PUBLICATIONS MATHÉMATIQUES DE L'I.H.É.S.

PETER DONAVAN MAX KAROUBI

Graded Brauer groups and *K***-theory with local coefficients**

Publications mathématiques de l'I.H.É.S., tome 38 (1970), p. 5-25 http://www.numdam.org/item?id=PMIHES_1970_38_5_0

© Publications mathématiques de l'I.H.É.S., 1970, tous droits réservés.

L'accès aux archives de la revue « Publications mathématiques de l'I.H.É.S. » (http://www.ihes.fr/IHES/Publications/Publications.html) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

GRADED BRAUER GROUPS AND K-THEORY WITH LOCAL COEFFICIENTS

by P. DONOVAN at Sydney and M. KAROUBI at Strasbourg (1)

The Bott periodicity theorem shows that the real K-theory, KO, and the complex K-theory, KU, are generalised cohomology theories graded by \mathbb{Z}_8 and \mathbb{Z}_2 respectively. Our aim is to define a "K-theory with local coefficients" $K^{\alpha}(X)$ (K denotes either KO or KU) which shall generalize the usual groups $K^n(X)$, $n \in \mathbb{Z}_8$ or $n \in \mathbb{Z}_2$.

The ordinary cohomology with local coefficients $H^n(X, \alpha)$ is defined for $(n, \alpha) \in \mathbb{Z} \times H^1(X, \mathbb{Z}_2)$. At least when X is a connected finite CW-complex, $KO^{\alpha}(X)$ is defined for $\alpha \in \mathbb{Z}_8 \times H^1(X, \mathbb{Z}_2) \times H^2(X, \mathbb{Z}_2)$ and $KU^{\alpha}(X)$ is defined for

$$\alpha \in \mathbf{Z}_2 \times H^1(X, \mathbf{Z}_2) \times Tors(H^3(X, \mathbf{Z})),$$

and these may be called K-theory with local coefficients. The sets which index K-theory appear here naturally as "graded Brauer groups" associated with the space X; these groups were essentially studied by Serre [7] and Wall [17]. These graded Brauer groups, together with another less important set (§ 2), seem to index all reasonable "K-theories with local coefficients".

One motivation for this work is that it gives a complete satisfactory "Thom isomorphism" theorem in K-theory. More precisely, if V is a real vector bundle on X, the KO-theory of its Thom space is isomorphic to $KO^{\alpha}(X)$, $\alpha^{-1} = (d(V), w_1(V), w_2(V))$, where $d(V) \equiv \dim(V) \mod 8$ and where the $w_i(V)$ are the first two Stiefel-Whitney classes of V. However not all α are of this form.

GBrO(X), the real graded Brauer group of X, is in fact the direct sum of \mathbb{Z}_8 with an extension of $H^1(X, \mathbb{Z}_2)$ by $H^2(X, \mathbb{Z}_2)$ if X is a connected finite CW-complex (2). (The extension splits set-theoretically only.) If $\alpha, \alpha' \in GBrO(X)$, there is a product $KO^{\alpha}(X) \otimes KO^{\alpha'}(X) \to KO^{\alpha\alpha'}(X)$; this is constructed by means of Fredholm operators in Hilbert space. So $\bigoplus_{\alpha} KO^{\alpha}(X)$ is a graded ring; GBrU(X), the complex graded Brauer group of X, has analogous properties.

(2) This result has been found independently by R. R. PATTERSON.

⁽¹⁾ Both authors were partly supported by National Science Foundation grant GP-7952X at the Institute for Advanced Study.

More generally, if GBr(X) denotes either GBrO(X) or GBrU(X) (as appropriate), the tensor product of bundles of algebras induces a composition:

$$\hat{\otimes}$$
: $GBr(X) \times GBr(X') \rightarrow GBr(X \times X')$.

Then one can define a "cup product":

$$K^{\alpha}(X) \times K^{\alpha'}(X') \to K^{\alpha \widehat{\otimes} \alpha'}(X \times X').$$

The same techniques enable us to define "Adams operations":

$$\psi^n: KU^{\alpha}(X) \to KU^{\alpha^n}(X) \otimes \Omega_n$$

for odd n, with $\Omega_n = \mathbf{Z}[\omega]/(\Phi_n(\omega))$, where Φ_n is the n-th cyclotomic polynomial. For $n \equiv 1 \pmod{4}$, there are also operations:

$$\psi^n: KO^{\alpha}(X) \to KO^{\alpha^n}(X) \otimes \Omega_n.$$

If $\alpha = 0$, these operations are essentially the ordinary ψ^n operations.

1. Graded algebras

k will denote either of the fields \mathbf{R} or \mathbf{C} . By a graded k-algebra we shall mean a \mathbf{Z}_2 -graded associative k-algebra $\mathbf{A} = \mathbf{A}_0 \oplus \mathbf{A}_1$ with unit and of finite dimension as a vector space.

The graded radical r(A) of A is defined to be the intersection of its maximal left graded ideals. It is a graded ideal. The graded radical of A/r(A) is o and so A/r(A) is said to be *semisimple*. The same argument as that used for ungraded algebras in Chapter 4 of [2] shows that:

Lemma 1. — A semisimple graded k-algebra is a product of simple graded k-algebras.

The simple graded k-algebras A may be classified as follows. If $A_1 = 0$ and $k = \mathbb{R}$, A must be isomorphic to $\mathbf{M}_n(\mathbf{R})$, $\mathbf{M}_n(\mathbf{H})$ or $\mathbf{M}_n(\mathbf{C})$ for some integer n. If $A_1 = 0$ and $k = \mathbf{C}$, A must be isomorphic to $\mathbf{M}_n(\mathbf{C})$ for some integer n.

Otherwise, according to Lemma 3 of [17], either A is simple (as an ungraded algebra) or A_0 is simple and there exists an element $u \in Z(A) \cap A_1$ such that $A_1 = A_0 \cdot u$ and $u^2 = 1$ (Z(A) denotes the centre of A). In either event, if $k = \mathbb{R}$, either $Z(A) \cap A_0 = \mathbb{R}$ and A is central in the sense of [17], or $Z(A) \cap A_0 = \mathbb{C}$ and A is a simple central graded \mathbb{C} -algebra. If $k = \mathbb{C}$, A is necessarily central.

In [17] Wall has classified the central simple k-algebras; a list of their isomorphism classes is given below. Note that if u is an element of an algebra A such that $u^2 = \pm 1$, we write $Z(u) = \{a \in A \mid a.u = u.a\}$ and $Z^*(u) = \{a \in A \mid a.u = -u.a\}$; **H** denotes the quaternion division **R**-algebra and i, i, j, k is its usual basis; $i \mapsto i$ and $i \mapsto i$ will specify an embedding $C \to H$; I_n will denote the $n \times n$ unit matrix.

Simple central graded **R**-algebras are classified by their type (an element of \mathbf{Z}_8)

and their size (either a positive integer n, or an unordered pair of positive integers (p, q)). The eight types are as follows:

- [I; n] $A = \mathbf{M}_n(\mathbf{C}); A_0 = \mathbf{M}_n(\mathbf{R}); A_1 = i.\mathbf{M}_n(\mathbf{R}).$
- [2; n] $A = \mathbf{M}_n(\mathbf{H}); A_0 = \mathbf{M}_n(\mathbf{C}) = Z(u); A_1 = Z^*(u); u = i.I_n.$
- [3; n] $A = \mathbf{M}_n(\mathbf{H}) \oplus \mathbf{M}_n(\mathbf{H}); A_0 = \mathbf{M}_n(\mathbf{H}); A_1 = u.\mathbf{M}_n(\mathbf{H}).$ (Here $u \in Z(A) \cap A_1$ is such that $u^2 = 1.$)
- [4; p, q] $A = \mathbf{M}_{p+q}(\mathbf{H})$; $A_0 = Z(u)$; $A_1 = Z^*(u)$. (Here u is the diagonal matrix whose first p diagonal entries are 1 and whose last q diagonal entries are -1). Let [4; n] = [4; n, n]. Let $[4; n, 0] = \mathbf{M}_n(\mathbf{H})$.
- [5; n] $A = \mathbf{M}_{2n}(\mathbf{C}); A_0 = \mathbf{M}_n(\mathbf{H}); A_1 = u.\mathbf{M}_n(\mathbf{H}).$ (The embedding $A_0 \to A$ is specified thus: for each $M \in \mathbf{M}_n(\mathbf{R}) \subset \mathbf{M}_n(\mathbf{H}):$ $M \mapsto \begin{pmatrix} M & o \\ o & M \end{pmatrix}; \quad i.M \mapsto \begin{pmatrix} iM & o \\ o & -iM \end{pmatrix};$ $j.M \mapsto \begin{pmatrix} o & M \\ -M & o \end{pmatrix}; \quad k.M \mapsto \begin{pmatrix} o & iM \\ iM & o \end{pmatrix}$
- [6; n] $A = \mathbf{M}_{2n}(\mathbf{R})$; $A_0 = Z(u)$; $A_1 = Z^*(u)$. (Here u is the matrix $\begin{pmatrix} 0 & I \\ I & 0 \end{pmatrix}$ where $I = I_n$.)

 $u=i.I_{2n}$.)

- [7; n] $A = \mathbf{M}_n(\mathbf{R}) \oplus \mathbf{M}_n(\mathbf{R}); A_0 = \mathbf{M}_n(\mathbf{R}); A_1 = u.\mathbf{M}_n(\mathbf{R}).$ (Here $u \in \mathbf{Z}(\mathbf{A}) \cap \mathbf{A}_1$ is such that $u^2 = 1.$)
- [8; p, q] $A = \mathbf{M}_{p+q}(\mathbf{R})$; $A_0 = Z(u)$; $A_1 = Z^*(u)$. (Here u is the diagonal matrix whose first p diagonal entries are 1 and whose last q diagonal entries are -1). Let [8; n] = [8; n, n]. Let $[8; n, o] = \mathbf{M}_n(\mathbf{R})$.

Simple central graded **C**-algebras are classified by their type (an element of \mathbb{Z}_2) and their size (either a positive integer n, or an unordered pair of positive integers (p, q)). The two types are as follows:

- (1; n) $A = \mathbf{M}_n(\mathbf{C}) \oplus \mathbf{M}_n(\mathbf{C}); A_0 = \mathbf{M}_n(\mathbf{C}); A_1 = u.\mathbf{M}_n(\mathbf{C}).$ (Here $u \in \mathbf{Z}(\mathbf{A}) \cap \mathbf{A}_1$ is such that $u^2 = 1.$)
- (2; p, q) $A = \mathbf{M}_{p+q}(\mathbf{C})$; $A_0 = Z(u)$; $A_1 = Z^*(u)$. (Here u is the diagonal matrix whose first p diagonal entries are 1 and whose last q diagonal entries are -1). Let $(2; n, 0) = \mathbf{M}_n(\mathbf{C})$.

If A and B are two graded k-algebras, their graded tensor product $C = A \widehat{\otimes} B$ has underlying graded vector space $A \otimes_k B$ and has its product subject to the rule:

$$(a \widehat{\otimes} b_i) \cdot (a_i \widehat{\otimes} b) = (-1)^{ij} (a \cdot a_i) \widehat{\otimes} (b_i \cdot b)$$
 for $a_i \in A_i$ and $b_i \in B_i$.

For example, $[t; n] \hat{\otimes} [t'; n'] = [t+t'; a(t, t').n.n']$, where a(t, t') is 1, 2, 4 or 8. The following lemma is Theorem 2 of [17]:

Lemma 2. — The graded tensor product of two simple central graded k-algebras is simple and central.

It may be verified that the type of such a tensor product is the sum of the types of the factors. Both the lemma and this additivity property are valid also for simple central algebras A with $A_1 = 0$ provided that $\mathbf{M}_n(\mathbf{H})$ is assigned type $0 \in \mathbf{Z}_8$, $\mathbf{M}_n(\mathbf{R})$ is assigned type $0 \in \mathbf{Z}_8$ and $\mathbf{M}_n(\mathbf{C})$ is assigned type $0 \in \mathbf{Z}_9$.

Let $V = \mathbf{R}^{p+q}$ equipped with the quadratic form:

$$Q(x_1, \ldots, x_{p+q}) = -x_1^2 - \ldots -x_p^2 + x_{p+1}^2 + \ldots + x_{p+q}^2$$

The Clifford algebra $C(Q) = C^{p,q}$ is defined to be the quotient of the tensor algebra T(V) by the ideal generated by all elements of the form $x \otimes x - Q(x)$. It is naturally \mathbb{Z}_2 -graded. It has dimension 2^{p+q} ; $C^{p,q} \otimes C^{r,s} = C^{p+r,q+s}$. See [9] for more details. As $C^{1,0} = \mathbb{C}$ and $C^{0,1} = \mathbb{R} \oplus \mathbb{R}$, $C^{p,q}$ is a simple central graded \mathbb{R} -algebra of type p-q. Complex Clifford algebras can also be constructed.

2. Bundles of simple central R-algebras

Let X be a paracompact connected space. Let A be a graded **R**-algebra. Let Aut(A) be the Lie group of **R**-automorphisms of A. A bundle of A's on X is a fibre bundle with base X, fibre A and group Aut(A). The isomorphism classes of these bundles form the set $H^1(X, \underline{Aut}(A))$, where the underline denotes "sheaf of continuous functions". If A is one of the algebras mentioned explicitly in the last section, it is possible to find a compact closed subgroup $Aut_0(A)$ of Aut(A) such that the induced map $H^1(X, \underline{Aut}_0(A)) \to H^1(X, \underline{Aut}(A))$ is bijective for all X. (This follows from the theory of p. 51 of [8] and some explicit checking; the details will not be needed.)

Consider first bundles of $\mathbf{M}_n(\mathbf{R})$'s and $\mathbf{M}_n(\mathbf{H})$'s over X (for all n). The automorphism groups are $\mathbf{PGL}_n(\mathbf{R})$ and $\mathbf{GL}_n(\mathbf{H})/\mathbf{R}^*$ respectively (by the Skolem-Noether theorem; see p. 66 of [2]). The exact sequence:

$$I \rightarrow \mathbb{R}^* \rightarrow GL_n(\mathbb{R}) \rightarrow PGL_n(\mathbb{R}) \rightarrow I$$

defines a coboundary map $w_2: H^1(X, \underline{\mathbf{PGL}}_n(\mathbf{R})) \to H^2(X, \underline{\mathbf{R}}^*) = H^2(X, \mathbf{Z}_2); w_2$ is similarly defined in the quaternionic case. If \mathscr{A} and \mathscr{B} are two such bundles, so is $\mathscr{A} \otimes \mathscr{B}$, and an argument similar to the proof of Lemma 4 below shows that

 $w_2(\mathscr{A} \otimes \mathscr{B}) = w_2(\mathscr{A}) + w_2(\mathscr{B})$. A bundle \mathscr{A} of $\mathbf{M}_n(\mathbf{R})$'s is said to be negligible if it is of the form END(E) for some real vector bundle E or equivalently if $w_2(\mathscr{A}) = 0$.

The isomorphism classes of such bundles form a commutative monoid under \otimes ; the classes of negligible bundles form a submonoid. The *orthogonal Brauer group* of X, BrO(X), is defined to be the quotient. There is an injective homomorphism, natural in the obvious sense, $\Phi: \operatorname{BrO}(X) \to \mathbf{Z}_2 \oplus \operatorname{H}^2(X, \mathbf{Z}_2)$. (This shows that BrO(X) is in fact a group. Φ is defined as the product of w_2 with the map which assigns $o \in \mathbf{Z}_2$ to bundles of $\mathbf{M}_n(\mathbf{R})$'s and $1 \in \mathbf{Z}_2$ to bundles of $\mathbf{M}_n(\mathbf{R})$'s.)

This remains valid if X is paracompact and has finitely many components provided that \mathbf{Z}_2 is replaced by $H^0(X, \mathbf{Z}_2)$ where appropriate; analogous situations later will not be commented on. The following theorem will be proved in § 4:

Theorem 3. — Let X be a finite CW-complex. Then:

$$\Phi: BrO(X) \to H^0(X, \mathbf{Z}_2) \oplus H^2(X, \mathbf{Z}_2)$$

is an isomorphism.

The automorphism group of $A=[8; n]=\mathbf{M}_{2n}(\mathbf{R})$ is that subgroup of

$$\operatorname{Aut}(\mathbf{M}_{2n}(\mathbf{R})) = \mathbf{GL}_{2n}(\mathbf{R})/\mathbf{R}^*$$

which leaves invariant the subspaces A_0 and A_1 . Call it E_n . It may be verified that $E_n = E_n'/\mathbb{R}^*$, where $E_n' = F_n \cup F_n' \subset \mathbf{GL}_{2n}(\mathbb{R})$, and where $F_n = \left\{ \begin{pmatrix} a & o \\ o & b \end{pmatrix} \middle| a, b \in \mathbf{GL}_n(\mathbb{R}) \right\}$, and $F_n' = \left\{ \begin{pmatrix} o & a \\ b & o \end{pmatrix} \middle| a, b \in \mathbf{GL}_n(\mathbb{R}) \right\}$. Finally, G_n is defined by the exactness and commutativity of the diagram:

Hence, if $\mathscr A$ is a bundle of [8; n]'s on X, this diagram defines its *characteristic classes* $w_1(\mathscr A) \in H^1(X, \mathbb Z_2)$ and $w_2(\mathscr A) \in H^2(X, \mathbb R^*) = H^2(X, \mathbb Z_2)$.

A bundle \mathscr{A} of [8; n]'s on X is said to be negligible if

$$\mathcal{A}_0 = HOM(V, V) \oplus HOM(W, W)$$
 and $\mathcal{A}_1 = HOM(V, W) \oplus HOM(W, V)$

for some real vector bundles V and W. The exact cohomology sequences obtained from the diagram show that \mathscr{A} is negligible if and only if both $w_1(\mathscr{A}) = 0$ and $w_2(\mathscr{A}) = 0$.

Let HO(X) be the set $H^1(X, \mathbb{Z}_2) \times H^2(X, \mathbb{Z}_2)$. The rule:

$$(a, b) \cdot (a', b') = (a + a', b + b' + a \cdot a')$$

gives it the structure of a 4-torsion abelian group; it is an extension of H^1 by H^2 . Then, for \mathscr{A} as above, set $w(\mathscr{A}) = (w_1(\mathscr{A}), w_2(\mathscr{A}))$.

Lemma 4. — If \mathscr{A} and \mathscr{B} are bundles of [8; n]'s and [8; n']'s respectively on X, then $w(\mathscr{A} \hat{\otimes} \mathscr{B}) = w(\mathscr{A}) \cdot w(\mathscr{B})$.

Proof. — The maps $E'_n \to \mathbb{Z}_2$ and $E'_{n'} \to \mathbb{Z}_2$ will both be denoted by $a \mapsto \overline{a}$. Choose an open cover $\mathfrak{U} = \{U_i\}$ of X such that the restrictions of \mathscr{A} and \mathscr{B} to each U_i are product bundles. Set $U_{ij} = U_i \cap U_j$ and $U_{ijk} = U_i \cap U_j \cap U_k$. It is convenient to use the same symbol for a function as for its restriction to a smaller domain of definition. Hence there exist functions $\alpha_{ij}: U_{ij} \to E_n$ such that: I) $\alpha_{ii} = I$; 2) $\alpha_{ij}.\alpha_{ji} = I$; and 3) $\alpha_{ij}.\alpha_{jk}.\alpha_{ki} = I$ on U_{ijk} . These functions determine \mathscr{A} up to isomorphism in the usual way. Now choose functions $a_{ij}: U_{ij} \to E'_n$ such that: 4) $a_{ii} = I$; 5) $a_{ij}.a_{ji} = I$; and 6) $a_{ij} \mapsto \alpha_{ij}$ under the morphism $E'_n \to E_n$. Then $a_{ij}.a_{jk}.a_{ki} = A_{ijk}: U_{ijk} \to \mathbb{R}^*$ and the set $\{A_{ijk}\}$ forms a Čech 2-cocycle. Note that $w_1(\mathscr{A})$ is specified by the Čech 1-cocycle $\{\bar{a}_{ij}\}$ and that $w_2(\mathscr{A})$ is specified by the Čech 2-cocycle $\{A_{ijk}\}$. Let b_{ij} and b_{ijk} be the corresponding objects for \mathscr{B} . If $\mathscr{C} = \mathscr{A} \otimes \mathscr{B}$ has corresponding objects c_{ij} and C_{ijk} , $c_{ij} = (a_{ij} \otimes 1). (I \otimes b_{ij})$. Hence $\bar{c}_{ij} = \bar{a}_{ij} + \bar{b}_{ij}$, which shows that $w_1(\mathscr{C}) = w_1(\mathscr{A}) + w_1(\mathscr{B})$. Further:

$$\begin{aligned} \mathbf{C}_{ijk} &= (a_{ij} \widehat{\otimes} \mathbf{1}) \cdot (\mathbf{1} \widehat{\otimes} b_{ij}) \cdot (a_{jk} \widehat{\otimes} \mathbf{1}) \cdot (\mathbf{1} \widehat{\otimes} b_{jk}) \cdot (a_{ki} \widehat{\otimes} \mathbf{1}) \cdot (\mathbf{1} \widehat{\otimes} b_{ki}) \\ &= (\mathbf{A}_{ijk} \widehat{\otimes} \mathbf{1}) \cdot (\mathbf{1} \widehat{\otimes} \mathbf{B}_{ijk}) \cdot (\overline{b}_{ij} \cdot \overline{a}_{jk} + \overline{b}_{jk} \cdot \overline{a}_{ki} + \overline{b}_{ij} \cdot \overline{a}_{ki}), \end{aligned}$$

where the field \mathbf{Z}_2 is considered as a subgroup of \mathbf{R}^* . The result that:

$$w_2(\mathscr{C}) = w_2(\mathscr{A}) + w_2(\mathscr{B}) + w_1(\mathscr{A}) \cdot w_1(\mathscr{B})$$

follows from the fact that the third bracketed term represents the cup product.

If \mathscr{A} is a bundle of [t; n]'s on X, and \mathscr{B} is a product bundle of [8-t; n']'s on X, the above lemma shows that $w(\mathscr{A} \widehat{\otimes} \mathscr{B})$ is independent of n'. This is defined to be $w(\mathscr{A}) = (w_1(\mathscr{A}), w_2(\mathscr{A}))$. Likewise, if \mathscr{A} is a bundle of [4; p, q]'s or [8; p, q]'s on X, $w(\mathscr{A})$ is defined; in this case $w_1(\mathscr{A}) = 0$ if $p \neq q$. Likewise, if \mathscr{A} is a bundle of $\mathbf{M}_n(\mathbf{H})$'s or $\mathbf{M}_n(\mathbf{R})$'s on X, $w(\mathscr{A})$ is defined to be $(0, w_2(\mathscr{A}))$. Now Lemma 4 implies:

Lemma 5. — If $\mathscr A$ and $\mathscr B$ are bundles of simple central graded $\mathbf R$ -algebras on the paracompact space X, $w(\mathscr A \hat{\otimes} \mathscr B) = w(\mathscr A) \cdot w(\mathscr B)$.

The set of isomorphism classes of such graded bundles is a commutative monoid under $\widehat{\otimes}$; the set of classes of negligible bundles is a submonoid; the *orthogonal graded Brauer group* of X, GBrO(X), is defined to be the quotient. (Note that the same group is obtained by considering only bundles of [t; n]'s for all t, n.) If X is connected, let $\tau: GBrO(X) \rightarrow \mathbb{Z}_8$ be the homomorphism "type"; define Ψ to be $\tau \times w$. Note that Ψ is injective. Let $i: BrO(X) \rightarrow GBrO(X)$ be the obvious injection. Then the following diagram, in which the right hand vertical arrow is the product of the standard injections, commutes:

The definition of Ψ and the commutativity of the diagram immediately extend to the case when X is paracompact and has finitely many components.

Theorem 6. — Let X be a finite CW-complex. Then:

$$\Psi: GBrO(X) \rightarrow H^0(X, \mathbf{Z}_8) \oplus HO(X)$$

is an isomorphism.

Proof. — It is already known that Ψ is injective, and it suffices to assume that X is connected. For $a \in H^1(X, \mathbb{Z}_2)$ and $b \in H^2(X, \mathbb{Z}_2)$ it is required to construct a bundle \mathscr{A} of [8; n]'s on X such that $w(\mathscr{A}) = (a, b)$. By Theorem 3 there exists a bundle \mathscr{B} of $\mathbf{M}_n(\mathbf{R})$'s such that $v(\mathscr{B}) = b$; the diagram shows that $w(\mathscr{B} \otimes [8; 1]) = (0, b)$, where [8; 1] is the product bundle of [8; 1]'s. Let V be a real line bundle on X such that $w_1(V) = a$ and let W be the Whitney sum of V with $X \times \mathbf{R}^7$. Then Lemma 7 below shows that w(C(W)) = (a, 0). Now Lemma 4 shows that $w(C(W) \otimes \mathscr{B}) = (a, b)$, proving the theorem.

If V is a real vector bundle on the compact space X, its Clifford bundle C(V) ([9], § 1.1) is a bundle of central simple graded **R**-algebras. This construction defines a homomorphism $c: KO(X) \to GBrO(X)$; c need not be surjective. In fact, if c is surjective, the classical fibration

$$B \operatorname{Spin}(n) \to BSO(n) \to K(\mathbf{Z}_2, 2)$$

has a cross-section for every n. This is clearly impossible (use Steenrod squares for instance).

Lemma 7. — Let V be a real vector bundle on the paracompact space X, provided by a negative definite quadratic form. Then $w_i(V) = w_i(C(V))$ for i = 1, 2.

Proof. — Clearly either $w_1(C(V)) = 0$ for all X and V or $w_1(C(V)) = w_1(V)$. To show that the first alternative is false, consider the case when $X = \mathbf{P}_1(\mathbf{R})$ and V is the

Hopf line bundle. Then $C(V) = I \oplus V$ and $\mathscr{A} = C(V) \widehat{\otimes} [7; I]$ is such that $\mathscr{A}_0 = I \oplus V$ and $w_2(\mathscr{A}) = 0$. (An easy direct check shows that $w_2(C(L)) = w_2(C(L) \widehat{\otimes} [7; I]) = 0$ for any line bundle L on any X.) As V is not stably trivial, \mathscr{A}_0 cannot be isomorphic to $HOM(W, W) \oplus HOM(W', W')$ for any vector bundles W, W'. Hence $w_1(C(V)) \neq 0$. Similarly, there exist universal constants $a, b \in \mathbb{Z}_2$ such that $w_2(C(V)) = a. w_1(V)^2 + b. w_2(V)$. Consider the case when $X = K(\mathbb{Z}_2 \times \mathbb{Z}_2, I)$ (or its 3-skeleton); let L_1 and L_2 be line bundles on X such that $\pi_1 = w_1(L_1)$ and $\pi_2 = w_1(L_2)$ generate $H^1(X, \mathbb{Z}_2)$. Then, if $V = L_1 \oplus L_2$,

$$\begin{split} a.\,(\pi_1+\pi_2)^2 + b\,.\,\pi_1.\,\pi_2 &= w_2(\mathbf{C}(\mathbf{V})) = w_2(\mathbf{C}(\mathbf{L}_1) \otimes \mathbf{C}(\mathbf{L}_2)) \\ &= w_2(\mathbf{C}(\mathbf{L}_1)) + w_2(\mathbf{C}(\mathbf{L}_2)) + w_1(\mathbf{C}(\mathbf{L}_1))\,.\,w_1(\mathbf{C}(\mathbf{L}_2)) = \pi_1.\,\pi_2. \end{split}$$

Hence a = 0 and b = 1, as required.

Remark. — We will not deal with bundles of non-central simple graded **R**-algebras, i.e. with bundles of (1; n)'s or (2; p, q)'s considered as **R**-algebras. It is possible to define equivalence classes of these and obtain a "graded Brauer set" on which the graded orthogonal Brauer group acts. This set has no group structure.

3. Bundles of simple central C-algebras

Again, X will denote a paracompact connected space. If A is a graded C-algebra, a bundle of A's on X is defined analogously to the real case.

Consider first bundles of $\mathbf{M}_n(\mathbf{C})$'s on X (for all n); $\mathbf{M}_n(\mathbf{C})$ has **C**-automorphism group $\mathbf{PGL}_n(\mathbf{C})$. The lower exact row of the commutative diagram:

defines a coboundary map $v: H^1(X, \underline{\mathbf{PGL}}_n(\mathbf{C})) \to H^2(X, \underline{\mathbf{C}}^*) = H^3(X, \mathbf{Z})$. The upper row shows that the image of v is n-torsion. Once again it may be proved that $v(\mathscr{A} \otimes \mathscr{B}) = v(\mathscr{A}) + v(\mathscr{B})$. A bundle \mathscr{A} of $\mathbf{M}_n(\mathbf{C})$'s is said to be negligible if it is isomorphic to END(E) for some complex vector bundle E or equivalently if $v(\mathscr{A}) = 0$.

The isomorphism classes of such bundles form a commutative monoid under \otimes ; the classes of negligible bundles form a submonoid; the *unitary Brauer group* of X, BrU(X), is defined to be the quotient and is indeed a group. The following theorem will be proved in § 4:

Theorem 8 (Serre). — Let X be a finite CW-complex. Then $v : BrU(X) \to H^3(X, \mathbf{Z})$ is injective. Its image is the torsion subgroup.

The automorphism group of A = (2; n) is that subgroup of

$$\operatorname{Aut}(\mathbf{M}_{2n}(\mathbf{C})) = \mathbf{GL}_{2n}(\mathbf{C})/\mathbf{C}^*$$

which leaves invariant the subspaces A_0 and A_1 . Call it E_n (no confusion will arise with E_n of § 2) and construct E'_n , F_n and G_n as before. Then a diagram like the first diagram of § 2 but with \mathbf{C}^* replacing \mathbf{R}^* may be used to define maps $u_1: H^1(X, \underline{\mathbf{PGL}}_n(\mathbf{C})) \to H^1(X, \mathbf{Z}_2)$ and $u_2: H^1(X, \underline{\mathbf{PGL}}_n(\mathbf{C})) \to H^2(X, \underline{\mathbf{C}}^*) = H^3(X, \mathbf{Z})$. Hence if $\mathscr A$ is a bundle of (2; n)'s on X, its characteristic classes $u_1(\mathscr A) \in H^1(X, \mathbf{Z}_2)$ and $u_2(\mathscr A) \in H^3(X, \mathbf{Z})$ are defined. As $u_2(\mathscr A) = v(\mathscr A^*)$, where $\mathscr A^*$ is the bundle of $\mathbf{M}_{2n}(\mathbf{C})$'s underlying $\mathscr A$, $2n.u_2(\mathscr A) = 0$.

A bundle \mathcal{A} of (2; n)'s on X is said to be negligible if

$$\mathcal{A}_0 = HOM(V, V) \oplus HOM(W, W)$$
 and $\mathcal{A}_1 = HOM(V, W) \oplus HOM(W, V)$

for some complex vector bundles V and W. Once again, \mathscr{A} is negligible if and only if both $u_1(\mathscr{A}) = 0$ and $u_2(\mathscr{A}) = 0$. Let HU(X) be the set $H^1(X, \mathbf{Z}_2) \times Tors(H^3(X, \mathbf{Z}))$. If $\beta: H^2(X, \mathbf{Z}_2) \to H^3(X, \mathbf{Z})$ is the Bockstein, the rule $(a, b) \cdot (a', b') = (a+a', b+b'+\beta(a.a'))$ gives it the structure of a torsion abelian group; it is an extension of H^1 by $Tors(H^3)$. Then, for $\mathscr A$ as above, set $u(\mathscr A) = (u_1(\mathscr A), u_2(\mathscr A))$. The following lemma is proved in the same way as Lemma 4:

Lemma 9. — If $\mathscr A$ and $\mathscr B$ are bundles of (2; n)'s and (2; n')'s respectively on X, then $u(\mathscr A \otimes \mathscr B) = u(\mathscr A) \cdot u(\mathscr B)$.

As before, this lemma enables us to define $u(\mathscr{A})$ when \mathscr{A} is a bundle of (1; n)'s, (2; p, q)'s or $\mathbf{M}_n(\mathbf{C})$'s. Now Lemma 9 implies:

Lemma 10. — If \mathscr{A} and \mathscr{B} are bundles of simple central graded \mathbf{C} -algebras on the compact space X, $u(\mathscr{A} \hat{\otimes} \mathscr{B}) = u(\mathscr{A}) \cdot u(\mathscr{B})$.

As before, the unitary graded Brauer group of X, GBrU(X) may be defined. If X is connected, a homomorphism $\Psi: GBrU(X) \to \mathbb{Z}_2 \oplus HU(X)$ and an injection $i: BrU(X) \to GBrU(X)$ may be defined. Once again, the following diagram commutes:

Theorem 11. — Let X be a finite CW-complex. Then:

$$\Psi: \operatorname{GBrU}(X) \to \operatorname{H}^0(X, \mathbf{Z}_2) \oplus \operatorname{HU}(X)$$

is an isomorphism.

Proof. — The proof is analogous to that of Theorem 6 and so will be omitted.

4. The existence theorems

This section is devoted to the proofs of Theorems 3 and 8. Throughout it X will denote a finite connected CW-complex. Note that the injectivity of Φ and v has already been proved.

Lemma 12. — If V is a k-vector bundle on X, there exists a vector bundle W on X such that $V \otimes W$ is trivial.

Proof. — Let X have dimension d and V have rank r. Then $([V]-r) \in K(X)$ is nilpotent (see p. 127 of [3]). Let N be an integer such that $([V]-r)^N = 0$. If

$$x = r^{N-1} - r^{N-2} \cdot ([V] - r) + \dots + (-1)^{N-1} \cdot ([V] - r)^{N-1},$$

 $M.x.[V] = M.r^{N} \in K(X)$, where the integer M is chosen such that M.x has rank $\rho = M.r^{N-1} > d$. So there exists a vector bundle W' such that [W'] - n = M.x for some positive integer n. Now the injection $\mathbf{O}(\rho) \to \mathbf{O}(\rho + n)$ induces isomorphisms $\pi_i(\mathbf{O}(\rho)) \to \pi_i(\mathbf{O}(\rho + n))$ for $i \leq d$, and hence induces a bijection $[X, B_{\mathbf{O}(\rho)}] \to [X, B_{\mathbf{O}(\rho + n)}]$. Hence there exists a vector bundle W such that [W] = M.x. As $[V \otimes W] = M.r^N > d$, $V \otimes W$ is trivial. (If $k = \mathbf{C}$, \mathbf{O} must be replaced by \mathbf{U} in this proof.)

Now, for definiteness, assume that $k=\mathbb{R}$. Let K'PO(X) be the quotient of the commutative monoid of isomorphism classes of \mathbb{R} -vector bundles on X with composition induced by the tensor product by the submonoid consisting of the classes of trivial bundles. By Lemma 12 it is a commutative group. Further, it is divisible. For if m is an integer and with the notation of the above proof, the formal binomial expansion of $r^{N-1}.m^{N-1}.(N-1)!.(1+([V]-r)/r)^{1/m}$ may be used as above to construct a vector bundle V_m such that $V_m^{\otimes m}$ is a multiple of V. Further, it is torsion-free, and hence is a \mathbb{Q} -vector space. For if V is a vector bundle such that $V^{\otimes m}$ is trivial of rank r^m , Lemma 12 shows that there is a vector bundle V such that $V^{\otimes m}$ is trivial of rank $V^{\otimes m}$, $V^{\otimes m}$ is trivial of rank $V^{\otimes m}$. $V^{\otimes m}$ is trivial and $V^{\otimes m}$ is a vector bundle $V^{\otimes m}$. So again, for a suitable positive integer $V^{\otimes m}$, $V^{\otimes m}$, and so $V^{\otimes m}$ has image of in $V^{\otimes m}$.

Let KPO(X) be the quotient of the commutative monoid of isomorphism classes of bundles of $\mathbf{M}_n(\mathbf{R})$'s on X (for all n) with composition induced by the tensor product by the submonoid consisting of the classes of trivial bundles. As the tensor product of such a bundle with its opposed bundle is negligible, Lemma 12 shows that KPO(X) is a group. The endomorphism bundle construction induces a homomorphism $i: K'PO(X) \to KPO(X)$. The characteristic class w_2 defines a homomorphism $w_2: KPO(X) \to H^2(X, \mathbf{Z}_2)$. The sequence:

$$o \to K'PO(X) \xrightarrow{i} KPO(X) \xrightarrow{w_s} H^2(X, \mathbf{Z}_2)$$

is clearly exact. Now the group $\mathbf{PO}_n = \mathbf{O}(n)/\mathbf{Z}_2$ acts on $\mathbf{R}^n \otimes \mathbf{R}^n$ in the obvious way; hence a bundle \mathscr{A} of $\mathbf{M}_n(\mathbf{R})$'s on X induces a vector bundle of rank n^2 ; this construction induces a homomorphism $2j : \mathrm{KPO}(X) \to \mathrm{K'PO}(X)$. As j.i = 1 the sequence splits.

If $X = \mathbf{S}^p$, the *p*-sphere, w_2 is surjective. This statement is trivial unless p = 2. If $\mathscr{A} = C(V) \hat{\otimes} [6; 1]$ (considered as a bundle of $\mathbf{M}_4(\mathbf{R})$'s), where V is the Hopf complex line bundle (considered as a real 2-plane bundle) on $X = \mathbf{S}^2 = \mathbf{P}^1(\mathbf{C})$, Lemma 7 shows that $w_2(\mathscr{A})$ is the non-zero element of $H^2(X, \mathbf{Z}_2)$. Now K'PO(), KPO() and $H^2(, \mathbf{Z}_2)$ are all half exact homotopy functors; a theorem of Brown (see p. 7.1 of [5]) shows that $j \oplus w_2 : KPO(X) \to K'PO(X) \oplus H^2(X, \mathbf{Z}_2)$ is an isomorphism for all X.

It suffices to prove Theorem 3 in the case when X is connected. The surjectivity of w_2 implies the surjectivity of Φ , which therefore is an isomorphism.

Remark. — Brown's theorem and the "Pontryagin character" may now be used to show that $K'PO(X) \approx \prod_{i>0} H^{4i}(X, \mathbf{Q})$. This yields the periodicity of the homotopy of the direct limit **PO** of the groups **PO**_n.

As Theorem 8 is proved in [7] we will omit the modifications needed to make the above argument work in the case $k=\mathbb{C}$.

5. K-Theory with local coefficients

Let \mathscr{A} be a bundle of A's on the compact space X, where A is a graded k-algebra (§ 1). Denote by $\mathscr{E}^{\mathscr{A}}(X)$ the category of graded k-vector bundles which are projective \mathscr{A} -modules in the obvious sense, with morphisms of degree o. $\mathscr{E}^{\mathscr{A}}(X)$ is the category whose objects are those of X but whose morphisms are not necessarily of degree o. Both $\mathscr{E}^{\mathscr{A}}(X)$ and $\mathscr{E}^{\mathscr{A}}(X)$ are "prebanach categories" (see [11]) and the forgetful functor $\varphi: \mathscr{E}^{\mathscr{A}}(X) \to \mathscr{E}^{\mathscr{A}}(X)$ is a Banach functor. The Grothendieck group $K^{\mathscr{A}}(X)$ is the K-group $K(\varphi)$ of the Banach functor φ . For example, if $\mathscr{A} = k$ (the product bundle), $K^{\mathscr{A}}(X)$ is isomorphic to the well-known group K(X). More generally, if $\mathscr{A} = \mathbb{C}^{p,q}$, $K^{\mathscr{A}}(X)$ is the group $K^{p,q}(X) = K^{p-q}(X)$ introduced in [11].

If $\alpha \in GBr(X)$ (which means GBrO(X) if $k = \mathbb{R}$, GBrU(X) if $k = \mathbb{C}$), and if \mathscr{A} is a bundle of central simple graded k-algebras of class α , it will be shown later that $K^{\mathscr{A}}(X)$ depends only on α . It is defined to be $K^{\alpha}(X)$.

If r_x denotes the graded radical of \mathscr{A}_x where $x \in X$, $\mathscr{R} = Ur_x$ is a sub-bundle of graded ideals of \mathscr{A} and \mathscr{A}/\mathscr{R} is a bundle of A/r(A)'s, i.e. of semisimple graded k-algebras. Define a functor $\theta : \mathscr{E}^{\mathscr{A}}(X) \to \mathscr{E}^{\mathscr{A}/\mathscr{R}}(X)$ by the formula $\theta(E) = (\mathscr{A}/\mathscr{R}) \otimes_{\mathscr{A}} E$ for $E \in \mathscr{E}^{\mathscr{A}}(X)$.

Proposition 13. — The functor θ induces an isomorphism $\theta_*: K^{\mathscr{A}}(X) \to K^{\mathscr{A}/\mathscr{R}}(X)$.

Proof. — Following § 2.1 of [9] we give another description of $K^{\mathscr{B}}(X)$ for every \mathscr{B} . Consider triples $(E, \varepsilon_1, \varepsilon_2)$ where E is a \mathscr{B} -module and where ε_1 and ε_2 are gradings of E. This means that ε_1 and ε_2 are two involutions of E (regarded as an ordinary bundle) such that $\varepsilon_i b = b \varepsilon_i$ for $b \in \mathscr{B}_0$ and $\varepsilon_i b = -b \varepsilon_i$ for $b \in \mathscr{B}_1$. Moreover (E, ε_i) is assumed to be a graded projective module over \mathscr{B} . A triple $(E, \varepsilon_1, \varepsilon_2)$ is called elementary if ε_1 is homotopic to ε_2 among the gradings of E. The group $K^{\mathscr{B}}(X)$ is then the quotient of the monoid constructed with such triples by the equivalence relation generated by

the addition of elementary triples (see § 2.1 of [9] for a proof of an analogous statement). The cosuspension $\Sigma \mathscr{B}$ of \mathscr{B} (not the suspension of [13]) is defined to be $\mathbb{C}^{0,1} \widehat{\otimes} \mathscr{B}$. A graded projective module over \mathcal{B} may be thought of as an ordinary projective module over $\Sigma \mathcal{B}$. Hence every element of $K^{\mathscr{B}}(X)$ can be written $(E, \varepsilon_1, \varepsilon_2)$ where $E = (\Sigma \mathscr{B})^n$ for a certain n and where ε_1 is the grading induced by the canonical generator of $C^{0,1}$. In this context, θ_* is simply defined by the formula $\theta_*((\Sigma \mathscr{A})^n, \varepsilon_1, \varepsilon_2) = ((\Sigma (\mathscr{A}/\mathscr{R}))^n, \overline{\varepsilon_1}, \overline{\varepsilon_2}),$ where $\overline{\varepsilon}_i$ is the image of ε . Let $\eta(t)$ be a homotopy between $\eta(0) = \overline{\varepsilon}_1$ and $\eta(1) = \overline{\varepsilon}_2$. The argument of Lemma 1.3 of [14] shows the existence of a continuous family $\zeta(t)$ of gradings of $(\Sigma \mathscr{A})^n$ such that $\zeta(t) = \eta(t)$ and $\zeta(0) = \varepsilon_1$. If we put $\lambda(t) = 1 + t\zeta(1)\varepsilon_2$, $\lambda(t)$ is invertible by Nakayama's lemma. Then the homotopy $\xi(t)$ given by $\xi(t) = \zeta(2t)$ for $0 \le t \le \frac{1}{2}$ and $\xi(t) = (\lambda(2t-1))^{-1}\zeta(1)\lambda(2t-1)$ for $\frac{1}{2} \le t \le 1$ connects ε_1 and ε_2 in the set of gradings of E. Hence θ_{\star} is injective. Now, for every bundle \mathcal{B} of graded algebras, let $F(n, \mathcal{B})$ be the Banach space of endomorphisms $\varepsilon: (\Sigma \mathcal{B})^n \to (\Sigma \mathcal{B})^n$ such that $\varepsilon b = (-1)^i b \varepsilon$ for every $b \in \mathcal{B}_i \subset \Sigma \mathcal{B}$. Let $\operatorname{Grad}(n, \mathcal{B}) \subset F(n, \mathcal{B})$ be the subset of endomorphisms ε such that $\varepsilon^2 = 1$. There are obvious maps $F(n, \mathscr{A}) \to F(n, \mathscr{A}/\mathscr{R})$ and $\operatorname{Grad}(n, \mathscr{A}) \to \operatorname{Grad}(n, \mathscr{A}/\mathscr{R}); \ \varepsilon_1 \text{ is a canonical base point for } \operatorname{Grad}(n, \mathscr{A}) \text{ whilst } \overline{\varepsilon}_1 \text{ is}$ one for $Grad(n, \mathcal{A}/\mathcal{R})$. If $\eta \in F(n, \mathcal{A}/\mathcal{R})$ and if $\gamma = \eta \overline{\varepsilon}_1$, $\gamma b = b\gamma$ for every $b \in \mathcal{A}/\mathcal{R}$. Hence $F(n, \mathcal{A}) \to F(n, \mathcal{A}/\mathcal{R})$ is surjective. Let $((\Sigma(\mathcal{A}/\mathcal{R}))^n, \overline{\varepsilon}_1, \eta)$ be a triple which specifies an element of $K^{\mathscr{A}/\mathscr{R}}(X)$. Now there exists an $\varepsilon \in F(n, \mathscr{A})$ such that $\overline{\varepsilon} = \eta$ and $\varepsilon^2 = 1 + k$, where $k \in \mathbf{M}_n(\mathcal{R})$ is nilpotent. So the square root $\sqrt{(1+k)} = 1 + \frac{1}{2}k - \dots$ exists. Put $\varepsilon_2 = \varepsilon \sqrt{(1+k)}$; then $\theta_*((\Sigma \mathscr{A})^n, \varepsilon_1, \varepsilon_2) = ((\Sigma (\mathscr{A}/\mathscr{R}))^n, \overline{\varepsilon}_1, \eta)$. Hence θ_* is surjective and the proof is complete.

Remark. — In order to calculate $K^{\mathscr{A}}(X)$ it is now sufficient to assume that \mathscr{A} is semisimple. As $K^{\mathscr{A} \times \mathscr{B}}(X)$ is isomorphic to $K^{\mathscr{A}}(X) \oplus K^{\mathscr{B}}(X)$, it is further sufficient to assume that all the simple factors of the fibre of \mathscr{A} are isomorphic. It is false, unfortunately, that all bundles of semisimple graded k-algebras are products of bundles of simple graded k-algebras.

The definition of $K^{\mathscr{A}}(X)$ may be generalized in many directions in the usual way. First of all, we introduced relative groups $K^{\mathscr{A}}(X,Y)$ when Y is a closed subspace of X (consider triples $(E, \varepsilon_1, \varepsilon_2)$ such that $\varepsilon_{1|Y} = \varepsilon_{2|Y}$ as in § 2.1 of [9]); for Y empty we recover the definition of $K^{\mathscr{A}}(X)$. If \mathscr{C} is a Banach category, \mathscr{C} -vector bundles may be considered instead of ordinary vector bundles (cf. [9]). Denote by $K^{\mathscr{A}}(X;\mathscr{C})$ ($K^{\mathscr{A}}(X,Y;\mathscr{C})$ in the relative case) the group so obtained. An interesting example (see below) is the category $\mathscr{C} = \check{\mathscr{H}}$ of [10]. Finally, if G is a compact Lie group acting continuously on X and \mathscr{A} , we may consider "G- \mathscr{A} -vector bundles" (i.e. there is the relation g.(a.e) = (g.a).(g.e) for $g \in G$, $a \in \mathscr{A}_x$, $e \in E_x$, $x \in X$). In this way a group $K^{\mathscr{A}}_{G}(X)$ is obtained. A slight generalisation may be obtained by considering augmented groups as in [15].

 $K^{\mathscr{A}}(X)$ is a homotopy invariant in the following sense. Let $\mathscr{A} \times I$ be a bundle of algebras over $X \times I$, where I is the unit interval. The inclusions $i_0: X \to X \times \{0\} \subset X \times I$ and $i_1: X \to X \times \{1\} \subset X \times I$ are homotopic. If a is an element of $K^{\mathscr{A} \times I}(X \times I)$, $i_0^*(a) = i_1^*(a)$.

6. The Thom isomorphism

By "abus de langage" let us denote by \mathscr{A} , E, ... the inverse images $f^*\mathscr{A}$, f^*E , ... for any map $f: Y \to X$. As in [9], there is a homomorphism:

$$t: K^{\Sigma \mathscr{A}}(X; \mathscr{C}) \to K^{\mathscr{A}}(X \times \mathbf{D}^1, X \times \mathbf{S}^0; \mathscr{C})$$

defined by the formula $t(E, \varepsilon_1, \varepsilon_2) = (E', \varepsilon_1(\theta), \varepsilon_2(\theta))$. Here E' is E regarded as an \mathscr{A} -module and $\varepsilon_i(\theta)$ is the grading of E' defined over the point $\theta \in \mathbf{D}^1 = [0, \pi]$ by $\varepsilon_i(\theta) = \varepsilon \cos \theta + \varepsilon_i \sin \theta$ where $\varepsilon \in \mathbb{C}^{0,1} \subset \mathbb{C}^{0,1} \widehat{\otimes} \mathscr{A}$ is the canonical generator of $\mathbb{C}^{0,1}$.

Theorem 14. — For every Banach category C, t is an isomorphism.

Proof. — The proof is analogous to that of Theorem (2.2.2) of [9].

Remark. — If ΣX denotes the pair $(X \times \mathbf{D}^1, X \times \mathbf{S}^0)$, the theorem takes the striking form $K^{\Sigma \mathscr{A}}(X) \approx K^{\mathscr{A}}(\Sigma X)$. No analogue of this theorem in algebraic K-theory is known. Theorem 14 is, of course, still true for all the generalizations mentioned in § 5. Also, if V is a vector bundle on X with a positive quadratic form Q, the methods of [9] define a homomorphism $t: K^{\mathscr{A} \otimes C(V)}(X; \mathscr{C}) \to K^{\mathscr{A}}(B(V), S(V); \mathscr{C})$.

Theorem 15. — The generalized homomorphism t is an isomorphism.

Proof. — This may be proved as in [9] by using Mayer-Vietoris arguments (cf. [18]).

To show that $K^{\mathscr{A}}(X)$, where \mathscr{A} is a bundle of simple central graded k-algebras on X, depends only on the class of \mathscr{A} in GBr(X), it is convenient to interpret $K^{\mathscr{A}}(X)$ as the graded Grothendieck group of the category $\mathscr{E}^{\mathscr{A}}(X)$ (cf. § 2.1 of [9]).

Theorem $\mathbf{t6.}$ — Let $E = E_0 \oplus E_1$ be a \mathbf{Z}_2 -graded k-vector bundle on X with graded endomorphism bundle END(E). If $\mathscr A$ is a bundle of graded k-algebras on X, the additive functor $\phi: \mathscr{E}^{\mathscr A}(X) \to \mathscr{E}^{\mathscr A} \widehat{\otimes} {}^{END(E)}(X)$ defined by $\phi(F) = F \widehat{\otimes} E$ is an equivalence of graded Banach categories. In particular, ϕ induces an isomorphism $\phi_*: K^{\mathscr A}(X) \to K^{\mathscr A} \widehat{\otimes} {}^{END(E)}(X)$.

Proof. — As the question is local there is no loss of generality in assuming that $E_0 = X \times k^p$ and $E_1 = X \times k^q$. So $\mathscr{A} \widehat{\otimes} END(E) = \mathbf{M}_{p+q}(\mathscr{A})$ with a certain grading. If μ' is a homomorphism from $\varphi(F)$ to $\varphi(F')$, linear algebra shows that μ' is of the form $\varphi(\mu)$. Hence φ is fully faithful. It remains to prove that φ is essentially surjective; it suffices to prove that $\mathscr{A} \otimes END(E)$ is isomorphic to some $\varphi(F)$. For $F = \mathscr{A} \otimes E$, this is satisfied.

Definition 17. — For $\alpha \in GBr(X)$, $K^{\alpha}(X)$ is defined (up to canonical isomorphism) as the group $K^{\mathscr{A}}(X)$ for any \mathscr{A} with class α . (This is justified by Theorem 16.)

Let $\varphi: \mathscr{C} \to \mathscr{C}'$ be a quasi-surjective Serre functor (in the sense of [9]) between two Banach categories. As in [9] and [14] we can define a connecting homomorphism $\partial: K^{\mathscr{A}}(X \times \mathbf{D}^1, X \times \mathbf{S}^0; \mathscr{C}') \to K^{\mathscr{A}}(X; \varphi)$. This yields an exact sequence:

$$\begin{split} K^{\mathscr{A}}(X\times \boldsymbol{D^{1}},\, X\times \boldsymbol{S^{0}};\,\mathscr{C}) \rightarrow K^{\mathscr{A}}(X\times \boldsymbol{D^{1}},\, X\times \boldsymbol{S^{0}};\,\mathscr{C}') \rightarrow \\ \rightarrow K^{\mathscr{A}}(X;\, \phi) \rightarrow K^{\mathscr{A}}(X;\,\mathscr{C}) \rightarrow K^{\mathscr{A}}(X;\,\mathscr{C}'). \end{split}$$

The homomorphism t of Theorem 14 may be used to obtain the theorem:

Theorem 18. — There exists an exact sequence:

$$K^{\Sigma\mathscr{A}}(X;\mathscr{C})\to K^{\Sigma\mathscr{A}}(X;\mathscr{C}')\to K^{\mathscr{A}}(X;\phi)\to K^{\mathscr{A}}(X;\mathscr{C})\to K^{\mathscr{A}}(X;\mathscr{C}').$$

The following theorem is proved in the same way:

Theorem 19. — If $\mathscr A$ is a bundle of graded k-algebras on the compact space X and Y is a closed subspace of X, there exists an exact sequence:

$$K^{\Sigma\mathscr{A}}(X;\mathscr{C})\to K^{\Sigma\mathscr{A}}(Y;\mathscr{C})\to K^{\mathscr{A}}(X,Y;\mathscr{C})\to K^{\mathscr{A}}(X;\mathscr{C})\to K^{\mathscr{A}}(Y;\mathscr{C}).$$

7. The multiplicative structure

As in [10], let \mathscr{H} be the Banach category of k-Hilbert spaces and let $\check{\mathscr{H}}$ be the Banach category with the same objects as \mathscr{H} but with $\check{\mathscr{H}}(H_1, H_2) = \mathscr{H}(H_1, H_2)/\mathscr{K}(H_1, H_2)$ where $\mathscr{K}(H_1, H_2)$ is the space of all completely continuous maps $H_1 \to H_2$; $\varphi : \mathscr{H} \to \check{\mathscr{H}}$ will denote the canonical functor and \mathscr{E} is the Banach category of finite dimensional k-vector spaces; X again denotes a compact space.

Let $\kappa: K^{\mathscr{A}}(X; \mathscr{E}) \to K^{\mathscr{A}}(X; \varphi)$ be defined (as in [10]) by $\kappa(E, \varepsilon_1, \varepsilon_2) = (E, \varepsilon_1, \varepsilon_2)$. Then the following is proved in the same way as Proposition 5 of [10]:

Proposition 20. — K is an isomorphism. Also

$$\kappa^{-1}.\ \partial: \quad K^{\Sigma\mathscr{A}}(X\,;\,\check{\mathscr{H}}) \to K^{\mathscr{A}}(X\,;\,\mathscr{E}) \approx K^{\mathscr{A}}(X)$$

is an isomorphism.

More generally, if we have an exact sequence of prebanach categories (cf. [13]) $0 \rightarrow \mathscr{C}' \rightarrow \mathscr{C} \rightarrow \mathscr{C}'' \rightarrow 0$, there is an exact sequence:

$$K^{\Sigma\mathscr{A}}(X;\mathscr{C}') \to K^{\Sigma\mathscr{A}}(X;\mathscr{C}) \to K^{\Sigma\mathscr{A}}(X;\mathscr{C}'') \to K^{\mathscr{A}}(X;\mathscr{C}') \to K^{\mathscr{A}}(X;\mathscr{C}) \to \dots$$

In particular, if & is flabby ("flasque", see Definition 3 of [13]),

$$K^{\Sigma \mathcal{A}}(X; \mathcal{C}'') \approx K^{\mathcal{A}}(X; \mathcal{C}').$$

Hence there is an isomorphism $K^{\mathscr{A}}(X;\mathscr{C}) \approx K^{\Sigma\mathscr{A}}(X;S\mathscr{C})$ for every Banach category \mathscr{C} . As in [10] we can define a group $\overline{K}^{\mathscr{A}}(X)$ by considering self-adjoint Fredholm

operators. More precisely, consider couples (E, D), where E is a Hilbert bundle on X which is a graded \mathscr{A} -module (i.e. a $\Sigma\mathscr{A}$ -module) and where $D: E \to E$ is a quasi-graduation of E. This means that D is a continuous family of self-adjoint Fredholm operators commuting with elements of $(\Sigma\mathscr{A})_0$ and anti-commuting with elements of $(\Sigma\mathscr{A})_1$. Then $\overline{K}^{\mathscr{A}}(X)$ is the Grothendieck group associated to the commutative monoid of homotopy classes of such couples. Using spectral theory as in [10], we can define an isomorphism $u: \overline{K}^{\mathscr{A}}(X) \to K^{\Sigma\mathscr{A}}(X; \mathscr{H})$. Eventually the following analogue of Theorem 6 of [10] is obtained:

Theorem 21.
$$-j = \kappa^{-1} \cdot \partial \cdot u : \overline{K}^{\mathscr{A}}(X) \to K^{\mathscr{A}}(X)$$
 is an isomorphism.

The methods of [12] give an explicit inverse to this isomorphism. This fact is not needed here.

The groups $\overline{K}^{\mathscr{A}}(X)$ enable a cup product to be defined:

$$K^{\mathscr{A}}(X) \otimes K^{\mathscr{A}'}(X') \to K^{\mathscr{A} \widehat{\otimes} \mathscr{A}'}(X \times X').$$

The formula $(E,D) \cup (E',D') = (E \hat{\otimes} E',D \hat{\otimes} \mathbf{1} + \mathbf{1} \hat{\otimes} D')$ is used, where $\hat{\otimes}$ means the graded completed tensor product. The multiplication is associative and distributive with respect to the addition. It is commutative in the following sense: define $T: \mathscr{A} \hat{\otimes} \mathscr{A}' \to \mathscr{A}' \hat{\otimes} \mathscr{A}$, covering the canonical isomorphism $X \times X' \to X' \times X$, by $T(x \otimes x') = (-1)^{\delta(x)\delta(x')}.x' \otimes x$, where δ denotes the degree. Define $T': E \hat{\otimes} E' \to E' \hat{\otimes} E$ similarly. Then the pair (T',T) define an isomorphism.

In particular, if X = X' and \mathscr{A} and \mathscr{A}' are bundles of central simple graded k-algebras, this product composed with the restriction to the diagonal defines a product $K^{\alpha}(X) \otimes K^{\alpha'}(X) \to K^{\alpha\alpha'}(X)$, where α , α' are respectively the images of \mathscr{A} , \mathscr{A}' in GBr(X).

Remark. — In the case when \mathscr{A} and \mathscr{A}' are Clifford algebras of vector bundles, the cup product is usually defined by using the Thom isomorphism (Theorem 15). The methods of [10] and [14] show that all reasonable compatibilities between the two definitions hold.

8. Adams operations

Let \mathscr{A} be a bundle of graded k-algebras on the compact space X. An action of the symmetric group \mathfrak{S}_n on $\mathscr{A}^{\widehat{\otimes} n}$ is defined by the formula (in which the elements a_i are supposed to be homogeneous):

$$\sigma. (a_1 \widehat{\otimes} a_2 \widehat{\otimes} \dots \widehat{\otimes} a_n) = (-1)^{\mathbb{N}}. a_{\sigma(1)} \widehat{\otimes} a_{\sigma(2)} \widehat{\otimes} \dots \widehat{\otimes} a_{\sigma(n)},$$

where $N = N(\sigma; a_1, a_2, ..., a_n)$ is the number of inversions induced by σ of two a_i 's of odd degree. Note that:

$$N(\tau; a_1, a_2, \ldots, a_n) + N(\sigma; a_{\tau(1)}, a_{\tau(2)}, \ldots, a_{\tau(n)}) \equiv N(\sigma\tau; a_1, a_2, \ldots, a_n)$$
 (2);

this states that an \mathfrak{S}_n -action is indeed defined by this rule and may be verified by examining the case when $\mathscr{A} = \mathbb{C}^{1,0}$ In this case the action of \mathfrak{S}_n on $\mathscr{A}^{\widehat{\otimes} n} = \mathbb{C}^{n,0}$ is simply that induced by the action of \mathfrak{S}_n on \mathbb{R}^n .

Definition 22. — The symmetric tensor power $\varphi_n: K^{\mathscr{A}}(X) \to K_{\mathfrak{S}_n}^{\mathscr{A}^{\widehat{\otimes} n}}(X)$ is defined by the formula:

$$\varphi_n(\mathbf{E}, \mathbf{D}) = (\mathbf{E}^{\hat{\otimes} n}, \mathbf{D} \hat{\otimes} \mathbf{I} \hat{\otimes} \dots \hat{\otimes} \mathbf{I} + \dots + \mathbf{I} \hat{\otimes} \dots \hat{\otimes} \mathbf{I} \hat{\otimes} \mathbf{D}).$$

Remarks. — The action of $\mathscr{A}^{\widehat{\otimes} n}$ on $E^{\widehat{\otimes} n}$ is given by the formula (in which the elements are homogeneous) $(a_1\widehat{\otimes}\ldots\widehat{\otimes} a_n).(e_1\widehat{\otimes}\ldots\widehat{\otimes} e_n)=(-1)^{\mathbb{M}}.a_1e_1\otimes\ldots\otimes a_ne_n$ where $\mathbb{M}=\mathbb{M}(a_1,\ldots,a_n;e_1,\ldots,e_n)$ is the number of inversions of odd degree elements in the permutation $(a_1,\ldots,a_n,e_1,\ldots,e_n)\mapsto (a_1,e_1,a_2,e_2,\ldots,a_n,e_n)$. (The example of $C^{1,0}$ considered as a module over itself shows that this is well-defined, and that, if $\sigma\in\mathfrak{S}_n$, $\lambda\in\mathscr{A}^{\widehat{\otimes} n},\ e\in E^{\widehat{\otimes} n},\ \sigma.(\lambda.e)=(\sigma.\lambda).(\sigma.e)$. Hence φ_n is well-defined.) Note that if \mathscr{A} is a Clifford bundle C(V), φ_n is the algebraic translation of the map $K(V)\to K_{\mathfrak{S}_n}(V^n)$ of [4] (cf. [15]).

It is now convenient to make the following definition. Let $f: B \to C$ be an isomorphism of algebras. Let P be a B-module and Q be a C-module. A group (iso)morphism $\overline{f}: P \to Q$ will be called an (iso)morphism of modules if $\overline{f}(\lambda.x) = f(\lambda).\overline{f}(x)$ for $\lambda \in B$ and $x \in P$. The example that we are interested in is when $B = (\mathscr{A} \otimes \mathscr{A}') \otimes \ldots \otimes (\mathscr{A} \otimes \mathscr{A}')$ (n copies); $C = (\mathscr{A} \otimes \ldots \otimes \mathscr{A}) \otimes (\mathscr{A}' \otimes \ldots \otimes \mathscr{A}')$ (n copies in each bracket); $P = (E \otimes E')^{\otimes n}$ and $Q = E^{\otimes n} \otimes E'^{\otimes n}$. Here E is an \mathscr{A} -module, E' an \mathscr{A}' -module and \mathscr{A} and \mathscr{A}' are bundles of graded k-algebras on X and X' respectively. $f: B \to C$ is defined by the formula $f(a_1 \otimes a_1' \otimes \ldots \otimes a_n \otimes a_n') = (-1)^M (a_1 \otimes \ldots \otimes a_n) \otimes (a_1' \otimes \ldots \otimes a_n')$ with M as above, and the isomorphism \overline{f} is defined by an analogous formula. Hence there is induced a canonical isomorphism $T: K_{\mathfrak{S}_n}^{(\mathscr{A} \otimes \mathscr{A}')} \otimes (X \times X') \to K_{\mathfrak{S}_n}^{\mathscr{A} \otimes \mathscr{A}'} \otimes (X \times X')$. Then the operations φ_n are seen to have the multiplicative property expressed by the commutativity of:

The groups $K_{\mathfrak{S}_n}^{\mathscr{A}^{\otimes n}}(X)$ seem to be very hard to compute in general. For example, if X is a point and $\mathscr{A}=C^{1,0}$, the explicit determination of this group is related to the

explicit determination of the representation ring of a certain group \mathfrak{F}'_n , which double covers \mathfrak{S}_n . Part of this task has been done by Schur [16].

In order to define more acceptable invariants, the following basic idea is useful. Let G be a subgroup of \mathfrak{S}_n such that there exists a homomorphism $\mu: G \to U(\mathscr{A}^{\widehat{\otimes} n})$ (U denotes the group of invertible elements of degree o) such that $\sigma.a = \mu(\sigma).a.\mu(\sigma^{-1})$ for $\sigma \in G$ and $a \in \mathscr{A}^{\widehat{\otimes} n}$. Then we can "twist" the action of G on every $G-\mathscr{A}^{\widehat{\otimes} n}$ -module P in the following way: set $\sigma*m = \mu(\sigma^{-1})\sigma.m$. Note that for all $m \in P$, $\sigma \in G$, $\tau \in G$ and $a \in \mathscr{A}^{\widehat{\otimes} n}$, $\sigma*(\tau*m) = (\sigma\tau)*m$ and $\sigma*(am) = a(\sigma*m)$.

Lemma 23. — If $\mathscr{E}^{\mathscr{A}^{\widehat{\otimes} n}}$ is the category of graded G- $\mathscr{A}^{\widehat{\otimes} n}$ -modules with the trivial action of G on $\mathscr{A}^{\widehat{\otimes} n}$ and if $K_{(G)}^{\mathscr{A}^{\widehat{\otimes} n}}$ is the associated graded Grothendieck group (G is as above), the graded categories $\mathscr{E}_{(G)}^{\mathscr{A}^{\widehat{\otimes} n}}$ and $\mathscr{E}_{G}^{\mathscr{A}^{\widehat{\otimes} n}}$ are isomorphic. In particular, $K_{(G)}^{\mathscr{A}^{\widehat{\otimes} n}}(X) \approx K_{G}^{\mathscr{A}^{\widehat{\otimes} n}}$.

Proof. — Define $\varphi: \mathscr{E}_G^{\mathscr{A}^{\widehat{\otimes} n}}(X) \to \mathscr{E}_{(G)}^{\mathscr{A}^{\widehat{\otimes} n}}$ by $\varphi(P) = P'$ and $\varphi(f) = f'$, where P' is P as an $\mathscr{A}^{\widehat{\otimes} n}$ -module with the action * of G and where f' coincides with f on the underlying $\mathscr{A}^{\widehat{\otimes} n}$ -modules. Since $\mu(\sigma)$ is of degree o, the new action of G is of degree o and the functor is well-defined. Likewise, an inverse φ' to φ may be constructed.

Two cases are of special interest. Firstly, that when $G = \mathbb{Z}_n$, the cyclic group generated by the permutation $g = (1 \ 2 \dots n)$; n will always be taken to be odd; if further n = 4p + 1, the second case is when $G = \mathfrak{D}_n$, the dihedral group generated by g and the permutation $t = (1 \ 4p)(2 \ 4p - 1) \dots (2p \ 2p + 1)$. \mathbb{Z}_n is normal in \mathfrak{D}_n ; the quotient group is \mathbb{Z}_2 and it acts on \mathbb{Z}_n by inversion. \mathfrak{D}_n is generated by g and t with the relations $g^n = t^2 = 1$ and $tg = g^{-1}t$.

Lemma 24. — Let \mathscr{A} be a bundle of central simple graded k-algebras on X. If n is odd, there exists a homomorphism $\mu: \mathbf{Z}_n \to \mathbf{U}(\mathscr{A}^{\widehat{\otimes} n})$ such that $\sigma.a = \mu(\sigma)a\mu(\sigma^{-1})$ for $\sigma \in \mathbf{Z}_n$ and $a \in \mathscr{A}^{\widehat{\otimes} n}$. If n = 4p + 1, there also exists a homomorphism $\mu': \mathfrak{D}_n \to \mathbf{U}(\mathscr{A}^{\widehat{\otimes} n})$ extending μ such that $\sigma.a = \mu'(\sigma)a\mu'(\sigma^{-1})$ for $\sigma \in \mathfrak{D}_n$ and $a \in \mathscr{A}^{\widehat{\otimes} n}$.

Proof. — The Schur multiplicators $H^2(\mathbf{Z}_n, \mathbf{R}^*)$, $H^2(\mathbf{Z}_n, \mathbf{C}^*)$ and $H^2(\mathfrak{D}_n, \mathbf{C}^*)$ are all zero; [16] and a little calculation show that $H^2(\mathfrak{S}_n, \mathbf{R}^*) = \mathbf{Z}_2 \oplus \mathbf{Z}_2$ and that the restriction to $H^2(\mathfrak{D}_n, \mathbf{R}^*) = \mathbf{Z}_2$ maps the element corresponding to \mathfrak{F}'_n to o. The Skolem-Noether theorem and some explicit checking show that if A is any of the algebras listed in § 1, all automorphisms σ of A are induced by conjugation by a unit $x \in A_0 \cup A_1$, determined up to a central homogeneous unit. As $g^n = 1$, its action must be induced by a unit $x \in A_0$. As t is the product of an even number of conjugate elements of \mathfrak{S}_n , its action must also be induced by a unit $x \in A_0$. The result now follows from the theory of projective representations.

Denote by $v: K_G^{\mathscr{A}^{\bigotimes n}}(X) \to K_{(G)}^{\mathscr{A}^{\bigotimes n}}(X)$ the isomorphism of Lemma 23 for $G = \mathbf{Z}_n$

or \mathfrak{D}_n and n as above. Then it is easily seen that the following diagram commutes:

$$K_{G}^{\mathscr{J}^{\widehat{\otimes}n}}(X) \times K_{G}^{\mathscr{J}'^{\widehat{\otimes}n}}(X') \ \longrightarrow \ K_{G}^{\mathscr{J}^{\widehat{\otimes}n} \widehat{\otimes} \mathscr{J}'^{\widehat{\otimes}n}}(X \times X') \ \approx \ K_{G}^{(\mathscr{J}^{\widehat{\otimes}} \mathscr{J}')^{\widehat{\otimes}n}}(X \times X')$$

$$\downarrow^{v \times v} \qquad \qquad \downarrow^{v}$$

$$K_{(G)}^{\mathscr{J}^{\widehat{\otimes}n}}(X) \times K_{(G)}^{\mathscr{J}'^{\widehat{\otimes}n}}(X') \ \longrightarrow \ K_{(G)}^{\mathscr{J}^{\widehat{\otimes}n} \widehat{\otimes} \mathscr{J}'^{\widehat{\otimes}n}}(X \times X') \ \approx \ K_{(G)}^{(\mathscr{J}^{\widehat{\otimes}} \mathscr{J}')^{\widehat{\otimes}n}}(X \times X')$$

We now treat in detail the case when $k = \mathbf{C}$ and $G = \mathbf{Z}_n$. The case when $k = \mathbf{R}$ and $G = \mathfrak{D}_n$ will be dealt with later.

The following lemma (which may be generalised to the case when \mathbb{Z}_n is replaced by any other finite group) is proved in the same way as Proposition (2.1) of [4], i.e. by use of the canonical projection operators in the group algebra.

Lemma 25. — Let F be a complex Hilbert bundle on X with an action of the cyclic group \mathbb{Z}_n . Then the bundle F splits into the sum $F_0 \oplus F_1 \oplus \ldots \oplus F_{n-1}$. The generator g of \mathbb{Z}_n acts on F, by the multiplication by ω^r , where $\omega = \exp(2\pi i/n)$.

If $D: F \to F'$ is a morphism of \mathbf{Z}_n -bundles, we shall write $D_r: F_r \to F'_r$ for the restriction of D to F_r and F'_r . Let Ω_n be the subring of \mathbf{C} generated over \mathbf{Z} by the above ω . In other words, $\Omega_n = \mathbf{Z}[\omega]/(\Phi_n(\omega))$, where Φ_n is the *n*-th cyclotomic polynomial.

Definition **26.** — If (F, D) is an element of $KU_{(\mathbf{Z}_n)}^{\mathscr{A}^{\widehat{\otimes} n}}(X)$, Tr(F, D), its trace, is the element $\sum\limits_{r=0}^{n-1} (F_r, D_r) \otimes \omega^r$ of $KU^{\mathscr{A}^{\widehat{\otimes} n}}(X) \otimes \Omega_n$.

Proposition 27. — The "trace function" Tr is multiplicative. In other words, if $(F,D) \in KU_{(\mathbf{Z}_n)}^{\mathscr{S}^{\widehat{\otimes}}n}(X)$ and $(F',D') \in KU_{(\mathbf{Z}_n)}^{\mathscr{S}^{\widehat{\otimes}}n}(X')$, the elements $\operatorname{Tr}(F,D) \cup \operatorname{Tr}(F',D')$ and $\operatorname{Tr}(F \otimes F',D \otimes \mathbf{1} + \mathbf{1} \otimes D')$ are equal when we identify $KU^{\mathscr{A}^{\widehat{\otimes}}n \otimes \mathscr{A}'} \otimes n(X \times X')$ and $KU^{(\mathscr{A} \otimes \mathscr{A}')^{\widehat{\otimes}n}}(X \times X')$ by the canonical isomorphism.

Proof. — The proposition is a direct consequence of the definitions and of the fact that $\omega^n \omega^m = \omega^{n+m}$.

Lemma 28. — Let d > 1 be a divisor of n. Let the couples $(G_0, D_0), \ldots, (G_{d-1}, D_{d-1})$ be as in § 7 and suppose that the generator g of \mathbf{Z}_n acts on $(F, D) = (G_0 \oplus \ldots \oplus G_{d-1}, D_0 \oplus \ldots \oplus D_{d-1})$ by the matrix $\gamma = (\gamma_{ij})$, where the only non-zero γ_{ij} are $\gamma_{10} = \gamma_0$, $\gamma_{21} = \gamma_1$, ..., $\gamma_{d-1,d-2} = \gamma_{d-2}$ and $\gamma_{0,d-1} = \gamma_{d-1}$. Then Tr(F, D) = 0.

Proof. — As G_0 and G_i can be identified by the isomorphism $\gamma_{i-1}...\gamma_0$, there is no loss of generality in assuming that $G_0 = G_i$, $D_0 = D_1 = ... = D_{d-1}$ and that each γ_i is the identity. Then $\operatorname{Ker}(g - \omega^{rn/d}) \approx G_0$. As $\Sigma \omega^{rn/d} = 0$, $\operatorname{Tr}(F, D) = 0$.

Definition 29. — The "Adams operation":

$$\psi^n: \quad KU^{\mathscr{A}}(X) \to KU^{\mathscr{A}^{\widehat{\otimes} n}}(X) \otimes \Omega_n$$

is the composite:

$$KU^{\mathscr{A}}(X) \stackrel{\phi_n^{\mathscr{A}}}{\longrightarrow} KU_{\mathfrak{S}_n}^{\mathscr{A} \otimes n}(X) \longrightarrow KU_{\mathbf{z}_n}^{\mathscr{A} \otimes n}(X) \stackrel{v}{\longrightarrow} KU_{(\mathbf{z}_n)}^{\mathscr{A} \otimes n}(X) \stackrel{\mathrm{Tr}}{\longrightarrow} KU^{\mathscr{A} \otimes n}(X) \otimes \Omega_n.$$

Theorem 30. — The Adams operation ψ^n is additive, i.e. $\psi^n(x+y) = \psi^n(x) + \psi^n(y)$. Moreover, it is multiplicative in the sense that there is a commutative diagram:

$$KU^{\mathscr{A}}(X)\otimes KU^{\mathscr{A}'}(X') \xrightarrow{\qquad \qquad } KU^{\mathscr{A}\widehat{\otimes}\mathscr{A}'}(X\times X')$$

$$\downarrow^{\psi^{n}} \qquad \qquad \downarrow^{\psi^{n}} \qquad \qquad \downarrow^{\psi^{n}}$$

$$KU^{\mathscr{A}\widehat{\otimes}^{n}}(X)\otimes KU^{\mathscr{A}'}(X') \xrightarrow{\qquad } KU^{\mathscr{A}\widehat{\otimes}^{n}\widehat{\otimes}\mathscr{A}'}(X\times X')\otimes \Omega_{n} \xleftarrow{\qquad } KU^{(\mathscr{A}\otimes\mathscr{A}')\widehat{\otimes}^{n}}(X\times X')\otimes \Omega_{n}$$

$$KU^{\mathscr{A}^{\widehat{\otimes}\,n}}(X)\otimes KU^{\mathscr{A}'\,{}^{\otimes}\,n}(X')\stackrel{\mathsf{U}}{\longrightarrow} KU^{\mathscr{A}^{\widehat{\otimes}\,n}\,\widehat{\otimes}\,\mathscr{A}'\,\widehat{\otimes}\,n}(X\times X')\otimes\Omega_n\stackrel{^{\mathrm{T}}}{\longleftarrow} KU^{(\mathscr{A}\otimes\mathscr{A}')^{\widehat{\otimes}\,n}}(X\times X')\otimes\Omega_n$$

Proof. — The second assertion is a direct consequence of the diagrams following Definition 22 and Lemma 24, and of Proposition 27. Write $x=(E_0, D_0)$ and $y=(E_1, D_1)$. Then $(E_0 \oplus E_1)^{\hat{\otimes} n} = \bigoplus (E_{i_1} \hat{\otimes} E_{i_2} \hat{\otimes} \dots \hat{\otimes} E_{i_n})$, where the direct sum is taken over all i_r . This expression is the sum of $E_0^{\widehat{\otimes} n}$, $E_1^{\widehat{\otimes} n}$ and of bundles of the form $G = G_0 \oplus \ldots \oplus G_{d-1}$ (d > 1), where d divides n. Here the action of \mathbf{Z}_n on G is as in Lemma 28. So $\mathrm{Tr}(\mathbf{F}, \mathbf{D}) = 0$. Hence $\psi^n(x+y) = \psi^n(x) + \psi^n(y)$, as required.

Proposition 31. — Let $E = E_0 \oplus E_1$ be a \mathbb{Z}_2 -graded \mathbb{C} -vector bundle on X with graded endomorphism bundle $\mathcal{A} = END(E)$. Let λ be the isomorphism φ_{\star} of Theorem 16. Then the following diagram is commutative:

where the upper ψ^n is the ordinary Adams operation ([1], [4]) and i is the inclusion.

Proof. — If $\mathcal{A} = \mathbf{C}$, the argument of [4] shows that our ψ^n is the usual ψ^n operation. For other \mathscr{A} , λ is defined by the cup product with E or $E^{\hat{\otimes} n}$ as appropriate. The action of \mathfrak{S}_n on $\mathscr{A}^{\hat{\otimes} n}$ is induced by the natural action of \mathfrak{S}_n on $E^{\hat{\otimes} n}$ and is thus given by inner automorphisms. This implies that the action of \mathbf{Z}_n on $(v\varphi_n^{\mathscr{A}})(E, D)$ is trivial. The result follows.

Remark. — If \mathcal{B} is another bundle of simple central graded **C**-algebras, exactly the same proof shows the commutativity of the diagram:

This shows that ψ^n is essentially an operation from $KU^{\alpha}(X)$ to $KU^{\alpha n}(X) \otimes \Omega_n$ for $\alpha \in GBrU(X)$.

Now consider the case when $k = \mathbf{R}$ and n = 4p + 1. Following End [6], we will define operations ψ^n in this case. In view of the preceding discussion, we need define only:

Tr:
$$KO_{(\mathfrak{D}_n)}^{\mathscr{A}^{\widehat{\otimes} n}}(X) \to KO^{\mathscr{A}^{\widehat{\otimes} n}}(X) \otimes \Omega_n$$
.

If F is a (real) Hilbert bundle on X with an action of \mathfrak{D}_n , set $F' = F \otimes \mathbf{C}$ and $F'_s = \operatorname{Ker}(g - \omega^s)$. Let c denote the complex conjugation on F'. Then its restriction $c_s : F'_s \to F'_{-s}$ is \mathbf{C} -anti-linear whilst the restriction of t, $t_{-s} : F'_{-s} \to F'_s$ is \mathbf{C} -linear. So F'_s is naturally isomorphic to the complexification of the real Hilbert bundle $F_s = \operatorname{Ker}(tc - \mathbf{I}) \cap \operatorname{Ker}(g - \omega^s)$. If $D : F \to G$ is a morphism of real Hilbert \mathfrak{D}_n -bundles, write $D_s : F_s \to G_s$ for the restriction. If (F, D) are as in § 8, define:

$$\operatorname{Tr}(\mathbf{F}, \mathbf{D}) = \sum_{s} (\mathbf{F}_{s}, \mathbf{D}_{s}) \otimes \omega^{s}.$$

As in Definition 29, the ψ^n operation is defined to be the composite:

$$KO^{\mathscr{A}}(X) \stackrel{\phi_n^{\mathscr{A}}}{\longrightarrow} KO_{\mathfrak{S}_n}^{\mathscr{A}^{\widehat{\otimes} n}}(X) \longrightarrow KO_{\mathfrak{D}_n}^{\mathscr{A}^{\widehat{\otimes} n}}(X) \stackrel{\upsilon}{\longrightarrow} KO_{(\mathfrak{D}_n)}^{\mathscr{A}^{\widehat{\otimes} n}}(X) \stackrel{\operatorname{Tr}}{\longrightarrow} KO^{\mathscr{A}^{\widehat{\otimes} n}}(X) \otimes \Omega_n.$$

It is easy to extend all the propositions proved above to the real case. Moreover, the following diagram, in which c is the complexification, commutes:

The following diagram, in which r is the realification, also commutes (cf. [6]):

Remark. — Simple examples show that Ω_n is necessary to define ψ^n in both cases.

REFERENCES

- [1] J. F. Adams, Vector fields on spheres, Ann. of Math., 75 (1962), 603-632.
- [2] E. ARTIN, C. NESBITT and R. THRALL, Rings with Minimum Condition, Ann Arbor, Michigan University Press, 1943.
- [3] M. F. Atiyah, K-Theory, New York, W. A. Benjamin, 1967.
- [4] M. F. Attyah, Power operations in K-theory, Quart. J. Math., Oxford Ser., 17 (1966), 165-193 (reprinted in [3]).
- [5] A. Dold, Halbexacte Homotopiefunktoren, Berlin, Springer, 1966.
- [6] End (to appear).
- [7] A. GROTHENDIECK, Le groupe de Brauer, Séminaire Bourbaki, 290 (1965).
- [8] F. Hirzebruch, Topological Methods in Algebraic Geometry, Berlin, Springer, 1966.
- [9] M. KAROUBI, Algèbres de Clifford et K-théorie, Ann. Sci. École Norm. Sup. (4), 1 (1968), 161-270.
- [10] M. KAROUBI, Algèbres de Clifford et opérateurs de Fredholm, C. R. Acad. Sci., Paris, sér. A, 267 (1968), 305-308.
- [11] M. KAROUBI, Cohomologie des catégories de Banach, C. R. Acad. Sci., Paris, sér. A, 263 (1966), 275-278 et 341-344.
- [12] M. KAROUBI, Espaces classifiants en K-théorie, Trans. Amer. Math. Soc. (to appear).
- [13] M. KAROUBI, Foncteurs dérivés et K-théorie, C. R. Acad. Sci., Paris, sér. A, 267 (1968), 328-331 et 345-348.
- [14] M. KAROUBI, Séminaire Heidelberg-Saarbruck-Strasbourg (1967-1968) (to appear).
- [15] M. KAROUBI, Sur le théorème de Thom en K-théorie équivariante, C. R. Acad. Sci., Paris, sér. A, 268 (1969), 596-599.
- [16] I. Schur, Darstellungen der symmetrischen und alternierenden Gruppe durch gebrochene lineare Substitutionen, Crelles Journal, 139 (1911), 155-250.
- [17] C. T. C. Wall, Graded Brauer groups, Crelles Journal, 213 (1964), 187-199.
- [18] C. T. C. Wall, On the exactness of interlocking sequences, Enseignement math. (2), 12 (1966), 95-100.

Manuscrit reçu le 19 septembre 1969.