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ON ALGEBRAIC SURFACES

by ROBIN HARTSHORNE, Harvard University

CONTENTS PAGES

§ o. I n t r o d u c t i o n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m
§ i. Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . us
§ 2. Curves on non-rational ruled surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
§ 3. Curves on rational surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . u6
§ 4. Conclusions and Generalizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

§ o. Introduction.

If X is a subvariety of an algebraic variety V, one can ask to what extent V is
determined by its formal completion V along X. This question has been studied by
Chow [i], Hironaka [7], Matsumura [8], and myself [6]. A typical result states that
if X is suitably ample, for example if X is an ample divisor on V, or V is a projective
space and dimXJ>i, then V is determined birationally by the formal scheme V.

In this paper we ask, to what extent is V determined by X and its normal bundle ̂
in V, if^ is sufficiently ample ? Given a variety X and a vector bundle jV on X, there is
always at least one embedding of X with normal bundle ̂ , namely the zero-section of
the vector bundle itself. So we ask, how similar is the embedding of X in V to the zero-
section of the vector bundle jV ?

We will say that two embeddings X->Vi and X-^Vg are equivalent if there is a
birational map f: V^-^Vg which is an isomorphism on an open neighborhood of X
in Vi, and induces the identity on X.

It seems that the most interesting case is when X is a curve on a surface F. For
if X is a curve, and dim V^3, one can say very little, whereas if dim X^2, one can
use obstruction theory to obtain a strong uniqueness result (see § 4 below). Hence
our main interest is to classify embeddings of curves on surfaces with sufficiently ample
normal bundle, which in this case means with sufficiently high self-intersection. The
embedding is never unique, because for any geometrically ruled surface TC : P(<^)->C
(see § i) one can find sections with arbitrarily high self-intersection. However, our
main Theorem (4.1) asserts that these are the only possibilities. We show that if X
is a non-singular curve of genus g on a non-singular surface F, with X2>4^+5, then
the embedding X—^F is equivalent to a section of a geometrically ruled surface. The
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same statement is true if we assume only X2>:4,g^4-53 with a single exception, namely
the non-singular cubic curve in the projective plane.

For the proof, we first use Enriques3 classification of surfaces, to show that F is
a (birationally) ruled surface. Next we study irreducible (possibly singular) curves Y
on a minimal model F' of a ruled surface, to obtain bounds on Y2 in terms of^(Y).
Finally, we examine what happens when we blow up points of F' to recover the original
surface F.

As a by-product of our method, we obtain a new proof (3.3) of the theorem of
Noether-Nagata which gives a classification of the minimal models of rational surfaces.

§ i. Preliminaries.

We fix an algebraically closed base field k of arbitrary characteristic. A curve
or surface is an integral scheme proper over k, of dimension one or two. A ruled surface
is a surface which is birational to a product P1X C, where C is a curve.

If C is a non-singular curve, and € is a locally free sheaf of rank two on C,
we consider P(<?), the associated P^bundle of S [EGA, II.4.1]. We call the
triple (P(<^) ,TT,G) a geometrically ruled surface, where TC:P(<?)->G is the projection.
Note that two locally free sheaves S^ and <^ give rise to isomorphic geometrically ruled
surfaces if and only if ^ ̂  ^®JSf for some invertible sheaf JSf on G. If G is the projec-
tive line, then every locally free sheaf is a direct sum of invertible sheaves [2], so we get
a complete set of geometrically ruled surfaces by taking the surfaces Fg=P((9®^)),
for e=o, 1,2, . .., where <?(i) is an invertible sheaf of degree one.

If JSfC ^ is a sub-line bundle, i.e., an invertible subsheaf of S such that ^/J$f
is also invertible, then jf gives rise to a sheaf of homogeneous ideals S ̂ n of the sheaf

n~>_l

of graded algebras S Sn((S)), and hence a subscheme DcP(<?^ which is actually a
n>_0

section of the projection 7r:P(<?)->C. One finds that the normal bundle to D is
(<^/^)®JSf^, and so D^deg <?—2deg»Sf. There are arbitrarily negative sub-line
bundles of §., and hence there are sections D with D2 arbitrarily large.

If D is a section of P(<^), and if f denotes a fibre of the projection TT, then the
group of divisors modulo numerical equivalence on P(<^) is the free abelian group gene-
rated by D andy. Thus any divisor Y is numerically equivalent to some combination

'Y==mD+nf, m, neZ.

If we denote D2 by rf, then an easy calculation gives

y2=m2d+2mn
2ft,(Y) — 2 == n^d-}- 27WZ — md— 2n + m(2y — 2),

where y== genus G.
If G = P1, we will use D to denote the section of Fg corresponding to the sub-line

bundle QcQ@Q{e), so that D2=e. We denote by D, the section of F,, for e>_i,
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CURVES WITH HIGH SELF-INTERSECTION ON ALGEBRAIC SURFACES 113

corresponding to the sub-line bundle Q(e) C 0@ Q{e}. Thus D^ = — e. Note D, = D—ef.
If Y is a curve on Fg, with Y = mD + nf^ then the formulae above become

Y2=m2e+2mn
2pa(Y) — 2 == w2^ + 2m% — m^ — 2^ — 2m.

Note that ifY is an effective curve on any geometrically ruled surface, then m^o.
If Y is an effective curve on a geometrically ruled rational surface Fg, which does not
contain the section Dg as a component, then also n^o, because

Y.D,=(mD+^).(D-./)
=me-\-n — me == n,

and Y.D^o.
Now we define some rational maps which we will use later. If F is a non-singular

surface, and PeF a point, we denote by dilp : F->F' the blowing-up, or dilatation,
at P. If YcF is an exceptional curve of the first kind, we denote by conty : F->F'
the blowing-down, or contraction, ofY. If n : P(<?) —^G is a geometrically ruled surface,
and P is a point ofP(<?) we define elm? to be the result of blowing up P, and then blowing
down the fibre of TT passing through P. Let (5(i) be the tautological invertible sheaf
on P(<?). Then n (<^p( i ) )==<^ ' is a locally free sheaf of rank two on C, which is a
subsheaf of TT (^(1))==^'. One sees easily that

elmp:P(^)->P(<r)

is the rational map induced from the inclusion of sheaves S ' C €.
On the rational surfaces Fg, we define two more rational maps: refl : FQ->FO is

the map which interchanges the two families of lines on Fo=PlxPl; and intp : F^—^F^,
for a point P^D^, consists of blowing up P and blowing down D^. The maps einip,
refl, and intp are called elementary transformations.

We call a non-singular surface F a minimal model if every birational morphism F->F'
to a non-singular surface F' is an isomorphism. Using Gastelnuovo's criterion for
exceptional curves of the first kind, one sees easily that every geometrically ruled surface
is a minimal model, with the exception ofF^. The surface F^ has a unique exceptional
curve of the first kind, D^, and cont^ (Fi)=P2. Later ((2. i) and (3.3)) we will prove
the converse, which is the classification of minimal models of ruled and rational surfaces.

We will say that a rational map is a morphism^ if it is regular at every point. For
basic results on birational maps of surfaces, we refer to [14].

§ 2« Curves on non-rational ruled surfaces.

Theorem (2.1) (1). — Let C be a non-singular curve of genus ^>o. Then any minimal
model of the function field K==k{G){t) is a geometrically ruled surface TT : P(<^)->G, for a

(1) This result seems to be well known, but the only published proof we could find ([13], chap. V, Th. i a,
p. 86) is very complicated, so we include a proof here. It was also proved by Knapp ([9], chap. II).
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suitable locally free sheaf of rank two on G. Furthermore, any birational map between two such
minimal models P(<?) and P(<T) can be factored into a product of an automorphism o/P(<?) and
a finite number of elementary transformations.

To prove the theorem, it will be sufficient to prove the following
Lemma (2.2). — Let F be any non-singular model of K, and let f : F-^P(<^') be any

birational map. Then there is a finite product of elementary transformations g : P(<?')->P(<^),
such that f-=gof is a morphism.

Proof. — Consider all possible birational maps f==gof\ where g is a product of
elementary transformations. For any such/, we let X(/) be the least number of times
one must blow up a point of F in order to obtain a surface G which dominates P(^).
Now choose g so that X(/) is minimum. We will prove that X ==o, i.e.,/is a morphism.

If X>o, then G contains an irreducible exceptional curve X of the first kind such
that contx(G) dominates F. Let Y be the image of X in P(^). If Y is a single point,
then contx(G) also dominates P(<?), which contradicts the minimality of X. Hence Y
is a curve. Since Y is rational, and the base curve C is non-rational, Y must be a fibre
ofP(<f). Now X2^—!, and Y^o, so there is a point PeY such that G dominates
dilp(P(<?)). Hence G also dominates elnip(P(<?)). But the image o fXin elmp(P(<?))
is a point, so contx(G) dominates elnip(P(<^)), which again contradicts the minimality ofX.

Before stating the next result, we observe that for any model F of the function
field K=k{G){t), the inclusion k{C)-^K induces a rational map F-^C, which is
necessarily a morphism. Furthermore, we can always find a morphism of F to a minimal
model F', compatible with the projections to C.

Theorem (2.3). — Let X be an irreducible curve on a non-rational ruled surface F. Let m
be the degree of the projection n : X->C, and assume m>i. Then

X^^-(A(X)-i).

Proof. — We first consider the case when F is a minimal model. Theil by the
previous theorem, F is a geometrically ruled surface P(^), and from the discussion of the
previous section, we have X = mD + nf, where D is a section of F, and/is a fibre of the
projection n : F->C. Note that the integer m is the one defined above.

We will use the formulae of section one,

'X2==m2d-}-2mn
2j^(X)—2 ==m2dJ^2mn—md—2n-{-m(2^—2),

where y is the genus of C.
^ A(X)^ i, then from the existence of the finite map n : X->C, we conclude

^(X)=i==y. In that case
o == m2d-{- 2mn — md— 2n

=={m—i){md+2n),
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CURVES WITH HIGH SELF-INTERSECTION ON ALGEBRAIC SURFACES 115

so that either m==i, which contradicts the hypothesis m>i, or md+2n==o, which
implies X^o, and the inequality holds.

Now we assume ^(X)>i. If X^o, there is nothing to prove, so we may
assume also X^o. Then a simple calculation shows that

X2 _ m
2j^(X)—2 w — i + a

m{2^—2)
where a==————.md-\-w

But y^i, so a>:o, and we have
X2 m

2A,(X)—2 m— i 5

which is the desired result, in case F is a minimal model.
For the general non-rational ruled surface F, we use induction on the number of

irreducible exceptional curves one must contract on F to obtain a minimal model.
Let F-^F' be a single contraction, so that F==dilp(F') for a suitable point PeF'.
Let Y be the image of X in F'. Then by induction, we may assume the result true
for Y, i.e.,

Y2^-2^^)-!).m— i

If r^ o is the multiplicity of the point P for Y, then we have
X2==Y2—r2

A(X)==A(Y)-^(r-i).

Thus we find

^^-2m-{P^-^+-n-r{r-l)-r2.
m—i m—i

But since Y admits a finite morphism n : Y->G of degree m to a non-singular curve C,
the multiplicity of any point on Y is bounded by m. So r<, m, and

m o r , \ ^-r(r—i)—r=———{r—m)<^o,
m—i m— i

which completes the proof.
Corollary (2.4). — Let X be a non-singular curve of genus g>o on a non-rational ruled

surface F. Then either
a) X^C, and the embedding X->F is equivalent to a section of the geometrically ruled

surface TT::P(^)->C, or
b) X^-4.
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Proof. — Let m be the degree of the projection n : X^C. If m==o, then X must

be a rational curve, which is impossible. On the other hand, if m> 2, then —m—<, 2,
so the theorem implies that X^^^g—^. m—i

If m=i , then TC : X->G is an isomorphism, and we will show that the embedding
X->F is equivalent to a section of a geometrically ruled surface. Consider morphisms
/: F->P(<?) of F to geometrically ruled surfaces P(<?), which exist by Theorem (2.1).
For any such morphism//(X) is a curve of degree one over C, hence a section ofP(^)
over G, and we have X^/(X)2. Choose/so that/(X)2 is minimum. Then X^^X)2.
Indeed, if X^^X)2, then there is a point Pe/(X) which is fundamental for/. So
/'=elmpo/ is also a morphism, and /'(X)2^/^)2—!, which contradicts the minimality
^/(X)2. It follows that/"1 is regular at every point of/(X), and so/is an isomorphism
in a neighborhood of X. So the embedding X^F is equivalent to the embedding
X-^/(X)CP(<?), and we are done.

Example. — Assume char.A:==o, let C be a non-singular elliptic curve, and
let F == P1 x C. Let PQ be a point of P1, and let a be a divisor of degree n^ 2 on C.
Then by Bertini's theorem, the general member X of the complete linear system
2PoXG+P lxa is irreducible and non-singular. One finds that the genus of X is

g==n+i, and the self-intersection is X2=4.g—^ Thus the bounds of the Corollary
are the best possible for curves on a ruled surface of genus y = !• Presumably one could
get better bounds on ruled surfaces of higher genus.

§ 3. Curves on rational surfaces.

Proposition (3 .1) . — Let F be a rational surface which admits a morphism /o : F->Fg
to one of the surfaces F^ {see § i), and let X be a non-singular curve on F. Then there is a finite
product g : F^->F, of elementary transformations, such that f=gofo is a morphism, and such
that Y=/(X) is a curve with the following properties, where m and n are the integers defined by
the relation Y = mD + nf:

a) every multiple point of Y has multiplicity <:^-m\
b) if e=o, then m^n;

c) if e=i, then every multiple point of Y has multiplicity <^n\
d) if m=i, then X^Y^
e) if e==i, m==2, and n==o, then X^Y^

Proof. — We consider all products g of elementary transformations such that gof^
is a morphism. If/(X) is a point P, we apply einip, and after a finite number-of such
steps, we may assume ,?(/o(X)) is a curve. Among all such g, we choose one which first
minimizes m, and secondly minimizes Y2. This is possible, because for any morphism
/: F->F,, we have m(/(X));> o, and X^/(X)2. Now we will show that the morphism
/==^o/o has the required properties.
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CURVES WITH HIGH SELF-INTERSECTION ON ALGEBRAIC SURFACES 117

a) If Y has a multiple point P of multiplicity r> -m, we apply einip. Since X is

non-singular, P is fundamental for /, so /' = elmpo/ is also a morphism. This blows
up P, but also introduces a new multiple point P' of multiplicity r '=m—r. Denoting
the new situation with primes, we find m'= m, and

Y^y-r'+r'^Y2,

which contradicts the minimality of Y2.
b) If e==o, we consider reflo/. This interchanges the roles of m and n, so by

minimality of m, we conclude m^n.
c ) If <?=i , let P be a multiple point of Y, of multiplicity r. If PeD^, then

r^Y.Di=7z. If P(^Di, we consider/'=intpo/ Then m' =Y .D—r=77 i+7z—r, so
by the minimality of m, we have r^< n.

d ) If m==i and X^Y2, then there is a point PeY which is fundamental for/.
We apply einip, and find w '=m=i , and Y'^Y2—!, which contradicts the mini-
mality of Y2.

e ) Suppose < ? = i , 772=2, TZ=O, and X^Y^ Then again there is a point PeY
which is fundamental for/. P cannot be in D^, since Y. D^ == n == o. So we apply intp,
and obtain w ' = = w + y z — i = = i , which contradicts the minimality of m.

Proposition (3.2). — Let X be an irreducible curve on a rational surface F, and suppose there
is a morphism /: F->F, having the properties a), b), c), d), e) of the previous proposition. Then

(i) if 772=2, then X is non-singular^ and X2^^^^-^
(ii) if 77z==3, ^TZ X is non-singular, and X^g^+G;

(hi) if 772^4 and either <?=(=!, or <?==! ^af n>^-m, then

0777

^^^-^
(iv) z/' 77z>4 ^T^ e=i and n<-m, then

X^^^X)-!),
K—3

wA^r^ A: = 772 + 72.

proof. — We consider first the case when F=F,. Then we will apply the
formulae of § i X2==m2e+2mn

2^(X) — 2 = m^e + 2mn—me—2m—w.

(i) If 772=2, X is non-singular by a), and we have

X2 = 4.0 + 4^
2^(X)—2=2^+272—4,

so X^A/W^
117
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(ii) If m=3, X is non-singular by a), and we have

X^ge+Qn

2A(X)-2=6<?+4^-6,
so X^s^^+G.

(in) If w>:4, then
2 ,̂(X) = (m — i) {me + w — 2)

^3(4<?+2W—2).

If <?=o, then n>m>^4., so this is at least 18. If e>o, it is at least 6. In either case,
/^(X)>i, so we can consider

X2 _ m
2^(X)—2 m— i— a5

, 2m
where a == ————.

me-\-2n

We will show a^i, which implies
w m

m — i — a 7 7 Z — 2

and hence the result. Indeed, if e = o, then m<^n, so a^i. If <?==i, then n^m,
so a<i. If ^>i^ then n^o, so a^i.

(iv) If m^4, and e=i, we have

2^(X)—2=m(w—3)+2%(w—i)^4.

So we can consider the quotient X2^^^)-^). Substituting m==k—n,

X2 kwe find
2A(X)-2 A-3+P

ATZ — 37Z2

where ^T2^-

Now we are assuming that n<-m, so ^n<k, and p>o. Hence

^r^^"^
as required.

This completes the proof in case F=Fg. For the general case, we use induction
on the number of dilatations one must apply to Fg in order to obtain F. So let us consider
a morphism F~>F' over F,, such that F=dilp(F') for a suitable point PeF'. Let Y be
the image of X in F'. By induction, we may assume the results true for Y.

(i) and (ii) Since Y is non-singular, X is also, the genus is the same, and X^Y^
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(iii) Let r^o be the multiplicity of the point P on Y. Then

X^Y2-^

A(X)=A(Y)-^(r-i),

so we find ^^^-{PaW-^+^-^r-^-r2.
m—2 m—2

But by condition a), we have r^-m, so

m . . n y , , .
———r(r—i)—r==———(2r—m)<o,
m—2 m—2

which gives the result.
(iv) Again let r be the multiplicity of P on Y. Then we find

X^^^X)-^————^--!)-^2.
K—3 rv—o

In this case, by condition c ) , we have r<n, so r^-k, and
o

k .^r-^-r^-'^r-k^O,
A-3 x / k-3

which gives the result.
Theorem (3.3) (Nagata [n]) (1). — Any minimal model of a rational function field

K==k{t, u) is isomorphic to P2, or to one of the surfaces F,, <?4=i. Furthermore, any birational
map between two such minimal models can be factored into a product of an automorphism of the
first, and a product of a finite number of elementary transformations and maps of the form
dilp:?2-^ and cont^ : F^P2.

For the proof, it will be sufficient to prove the following
Lemma (3.4). — Let F be any rational surface, and let f : F-^Fg, be a birational map.

Then there is a finite product of elementary transformations g : Fg,->Fg such that either f==gof
is a morphism, or F=P2, e=i, and /=dilpoA, for a suitable automorphism h: F-^F.

Proof. — Consider all possible birational maps f==.gof, where g : F,,->F, is a
product of elementary transformations. For any such /, let X(/) be the least number
of dilatations one must apply to F to obtain a surface G dominating Fg. Choose g so
that X(/) is minimum. Then we will show that either X(/)==o, in which case/is a
morphism, or X(/)=i, F==P2, and e==i.

Suppose X(/)>o. Then blow up X(/) points of F, to obtain a surface G domi-
nating Fg. Let X be an irreducible exceptional curve of the first kind on G such that
coiftx(G) dominates F. Applying Proposition (3.1), we may assume without loss of

(1) This theorem was also proved by Knapp ([9], chap. III).
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generality that the morphism <p : G->F, has the properties a), b ) , c ) , d ) , e ) of the
proposition.

Now consider Y=y(X) in F,. We distinguish various cases, according to the
value of m.

^o-—Then Y is a ruling, Y^o, so there is a point PeY which is fundamental
for <p (since X^-i). Then contx(G) dominates elnip(FJ, which contradicts the
minimality of X(/).

W = I - ~ In this ^se Y^—i, by d ) , so we must have <?==i , Y=Di. If <p is
an isomorphism, then F=P2, X(/)=i, and we are done. Otherwise, for some point
PeFi, P^Di, contx(G) dominates intp(Fi) which contradicts the minimality ofX(/).

m =2 • — In this c^ Y is non-singular, so ^(Y) =o, and e + n = i. Thus either
e=o, TZ=I , which is impossible by b), or ^==1, n==o, which is impossible by e ) , for in
that case Y'^4.

m = 3 • — Again Y is non-singular, so j^(Y) =o, and we have y+2n== 2. Thus
e==o, n== i, which is impossible by &J.

w;>4. — We apply (iii) or (iv) of Proposition (3.2), finding X2^ - 2m or
2/; W — 2

: ? c < - -^- Kut X2^—!, so neither of these is possible.<j

Corollary (3.4) (Noether [12]). — Any birational transformation of the projective plane
into itself is a product of a projective collineation and a finite product of standard quadratic trans-
formations, each consisting of blowing up three non-collinear points and blowing down the lines
joining them.

Proof. — This follows easily from the theorem (see Nagata [n, Theorem 6]).
Theorem (3.5) (1). — Let X be a non-singular curve of genus g>o on a rational surface F.

Then either

a) X^P1, and the embedding X-^F is equivalent to a section of a geometrically ruled
rational surface Fg->P1, or

b) g='i) and the embedding X->F is equivalent to a non-singular cubic curve in P2,
in which case X^g, or

c) X^+4.

Proof. — If F=P2, we calculate explicitly. Let m be the degree of X. Then

X2^2

g=-(m—i){m—2).

Thus X2=4g+4-{m-2){m-4). ^

(1) The fact that X2^ for g=i was proved by Nagata ([n, Th. 4]).
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So if m^2 or w>4, we have ^^^g-}-^. The unique exception is w==3, which
is case 6J above.

If F,=(=P2, then by Theorem (3.3), F dominates some one of the surfaces Fg.
By Proposition (3.1), we can choose a morphism F-^Fg having the properties a), b ) ,
c ) , d ) , e ) , and then draw the conclusions of Proposition (3.2). We distinguish various
cases, according to the value of m,

m=o. — Then Y^o, X^o, so c ) holds trivially.
m= i. — Then by d ) , 'K2=Y2, so the morphism F->Fg is an isomorphism in a

neighborhood ofX. Yis a section of the projection TT : Fg->P1, so the embedding X->F
is equivalent to this section.

m=2. — Then X^4^+4 by (i).
m=3. — Then by (ii), we have X2_<3^+6. If g^2, this implies X^4^+4,

so c ) holds. We treat the cases g==o, i separately.
g==o. — Going back to our formulae, we have in this case 6^+4^=45 so e=o^ n=i^
which is impossible by b).
g=i. — In this case, 6e+4.71=6, so e==i,n=o, and Y^g. If X2<Y2, then
X^S, and c ) holds. If X^Y2, then the embedding X-»F is equivalent to the
embedding X-^YcF^. Now n==o, so Y.Di=o, so the embedding X^F is also
equivalent to the embedding X->YCcont^Fi=P2. But this is the non-singular cubic
curve of case b).

m^4. — If case (iii) applies, then we note that m>_4. => ———^2, so

X^-4,
and afortiori, c ) holds.

If case (iv) applies, we have

x.̂ -,,
kIf A;^6, then ,——^2, so X^<4^--4, and c ) applies. We treat the exceptionalk—3

cases k =4, 5 separately. Note that Y must be non-singular in these cases, since every
multiple point of Y has multiplicity <,n, and TZ=O, i.

k ==4. — m==4, n==o, we have g==3, Y^iG, so X2<Y2==4^+4.
^=5.—Then either m==4, n=i, g==6, Y2=24, or m=5, TZ==O, ^==6, Y2==25. In either
case X2^Y2<4g+4.

Example. — On ¥Q=PlxPl, the general curve X of type m=2, n^2 is irredu-
cible and non-singular. Its genus is ^===77—1, and we find X2^^^-^- For g==o,
consider the conic in P2, with self-intersection 4. Thus for all g^o, the bounds of the
theorem are the best possible.
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§ 4. Conclusions and Generalizations.

We now return to the question posed in the introduction. If X is a non-singular
variety embedded in a non-singular variety V, we define the normal bundle ^x/v to be
the dual of the locally free sheaf J^2 on X, where J is the sheaf of ideals of X in V.
We ask, if ^ is sufficiently ample, to what extent is V determined by X and jV ?
In particular, we would like to compare the embedding X->V to the standard embedding

J '' X-^V(^r^), the zero-section of the geometric vector bundle

V(^)=Spec S 8%^)
n'>_0

[EGA, II. i . 7)]. Of course the phrases < c sufficiently ample 5? and " determined by 5?

are vague, and we must make them precise in each context.
Let us first consider a curve X on a surface F. Then the normal bundle ̂  is a

line bundle on X, and we can use its degree, which is the self-intersection of X on F,
as a measure of its ampleness. We thus come to the following theorem, which is the
main result of this paper.

Theorem (4.1). — Let X he a non-singular curve of genus g^ o on a non-singular surface F,
and assume that X2>4^+ 5. Then F is a ruled surface, and the embedding X-^F is equivalent
(see § o) to a section of a geometrically ruled surface n : P(^)->G. The same statement is true
if we assume only X2^ 4^ + 5, with a single exception, namely the non-singular cubic curve in
the protective plane (or an equivalent embedding).

Proof. — Let K be the canonical divisor class on F. Then 2^—2==X. (X+K) ,
so as soon as 'X2>2g—2, we have X.K<o. In this case, the proof of Enriques' classi-
fication of surfaces shows that F is a ruled surface [10, § i].

If F is non-rational, then the result follows from Corollary (2.4) in case g>o.
If g==o, then X is a component of a fibre of the projection n : F-^G, so that X^o,
which is impossible.

If F is a rational surface, the result follows from Theorem (3.5).

For curves on surfaces, we may still ask whether some of these sections of geometri-
cally ruled surfaces are equivalent to each other, or even formally equivalent, in the
sense that the formal completions of the surfaces along the curves are isomorphic formal
schemes. The answer to both questions is no, as we see in the following two propositions.

Proposition (4.2). — Let C be a non-singular curve, let X^G, and let X->P(<?J
and X-^P(^) be two sections of geometrically ruled surfaces over G. Let f\ P(<?i) -> P(^a)
be a birational map, which induces an equivalence of the two embeddings. Assume either that G
is not rational, or that X2^^. Then f is an isomorphism.

Proof. — We are assuming that / induces an isomorphism of an open neighbo-
rhood Ui ofX in P(^i) to an open neighborhood Ug of X in P(^)- The complement
of U, cannot contain any fibre of the ruled surface. Thus in case G is not rational, the
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complement ofU, contains no rational curves, so/must be biregular everywhere. IfCis
rational and X^s, then the complement of U, may contain a rational curve. But
one checks easily that this occurs only when X is the standard section D on a surface Fg,
e^ 2, in which case U^ may contain the exceptional section Dg. But still the complement
of U, contains no exceptional curves of the first kind, so / is biregular everywhere.

Proposition (4.3). — Let X->F^ and X-^Fg be two embeddings of a curve X in
surfaces F^, Fg with Y^>o in each case. Suppose there is an isomorphism g : F^Fg of the
formal completions ofV^ and Fg along X, which induces the identity on X. Then there is a birational
map f: Fi—^Fg, which gives an equivalence of the two embeddings., and such that the induced

map f: F^-^F^ of the completions is equal to g.
Proof. — According to a theorem of Hironaka ([7], § 2, Theorem IV*), the natural

map K(F,) —K(F\), of the field of rational functions on F, to the field of formal-rational
functions on F^, is an isomorphism, for z = = i , 2. Thus g induces an isomorphism
K(Fi)->K(F2), and hence a birational map /: F^-^Fg. Now for any point xeX,
we have „ ,. -^ /-p ^

^x^i=(px^inK{fi)9

Hence one sees easily that/is biregular in a neighborhood ofX, that f==g, and that /
induces the identity on X.

Remark. — This proof shows that the same result is true (namely formal isomorphism
implies equivalence) whenever one has two embeddings X->Vi and X->Vg of a
variety X in varieties Vi, Vg such that the natural maps K(V,)->K(V,) are isomor-
phisms. This says that X is €3 in V^ and Vg, in the terminology of Hironaka and
Matsumura ([8], Definitions (2.9), p. 64).

Now let us consider an embedding of a curve X in a variety V of dimension ^3.
In this case we will show by example that there are embeddings of X in P3 with arbi-
trarily ample normal bundle. Thus we do not have an analogue of Theorem (4.1).
One may hope, however, to prove something about embeddings of X in non-rational
varieties V of dimension ^3.

Example (4.4). — Let X be a non-singular curve. For any coherent sheaf ̂  on X, there
is an embedding X->P3, whose normal bundled has the following properties'.

1) y®^ is generated by global sections on X.
2) H^X.^eUQ-o.
In particular, JV is always ample [AVB, § 8], and by taking ^==(P^{—n), we can

make deg^* arbitrarily large.
To get this embedding, take an invertible sheaf JSf on X such that i) ^®JSf is

generated by global sections; 2) H^X, ^®JSf)=o, and 3) JS? is very ample on X. For
example, S'=(0(n) for sufficiently large n will do, if ^(i) is any ample invertible sheaf
on X. Then J§f gives an embedding of X into P^ where N==dim H°(X, JSf)—i.
We may assume N> 3. Now the generic projection ofX into P3 is non-singular, hence
gives an embedding of X. And by construction, the normal bundle ^T to X in this
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embedding is a quotient of a direct sum of four copies of oSf. It follows that i) and 2)
above hold for ^Y\

We turn finally to embeddings of varieties X of dimension ^2. We show that
if ̂  is sufficiently ample in a cohomological sense, then any embedding of X with
normal bundle ^T is formally isomorphic to the zero-section of the vector bundle itself.

Proposition (4.5). — Let X be a complete non-singular variety of dimension r, and let ̂
be a locally free sheaf on X such that

H^^X,^®^®!'^))^ for n>_i

^nd Rr-l{'X,^®^®^n{^))=o for n^2.

(Here we have written ̂  for ̂  and F^) for S^^.) Then any smooth formal
scheme X, with reduced scheme of definition X, and with normal bundle ^T, is isomorphic to the
formal completion of VpT") along its ^ore-section.

Proof. — For any n>_i, let X^ be the closed subscheme of 3£ defined by ^n

where J^ is the ideal of X. Then ^^ is an extension of 0^ by J^/J^^S^^").
We will use obstruction theory [SGA i, exposd III, § 5] to show that all these extension,
are trivial, which gives the result.

Since X is non-singular, the extensions are locally trivial. The automorphisms
of the sheaf of rings C^i inducing the identity on (9^ are given by the sheaf
^=Der{^ J^/j^1) of derivations of Q^ into J^/J^1. Hence all possible such
extensions (if there is at least one) are classified by H^X, j<).

Using duality on X, our hypotheses give

H^X.^S^/^^o for n>_i
and H^X.J^S^/^2))^ for n>2.

Now ̂  = Der{0^ ^/^2) = Hom{^ ^/^2) == ̂ 0 (^pr^ §0 H^X, ̂  = o, and the
first extension is trivial. It follows that for any 72 _> 2, Q^^)(9^ ̂ Qx®^/^2). Now for
n>2,

^=Hom(01^ ^/J^^1) ̂ (^©^)(x)(^/^+i).

So Hl(X,^)=o by our hypotheses.
Examples. — The hypotheses on^T will be satisfied if r^2, JSf is an ample inver-

tible sheaf on X, and ^-^^(y) for v sufficiently large; or if r==i , and ^==^(y) for v
sufficiently negative. Thus for curves on surfaces, we have formal uniqueness of suffi-
ciently negative embeddings.
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