams operation ":

23

-®n,^n : KU^(X) -> KU^ (X)®H,
^ ^ composite:

KU^(X) ̂  KUlf^X) —^ KU^(X) -^> KU^X) -^ KU^X)®^.

Theorem 30. — 7^ Adams operation ^n is additive, i.e. ^{x -\-y) = ̂ (A?) + ̂ (j).
Moreover^ it is multiplicative in the sense that there is a commutative diagram:

UKU^(X)®KU^'(X') KU^®^(XxX')

ip"®^

Y y

KU^^^^KU^^^X') -^ KU^^^^^XxX')®^^ ̂ - KU^^^XxX')®^

Proq^. — The second assertion is a direct consequence of the diagrams following
Definition 22 and Lemma 24, and of Proposition 27. Write A?= (E(), D^) and j/= (E^ D^).
Then (Eo®El)®n=©(E^®E^®.. .®EJ, where the direct sum is taken over all i,. This
expression is the sum of E^, Ef71 and of bundles of the form G==Go®... ®G^_i {d> i),
where d divides n. Here the action ofZ^ on G is as in Lemma 28. So Tr(F, D)==o.
Hence ^n(A:+^)=^n(A:)++n(A ^ required.

Proposition 31. — Let E=EQ©EI be a 7.^-graded C-vector bundle on X with graded
endomorphism bundle J^=END(E). Let \ be the isomorphism 9, of Theorem 16. Then the
following diagram is commutative:

^n
KU(X) KU(X)®^ KU(X)

X®1

(ĵ n
KU^(X) KU^^X)®^,

wA^r^ the upper ^n is the ordinary Adams operation ([i], [4]) and i is the inclusion.
Proof. — If j^==C, the argument of [4] shows that our ^n is the usual ^n operation.

For other j^, X is defined by the cup product with E or E0" as appropriate. The action
of ©„ on s/®n is induced by the natural action of ©„ on E^ and is thus given by inner
automorphisms. This implies that the action of Zy, on (v^) (E, D) is trivial. The
result follows.
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Remark. — If 88 is another bundle of simple central graded C-algebras, exactly the
same proof shows the commutativity of the diagram:

KU^(X)
<^n

KU^"(X)®^

KU^^(X) -^ KU^^X)®^ ^ KU^^X)®^

This shows that ^n is essentially an operation from KU^X) to KU^X)®^ for
oceGBrU(X).

Now consider the case when k==R and n==4p-{-i. Following End [6], we
will define operations ^n in this case. In view of the preceding discussion, we need
define only:

Tr : KO^"(X) -> KO^"(X)®^,

If F is a (real) Hilbert bundle on X with an action of £)„, set F'=F®C and
F^KerQ^—o)8). Let c denote the complex conjugation on F'. Then its restriction
cs'^ls~^£'-s ls C-anti-linear whilst the restriction of t, t_,: F^^-^F, is C-linear.
So F^ is naturally isomorphic to the complexification of the real Hilbert bundle
F,=Ker(^—I)nKer(^—cos). If D : F-^G is a morphism of real Hilbert ^-bundles,
write D, : F,->G, for the restriction. If (F, D) are as in § 8, define:

Tr(F,D)==S(F,,DJ®co8.
5

As in Definition 29, the ^n operation is defined to be the composite:

KO^(X) A KC^X) -^ KO^"(X) -^ KO^"(X) -^ KO^\-K)®^.

It is easy to extend all the propositions proved above to the real case. Moreover,
the following diagram, in which c is the complexification, commutes:

KO^(X)
tpn

KO-^®"(X)®^

KIP^^X) -"̂  KU^^X)®^,, » KU^^^X)®^^
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The following diagram, in which r is the realification, also commutes (cf. [6]):

KU^^X) -^ KU^^X)®^ w KU^^X)®^

KO^(X) ————————^————————> KO^^X)®^

Remark. — Simple examples show that 0.^ is necessary to define ^n in both cases.
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