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§ i. Introduction.

Let A: be a (finite) algebraic number field, and let (9 be its ring of integers. Suppose
w.>3, and write G=SL^, with the convention that GA=SL^(A) for any commutative
ring A. Set r=G^cG^, and write, for any ideal q in 0,

r,==ker(G<p->G^).

(1) Sloan Fellow. Research partially supported by the National Science Foundation under Grant N S F
GP-5303.

421



6o H. BASS, J. M I L N O R AND J.-P. S E R R E

The subgroups of F containing some Fq(q 4= o) are called congruence subgroups. Since (Pfq
is finite they are of finite index in F. One can pose, conversely, the

Congruence Subgroup Problem : Is every subgroup of finite index in F a congruence subgroup?

We shall present here a complete solution of this problem. While the response is,
in general, negative, we can describe precisely what occurs. The results apply to
function fields over finite fields as well as to number fields, and to any subring (9 of
(c arithmetic type ". Moreover the analogous problem is solved for the symplectic
groups, G=Sp2^ (^^2). It appears likely that similar phenomena should occur for
more general algebraic groups, G, e.g. for simply connected simple Ghevalley groups
of rank >i, and we formulate some conjectures to this effect in Chapter IV. Related
conjectures have been treated independently, and from a somewhat different point of
view, by Calvin Moore, and he has informed us of a number of interesting theorems he
has proved in support of them. Chapter IV contains also some applications of our
results (and conjectures) to vanishing theorems for the cohomology of arithmetic subgroups
ofG^, and, in particular, to their c< rigidity 3? (cf. Weil [24]).

Here, in outline, is how the problem above is solved for G==SL^ (^>3). There
is a normal subgroup Eqd^, generated by certain <( elementary ?? unipotent matrices,
and it can be proved by fairly elementary arguments that: (i) Every subgroup of finite
index contains some Eq (q4= o), and E(, itself has finite index in F; (ii) E^ is a congruence
subgroup if and only if Eq = 1 ;̂ and (iii) Fq is generated by E^ together with the

matrices ( ,. ) in Fq, where a==( .jeSLg^).
\0 ^-2/ \6 a!

From (i) and (ii) we see that an affirmative response to the congruence subgroup
problem is equivalent to the vanishing of

c,=r,/E,
for all ideals q4=o. If K : I^->Gp is the natural projection, then every element of Gq

is of the form K ( . ), as in (iii), and, modulo elementary matrices, this element
\° Az-2/ r^-i

depends only on the first row, (a, b), of a. Denoting this image by £G(,, we have
a surjective function

[]:W^C,,

where Wq == {(^, b) \ {a, b) == (i, o) mod q; a0 + b0 = (9\ is the set of first rows of
matrices a as above.

It was discovered by Mennicke [16] that this function has the following very
pleasant properties:

MSi. [°1=i; P+^PI for all t^; and [ U=H tor all te0.
LIJ L a \ \_a\ "' [a+tb] [a]

MS2. If [a, b,), (., ̂ ) eW, then [M2] = [^] [^].
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SOLUTION OF THE CONGRUENCE SUBGROUP PROBLEM 61

Accordingly, we call a function from W^ to a group satisfying MSi and MS2 a
Mennicke symbol. There is evidently a universal one, all others being obtained uniquely
by following the universal one with a homomorphism.

The main theorem of Chapter II asserts that the Mennicke symbol, [ ] : Wq-^Gq,
above is universal. A more pedestrian way of saying this is that G^ has a presentation
with generators Wq; and with relations MSi and MSs. The principal content of this
theorem is that C^ depends only on (9 and q, and not on n\ recall that G=SL^.

At this point we are faced with the problem of calculating, somehow directly, the
universal Mennicke symbol on W^. The multiplicativity (MS2) naturally suggests the
power residue symbols. Specifically, suppose k contains [JL^, the m-th roots of unity.
Then for a, be0, with a prime to bm, there is a symbol

( b }
(.L^-

It is defined to be multiplicative in a, or rather in the principal ideal ad), and for a prime
ideal p prime to m, with q elements in the residue class field, it is the unique m-th root
of unity congruent, mod p, to bq~llm. This is evidently multiplicative in b and depends
on b only modulo a.

Let q be an ideal and suppose (a, 6)eW^. Ifm divides q then, since a== i mod q,

a is prime to m, so we can define (- ) , provided b =j= o. If b = o then a must be a unit,
/o\and we agree that (- ( = i in this case. Then it is readily checked that
\^/m

(-L:w,^

satisfies all of the axioms for a Mennicke symbol except, possibly, the fact that (-) depends
\a/m

on a only modulo &. For this we can try to use the c< m-th power reciprocity law ".

This says that ( - ) ==7^7^71^ where T^ is a product over primes p dividing b, but not m,
/ ^ \ o r d p ( 6 ) W»n

of (- ( , and where n^ and TT^ are products over primes p dividing m and oo,
\ ^ / m / » \

respectively, of certain c < local symbols 59, ( - 9 — j , which are bilinear functions on the
V P /m

multiplicative group of the local field A:?, with values in [L^.
It is easily seen that ̂  depends on a only modulo &, so we will have manufactured

a non trivial Mennicke symbol, and thus shown that G(,=h{i}, provided we can
guarantee that n^ == TT^ == i. The factor TT^ is easy to dispose of. For if we take q highly
divisible by m (e.g. by m2) then since a= i mod q, a will be very close to i in the topo-
logical group ^ , i fp divides m. Therefore a will be an m-th power in A^, thus rendering
/a, b\i -7-- = i for any b.
\ D / "\ +- /m

Ifp divides oo then ky = R or C, and everything is an m-th power in C*. If ky = R,
however, we must have m == 2, and the local symbol at p will be non trivial for any
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^ H. BASS, J. M I L N O R AND J.-P. S E R R E

choice of q. This, in broad outline, explains how we are led to the main theorem of
Chapter I (Theorem 3.6):

Ifk has a real embedding then for all ideals q+o in 0, all Mennicke symbols on W^ are
trivial. Hence G^=={i} for all q.

If, on the other hand, k is totally imaginary, then for each ideal q 4= o in 0, there is an
integer r=r(q) such that ̂  (the r'th roots of unity) belong to k, and such that

(-), : W,-̂ ,

is a universal Mennicke symbol on W^. Hence C^^. If m is the number of roots of unity
in k, and if m2 divides q then r(q)=m. (We give an explicit formula for r.)

To facilitate matters for the reader (and ourselves) we have included an " Appendix
on Number Theory " at the end of Chapter I which contains statements of the results
from class field theory which we require, together with either references or proofs in
each case. The exposition in Chapter I is otherwise self contained.

Chapter III proves, for the symplectic groups, a result analogous to that of
Chapter II on SL^. Together with the results of Chapters I and II it gives a solution
of the congruence subgroup problem for these groups.

Our results on SL^ give, in principle, a method for calculating the cc Whitehead
group ", Wh(7c), of a finite abelian group TT. We include some simple applications of this
type in § 4, though there remain some serious technical problems in completing this task.

It is worth mentioning also that the theorem of Chapter II is finally formulated,
and proved, as a " stability theorem " for SL^ over an arbitrary commutative noetherian
ring. An example of an application of this added generality is the following:

V ^ • • • > tm are indeterminates, and if n>_m + 4, then SL^(Z[^, . .., ̂ J) is a finitely
generated group.

Next we shall explain, briefly, how the congruence subgroup problem is related
to the work of Calvin Moore, mentioned above.

The congruence subgroups of F, and the subgroups of finite index, respectively,
constitute bases for neighborhoods of the identity for two topologies on G^. The latter
refines the former so there is a continuous homomorphism,

7T : G^ ->G^,

between the corresponding completions, and it is easy to see that TT is surjective. The
congruence topology is the one induced by embedding G^cG^A, where A(; is the ring
of finite adeles of k, i.e. the adele ring modulo the archimedean components. It is well
known (cf. Bourbaki, Alg. Comm., Chap. VII, § 2, n° 4, Prop. 4), that G^ is dense in G^,
o we can identify Gk=G^. In this way we obtain a topological group extension,

E(G,):I^C(G,)-.G^G^-^I,

and, since the right hand terms are both completions of G^, the extension splits over
^k c G(A{) • The congruence subgroup problem asks whether the two topologies coincide,
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SOLUTION OF THE CONGRUENCE SUBGROUP PROBLEM 63

i.e. whether TT is an isomorphism, i.e. whether G(G^)=={i}. The discussion above
shows easily that

C(G,)=mnr,/E^UmC,,

so we conclude that
f { i } if k has a real embedding,

C<((j^)=^
[p^, the roots of unity in A;, if k is totally imaginary.

We conjecture that this evaluation of C(G^) holds if G is any simply connected, simple,
split group of rank > i over k. The discrepancy between the real case and the imaginary
one is nicely accounted for by the work of Calvin Moore, which suggests that one should
expect an extension

<"^>«/
I->^->G^->G^-^I,

over the full adele group, which splits over G^cG^, and which has order exactly
[^ : i] in H^G^, ^). We cannot get at this when there are real primes because GR is
not generally simply connected, and the two sheeted covering sought by Moore in this
case appears to depend essentially on the real primes. In contrast, GQ is simply connected,/" '̂ ^
so it follows easily that the alleged G^ must be of the form Gj^ xGj^ if k is totally imagi-/-" /̂
nary. Gj, generalizes, in a natural way, the " metaplectic groups " of Well [25].

Suppose that G is any semi-simple, simply connected, algebraic group defined
over Q^, and let F be an arithmetic subgroup of Gin the sense ofBorel-Harish-Chandra [8].
Ifr is the <c profinite completion " ofF then there is a natural continuous homomorphism

TC : F->GA/,
^Q9

(cf. discussion above). In § 16 of Chapter IV we prove:
Assume :

a) im(7r) is open in G^f ; and
b) ker(Tr) is finite.

Then if f: F->GL^(Q^) is any group homomorphism there is there is a homomorphism

F : G->GL,

of algebraic groups^ defined over Q^, such that F agrees with f on a subgroup of finite index of F.
This conclusion easily implies that H^F, V)=o for any finite dimensional vector

space V over Q^ on which F operates. Taking for V the adjoint representation of G,
this implies the triviality of all deformations of F in Gg (cf. Weil [24]). Vanishing and
rigidity theorems of this type have already been proved in many cases by Borel, Garland,
Kajdan and Raghunathan.

The hypothesis a) above corresponds to a form of the strong approximation theorem,
and it has been proved for a wide class of groups by M. Kneser [13]. Hypothesis b)
is a kind of ( c congruence subgroup theorem ". In the notation introduced above, and
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64 H. B A S S , J. M I L N O R AND J.-P. S E R R E

applied to these more general groups G, it says that 0(0^) is finite. Therefore it is
established here for certain G, and conjectured for others. For example, the case
r == SL^(Z) C GQ = SL^(Q^) (n>_ 3), to which the theorem applies, is already rather amusing.

We shall close this introduction now with some historical remarks. The congruence
subgroup problem for SL^ {n>_ 3) and Sp^ (^ 2) over Q^ was solved independently
by Mennicke ([16] and [17]) and by Bass-Lazard-Serre [4]. Mennicke and Newman
have, independently of us, solved the problem for SL^ over any real number field. Both
Mennicke [163 p. 37] and Bass [18, p. 360 and p. 416] have announced incorrect solutions
for arbitrary number fields.

Mennicke (unpublished) announced, and Matsumoto [15] outlined, a procedure
for deducing an affirmative solution of the congruence subgroup problem for simply
connected simple Ghevalley groups of rank > i from the two special cases, 81,3 and Sp4.
Their methods should probably suffice to prove at least the finiteness ofC(G^), starting
from the results proved here.

The research presented here was initiated by the first two named authors in [5].
A more definitive solution of the problem treated there was obtained using results of
the third named author, and this appeared, again as a set of notes, in [6]. The content
of [6] is embedded here in Chapter I and a small part of Chapters II and III.

We are grateful to T.-Y. Lam for a critical reading of the manuscript, and for
the proofs of Lemma 2.11 and of Proposition 4.13, to M. Kervaire for Lemma 2.10,
and to Mennicke and Newman for giving us access to some of their unpublished work.
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CHAPTER I

DETERMINATION OF ARITHMETIC MENNICKE SYMBOLS

§ 2. Definition and Basic Properties of Mennicke Symbols.

Throughout this chapter, without explicit mention to the contrary, A denotes a
Dedekind ring and q denotes a non ^ero ideal of A. Nevertheless the definition of Wq,
q-equivalence, and Mennicke symbols below make sense for any commutative ring and
ideal, and they will sometimes be referred to in this generality. In particular lemmas 2 .2
and 2.10 are valid without any hypothesis on A.

We write
W^^eA^^^i^modq, and aA+bA==A}.

We call two pairs, (^, b^) and (^3, b^) in A2, (^-equivalents denoted

[a^ b^) ̂ (^5 h}

if one is obtained from the other by a finite sequence of transformations of the types
{a,b)^{a,b+ta) {teq)

and
{a,b)\-^{a+tb,b} {teA)

(Note the asymmetry.) If we let GLg(A) operate on column vectors ( i ) by left multi-

plication, then the q-equivalence classes are the orbits of the group generated by

al l f 1 °\ (teq) and all (I f} {teA).\t i/ v / \o i/ v /

Lemma 2.1. — Suppose At==S~lA is a ring of fractions of A, and that q' is a non ^ero
ideal of A'. Then any {a\ &')eW^ is ^'-equivalent to some (a, &)eW^, where q=q /nA.

Proof. — Since A is a Dedekind ring it follows that, for any ideal a'4=0 in A',
the composite A-^A'-^A'/a' is surjective.

Now, for our problem we can first arrange that a' and b' are non zero. Then
we can find beA with & = = & / m o d ^q', by the remark above. Write &A==bib2 where
61 = bA n A. It follows from standard properties of rings of fractions, and the fact
that A is Dedekind, that b^ and bg are relatively prime, and that 6iA'=M/. Choose
a^eA such that a^= a'mod bA\ using the remark above again. Then solve

a =. a^ mod b^
a == i mod b^

427
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66 H. B A S S, J. M I L N 0 R AND J.-P. S E R R E

in A. The first congruence implies a==a^==a' mod M/, since bA===b^A. Hence
{a', &')^(^, b)^.{a, b), so ( a , A ) = = ( i , o ) modulo q ' n A = = q . The fact that
^A+^A==A, and hence that (^, ^)eWq, follows easily from the conditions aA'+^A'^A'
and <^ = i mod bg.

The following elementary remarks will be used repeatedly, without explicit
reference: Suppose aA-\-bA==A. If A is semi-local then we can find a teA such
that a 4- tb is a unit. For this is trivial if A is a field, so we can do this modulo each
of the (finite number of) maximal ideals of A. Then we can use the " Chinese Remainder
Theorem 5? to find a single t that works simultaneously for all of them.

Next suppose that A is a Dedekind ring, and that a is a non zero ideal. Then,
applying the preceding remark to the semi-local ring A/a, we conclude that we can
find a teA so that a-\-tb is prime to a.

Lemma 2.2. — Suppose {a, &)eW^.
a) (<2, b)^{a, bq), where q== i—aeq.
b) If a is congruent to a unit mod by or if b is congruent to a unit mod a, then

(fl^)^(i,o).
Proof. — a) (a, b)^(a, b—ba)==(a, bq).
b) If a==u—tb with u a unit, teA, then

(a, b)^{a+tb, b)=={u, b]^(u, b+u(u~\i—b—u)))=={u, 1—^)^(1, i—z/)^(i, o).

Next suppose b==u-^-ta, u a unit, teA. With q==i—a we have

(a, b)^{a, bq)^{a, ̂ —a(^))==(fl,^)^(<^+^-l(^), uq)=={i, uq)^{i, o).

Lemma 2.3. -— Suppose cy'cq are non j^ero ideals in A. Then any ^a,b)e\V^ is
^-equivalent to some {a\ ^')eW^.

Proof. — Passing to B==A/q' and b==q/a ' , we would like to show that an
(a, b)e\V^ is 6-equivalent to (i, o), where now B is a semilocal ring. We can find ^eB
so that a -\-tb is a unit, and then [a, b)^^{a-{-tb, &)^(i, o), the last b-equivalence
following as in Lemma 2.2 b).

Lemma 2.4 (Mennicke-Newman). — Given (<^, ^), . . ., (a^, &JeW^, we can find
{a, c^), . . ., (a, ^)eW^ such that {a, ̂ )^q(^ ̂  t^'^-

Proof. — Choose <7=(=o in q, and use Lemma 2.3 to find (^/, a^q)eVrf such that
(^, ^y)^(^, ^), i^z^^. We propose to find (a, ^q)^q{a^ b\q)^ ^^i^n, and this
will clearly prove the lemma.

By induction on n (the case ? z = = = i being trivial) we can assume TZ>I and that
(a,c^q)^q{a^bf^q),I^i<.n, have been found, and with all ^=|=o. Choose ^==^ mod ̂
so that ^ is prime to q. . .^_i (Lemma 2.2). Then (a^, b^q)^q{a^ c^q), clearly.

Write a—a^==dq and solve d==rc^—sc^. . .^_i. Then a—^==rc^q—sc^. . .^_i
so ^+ r^n^==^+^l• • -^-1^5 ^1 this element a. Clearly [a , c^q)^q(a, c^q), i <^i<n,
and (ti?, c^q)^q(a^ c^q), so the lemma is proved.

We now come to the principal object of study in this chapter.
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SOLUTION OF THE CONGRUENCE SUBGROUP PROBLEM 67

Definition 2.5. — A Mennicke symbol on W^ is a function

n:w^c; (^)^lL J • ^q

where C is a group, which satisfies:

i.rr. ^ FO
M .̂ [^]=i, and [y=[^] if (^)^(^).

M!?2. If (^),(^)eW, then [^-[^[M.

This definition makes it clear that there is a universal Mennicke symbol,

[ ],: W^G,,

such that all others are obtained, in a unique way, by composing [ ] with a homo-
morphism C^->G. We can take for Cq, for example, the free group with basis Wq modulo
the relations dictated by MS i and MS 2.

If q'cq then W^cWq, and clearly a Mennicke symbol on W. induces one
on W^. In particular, therefore, there is a canonical homomorphism

(2.6) C^C,

Using Lemma 2.3, it follows just from MS i that this homomorphism is surjective.
We will now record some simple corollaries of the definition.
Lemma 2.7. — Suppose [ ] : W^->C satisfies MS i. Then :

a) ==i if a is congruent to a unit mod b, or if b is congruent to a unit mod a.

b) If q'cq then, given (^6)eW^, we can find (a',^)eW^ such that P1-PT

[ ba~\c) If qeq and if a== i mod q, then the map b[-> ' \ for be A, b prime to a, induces
a map J

(2.8) U(A/<zA)^C

whose composite with the homomorphism U(A)->U(A/aA) is the constant map i.

d) Any finite set of symbols ' belong to the image of (2.8) for a suitable choice of q

and a, and a can be chosen arbitrarily from a " progression " a + tcq {teA) for some c prime to a.
Proof. — a) follows from Lemma 2.2 b).
b) follows from Lemma 2.3.
c) Clearly the ^-equivalence class of (<z, bq} depends on b only mod a, so (2.8)

is well defined. If b is a unit then a==i mod bq, so ^ === i by part a).
d ) follows from b ) and Lemma 2.4.
Lemma 2.9. — Suppose [ ] : W^->C is a Mennicke symbol. Then :
a) The maps (2.8) are homomorphisms.
b) The image of W^ is an abelian subgroup of C.
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Proof. — a) For <z= i mod q we have \ \== i by Lemma 2 .7 fl^). Therefore
for b^ b^eA and prime to a we have

pî i __ pî i M p^ î p^t p î
I . J-[ . JU^ a J^jM3

so (2.8) is a homomorphism.
b) now follows from Lemma 2.7 ^ and the fact that U(A/<zA) is an abelian

group.
We have now established all the lemmas required for the theorems of Chapter I.

The balance of this section contains material to be applied in Chapter II.
Lemma 2.10 (Kervaire <c reciprocity "). — Suppose a=i=dmodq for some qeq,

and suppose aA-\-dA==A. Then if [ ] : W^—^C is a Mennicke symbol we have

\aq~\ __ \dq'\
[d\-[a\

Proof. - Write d-a=qx. Then H:=[^-^1=M=M=f xq 1-M.J 1 M \, a \ [ a ] [ a ] [a+xq] [ d ]
^ , , , , \aq'\ \aq—dq~\ [—q2^ \xq'}On the other hand, J ^ ' - 2 ^ ' = j .

^ d ] L d J L d J L ^ J
Lemma 2.11 (Lam, Mennicke-Newman). — If [ ] : Wq->C is a Mennicke symbol^

and if {a^ A), {a^ A)eW^, then
, . \ b 1 \b'\\b'\(2.12) =L^i^J L^JL^J

Remark. — This property was discovered and proved by Mennicke and Newman
for the particular symbols constructed in Chapter II. Lam supplied the following
axiomatic proof. Lam also has shown that MS i and (2.12) imply MS 2.

Proof. — Case i. — There is a ^eq such that ^=^3=1 mod q.

Then \ q 1 = i = f q}, ̂  1 ,2 , so it suffices to show that f bq 1 = W W. Fork^J kJ 1^2 J kJkJ
this, neither side is altered if we vary b mod 0^3, so we can arrange that b is prime to q.
Then we can find b ' solving

f)^=btb:==• i mod q
V •==. i mod a^.

Using Lemmas 2.7 and 2.9 we obtain

p^u^ir^u^ik<aj L^J L^i^J L^i^J

and, for i== i, 2,

M=P'̂ | f^l-f^lL ^ J L ^J L^J L^J
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Finally, we have from Lemma 2.10 and Lemma 2.9 a),

\ hq 1 _ K^l _ K^l K?1 _ [b^q] [b,q~\
kj L h MMLd'kJkJ

General case. — Write ^= i —q. Neither side of (2.12) is altered if we replace b
by b^==b +ta^ for some teq. We can choose t so that q and b^ generate q. For
since a^ is prime to b we can do this locally, clearly, and then use the Chinese Remainder
Theorem to obtain a t that works at each prime dividing q. (If q==o our problem is
trivial, so we can assume y=)=o).) Next write a^==i +y', ^'eq. Then q'==rb^+sq for
some r, jeA. Neither side of the alleged equation,

f ^1=NNIA^J KJL^J3

is altered if we replace ̂  by a^=a^—rb^=i+ sq. Therefore we have reduced the general
case to case i.

We close this section by showing how to extend a Mennicke symbol, on W ,
rbi L "to a symbol , where b is an ideal. This result will not be needed in what follows,

but it is perhaps worth pointing out.
Let

Wq=={(6z, b)\a=i modq; b4=o is an ideal inq; aA+b=A}.

Proposition 2.13. — If [a, b) |-> \ is a Mennicke symbol on W^, then there is a unique

[c"] _ L^J
function, {a, b) 1-> , on W^ satisfying :

MO. - If (^)eW,,6+o, then [^1-PI.

M l . — I f (^b)eW, then P1 = i and \ b ^=\b] for all &eb.
L 1 ] \_a+b] [ a ] J

M2. — If {a, b,), (a, b^eW, then

fbibJ^pJpJ
L a \ MM

M3.-If (a,,b), (^b)eW, ^L^l-^l^l.
K^J L^iJ L^J

Proo/'. — Since an ideal in q has q as a factor we can write the elements ofW^ in the
form (a, bq), where a = i mod q and aA + b = A.

Uniqueness. — Choose c prime to bq so that cbq == dA is principal, and choose a'
solving

a' •=. a mod bq
(*)

a = i mod c
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Since a = i mod q we have a' = i mod cq so M i implies l ^ ^ i ^ q . Therefore
KJ La'J

pcn^bqircql
M MM

=[y] (M-)

"CT] (M2 '

==[^,1 (Mo and M i)

Existence. — Define = as above. We must check that this is independent
i a ] {.a ] '

of the choices: c, then d, then a1. The congruences (*) determine ^ 'modrfA==cbq

so , does not depend on the choice of a ' . Neither does it depend on d, which is

determined by c up to a unit factor.
Finally, suppose q and Cg are prime to b (hence to bq) and that c,bq = d,A, i == i, 2.

Choose b' prime to bq so that c^b'q^A, i== i, 2; just take b' in the ideal class of b.
Then

^rfgA^qb'qCabq^Cab'qqbq^^iA.
Choose an a' solving a! =.a mod bq

a! •== r mod CiCgb'.

Then a! = i mod qCgb'q == ^Cg = ̂ ^^ so \\ \== i? ? == i, 2. We must show that

h1=h1. But Lf l j
[a'] [a']

W_W\e,-\U,e,-\
[a'\~[a'\[a'\-[a' \

_K^1K1H_K1
~[a'i-[a'\[a'l-[a'\

Now that is well denned M o is clear. If a == i we can choose a' above equal to i[aj ^ '
rb] mso [ij'll];'1-

Replacing a by a+b, &ebq, we can make the same choices of c, d, a' above,
so M i follows.

Suppose (a, biq), (a, baq)eW^. Choose c, prime to b^ such that c,b,q===rf,A,
i==--1, 2. Then choose a' so that

a' •=.a mod bibaq
a'= i mod qCa
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Since (qc3)(biq6aq)==rfi<4A we have

piqMi _ K<q _ w r<q pit M
I a \~[a-\-[a'\[a'r[a\[a\-

Finally, to prove M 3, suppose (a^, bq), (ag, bq)eWq. Choose c, d, and a,' as
above, i=i,2. Then c, rf, and a =a[a'^ clearly serve to define the symbol for (a^a,^, bq).
Hence

f b q ] f d -I \d-\\d~\
\==\ , , \==\ , \\ ,\ (Lemma 2 . 1 1 )

LaiflJ KffJ LaJl^J '
rbqirbql

nJkJ

Remark. — The symbol is trivial whenever a is a unit. We shall exhibit examples

[h~l
in § 4 for which =|= i even when a is a unit. In this way we can get a non trivial

pairing of the units of A with the ideal class group of A.

§ 3. Determination of arithmetic Mennicke symbols.

Throughout this section A denotes a Dedekind ring of arithmetic type defined by
a finite set, S^, of primes in a global field k. This terminology as well as that to follow,
is taken from the appendix on number theory, to which frequent reference will be made
here.

We shall call A totally imaginary if S^ consists of complex primes. This means
that k is a totally imaginary number field, and that A is its ring of algebraic integers.

For an integer m^ i we shall write {JL^ for the group of all m-th roots of unity (in some
algebraic closure of A;). It will be understood, when we write [L^, that m is prime to
char (A;), so that (JL^ is a cyclic group of order m.

Here is the first example of a non trivial Mennicke symbol.
Proposition 3.1. — Suppose that A is totally imaginary and that ^ck. Let q be an

ideal such that, for all primes p dividing m, if p is the rational prime over which p lies, we have

ordy(q) i
—, . , — ——— >ord,Jm).
ordpQsO p-i- p{ )

Then (a, b) l-> (- j (= i if b = o) is a Mennicke symbol
\c'/ m

(-L:w,->^.

Remarks. — i. For the definition of the power residue symbol (-) .see formula A. 20
\a/m / y \

of the Appendix. Note that the hypothesis makes a prime to m, so that (- ) is defined
/h\ \ ^ / w

if b =(= o; when b == o we have made the convention that (- | = i.
Wm
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2. The main result of this chapter, Theorem 3.6 below, says that Proposition 3.1
accounts for all non trivial Mennicke symbols of arithmetic type.

Proof. — It follows immediately from the definition (A. 20) that [°\ is bimultipli-
\~/ m

cative and depends on b only modulo a. (Note that b can be zero only when a is a unit,

in which case (- ( = i for all 6's.) These remarks establish all the axioms for a Mennicke
/h\

symbol except the fact that ( - ) depends on a only modulo b. This is trivial if b=o
\^/m

so suppose otherwise, and apply the reciprocity formula, (A. 21):

(») =nM\a vta \ p /
\ / m \ ' / m

If ptabm then either p is finite and (-?— = i by (A. 16), or p is complex (by hypo-
\ ' / m

thesis). Therefore, using (A.I 6) again,
/L\ I \ ofdp^) / ,\

' = n a . n ^ .
\0 p\b,ptm \p/ p|w \ P /x / m \ ' / w \ ' / m

The first factors clearly depend on a only modulo b. Finally, suppose p|w and set
h = ordy(q) and e = ordp(j&), where p is the rational prime p divides. We have assumed
that ,

^^^==orcw•
With this we conclude from (A.I 8) that j^-j depends on a only modulo b for

\ P / pn

(a, 6)eW^. Writing m^j^m7 with m' prime to j& we have

(a,b\ [fa,b\ \rli^b\ Y

P/. \\V l,n] \\V ]^

(a,b\ M0^for suitable integers r and s (independent of a and 6), and -?— = - depends
on a only modulo b. This completes the proof. \^ 1 m \^1 m'

Let j& be a rational prime and let [Lpn be the group of all p-th power roots of unity
in k. (If char (A) =p then n = o.) This notation will be fixed in the next two theorems.

Theorem 3.2.— Given {a, 6)eW^, we can find an (^, &i)^(a, b) such that a^A=p^,
a product of distinct primes, which satisfy Np,̂  i modj^4'1, i= i, 2. /TZ case k is a number
field we can choose the p, prime to p; moreover, if qcpn+lA and i=t=o then we can find
a^=a mod b with this property.

Proof. — dumber field case: Suppose first that A is the ring of algebraic integers in k.
Let P=={p^S^ |Np^ i modj^+1}. Our hypothesis, together with (A. 8), implies
that P is infinite.
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Using Lemma 2.3 we see that it suffices to prove the theorem for ideals divisible
by pn+lA, so assume qcpn+lA. We may also arrange that &=ho. Then the theorem
will be proved if we find ^ == a mod bA satisfying the conditions of the theorem, for then
clearly (^, b)^[a, b).

Since &=(=o and P is infinite we can choose a pi^P prime to b. Then we can
apply the Dirichlet Theorem (A. 11) to find a^ = a mod b such that a^ is positive at the
real primes, and such that a^A==p^ for some prime p^. It remains only to be shown
that pa^P, i.e. that Np^i modpn+l.

NpiNp2==card(A/^A)== IN^Q^J, since A is the ring of integers of k. Since ^
is positive at the real primes, and since ^1=1 mod q with c^cpn+lA, we have

| N^ [ = N/^ = i ̂ d ̂ n + ̂

Since Np^ i modpn+lZi the desired conclusion now follows.
Next suppose A' is some other Dedekind ring of arithmetic type in k. Then

A'==A[.y~'1] for some seA, where A is as above. The theorem for A' follows by using
Lemma 2 .1 to replace (a, b) by a q-equivalent pair in Wq^, and then applying the
argument above, making sure that p^ and pg do not divide s. This is possible since we
have infinitely many choices for each of them.

Function field case. — First suppose ^=i=char(A;). Let F^ be the constant field of A,
and let m be the least positive integer such that pn+l\qm—i. The hypothesis of the
theorem implies that w>i. Let P=={p<^SoJdeg(p) is prime to m}. Then (A. 9)
says P is infinite. Moreover, if peP, then Np= i modj^'1"1. To see this write
Np==^, where a?=deg(p) is prime to w. If I==(^—i)Z+(^—i)Zc(y—i)Z then,
modulo I, qm=I==qd, so q == i; i.e. g.c.d. (^w— i, cf— i) = q — i. Therefore if
pn+i divides (f—i it also divides q—i, contradicting our hypothesis.

Given (<z, 6)eWq (we can assume &4=o) choose a pi^P prime to b. This is
possible because P is infinite. Now use the Dirichlet Theorem (A. 12) to find
a^==amodb such that ordp(^i) =o mod m at all peSoo and such that a^A==p^
for some prime pa 4= Pi. The product formula (A. 3) yields

o=Sordp(^) deg(p)
p

==deg(pi)+deg(p2)+ S ord^)deg(p)
P^oc

=E deg(pi) + deg(p2) mod mi

Since pi^P this implies pg^P also, and since (<^, b)^{a, b), the theorem now follows
from the fact, proved above, that Np=j= i mod^41 for peP.

Finally, if char(A)==^ we can take any a^=.a mod b which is a product of two
distinct primes, and the conclusion of the theorem is automatic. This concludes the
proof of Theorem 3.2.

Before stating the next result we must introduce some further notation. Recall
that [Lyn is the group of all p-th power roots of unity in k.
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Suppose that A is totally imaginary and let q be a non zero ideal in A. We define

^—[^-^]pw _ _ j _ i
pW p-^,

For ;veR, M[o,n] denotes the nearest integer in the interval [o, n\ to the largest integer
<,x. I.e. M^n]==inf(sup(o, [x]),n).

Lemma 3.4. — a) With j==jp{q), there is a prime po dividing py a u^i mod q, and a

yeUp^ such that [-9—] generates pipn-y.
\Po/pn

b) (—)yj : W^->p^ ^ a Mennicke symbol.

Proof. — a) j===——^-1 — —— for some po dividing j&, and (A. 17) tells
us that ^^ p^^

(^w^.\
^{ Po t

where A==ordp^(q), hence the result.
i^ follows from Proposition 3.1 if j>o, and it is obvious if J==o.
Theorem 3.5. — Suppose (^ ^)eW^. Let p be a prime number^ and let n be the largest

integer such that k contains [jipn. Then there exist qeq, a^=i mod q, and ceA, such that

(a, b)^{a^y c^q}^ except in the following case: A is totally imaginary and (-) +i, where

j-jpW- ^
(Lemma 3.4 guarantees that (-1 above is defined.)

Y^/pV
Proof. — We shall call two non zero elements " close at p " if they are multipli-

catively congruent modulo j^-th powers. Note that this is a congruence relation modulo
an open subgroup of finite index.

Case 1. — A is not totally imaginary.
Then there is a non-complex (i.e. either real or finite) poo^oo? ^d t^e non degene-

racy of the Hilbert symbol shows that we can find u,vek*y^ such that ( ^ — j
generates (Apn. \P°o/^

Choose a principal ideal ?Acq, and, with the aid of Lemma 2.3, an (a',6'y)eW^
which is q-equivalent to {a, b). We can take &'=t=o, and, altering a' mod b'q^ arrange
that a * is prime to p in the number field case.

Now the Dirichlet theorem (A.io) gives us a prime ^A, where b^ satisfies
b^b'moda'
b^ is close to v at p^
b^ is close to i at all peSoo—{poo}, and at all p^S^ which divider, in the

number field case.

The last condition makes &]A prime to p in the number field case.
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c- (^^ i /^i\ i^vYbmce —— generates [L n we can solve —— . ^- == i for some i>o.
\V^/pn {^Jpn \Poo/^

Use Dirichlet now to find a prime ^A, prime to p in the number field case, so that

a^^a'modb^q
a^ is close to M1 at p^

Now we apply the reciprocity formula (A. 21):

(̂  = n (̂  .
W n ^^V P /\ 1/ pit \ ' / pH

On the right our conditions on b^ exclude any contribution from S^ except at p^,
as well as any from the primes dividing p in the number field case. Using (A. 16) to
eliminate most of the finite primes, therefore, we have

W| ^ (^ M /^M
Wpn ^iA;,;lpj/

Since b^A is not j&-adic the first factor depends on a^ only modulo b^ so our approxima-
tions, and choice of i, leave us with

\\ /^M i^\
vL l^L'vpoc, : i.
\"l/ pn \ " 1 - - / pn \ r oo / p«

Thus ^i is a ^"-th power modulo a^ say &^=^" mod fli. Then

(^ *)^(fl', b ' q ) ^ ^ ' , b^q)^{a^ b^q)r^^ c^q),

and the proof is complete.
Case 2. — A is totally imaginary, but q is not divisible by every prime dividing p.
Let q' cq be the largest ideal in q which is so divisible. Then ordp(q') = i for at

least one p dividing^, so it follows that ^,(q')=^(q)=o (see (3.3)). Use Lemma 2.3
to find an (a', 6')eW^ which is q-equivalent to (a, b). Then, since jp(q')==o, this case
follows now from:

Case 3. — A is totally imaginary, q is divisible by every prime dividing p, and i -) = i.
\ a / p J

We recall from Lemma 3.4 that (-)pj is a Mennicke symbol on Wq.
Choose qeq such that ordp(^)=ordp(q) for all p|j&. Clearly then Jp(y)==Jp(q),

and we can find an (a\ b'q)eWq which is q-equivalent to (a, 6). Then

•<.̂ ),-M),̂ ).\ / p] \ i pj \ i p j \ i pi \ i pi

because (-)py is a Mennicke symbol on Wq, and because a'==i mod q.
Choose a po, u, and v as in Lemma 3.4 a). If h= ordp^(q) then u== i mod p^,

veV^, and -?- generates pipn.y.
\Po /pn
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We now use the Dirichlet theorem (A.io) to find a b^eA such that

b^=b' mod a'
b^ is close to v at po
b^ is close to i at all other p dividing p,

and such that b-^A is a prime, prime to q. Since a' == i mod y, <z' is prime to j&, so these
congruences are compatible.

Since {—)yj is a Mennicke symbol on Wq, we obtain, with the reciprocity
formula (A. 21):

,-ffi J^} J^ =n(^ .\^/ . \a'] . \^7 . p^\ p / .\ / pi \ i p j \ / p j \ ' / p j
Since A is totally imaginary, and since b^ is close to i at allj^-adic p other than po, we are
left with

i=f^ (af9 b1}
\ b! lp\ PO ^/

Since [a^bl\ elW^A -̂ ., (see (A. 17)) we have (̂  =i, hence
\ PO /pn \ PO ] y n \ PO /^

also (-^—ll ==i . Therefore (-1-1 ^^pn-j, so w-e can find i>_o such that
V b! I p J \ 6! Ipn

/^y/^\ ^^
\PO /^ \ ^ /pn

Now choose a prime ai such that

^== ^' mod b^q
a^ is close to it1 at po.

Since ^= i mod p^, A==ordp/^), the same is true ofu\ so these congruences are compa-
tible since b^ is prime to q. Moreover,

(fli, &i?)—^', b,q)^{a', b'q)^^ b).

We conclude the proof now by showing that b^ is a j^-th power modulo a^.
From reciprocity,

^ = n ̂ alJh\ -= ^1? ^^ ^a^\
Vj,n ^^ P ^." I ^1 ^A PO J,n

using the fact that A is totally imaginary, and eliminating most finite primes

with the aid of (A.i6). The latter shows also that p—1) == ^ depends
la b\ ia ' b\ v ' p n v / pn

on ^ only modulo b^ so p—1) ==:a——1 • At po our approximations imply
V °1 /pn \ 6! /pn
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(^ b\ lu\ v\ fb,\ l a ' , b\ lu\ v\ . .
—— = = — — . Hence — = —— ——- ==i , so b. is indeed a j^-th power

\ PO /,. \PO^ W^ \ ^1 UPo/,n Jr p

modulo a^. Q^.E.D.

We are now prepared to prove the main theorem of this chapter.
Theorem 3.6. — If A is not totally imaginary then, for all ideals q + o, all Mennicke

symbols on W^ are trivial', i.e. C^= {i}.
Suppose A is totally imaginary, and let m denote the number of roots of unity in k. If q is a

non ^ero ideal define the divisor r==r(q) of m by ordp(r)==^,(q), for each prime p, where

. ford^(q) i 1

'̂-̂ OKW-̂ L,,,

as in (3.3). Then (-), : W^->(JL,

is a universal Mennicke symbol in W^, so G^^^. If qcq' andif r'=r(^, then the natural
homomorphism C^->Gq/ corresponds to the {rf^-th power map, ^->^.

Remark. — In the totally imaginary case it follows already from Proposition 3. i
that (—),. is a Mennicke symbol on W^. The point now being made is its universality.
The last assertion follows simply from the formula,

(-)^((-)^

Proof. — Let [ ] : W^C be a universal Mennicke symbol. We shall use the
notation and assertions of Lemmas 2 .7 and 2.3. In the homomorphism (2.8) we can
use (2.7) d ) and the Dirichlet Theorem to make aA prime. Then U(A/^A) is cyclic,
so we conclude from (2.7) d ) that:

(i) Every finite subset of G lies in a finite cyclic subgroup.
Suppose m-^p^m' withj^ a rational prime and m1 prime to p. Given {a, 6)eW^

we can find [a^, b^)^{a, b) as in Theorem 3.2. This implies that U(A/^A) has no
elements of order ^n+l. If <?=i—a^eq then (^, ^1)^(^1, ^1—^1^1)== (^i? b^q) so

= | lies in a homomorphic image of U(A/fliA). Consequently G has no
L^J L a! J
elements of order ^n+l. Letting^ range now over all rational primes we conclude from
this and (i) that C has exponent m, i.e. xm'=l for all xeC. It follows easily from this
and (i) that:

(ii) C is a cyclic group of order dividing m.
Again write m==pnm' as above. Suppose {a, b)^(a^, c^q) for some qeq with

^1=1 mod q and ceA. Then == <z \= ' , so it follows from (ii) thatkl L î J kJ ' / H
has order prime to p. If A is not totally imaginary then we can invoke Theorem 3.5
and apply this remark, for every p, and conclude:

(iii) G== {1} if A is not totally imaginary.
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Now suppose that A is totally imaginary. Since [ ] was chosen universal, and
since (—), is a Mennicke symbol on W^ (Remark 2 above) there is a homomorphism
f : C->^ rendering

[ } / Gw. < i'
M\^

commutative. Clearly/is surjective, so if we show that [G : i}<,r the theorem will
be proved. It suffices to do this on the ^-primary components Cp for each prime p.
Writing m=pnmf and r==^r', with m' and r' prime to p, and J==;p(q), the passage
to ^-primary components can be achieved by replacing m by ^n, r by p\ and G by C .
Then if ^ e Canker/ we have \-\ ==i , so it follows from Theorem 3.5 that

(^ b) ̂  ̂  c^q). As above, we see that == i since it is a/^-th power in the group C

which has exponent ^n, according to (ii). Q.E.D.

The next theorem is required to handle some technical problems that arise in
connection with the symplectic groups where we obtain a symbol { } for which we cannot
directly verify all the axioms for a Mennicke symbol.

Theorem 3.7. — Suppose we have a commutative diagram

^ D

[]^C,
where

a) f is a homomorphism of abelian groups^
b) [ ](, is a universal Mennicke symbol on W., and
c) { } is a surjective map.

Let \ be\ f ? an^ make the following assumptions:

(i) {a,b)\->^ and {a, b) [-> satisfy MS i, and

(ii) if (^), (^)GW<,, then

f^p2lJMJ1
[ a ] [ a \ \ a \

Then f is an isomorphism., so { } is a universal Mennicke symbol on W..
Proof. — Evidently c ) (i) and c) (ii) imply that [ ] satisfies MS i and MS 2,

so [ ] is a Mennicke symbol on W^. Therefore its image is a cyclic subgroup, D', ofD,
whose order divides m (the same m as in Theorem 3.6).
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If A is not totally imaginary, and if char (A)+2, then we can apply Theorem 3.5
to any (<z,&)eWq to find an (a^, c2q)^{a, b) with yeq ,^=imody, and ceA. (We
take ^==2 in Theorem 3.5). Since {a^ ?)^(i, o) we conclude, using c ) (i) and c ) (ii),
that

O-f^i-^^lf'l-^^l-f'lM-M^.\af \ a , j IflJkJ \ a, j \aJ[a^ [a,]

If char(A;) =2 we find (fli, b^q)^ {a, V) with qeq, a^ = i mod q, and a^A prime, using the
Dirichlet Theorem. A/fl^A is then a finite field of characteristic 2 so ^=^2 mod a^ for
some ^, and we can argue again as above. Thus, if A is not totally imaginary then we
have D=D', and, by Theorem 3.6, D'={i}.

Now assume that A is totally imaginary. Then we can realize [ ] by
(—),. : Wq-^^, as in Theorem 3.6. We want to show that the (surjective) homo-
morphism /:D-^ is an isomorphism, and we shall do this by showing that
[D : i]^r. We know [D' : i]|r.

Write m==2nmf with m1 odd. If r is odd, i.e. if j^^o, then we always have
the hypotheses of Theorem 3.5, and we can argue as above to prove that D = D'.

Henceforth, therefore, we can assume r is even. We claim that [D':!]]^.

To see this we first note that, since [] : W^D' is a Mennicke symbol, there is a
necessarily surjective homomorphism g : ̂ ->D7 such that

t b 2 } m ib\IJ'U^w/
We want to show that g{—i)=i. If — i = ( - ) then ( — ) ==i, so we have
t^\ Wr Wr

\a} •= I ' ^=^(C^)• Hence we can ^P^ Theorem 3.5 and find an (a^, c^q) ~, (a, A2)
with ^eq, a^ = i mod q, ceA.. Then we have

, , t b 2 } [c^q^q^
^-^^at-l^JlJJ

=[^q} (using c ) ( n ) )

-[^ICJ (usin^^"))\^\^
i ^ Jl^i

"̂".(Dr-
If j<n this implies ^ ( — i ) = i . Now suppose j==n, i.e. that 2n\r. We can
use Theorem 3.2 to find an a==imodq such that aA==p^ where the p,
are distinct odd primes such that N,=Np,=j= i mod 2n+l, i== i, 2. Choose a beq
such that b == — i mod pj and b = i mod pg. Then b2^ i mod a, and we have
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U ^l^l (zd -(-i)^1"1^. Since ^\r and since s^^N.-i, it follows
W r \ P l / , W ,

that (Ni—ij / r is odd, so ( - ) = = — i . Setting q==i—a we have

(^ b2)^^ ̂ -^)=(^ &^)-,(a, y)^(i, o^,

80 ( a }= T • Therefore ^(-!) =^) - ( ̂  1== J. as claimed. This completes the proof
that [D' : i]|- when r is even.

The proof of the theorem will be concluded now by showing that [D : D']^2.
(Note that, at this point, we have not even shown that D is finite). For since we have

just shown that [D' : i] ^ it will follow that [D : i]^r, as we were required to show.

Given any (^, 61),. . ., (^, ^JeW^ we can use Lemmas 2.3 and 2.4 to choose
qec\ and (a, c,q} eW^, such that (a,, b,) ̂  (^ c,q), i <,i<^n. We can further arrange that
the c, are non-zero, and then, by varying a mod ^. . .c^q, arrange that aA is a prime ideal.
Let U be the finite cyclic group U(A/oA). Then we have the map defined in (2.8),

h: U->D,

defined by b |-> for be A and prime to a, and the image of h contains each of the

given elements ^ , . . ., ^ . From c ) (ii) we have the functional equation,

h(u2v)=h{u2)h(v) for u, yeU.

Let H^^cD', and let b generate U. Then U^U^U2 so

h{U)=Huh{b)HcD'uh{b)D\

In conclusion, this discussion shows that any finite set of symbols I 1 1 I " 1 lie in\^y "" 'KJ
the union of D' and of one of its cosets in D. Finally, since {} : W.-^D is surjective,
by hypothesis, it follows immediately that [D : D']<2. Q.E.D.

We shall conclude this chapter now by describing the functoriality of the
isomorphism in Theorem 3.6.

Let A be the ring of integers in a totally imaginary number field k. Then
Theorem 3.6 supplies an isomorphism

(3.8) HmC^^
<t

where ^ denotes the group of roots of unity in A, and where the limit is taken over all
non zero ideals q of A. In fact, if m==[^: i], the limit is already reached by any q
divisible by m. II ̂ -^ and afortiori by any q divisible by m2. (k contains a primi-

p\m ' ' r

tive^-th root of unity, w^ and i—Wp generates the ideal whose Q&—i)-st power is (j&).
The symbol ^1/(1-^ above denotes this ideal.)
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Let A;i be an extension of k of degree d=[k^ : k], and with integers A^. If q is
an ideal of A then the inclusion W^cW^ induces a homomorphism C^-^C^. The
ideals qAi are cofinal in Ai, so, passing to the limit, (3.8) induces a homomorphism

9 : t^-^-

The nature of the identification (3.8) shows that 9 is characterized by the fact that,
for q highly divisible by ^i==[^ : i], and for any (^, b)eW^

i ( b } \ ( b }?lA.)J=J^•
The left subscripts here designate the fields to which the symbols apply.

This <p has been determined in (A. 23); it is defined by the formula:

(3.9) 9^)=^ where e^+^+^Y-^.
\ 2 2 /^

APPENDIX ON NUMBER THEORY

This appendix presents, in a form convenient for our applications in § 3, the
statements of several fundamental theorems from algebraic number theory. Most of
the statements are simply given with a reference to the literature from which they are
drawn. In other cases we have deduced certain " well known " corollaries from the
latter. The following references will be used:
[AT] E. Artin and J. Tate, Class Field Theory, Harvard notes (1961).
[H] H. Hasse, Bericht liber neuere Untersuchungen und Probleme aus der Theorie

der algebraischen Zahlkorper, II Teil, Jahr. Deut. Math. Ver., Erg. VI Band,
Teubner, 1930.

[L] S. Lang, Algebraic Numbers, Addison Wesley (1964).
[O'M] 0. T. O'Meara, Introduction to Quadratic Forms, Springer (1963).
[S] J.-P. Serre, Corps Locaux, Hermann (1962).

Let A; be a global field, i.e. a finite number field or a function field in one variable
over a finite field. If p is a prime (or place) of k then there is a normalized absolute
value, [ |p, on the local field ky at p. (See [L, p. 24] where it is denoted || ||p.) If p
is finite then the residue class field A(p) is finite withNp elements, and l^lp^Np"0^^.
If k is a function field with constant field Fg then Np = ydeg(p)3 where deg(p) = [k{p) : F ].

For finite p write Up for the group of local units at p, and

Up(^)=={^Up|ordp(i-^^}

Thus Up(o)==Up and Up^^i^^ for n>o. The group Up {n) is an open subgroup
of finite index in Up. If p is infinite we can set Up = A?, the multiplicative group of ky.

Let J be the idele group of k (see [L, Gh. VI] or [O5 M, Gh. Ill]). J has a topo-
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logy making it a locally compact group and inducing the product topology on the open
subgroup IIUp. The group k* is embedded diagonally as a discrete subgroup ofj.

If x==(Xy) is an idele then |^p|p=i for almost all p. Let [[^11=111^ | .
The map [ [ [ | :J->R* is a continuous homomorphism whose kernel we denote by J°.
It is clear from the definitions that

,̂  . Q^(R if k is a number field.
(Z if k is a function field.

(A. 2) Product Formula (See [L, Ch. V] or [O'M, § 33 BJ).

^cj0.
I.e. r i j ^ [n== i for xek*.p ' lv

In function fields this is usually written additively:
(A--3) If k ls a function field and if xek* then

Sord (x) deg(p)==o.p

Write C =]jk\ the group of idele classes, and C^J0/^.
(A. 4) Class Number-Unit Theorem (See [L, Gh. VI, Theorem 4]).

G° is compact.

Let po be a finite prime. An idele t = {ty) is called prime at po if ty== i for p =t= p^p
and if ^ is a local parameter (i.e. generates the maximal ideal) at po.

(A. 5) Artin Reciprocity and Existence Theorem. (See [AT, Gh. 8, § i]). Let K/A
be a finite abelian extension. Then there is a continuous epimorphism r : C^Gal(K/A;) such
that, if p is a finite prime of A:, unramified in K, and if t is a prime idele at p, then
r(t.k^)={p, K/A), the Artin symbol. Every open subgroup of finite index in C is the kernel
of r for a suitable (and uniquely determined) K.

For the Artin symbol see, e.g., [S, Gh. I, § 8].
(A. 6) (< Cebotarev Theorem for abelian extensions 5?. (See [H], § 24). Let Kfk be

a finite abelian extension, given oeGal(K/A;) there are infinitely many primes p of k, unramified
in K, such that (p, K/A)=a. (See also A. Well, Basic number theory, p. 289.)

In view of (A. 5) we see that this Cebotarev Theorem is equivalent to the:
(A. 7) Density Theorem.
IfV is an open subgroup of finite index in G then every coset of CIV contains infinitely many

prime idele classes.

(A. 8) Corollary. — Let ^ be a primitive m-th root of unity and suppose that ^k. Then
there exist infinitely many primes ^ such that Np^ i mod m. If k^)jk is cyclic we can even
arrange that A(p) contains no more m-th roots of unity than k does.

Proof. — Choose c r+ i in Gal(A(^)/A:), a generator in the cyclic case. By the
Cebotarev Theorem there are infinitely many primes p, prime to m in the number field
case, and hence unramified in k(^), such that (p, k{^)lk)==a. Thus the Frobenius
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automorphism in the extension A:(p)(?;)/A(p) is not trivial, so ^A(p). (We identify ^
with its image modulo p.)

In the cyclic case we even have [A(p)(^) : k(p)]== order of CT. Suppose ^(=k{p).
Then, by HensePs lemma, ^eky, so [^) : ky] is dominated by [A(Q : A(^)]. The
inequalities

[k^) : k]=[k{p)^) : k(p)]^[k^) : U<TO : A(C)]

now imply that ^ek.
(A. 9) Corollary, — If k is a function field then, given n >i , ^r^ are infinitely many

primes p of degree prime to n.
For if F^ is the constant field of k we can take m = qn— i in the corollary above.

The extension k(^) jk is certainly cyclic, and it is easy to see that a finite extension of F
having only q— i m-th roots of unity must have degree prime to n,

Let S ̂  be a finite, non empty, set of primes of k, containing all archimedean
primes when A: is a number field, and let

A={xek\ordy{x)^o for all p^S^}.

A is called the Dedekind ring of arithmetic type defined by the set S^ of primes in k. (A is a
(c Hasse domain " in the terminology of O'Meara.) A is, indeed, a Dedekind domain,
and we can canonically identify the maximal ideals of A with the primes outside S^.
With this convention we have k{p)== A/p for p^S^,. If A'is defined by S'^DS^ then
it follows easily from the finiteness of class number that A' is a ring of fractions of A;
in fact A==A[a~1] for a suitable aeA.

(A.io) Dinchlet Theorem, — Suppose we are given: non ^ero a, be A such that
aA+bA=A; a finite set SQ of primes outside S^ and prime to b; for each peS^uS^ an open
subgroup VyCky and an x^eky such that, for peSo, ^=ordp(^)^o. Suppoxe also that,
for at least one peS^, Vp has finite index in k^.

Then there exist infinitely many primes p^S^uS^ such that there is a ceA satisfying

c == a mod bA
ceXyVy for all peSoUS^

^d cA == po a
where a== Ft p^.

p e S o '

Proof. — For peS^ we can, by making the Vp smaller, if necessary, assume Vp cUp.
For p ^ So u S ̂  define

V,=U,(ord,(6))={^eU^|ord^i-^)^ord,(&)}.

Then Vp==U^, for almost all p, so V=riVp is an open subgroup of J. Therefore

W==Vk^l^ is an open subgroup of C=]fk\ so C/W is discrete. To show that it is
finite we need only observe that it is compact. Since C° is compact (see (A. 4)} it suffices
to show that G/C°.W= | |C| | /[!W|| is finite. Since ||C||^R or Z (see ( A . i ) )
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and since [|W|| is an open subgroup, it suffices to observe that ||W]| 4={i}. But this
follows immediately from the fact that V? has finite index in k*y for some peSoo.

Now it follows from the Density Theorem that each coset ofJ/V. A* contains infinitely
many prime ideles. To apply this we first construct some ideles from the data of the
theorem. Write S^ for the set of primes dividing b, and define ideles ^ and ~x by:

_ _ a if peS^

" a^ i if P^S,

„; ;, J^P if P^O^oo
p [ i otherwise

Now the Density Theorem gives us infinitely many primes po^S^uSoo such that there
is a prime idele r at po satisfying r'==~d~x~1 mod VA*. Thus we can find dek* and yeV
such that

(*) rxv == ad

We claim that po and c == ad satisfy the conclusions of the theorem. To verify this
we study the equation (*) at each p.

p<^{po}uS^uSoUS^: Vy=ad, so ordy{c)==o
p=po: r^==ad, so ord^)=i
peSo: XyVy==ad, so ^^VpCUp

and, in particular, ordp(^)==ordp(A:p)==^.

peS,: v^==d so rfEV,=U,(ordp(^))

and therefore c == ad== a mod p^W.
These conclusions already show that ceA, that c^=a mod &A, and that cA=poa,

as well as that ^p^eVp for peSo. There remains only the condition at S^.

peS^: x^==ad, so cXyle\y. Q,.E.D.

The following special cases of this theorem suffice for most applications.
(A. 11) Suppose k is a number field. Given non ^ero a, be A and a non ^ero ideal a such

that ^A+6A=A==a+^A, then there are infinitely many primes po^Soo such that p^a^cA
for some c == a mod bA, and we can prescribe the signs ofcat the real primes.

We take Vp==the positive reals, at real p, to obtain the last condition.
(A. 12) Suppose k is a function field., and that we are given <2, b and a as in (A. 11) above.

Suppose also given, for each peS^, integers n^>o and m?. Then we have the same conclusion
as above, where the condition at real primes is replaced by:

ordp (c) = TTZp mod n^L
for all peS^.

Here we take for Vp, peSoo, the set of xek* such that ordp {x) so mod Uy.
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We shall now give a description of the power reciprocity laws, following [AT, Ch. 12]
and [S, Gh. XIV].

We fix an integer m^ i and we shall be discussing fields k which contain the
group, [JL^, of all m-ih roots of unity. This will always be understood to imply that
char(A;)tm, so that (JL^ is cyclic of order m.

First suppose A; is a local field, i.e. a local completion of some global field, and
assume [A^cA:. If^ is the maximal abelian extension of k, then there is a reciprocity map,
which is a continuous homomorphism

k'->Gsil{kJk)

a -^{a, kjk),

(See [S, Gh. XI, § 3]). For example, in the non-archimedean case, the restriction
of (a, kjk) to the unramified part is the Artin symbol, i.e. the ord(a) power of the lifting
of the Frobenius automorphism. If a, bek* then, since ^ck, k^a11"1) fk, is an abelian
extension on which a == (6, k^fk) operates, so we can define

la,b\ __^
\ k } ——a^^

\ / m

and it is easy to see that this is independent of the choice of a^. (In case our field is ky,

where k now denotes some global field, then we shall write I-5—! instead.) This
V P L

definition agrees with those of [H] and [S], and is reciprocal to that of [A-T].

(A. 13) (—1 :rxr^
\ K, ]
\ I m

factors through (A*/^) X (A;*/^), on which it defines a non-degenerate^ antisymmetric^ bilinear
form. Moreover^

[a, i—a\
--i whenever a, i—aek*

l - r \ M 5 I I 1 1 \and,zfn\m, ^ = -^ .
\ \ / ml \ I min

This result and (A. 16) below summarize the results of [S, Ch. XIV, §§ 1-3] and
of [AT, Gh. 12, § i].

We shall now discuss the evaluation of these symbols. In the archimedean case
the symbol is uniquely characterized by (A. 13):

(A. 14) If k^C then k'==k^ so [ ' } ==i for all a and b.
\ c / m
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(A. 15) If A;^R then m<,2 and we have

( a, b\ f — i if a, b < o
R ) ^ 11 otherwise

Suppose next that k is non archimedean, with prime p and suppose Np == q is
^L1

prime to m. Since (JL^CA: we have q=i modm. Therefore, if <^eUp, a m becomes
fa\

an m-th root of unity mod p, so there is a unique element — epi^ such that
w.

q-1 (a} ^a m = - mod p.
w.

This is called the m-th power residue symbol at p.
(A. 16) (See [S, p. 217]). Suppose k is non archimedean with prime p and residue

characteristic prime to m. Then for aeUp and bek*y

la,b\ ^laY^

w,-w,
Thus -5—! ==i if b is also a unit. Note that when charA>o we are automati-\ P L

cally in the case covered by (A. 16). It remains to discuss the much more complicated
case when the residue characteristic divides m. The information we require in these
cases is contained in the following two propositions.

k now denotes a finite extension of Q,p, with prime p, and we suppose m ==^n. We
shall write , / .<?=ordpQ&),
the absolute ramification index.

For xefL write [x\ for the largest integer ^x, and for aeZ, write ^ ̂  for the
nearest integer to a in the interval [o, n\.

(A. 17) Let h be a non negative integer. Then

fU,(A),U,\ _ /U,(A+i) ,n
—,— -I— -—^— -1^_,

\ ^ / nn \ r I vnpn \ T I pn

, . \h i 1where 1 = - — — —
[e ^-I-l[0,.,

(A. 18) // aeVy(h) and if ordp(&) >A, then j-5—) depends on a only modulo b,
\ P I p i

where j has the same meaning as in (A. 17) ; it equals i if ordp(^)==A.

Remark. — When <2eUp(A), bek^y the value ofl-^— may be given explicitly,
as follows: \ T ^ pj
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When j = o, this symbol is of course equal to i.
When ;^>i, let w be a primitive p-th root of unity, and let a = = ( ^ — i ) / j ^ f w — l ) .

Smce ^eUp(A), a is p-integral; let a be its image in A(p), and let S(a) be the image
of a by the trace Tr : A;(p)->Fp. With these notations, one has:

i ' \ == w~ ̂ ^Wi i *-v •
V P /,y

(If j==i this is [S, Prop. 6, p. 237]. The general case is proved by induction on j,
writing a as a p-th power.)

Proof of (A. 17). — Write

^^pw^)
V f /y

^^pwi11,)
V ^ I p n

We shall reason by induction on n. Setting j'= - - — — I — ^ ^/ is defined by the
inequalities V P~l\,(̂ )̂̂ <.(,.+,+ ,̂
and j is the nearest integer to j ' in the interval [o,n].

The case n = i. — Since the groups [L and ^/ decrease as h increases it suffices to

show that, for h = e i + . — == —— (which is an integer because J^"1^— i) divides <?),

{i(A, i)={i}, ^(A-i, 1)==^,

^(A,i)={i}, ^(A-^i,i)=^.

If ^eUp(A) and yeky the evaluation of j^( is made in [S, p. 237, Prop. 6]. From
this one deduces the first three formulas ^ / P

pW^n ̂ JW^}, ̂  ("•(M) -,,.
^ p ^ \ P /,> V P / p

The last formula, ^-^——I-5—? =^ follows from the evaluation of the symbol
\ ' I p

given in [S, p. 237, Exercise 3]. Rather than appeal to an exercise we can argue directly,

as follows. Take xeVy(h-i), x^V^K). If p-^) -{i}, the reciprocity map
\ ' / p

k -.GalfA;^)//;) is trivial on Up, and hence the extension k^^jk is unra-
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mified [S, p. 205, Cor. to Prop. 13]. Then ordp on k agrees with ord on k^).
Writing x^^ i -\-y we have

( p-i \x= i +py i +2-^-J/+... +y

, ^ ^so h— i = — — — i = = < ? + — — — i = = o r d ( A ; — i )
^-i j&-i

^min(^ + ord(^), p ord(j^)),

with equality when these two numbers differ. Since h— i is not a multiple ofp, therefore,

we cannot have p ord(j/)<<?+ord(j/), so ord(^)^—^-, and h—l^e+ord(Jy)^e+-€—;
contradiction. j ) I P~1

The case n>_2. — Let TT: (Ji^-^^.i be the^-th power map. Since

(.) N =»M ={"^\
\ P /pn-l \ P /,n \ P /,.

we see that pi(A, y2—i)=7c(^(A, 72)), and similarly for \L'.

(i) Suppose first that j= -----]— <n—2. Then, by induction we have
I" ^-^[o.n]"

(i(A, 7Z—i)=(i^_i_y=t={i} , and the only subgroup of p-yn having this image under n
is plyn-y. Therefore this case follows from the remark above.

(ii) Suppose that - - — . — — 2 ^ — i - The argument above shows now that[e p—i\
7r((A(A, ^))=={i}, so [L(h,n)C[Lp, and similarly for [A'. As in the case % = i , it suffices

to show that, if h^=e[n+——\, then
\ P-1/

^ (^ 7^)={I}. ^ (^n-i, ̂ )=^,
^(^,%)={i}, ^(^_i^)=^.

Since n>_2 and since ^ is divisible by {p— i)^"1^ it follows that A^—1>^ (i + ——\.
/ i \ v p~~l]

Now it follows from [S, p. 219, Prop. 9] that, for w>d i + — ^ — , the^-th power map

sends V^m—e) isomorphically ontoUp(m). Taking m==^—i, m=h^ and m=^+i ,
and using the formula (*) above, we obtain

^ {hn^n)=^ (^n-l^—l)

[A'C^,7z)=^(^_i,7Z-l)

^ (^n-^ ^)=^ (^n-l-I, %-l)

^'(A^-I, ^)=(i'(A^-I, 72-I)

The proof is now completed by the induction hypothesis.
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a.b\ lla.b\ Y^ . „
Proof of (A.i8). — Since ?-] = ( [a'—\ \ it follows from part (i) that

\ P I p j \\ V ! p J
W), Up\ , . /u^+i)^;\
\ P Jpy \ P /,/

This shows first that (-3—) depends only on the class of a mod Up(A +1)5 i.e. mod p}l+l.
{v J P j [a, b\

Case ordp(6)^A+i. — It is then clear that I—— depends only on a mod 6.
\ P I pi

Case ord(b)==h. — If ^eUp(A+i) we have {~9—} ==i by one of the formulae
\ ' / pi

above. If f l<^Up(A+i) , ordp(i—a)=h, and we have 6 = = ( i — d ) v with yeUp. Hence:

(^b\ ^ la, i—a\ la,v\

\v],r\ p / pAp /p /
But (-?———1 =i by (A. 13), and (-?—) =i by one of the formulae above. Hence

\ P 1^ \ P /^

(̂ ,- ^^
Now let A: be a global field containing (JL^. / ,\
(A. 19) m-th power reciprocity law: If a^bek* then |-5-—) =i /oy almost all p, ^zrf

I p /• ' m

"(^ -\ ' / m

The first assertion follows from (A. 16), since a and b are both units at almost all
finite p. The product formula is [AT, Ch. 12, Theorem 13].

Suppose that A is the ring of algebraic integers in a number field k. Let b be a
non zero element of A, and let a be an ideal of A prime to bm. The m-th power residue

lb\
symbol^ -) , is defined by

\a/
lb\ /b\0^(A.20) - =n -W. ^'APL

When a==^A we write simply (-1 . This is evidently a bimultiplicative function on the
Wm /^ordp(a) (b.a\

pairs (a, b) for which it is defined. According to (A. 16) we can write |—|\pL
so the reciprocity law, and the antisymmetry of the local symbols, gives us

(A..) ^=^A}•w» "A P L
461
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If ptmabco then (A. I 6) implies -5— ==i. Therefore we can rewrite (A. 21)3
using (A. 16)5 as: v / m

( j \ I \ ordp(6) / »\ / »\

(A..,) -n M .nM .n ^
^ ^W- ^^ ̂  ^^P An

Note that the third factor disappears if A: is totally imaginary; if (b,m)==i the first
la\

factor is just - .
\b
\ I m

The following fact from Artin-Tate [AT, Ch. 12, Theorem 8] is used
in the proof of Proposition 4.15. It can also be deduced from the remark
following (A. 18).

(A. 22) Let p be an odd prime, let k==^{'Q with ^ a primitive p-th root of unity,

and let X = = i — S ^ . Then ( — j =t= i .
\ W / p

We shall now discuss a functorial property of the power residue symbols. Changing
notation slightly we shall write ^ for the group of all roots of unity in a number
field k.

(A. 23) Let kck-^ be an extension of number fields of degree d==[k^:k], and
write m==[^ : i] and ^i==[^ ; i] for the orders of their groups of roots of
unity.

a) There is a unique homomorphism <p==<p^/A: ̂ ->^ making the triangle

^
Wi/w/ \N^/A
/ \

^k ——^--^ ^k

commutative, and, if k^ck^ p/^-?^0^-

b) <?(?:)== ̂ , where e=d +m+ml\dm|m^

This makes sense because dmfm^ has denominator prime to m.

c) Let b be an algebraic integer of k, and let a be an ideal of k which is prime to m^ b; iden-
tify a with the corresponding ideal of k^. Then

-(.(U).fb\ / / b '
=9

fe^a/m, \k\^/m/

where the left subscript denotes the field in which the symbol is defined.

Proof. — a) The existence and uniqueness of cp follows because ^ -—> ̂  is an
epimorphism of cyclic groups, and because N^^((JL^)C^. The functoriality follows
from uniqueness and the commutativity of the diagram
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^ ——^ ^ ——r^ ^^/A: ^a/^ I ̂

(The parallelogram commutes because 9^ is the multiplication by some integer.)
Suppose we know b ) for 9^^ and 9^, and write ^==[^3: k^\. Then

( m m\dml Wi m^\d.m^ I m m\ i m. m\ [A:o: k\mi+-+-1 — I+-l+-2p—l=. i+-+-1 I+-l+-2 i-2—^
2 2 ] m^\ 2 2 / ^ 2 \ 2 2 / \ 2 2 / 7^

so the formula for 9^ == 9^ ^ o 9 .̂ „. will follow if we show that

( m m\ I Wi m^\ I m m.\
i+_+-J i+^+_2 ^ i+-+-2 modm.

2 2 / \ 2 2 / \ 2 2 /

Write m^==mn^ and m^m^n^ Then the difference of the left and right side is
2

m^ + - (mm^ + 77^9 + m^ + m^m^) = ——^ f i + n^ + ̂  + ̂  n^) mod m
4 ^ 4

w ^(i +%i)
= m. — . ————- . (i + n^) = o mod m.

2 2

Similarly ^ follows if we know it for each layer of kck^ck^. Using this we can
prove b ) and c ) in the layers of kck(^) C^, and we can further break up the bottom
into layers such that the order of ^ increases by a prime factor in each one. Therefore
it suffices to treat the following three cases.

Case 1. — m^==m. Then ^ck so clearly 9^)==^, which is b). For c ) it
/&\ [bV

suffices to show that if p is a prime of A;, prime to m^ and if bfp, then — ) = - .
k^L k\vL

If p==n^ where ̂  has degree^ over p, and if Np==^, then N^==^. Therefore

( b \ ' ^ .(ir±)(^^...+^-i) /6\(i+^—^-1) (bY1

— \ = = b m = b ^ ' = - = = - mod U. Thus.><L AvL AvL
(b\ ^ ib_Y1^ fb\^''^ /bY

..w», s..w» X .w,;
Case 2. — ^==A:(^) and m^mp where p is a prime not dividing m. Then ^

must be odd so —+— l==m.-—' ==o mod w, so & J becomes 9(0=^. Thus we must
2 2 2
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show N^^(Q=(^)^ for S^i* ^lls ls clear for ^ep.^, and if ^ has order j&, and
hence for a set of generators of [L^ .

For c ) we note that ( — ) e^ because it is fixed under the galois group.-for c ) we
Moreover, ^VPAnpfti\.^/wp

W ^ (i\ = W
k,\V/mp k^\P/m k\P/m9

by the same calculation as in case i. Hence

lb\ _ W^ ( (b\ \
k\vLp k\P)m ^AP/J'

Case 3. — As in Case 25 but now assume p divides m. Then d==[k-^: k]==p^
and

o if p+2m m^ 14- P-+—==m——-== m modw.
2 2 2 - It j&==2

2

We are in a Kummer extension of degree p^ so the norm of a root of unity not
in ^ is its p-th power times the product of all p-th roots of unity. Therefore,
for ^e^

N ^p ^ P^
^W-^ ^ p^

These remarks prove b).
It remains to prove c ) . Let b an element of A, and let p be a prime ideal of A

which divides neither b nor m^. Then p is unramified in the galois extension k-^fk, so
p == [A^ : k] ==fg, where/is the degree of a prime ^3 over p, and g is the number of primes
over p. Write ^=Np, so y^N^}.

T%^ case f== i. — Set ^ = ( qx) . Then
ki\^/mp

^= (-) ^^-^^(^ mod^P
k,\^/m k\P/m

and N^J!:)= n (4-1 :=: ( 6 ^ •
^vs/ a^Wk) k\^Lp k\VLp

Hence yf ('-) )::=^p)-^mllm)==^|kW- (l-} by part a).
\k\y/m/ ki\y/mp

The case f==p. — Then q = i mod w but y ̂  i mod mp. Write q== i-\-am'y then
ap~l==I mod j&. We can write q^— i ==pam{ i + ̂ ^) + ̂ ^p for some integer b. Setting
(^— i ) lmp==h{q— i ) /w, we have
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h !+?+..^g^-1 f . , ^ - W - 1

h == ————————— = ————- = 14- amb + —————-
P J^-i) ^

m^-1

=i+———mod m.
^

i if p ^ 2
, in .p mod m.

I+- if A =2
2

(^ = ( b } =^-i)/^mod^
fci\P/wp fcA^/wp

^^h[q-l}lm

= (^'mod^
AP/m

= c p ( ( ^ Y Q.E.D.UP/J ^



CHAPTER II

MENNICKE SYMBOLS ASSOCIATED WITH SL^

§ 4. Statement of the main theorem. Examples and Applications.

Let A be a commutative ring and let q be an ideal of A. E^(A) denotes the subgroup
of SL^(A) generated by all <( elementary " matrices, l-\-te^ (teA, i=t=j), and E^(A, q)
denotes the normal subgroup ofE^(A) generated by those with teq. This is a subgroup of

SLJA, q)-ker(SLJA) ->SL,(A/q)).

We shall consider SL,,(A) cSI^+JA) by identifying aeSL^(A) with (a ° ).
/ A \

If a==( ,)eSL.2(A, q), then it is easy to see (Lemma 5.3 below) that a|-> {a, b)
\° a/ .t1 row

defines a surjective map SL,(A, q) -——> Wq,

where W^ is defined in § 2.
The aim of this chapter is to prove:
Theorem 4.1. — Let Abe a Dedekind ring, let q be an ideal of A, and suppose ^^3.
a) E,(A,q)=[SL,,(A),SL,(A,q)].
b) Write G^)=SL,(A,q)/E,(A,q), and let

K:SLJA,q)->G^)

be the natural epimorphism. Then there is a unique map [ ] : WQ—^CU^} such that
[ncl.

SLa(A, q) —> SL»(A, q)

1st row K

w, —-— c^'
is commutative, and [ ] is a Mennicke symbol.

c) This Mennicke symbol is universal.
Part a) is a slight improvement of well known results (cf. part d ) of Theorem 7.5

and part a) of Theorem 11. i below). Parts b ) and c ) can be stated equally well as
follows:
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Let G be any group. Then the commutative squares

SL,(A, q) —> SL,(A, q)

1s1 row

w. —^—— c
define a bijection between Mennicke symbols, [ ], and homomorphisms K satisfying
K^CTT-^K^) for creSLJA, q) and reSL^(A).

Part b) says that, given K : SL^(A, q)->C as above, its restriction to SL>(A, q)
factors through a unique map [] : W^G, and [ ] is a Mennicke symbol. The
theorem of Mennicke in § 5 contains this fact.

Part c ) says that, given a Mennicke symbol [] : W^-^G, we can construct a
unique K as above. This implies, first of all, that the composite

SL,(A, qj ̂  W, ̂  G

is a homomorphism. This not at all obvious fact is the Theorem of Kubota in § 6.
After this there remains the problem of extending a homomorphism K^ : SL^(A, q)-—C,
satisfying certain conditions, to a homomorphism K^^ : SL^i(A, q)->C, satisfying
analogous conditions. The (rather complicated) solution of this problem occupies
§§ 8-10, and it is done in a setting more general than that of Theorem 4.1.

Before embarking on the proofs of these results we shall now record some of the
principal corollaries of Theorem 4.1. Further results and applications are stated in § 11.

Corollary 4.2. — For 72^3 the natural maps

C,{n)->C,{n+i)
are isomorphisms.

The next corollary solves the cc congruence subgroup problem " (see Chapter IV)
for SL,(A).

Corollary 4.3. — Suppose that A is of arithmetic type and that ^^3.
a) SL^(A) is equal to E^(A) and it is a finitely generated group, equal to its own commutator

subgroup.
b) If A is not totally imaginary then Gq={i} for all q.
c) If A is totally imaginary, and if m is the number of roots of unity in A, then there is a

canonical isomorphism
C^ ̂  ̂  (the r-th roots of unity)

where r=r(q), is defined by

. ford (q) i
ordjr) = mm ——•-— — -——

^ / ^ [ord^p) p-iW^ -P-^J^ord^m)]

for each prime p (cf. (3.3)).

4.57
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If qcq', and if r^^'), then the homomorphism C^->G^ corresponds to the (r^-th
power map ^->^.

d)

lim C ̂ J^ ^A ZJ ̂  totally m^^
^—^ "'[v-m if A is totally imaginary.

Parts b) and ^ follow from Theorem 4.1 combined with Theorem 3.6. These
imply C^=[i} in all cases, and this, together with remarks (5.2) below, is part a).
Part d) is an immediate consequence of parts b) and c ) .

When A is a ring of algebraic integers the finite generation of SL^(A) was proved
by Hurwitz [12] in 1895, and the finite generation of all c( arithmetic groups 5? was
finally proved by Borel-Harish-Ghandra [8] in 1962. In the function field case, however,
finite generation of SL^(A) (^3) was only recently proved by O'Meara [20], and he
points out that SLg(A) may fail to be finitely generated. The statements about generation
by elementary matrices, and about the commutator subgroups, can fail for SLJA) even
in the number field case. For example, if A=Z[V^5], then Swan (unpublished)
has determined a presentation ofSL^A) from which it follows that SI^A) /H ̂ Z x (Z/2Z)
where H is the subgroup generated by all commutators and all elementary matrices.
Thus H doesn't even have finite index in SI^A).

In § 11 we show that SL^(A) is finitely generated for certain finitely generated
Z-algebras A, provided n is sufficiently large relative to the Krull dimension of A.

In the balance of this section we shall use Theorem 4. i to produce some further
examples ofnon trivial Mennicke symbols, and finally apply Corollary 4.3 to the calcula-
tion of some c( Whitehead groups " of finite abelian groups.

Example 4.4. — (Cf. [18, § i, Ex. 1.7, and p. 422].) Let A=R[^,j/] where x
andj/ are subject to the single relation, x^f^i. Viewing A as a ring of functions
on the circle, S1, with x andj/ the coordinate functions, an element of SL^(A) defines
a map S^SLJR). Taking homotopy classes we obtain a homomorphism

SL,(A) -> 7r,(SL,(R)) ^{±1} (^3).
since ( x ^ ^presents a generator of this homotopy group we obtain a Mennicke

r ^
symbol (for the ideal q=A) such that ^ =-i. Let p, be the ideal generated byj/

and x—i, z = ± i . Then x=i mod p, and pip_i==jA. Hence, using Proposition 2.13,
we have

_ ̂  pi [pip-ii ̂  rpii rp-ii ̂  rpii rp-.i ̂  rp-.i
H L ^ J ML x J [ iJL-iJ [~iJ*

The orthogonal group in the plane operates as automorphisms of A. Applying them
to the above equation we find that

P
— i

468
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for any prime p corresponding to a point of S1. This should be contrasted with the fact
, m

that ==i whenever u is a unit.

It can be shown that the symbol above is universal, i.e. that SL^(A)/E^(A) ̂ {± 1}
for yz^3.

Example 4.5 (Stallings). — Let A==R[^] be a polynomial ring in one variable t.
Then A is euclidean, so SL^(A)-E^A) for all n^2. Let q=(^-^)A; q consists of
polynomials vanishing at o and i. Therefore, if [o, i] denotes the unit interval, an
element ofSL^A, q) defines a function [o, i]->SL^(R) sending o and i to the identity
matrix. It is easy to see that this induces, for ^J>3, a homomorphism

(*) SL,(A, q)/E,(A, q) -> 7r,(SL,(R))^{±i}.

Let ^)J1 °V1 -^V1 °W1-'2 -t}{ ) v iAo i;v i/~\2^3 i-t2)
For ^==1, T(^)=( j is a 90° rotation.

Let (j{t) be the rotation by 7^/2. One has (r(o)=T(o) and < 7 ( i ) = = T ( i ) . Moreover
the paths a and T are homotopic $ to see this it suffices to verify that the paths a(t}{e^
and r(^)(^) in R2—^} are homotopic, which is clear. It follows that cr4 and T4

are homotopic loops in SL^R). Since d4 is evidently a generator of TT^SL^R)) it
follows that T4 is likewise. Consequently the map (•) above is surjective, and we obtain
a non trivial Mennicke symbol

[]:W^{±i).

If (<z,^)eW^ then {a, b) defines a function from [o, i] to R2—^} sending o and i
to the point (i, o)eR2. Viewed as a function from the circle to the punctured plane,

e{i} is just the parity of the degree of this function.

We close this section now with some calculations of Whitehead groups. For an
ideal q in a commutative ring A we shall write

SK,(A, q)==^limSL,(A, q)/E,(A, q),

and SKiA=SKi(A,A).
It is clear that we have an exact sequence (cf. [i, Ch. Ill]),

(4-6) SKi(A, q) -> SK^A -> SKi(A/q).

Moreover, it follows from [i, Corollary 5.2] that:
(4-7) ff qcq' are ideals such that A/q is semi-local then SKi(A, q) -> SKi(A, q') is

surjective.
Let TT beji finite abelian group, and let A==ZTT. We are interested in determining

SKiZjc. Let A denote the integral closure of A in QTT. The ring A is a direct product
of rings \ indexed by the subgroups ^ of TT for which TT/^ is cyclic. \ is generated

459
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over Z by the projection of TT, which is, say, the rn^th roots of unity. The kernel of this
projection is 7, and we write ^=[7:1]; thus [n : i]==k^m^

_ Let c={fleA|aAcA} be the conductor from A to A; it is the largest ideal
of A lying in A. Since c is an ideal of A it is the direct sum of its components, c in the
various factors A^. The c^s have been determined in [7, Prop. 8.6]:

(4-8) c^=^. n Q&)1^-1)
PiWyi P prime

Here {p)1^-1^ is the ideal whose Q&—i)-st power is (/Q, and it is generated by i—w
for any primitive j&-th root of unity w. If p\p in \ then ordp((^)l/(p-l))=J&o^d^wx)-l.

It follows from Corollaries 4.2 and 4.3 that

SKi(A^, c^)^^,

the r-th roots of unity, where r==r(c^) is i if \ is not totally imaginary, i.e. if m ^2,
and otherwise we have, for a prime j&,

(4.9) ordJr^minf0'^--1-]
pu ^l°"W ^-dto.o^y/

We use the notation of Corollary 4.3 here, and m^ denotes the number of roots of unity
in A^. Thus m^=m^ if m^ is even, and m^=-'im^ otherwise.

Proposition 4.10.— For a prime p the p-primary part of SK^(\, Cy) is cyclic of order p5,
where:

If p = 2 and if m.y_ is odd and > 2 then

• ^ if 4|[": i]
[o if 4+^ :1 ]

Otherwise, ^frnin(ordp(^), ord,«)) if m,>2
(0 if OT^2

Proof. — If OT^^a then \ is not totally imaginary so j=o. If TO > 2 then
j==ordp(r) as in (4.9).

Suppose p\m^. Then if p|j&, we have ordp(^)=ordp(OT^, and,

ordp(/») = <p(/>("•dp('»x)) == (/>— i ̂ (''^("•x'-1).

Further it follows from (4.8) that ordp( c^) = ordp(^) +p^p^-1). Consequently

ordp(c,J_^_^ordp(^) i__^_
ordp(/») j&—i ordp(/») p—i p-i

=ordp(^)^o,

FordJc.,) i Ite-^j „ o^r"1111^-^'orw)-
460
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If ptm^ there are no p-th roots of unity in A^, so J==o. Thus the formulas are
verified except in the case m^ is odd and >2 and p == 2. In this case, if p 12, ordp(2j == i
and ordp( €y) == ordp(A^) so

,^°"W_^J .(ord.fy-,),„,„
\ L ' '• ^[0,1]

f i if ord^)^
~ o if ord2(^)<2.

This completes the proof of Proposition 4.10.
Corollary 4.11. — We have SK^(A^, q)===^,.(y) where:

^(X)==1 ^ ^x^2'
r(/) == 2 g.c.d. {m^ky) if 4\k^ and m^ is odd and ^3;
r(^)==g.c.d. (m^, A^) otherwise.
Since A/c is a finite ring it follows from (4.7) that

SK^(A, c) ->• SK^A is surjective.

Moreover, it follows from [7, Lemma 10.5] that if a is an A-ideal contained in A then

(4.12) SK,(A,a)'-^> SK,(A,a).

These two facts combine to show that SK^A is a quotient of

SK,(A,c)-HSK,(A,,c,).

Corollary 4.13. — SKi(Z7r)==o if K is an elementary 2-group.
For in this case all m^s are ^2.
Proposition 4.14. — If the p-primary part of r: is cyclic then SK^(ZT^) has no

p-torsion.
Proof. — We argue by induction on 7z==ordp[7r : i]. The case n==o is trivial,

so assume n>o. Let TT^ be the subgroup of n of order p, and write TT'= 71/7^. Let
b=ker(A-^A /), where A'==ZTC'. Then from (4.6) we have an exact sequence
SKi(A, b) — SKi(A) ^ SKi(A'), and, by induction, SK/A') has no ̂ -torsion. We shall
finish the proof by showing that SKi(A, b) has no j&-torsion.

Write A=A / xA / ' where A7 is the integral closure of A7, and where A" is the
product of all A^ for which 7 does not contain 71:0. If A" is the projection of A into A"
then AcA'xA" and b is the kernel of the projection of A in the first factor. In parti-
cular, b is an (A'X A")-ideal, and is identical with its projection into A". It follows
therefore from [7, Lemma 10.5] that SKi(A, b)=SK^A'xA / ' , b), and the latter is
clearly equal to SK^A", b).

Let a denote the projection of c into A". Then we can identify a with an ideal
of A", which has finite index in A", and which is contained in b. Now (4.7) implies

46J
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that SK^(A", a) -> SKi(A", b)_ is surjective, and from [7, Lemma 10.5] again, we
deduce that SKi(A", a) ^SKi(A", a). The latter is just the direct sum of all SK.i(A^, cj
for which -^ does not contain n^ Hence the Proposition will be proved if we show that
each of these has no p- torsion.

But if TTo cj: ̂  then ^ == [̂  : i] is prime to p. Proposition 4.10 says the ^-torsion
in SKi(A^, c^) is cyclic of order p3, where j==min(ord^), ord^)), so ^==0 as
claimed.

Proposition 4.15{ T.-Y. Lam). — Let 7r=(^/^=y=[^]= i) be a direct product
of two cyclic groups of order p. Then SK^ZTT •== o.

Proof. — We can assume p>2 thanks to Corollary 4.13. We shall writer for
the projection ZTC->A^, and fo==f^, where ̂  is the subgroup generated by x. Let
c=^^x^-y^a==l-^ and b={i-y)c. Then if ^=f=^ we have f^^f^y) for
some z, so f^a)==i. Moreover, if X=i-/o(j;) then f^a)=i-\y and /oW==^4'1.
This shows that 6 and ^ belong to the conductor c.

Let [ ]c be the Mennicke symbol associated with c in ZTT or in A. It exists thanks
to Theorem 5.4 below, and (4.12) implies that it is insensitive to the difference between ZTT
and A. In the decomposition

SK,(A,c)=USK,(A,,c,),

^ has zero coordinate at each /+y^ and at Xo h has a coordinate which corresponds,

via Corollary 4.3, to the power residue symbol

/x^^ / x \ /i-^,x\
(A .21)

^-^ V -^ l W /,
4=1 . (A.22)

The map SK.i(A, c)->SK^(A) is an epimorphism of modules over

G=Aut(7r)^GL2(Z/^Z),

and G operates transitively on the non trivial characters y. Consequently gene-

[?-i L^Jc
rates SKi(A, c) as a G-module, and if we show that has trivial image in SK.Aa ] , 6 1

the proposition will be proved. If [ ] is the Mennicke symbol for SK^A, i.e. for the

unit ideal in A, then the image of [ | is just [ |. Write d=i—jy. Then b=dc
p-i L ^ J c L^J

and a^i—TJ^—^^i—de, so

\b] \dc~\ \d\ \ c _
\a\=\a\=\a\\a\=119

because a= i mod d and a= i mod c. Q.E.D.
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§ 5. The theorem of Mennicke.

Let A be a commutative ring and let q and q' be ideals. The commutator formula
[I+te,j, IJrse^]=I-{-tse^, for z, j, and k distinct, shows that

E,(A,q'q)c[E,(A,q'),E,(A,q)]

for %^3. For q '==A this yields

(5.1) EJA,q)=[E^(A),E«(A,q)] for n^.

The commutator formula also easily implies (see [i, Corollary 1.5]) that:
(5.2) If A is a finitely generated Ti-algebra then E^(A) is a finitely generated group,

for %^3.
The subgroup generated by E^(A, q) together with the diagonal matrices in

GL^(A, q) will be denoted
GEJA, q).

Lemma 5.3. — Let N denote the group of all matrices ( j in GLg(A, q), and let SN

( » \ \ •/ "/

denote those with u== i. The map a== ,) 1-^(^5 b) defines bijections N\GLg(A, q)->W^
and SN\S4(A,q)->W^ c '

Proof. — Since u==ad—be is a unit it is clear that [a,b)eW^. Suppose
( a b\ ^ , i ( a b\ ( d —b\ i iu o\ 1 ,,. ,., , ,a'== , . . Then a'a"1^ , ,, . P" == ^~ eN- we conclude\c' d ! ] \c' d ' J \—c a / \* */

the proof by showing that every {a, b)e"W^ is the first row of an oceSL^A, q). Write
i ==ax-{-by {x,jyeA) and then set c^—bj^eq and d==x-{-bxy. Then

ad—be == a{x + bxy) + b2^2 = ax + ̂ (dw + ̂ ) = i.

Hence ^= i mod q since a==i mod q, and so ( .(eSL^A, q).\c d /
Theorem 5.4 (Mennicke). — Let A be a commutative ring, and let q be an ideal of A..

Suppose., for some ^^3, that we are given a homomorphism K : SL^(A, q)->-C such that
K^TCTT"'1)^^) whenever TEE^(A) and o-eSLJA, q). Then there is a unique map
[ ] : Wq->C rendering

SL,(A, q) —. SL,(A, q)

1s1 row K

W, —————> G

commutative^ and [ ] is a Mennicke symbol.
Remarks. — i) When A is a Dedekind ring this establishes part b) of Theorem 4.1.
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2) The proof of Theorem 5.4 is developed directly from Mennicke's arguments
in [16].

3) In view of the results of Chapter I this theorem is already sufficient to obtain
the portion of Corollary 4.3 applying to A of arithmetic type, but not totally imaginary.
In case A is the ring of algebraic integers in a real number field this application was
obtained independently by Mennicke and Newman in unpublished work. They follow
closely Mennicke's original argument [16] for the case A=Z.

Proof. — Since 7^3 it follows from the hypotheses of the theorem and (5.1) that

ker(K)D [E,(A), SL,(A, q)]DE,(A,.q).

Therefore, if Kg : SLg(A, q)—G is the restriction otic to SLg(A, q), the existence of [ ]
satisfying MS i follows from the next lemma, which will be used again in Chapter III
for the symplectic group.

Lemma 5.5. — Let Kg : SLg(A, q) —C be a homomorphism whose kernel contains Eg (A, q)

and [Eg(A), SLg(A, q)]. Then Kg factors, via SLg(A, q) 1 r0^ W^, through a unique map
[] : W^C, and [] satisfies MS i.

Proof. — The group SN in Lemma 5.3 clearly lies in Eg (A, q), so [ ] exists, thanks

to Lemma 5.3, and, moreover, | == i because Kg kills SN. If teq then ( ! f \ eEJA, q)
la b\ LI-1 vo ^so, for a= eSLg(A,q),
\c a/

P1^ ^K^ ;W1 ^W^ b+taVJb+ta^
\_a\ \c d] \\c d j \o i// \* * / L a \

If teA then ( I °LEg(A), so

P1=K^ ^-K^ I ^ ^a b} ( l o^-Ja+^ ^ f b 1
[a\ V d]- \\-t o l ' [ c d]'\t i))-^ * ^[a+tb[

We have thus shown the existence of [] satisfying MS i.

Proof of MS 2. — If (̂ ), (^g)eW, we have to show that PiM^PiTM
L a J MM

By restricting K to SL3(A, q) we may as well assume that n==^. Choose

a,=^ , j eSLg(A,q ) , z== i ,2 , which we view, as usual, as elements of SL3(A, q).
{ ' /o -i o\

Setting £i==(o o —ijeE3(A) , we have:
\i o o/

la ^ o \ / rfg o -c^\ lad^ b^ -ac^\
a^a^i"1^^ ^ oN o i o j== ^rfg ^ —c^

\o o i / \—&2 o a / \—6g o a ]
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/ I 0 ^\ / I ^ 0 \

Left multiplication by s^^ jo i o j gives ( qrfy ^ —^i^ l*
\0 0 I / \ -—^2 ° a I

( i o o\ / i b^ o \
Left multiplication by £3== —c^ i o ) gives ( o d ' —c^),

&2 o i/ \o &i^ a /
where d'=^d^—b^d^.

( i —&i o\ / i o o \
Right multiplication by £4= o i o ) gives a'==( o rf' —clc2\'

o o if \o b^ a /
/ o o i\

With £5==( o i o)eE3(A) we have
\ — i o o/

_ I a hh Q\
^a^^1^!—c^c^ d ' o 1. Now since s^JL^A) for z '== i , 5 and ^e]L^[A, q) for

\ o o i f
i == 2, 3, 4, we have

[M2] =K(£5^^1)=K(aO=K(£3£,al(£,a,£^l)£J=K(a,)K(a,)=[^] [^2]. Q.E.D

§ 6. Kubota's Theorem.

Theorem 6.1 (Kubota, cf. [14]). — Let A be a Dedeking ring, let q be an ideal of A,
and let [ ] : Wq-^-C be a Mennicke symbol. Let K be the composite map,

GL^^W^C,

so that TO ,^}==\ • Then K is a homomorphism, and its kernel contains GEg(A, q) and\c d) \_a]
[GE2(A), GL2(A, q)]. If q' is a non ^ero ideal contained in q, then K and icISL^A, q7) have
the same image. Hence, if [ ] is not trivial, then ker(ic) contains no congruence subgroup
SL^A^cT+o.

Kubota proved this in the following case: A is of arithmetic type and
totally imaginary, A contains G==[L^, q is highly divisible by m, and [ ]==(—)^,
which, according to Proposition 3.1, is a Mennicke symbol under these circums-
tances. The proof we give for the above generalization is inspired directly by
Kubota's.

Proof. — We shall give the proof in several steps, a = ( . ( always denotes an\c d /
element ofGLg(A, q). We assume q=f= o; otherwise the theorem is trivial. Lemma 2 .11
will be used without explicit reference.

i) K(a) = . == . In particular, K^a) == K(a) ~1, where ̂  denotes the transpose of a.
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For since ad—be is a unit, ad is congruent to a unit mod b, and be is congruent
to a unit mod af, so using Lemma 2.7 ^,

^ PI MPi""1 r^T1 r^'rw H^-U-MU 4J 4J M4J-
2) If seGE^A), ^ K^as-1)^^).
It suffices to check this for a set of generators ofGE^A), so we can take s either ele-

,. , „ /i o\ , _i /^—^ b\ , ^ \ b i mmentary or diagonal. It s==i ( then £QC£ ==( L so K(£OC£~ )= , = [.

If s=(^ ;) then ^-l=^l )̂, so, using (i), K^OS-^^ [^j = [^ =K(a).

TF /M °\ ^ -l / a ^r'1^It e==| l then sas ==( _ i ,| so\o v ) \vu ^c df

, _i, r^"16! ^^-l^^ r^'^ir^i r^i . ^K(sa£ l)==\ \==\ \=\ == =K(a)5L ^ J L a \ L a JH H v / 3

where q==i—a, and we have used Lemma 2.2.
3) If seGE2(A,q) then K(as)=K(a).
If s is elementary or diagonal this follows from simple direct calculations

very similar to those just above. Clearly

H = {seGL^A, q) | K(ae) = K(a) for all aeGLa(A, q)}

is a group. Therefore, since H contains elementary and diagonal matrices, it will
contain GE^A, q) provided it is normalized by GE2(A). So suppose reGE^A)
and seH. Then

K(aT£T-l)=K(T-laT£) (by 2))

^(T-'aT) (eeH)

=K(a) (by 2)).

4) Suppose a==( ,) and a'^^ , ., j in GLg(A, q) are such that d^i^a'modq\c a/ \c d f
for some qeq, and such that fi?A+^'A=A. Then

K(a'a)==K(a')K(a).

We shall use the following remark: If xeA and j/eq are prime to a' then
\xy\ \xq'\\y^ , . ., , . , „ f q~\ \xy~\ \xy~\\q'} \xyq} \xq~\\y~\
[.'J4a'JkJ' andslmllarlyfor^ For [J'J=1' so la'j-l.'JlJ'j-la'j-lJJIa'j-

Now a'a=(a 'a+^c a ' b + b ' d \ so\ * * /
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/ , . \ a ' b + b ' d ' }
^^[a'a+b'c\

_ f a'b+b'd ~\\ a'b+b'd'}-1 , .
~[{a'a+b'c)d\[ d \ (</is prime to a')

_[- a'b+b'd '\[a'b-\-1

~[a'u+c(a'b+b'd)\[ d\ {u=ad-bc)

[a'b+b'd^^a'q^-^b^-1

~[ a'u \[d\ [d\ (remark above)
-i

K(a) (by i))

\b'd^\\b'~\\dq~\\a'q~\-l , ,
^JMMM K(a) (remark above)

=K(a')K(a) (Lemma 2.10; u is a unit).
5) K is a homomorphism.
Given a, a'eGL^A, q) we must show that K(a'a)==K(oc')K(a). If a =0^02 with

o^eGE^A.q) then, using 3), we have K(oc'a)=K(a'ai), and K(a)=K(aJ, so it suffices
to deal with o^. In this way we can first arrange that aeSLg(A, q).

Writea'=i+y. If q=o then our assertion follows from 4). If q + o then A/ffA
is semi-local, so it follows from [i, Corollary 5.2] that SL^A, q)=SLg(A, ^A) .Eg(A, q).

Hence we can find an s^eE^A, q) such that ae^^1 ^eSL^A, qM. Since
\ c! "I/

r f iA+^A=A=^A+^A we can find a ^=^+^ {teA) which is prime to ^ (see

remark before (2.2)). Setting e , = ( _ ^)^(A, <yA), we have now achieved the

hypotheses of 4) for ae^ and a'. Applying 3) and 4) therefore, we have
K(a'a) = K(a'aei£2) = K^K^e^) = K(a')K(a).

6) ker KDGEg(A,q) and [GEgfA), GL^A, q)].
This follows respectively from 3) and 2).
The last assertion of Kubota's Theorem follows from Lemma 2.3, so its proof is

now complete.

§ 7. Review of the stable structure of GIy(A).

Let A be a commutative ring, and let q be an ideal in A. We call an element
(^, .... aj^ q-unimodular if (^, a,, ..., aj = (i, o, ..., o)mod q, and if

SA^,=A.

When q=A we just say unimodular. When w==2 the q-unimodular elements are
just the elements ofW^. Thus, it follows immediately from Lemma 5.3, that:

(7.1) SL2(A, q) operates transitively on the q-unimodular elements in A2.
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Throughout the balance of this chapter we shall deal extensively with the following-
condition, some of whose implications we shall record in this section.

(7.2)^ If m>n, if q is an ideal in A, and if {a^y . . ., a^) is q-unimodular in A^, then
there exist ^==^+^m9 w^t^ ^^ i^<77z, such that {a[, . . ., ̂ _i) is q-unimodular in A"^1.

Clearly this condition is reasonable only for 72^2. If we require (7 .2)^ only for
the unit ideal, q=A, then (7 .2)^ becomes the condition that (< n—i defines a stable
range for GL(A) 59 in the sense of [i, § 4].

Lemma 7.3. — If we require (7.2)^ only for q==A then it follows for all ideals q.
Proof. — If (^, ...,^J is q-unimodular then clearly (<^, . . . , a ^ _ ^ , ^ ) is still

unimodular. By hypothesis, therefore, we can find a^a^+t^, i^i<m, such that
(^, . . ., a^ _i) is unimodular. It is automatically q-unimodular, so we solve our problem
with the ^=^^eq, i<^i<m.

By virtue of this lemma it now follows from [i, Theorem 11. i] that:
Theorem 7.4. — If the maximal ideal space of A. is a noetherian space of dimension <,d

(e.g. if A is a noetherian ring of Krull dimension <^d) then A satisfies (7.2)^ for all 72^^+2.
The force of (7 .2 )^ derives largely from the following theorem [i, Theorem 4.2],

which we will strengthen in § 11.
Theorem 7.5. — Assume (7 .2)^ . For all ideals q, and for all m^n:
a) E^(A, q) operates transitively on each congruence class modulo q of unimodular elements

in A^.
b) GLJA,q)=GL,_,(A,q).EJA,q).
c) E^(A, q) is a normal subgroup of GL^(A).
d) [GEJA),GLJA,q)]cEJA,q). In case m^ we have

EJA,q)-[EJA),EJA,q)],

so the above inclusion becomes equality. If moreover, 77^2(^—1)5 then

[GLJA),GLJA,q)]=E,(A,q).

Suppose m^_n and 77^3:
e) If HcGL^(A) is a subgroup normalised by E^(A) then there is a unique ideal q

such that E^(A, q)cH and such that H maps into the center of GL^(A/q).
This differs in formulation from [i, Theorem 4.2] only in part d ) . The proof

of [i, Theorem 4.2] proves d ) as stated provided we replace GE^(A) above by E^(A).
The fact that we can put GE^(A) there follows immediately from part b ) plus the fact
that GE^(A) is generated by E^(A) and the matrices diag(i, . . ., i, u), u a unit, because
the latter commute with GL^_^(A, q).

§ 8. The construction of K^+i.

To prove part c ) of Theorem 4.1 we want to extend the homomorphism
Kg : GLg(A, q) ->C given by Kubota's Theorem, to a homomorphism K^ : GL^(A, q) —^C.
Once this is accomplished part a) of Theorem 4.1 will follow easily from the results
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quoted in § 7. We shall extend Kg in two steps. First we shall show that it extends to
a homomorphism 103 : GLg(A, q)->C which satisfies several conditions. Then we shall
show, in a rather general setting, that a homomorphism K^ : GL^(A, q)-^G, satisfying
such conditions, extends to a homomorphism K^i : GL^i(A, q)->C which satisfies
analogous conditions. Before stating our results we must enumerate the conditions in
question.

Two of the conditions will be imposed on A and n. The first is condition (7 .2 )^
of the last section, and the second is:

(8 .1)^ For every ideal q, GL^(A, q) operates transitively on the q-unimodular elements
of A\

By virtue of Theorem 7.5 a) we have (7 .2 )^=> (8. i)^ for m>^n, but we shall
require (7.2)^ together with (8 . i )^_i .

Next we shall consider conditions on a homomorphism K^ : GL^(A, q)->C. It is
assumed throughout that n^2.

(8.2), K,(s)=i ife lies in [GEJA), GL,(A, q)] or in E,(A, q).
If 72^3 then (5.1) permits us to delete E^(A, q) in this condition. Conversely,

assuming (7.2)^5 Theorem 7.5 d ) permits us to delete [GE^(A), GE^(A, q)].
(8.3)n^ K,(cr)=i then KjV)==i.
Here ^c denotes the transpose of or.
To state the last condition we make a definition. Let a, a'eGL^(A, q) and let

tec\. We shall say that a' is (q, t)-related to a if a7 can be written in the form

(i + ̂ n a^ . . . a[A /i + ta\i ta\2 . . . ta^\

^ _ ^21 ^2 • • . ̂  j ^d a' - a21 a22 ' ' ' a2n

ta^ a^ . .. a,J \ a^ a,^ .. . a,J

with a[^eq. Note that this is not a symmetric relation.
Our last condition is:
(8.4)^ If teq and if a' is (q, ^-related to a in GL^(A, q) then ^ (a^^K^fa) .
Proposition 8.5. — Suppose we have the assumptions of Kubota's theorem (Theorem 6 . 1 ) .

Then A satisfies (7.2)^ for n^>_^ and ( 8 .1 ) ^ for n^_2. Moreover the homomorphism
Kg : GLg(A, q)->C constructed in Kubota"s theorem extends uniquely to a homomorphism
Kg : GLg(A, q)->G satisfying (8.2)3, and Kg also satisfies (8.3)3 and (8.4)3.

Proposition 8.6. — Let A be a commutative ring satisfying (7.2)^ and (8.i)^_i, and
let q be an ideal of A. Then given a homomorphism K^ : GL^(A, q)->C satisfying (8.2)^,
(8.3)^, and (8.4)^, it has a unique extension K,^_^ : GL^-^A, q)->C satisfying (8.2)^4.1,
and ̂  + ^ also satisfies (8.3) ̂ ,i and (8.4) „+1 .

Proposition 8.6 does not apply to K^ in Kubota's Theorem because A need not
satisfy (7.2)3. However it does apply to the K3 supplied by Proposition 8.5, and to
all the K^ thereafter. Hence the proof of part c ) of Theorem 4. i will be achieved with
the proof of these two propositions. This proof occupies §§ 8-10. The two propositions
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will be proved simultaneously, except for the very last stage of the argument. This is
made possible because of:

Lemma 8.7. — Let A be a Dedekind ring.
a) A satisfies (7 .2)^ for n^ and (8.1)^ for n^2.
b) The homomorphism Kg constructed in Kubota's theorem satisfies (8.2)3, (8.3)2,

and (8.4)3.
Proof. — a) A Dedekind ring is a noetherian ring of Krull dimension <,i, so

Theorem 7.4 implies A satisfies (7.2)^ for n>^ and hence, by Theorem 7.5 a), it
satisfies (8.1)^ for 72^3. Condition (8.1)3 follows from (7.1).

b) The statement of Kubota's Theorem contains (8.2)3, and step (i) of its proof

implies (8.3)2. For (8.4)3, suppose teq and suppose a'=^ +te l\ is (q, ^-related

to a=(1^' ^ inG4(A,q). Then

-('H, f;,H, ̂  [, ;J4 ̂ h^^
Henceforth until the end of§ 10 A may be any commutative ring, and q any ideal

in A. The following lemma will help us verify (8.4)^1 for ^+r
Lemma 8.8. — Suppose teq and suppose a' and [B' are (q, t)-related to a, resp. (B. Then
a) a'jB' is (q, t}-related to a(B.
b ) a~1 a' e [£„ +1 (A), GI^ + ^ (A, q) ]. In particular, det a' == det a.

?„,/. _ a) Write a^11 a12) and a'-f041 ^12) in block form, with
\^21 a22/ \a21 OCgg/

/^22 • • • ^2n\

a^=== i +^11, oe22=( ; ; j, etc. Similarly write
\^n2 • • • aj

B-^11 ^ and B--^11 ^1^
'"V^l (W d ^"^M P22J-

Then aB==^ ^i Pn + ̂ 12 ^21 ^i Pi2 + ̂ 2 ?22 \
V(a21 Pll + 0032 Psi) ^, P^ + a^ ^227

and a' B' ==(^11 !Bn + ̂ 12 [B21 ^an p12 + a12 ̂ 22) \
\ ̂ l Pll + ^22 ^21 ^21 (B^ + ^22 ?22 / *

b) The first column of a is j ° |+^y, where y^j : ) • Set a==( ~Y) , and
\ : / \a / \° I /

/ o o i\ W vflnl/

£==( o 7^_i ojeE^i(A). A direct calculation shows that
\-i o tj

-s -i- -, /a' o\a e=£ ^s^a ==( |,
^ i.
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where p=(^, . . ., <J. Hence a^a'^a, s]e[E^(A), GL^(A, q)]. Evidently if
we write a==a^ and a^a'Sg then s^, s^eE^^A, q), and since n+i^>3, (5.1) implies
E,^(A, q)c[E^(A), GL^,(A, q)]. Therefore

a-^sr^a'^E^^A), GL,^(A, q)].

The construction of K^^ will be based upon the next lemma. We shall say an
element a of GL^+i (A) is of type L if its last row is (o, . . ., o, i), and of type R if its first

/;\
column is j . 1. One of type L thus looks like

W
- /a T\a== l

\o i/

with aeGL^(A), y an ^-column; etc. Similarly a type R has the form

M1 ^1p \o p;
with peGL^(A), p an n-row, etc.

Lemma 8,9. — Assume (7 .2 )^+1 a^rf (8.1)^.
a) Any (7eGL^+i(A, q) can be factored in GL^i(A, q) as

0-= asjB

wA^ a is of type L, £=^+^+1,1 /or some teq, and ^ ^ o/^ R. We shall call such
a representation a " standard form ^ for (T.

b) Suppose teq and suppose that a ' is (q, t}-related to a in GL^^i(A, q). Then
(T-^eE^^A, q).

Remark. — The s in part ^ is unique because t is the coefficient ,̂, +11 of (T.

(a l \Proof. — a) Say a has first column a^== ; . Using (7 .2 )^+1 we can find
\^n+i/

"^"'Vo i7 "^x ' '1/ "— 1 - ' 1 la:
// Y\ _ 1 • 1 /"^

==I^ ^ l e E ^ + i ( A , q ) such that Y(TI= •, ( with a[== ; q-unimodular.

\^J / i \ u/

Then (8.1)^ gives us an ^eGL^{A, q) such that a^^j ° |. Set a ^ = = 1 1 °)° • s e t -.-c':) "-'; \ /.\ w
£ == /+ f ln+l^+l,l• Then £ l alYCTl=£ 1 : ==( ° |, so P = = £ - l a l Y ( 7 = ( I p) is of

\ : / \° P/
/ \0/

Vn+1/ / -1 _ v

type R. Finally, a==a£(3, where a^y"1^-^!1 Y ) is of type L and in
GL^(A,q). vo I/
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b) We are given a <r' that is (q, ^-related to a. Thus, in the argument above,
(TI is actually (<q)-unimodular, so we can choose ^ and o^ in GL,.+i(A, fq). The result
will be a standard form, <T==aep, in which a and e==/+a,,^^^ have

((q)-unimodular first columns. This permits us to define a'^^' ^'\ and
\o i /

^ ' = 7 + a n+l ^ n+l , l which are (q, ^-related to a, resp. e. . Similarly, ^'==(1 <p) is

(q, ^-related to p, so Lemma 8.8 a; implies that ae'p' is (q, ^-related to cr=aep'.
Our hypothesis (7.2)^1, and Theorem 7.5, imply that E^i(A, q) is a normal

subgroup _of GL^, (A) containing [GE^i(A), GL^,(A, q)]. It is clear that e'=s
and P '=p modulo E^i(A,q), and_it follows from Lemma 8.8 b) that a '=a '=a
modulo E,,+i (A, q). ^Therefore a 's ' (B'=a£p=<7 modulo E^ (A, q).

Now a ' and a'e'p' are both (q, ^-related to <y, so they differ at most in the first row.
(They may differ if t is a zero divisor.) Hence a's'p'(c')-1 differs from Z,,.̂  at most
in the first row. Since, by Lemma 8.8 b), det o'=det <T=det(a's'p'), it follows that
a's'^cT'^eE^^A.q), so T'SCT modulo E^^(A, q).

Corollary 8.10 (Uniqueness). — Assume ( 7 . 2 )»+ i and (8.1),,, and let

^:GL^(A,q)->C

be a homomorphism satisfying (8.3),.. Then there is at most one homomorphism
Kn+l:GL„+l(A,q)^C

extending K^ and satisfying (8.2),,_n. Moreover K^+^must also satisfy (8.3)^1 and (8.4),,^i.
Pnw/. — (7-2),,+i and Theorem 7.5 b) imply that

GL^(A, q)=GL^(A, q).E^(A, q).

The map K,^, agrees with ^ on GLJA, q), and, by (8.2)«+i. annihilates E^i(A, q);
hence it is unique. To verify (8.3),.^, i.e. that K^C^K,.^^), it is enough to
do so for generators of GL^i(A, q). On GLJA, q) this follows from (8.3),.. and if
^^^A, q) then likewise for ^v. Finally, (8.4),,_^ follows immediately from (8.2)«+i
and Lemma 8.9 b), which our hypotheses permit us to invoke.

Henceforth we shall assume we are given A, q, and K^ : GL,,(A, q)-^C satisfying
(7 .2 )»+ i , (8 . i ) , , (8.2),,, (8.3),,, and (8.4),,. (Recall that (7.2) ,,+i and (8. !)„ are both
consequences of (7.2),,.) We seek to construct a homomorphism K,,.^ : GL,,^(A, q)-^G
which extends K,, and satisfies (8.2)^i. Once this is done it will "follow from
Corollary 8.10 that we have proved both Proposition 8.5 and 8.6.

^ Lemma 8 . 1 1 (Definition of K^J. — Suppose (T£GL,.^(A, q) has a standard form
CT=as(B with

.=(' Y) and p=f1 P).
\o i/ ' \o p/
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Tflen K,,+i((r)=Kja)Kjp)

depends only on a, and K^.,.JGL^(A,q)=K,.

Proof. — Suppose ~a.i^^=a='v.^^ are two standard forms. We claim that
^1)^1) =^2)^2), i.e. that K,,(a)==K..((3), where x=^l^=={a^ and

^IW1-^). Setting o^a^a^ ^ and p==p^-^ P) we have
_ — /ci\

asi^P- Say e,=I+te^,^ ^J+^^ y= : , and p ==(^, . . ., rj.

/ a + Y ( ^ o , . . . , o ) y^
\ ^ 0 . . . 0 I J

îi +^t a^ . . . a^ ^

^nl+^^ ^2 • • • ^nn ^ F

\t 0 ... 0 I

^1 . . . ^ \
0 ^11 . . . ^

£J=

0 P+ 0 •P
V bnl+^ ... b^+srj

Therefore j=^ and c,==r^, and if we set a^=—c,{i<i<,n) and a[^r^i<,j<n)
we have

^i---^ ri . . . r^_^
-c^t a^

'\ +^n ^12 . . • a\^
ta'

-Cut ^2 \ta
and

Y-^l • • • -^n

/O • • • 0 -

I 0 . . .

With TT= . i ' . :

nl

<^22 • • • ^2

^n2 • • • ^n

a^ .. . ̂

i—tr.

^21

^1

—tola . . . ~ta^ i +^'

eGE^(A) we have

• • 0 I • O/^o • - o

i + ta[. ta[. .. . ta'In '

TrpTT-'^: ^21 22 " ' 2n (, which is (q, ^-related to a.

^n2 • • • ,̂m /

Therefore Kjp)=Kj7rp7r-1) by (8.2)^, and K^TrpTr-^^Kja) by (8.4),.
Finally, the fact that K^i extends K^ is clear.
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We close this section with a corollary of the definition of K^^^ .
Lemma 8.12. — If 04, a, (^eGL^i(A, q) with 04 of type L W ^ o/ ̂  R, ̂

^+1 (^l^^^+l (^1)^+1 ( ( 7)Kn+l(Pl)•

Proo/'. — If G- == asp in standard form then, with an obvious choice of notation,

oci a f a^a *1

l o i j

is of type L, and ^^(i B*B )

is of type R. Hence aicrPi=(aia)£((B (B^) is a standard form for 040^, so
Kn+i(aiopi)=K^(aia)Kjp^)=K^(ai)Kja)K^(p)Kj(3i)=K^i(ai)K^^

§ 9. The normalizer of K^+i.

Given A, q, and a homomorphism K^ : GL^(A, q)-^G, satisfying (7.2)^1,
(8.i)^, (8.2)^, (8.3)^ and (8.4)^, we have constructed (Lemma 8.11) a map,
K^+i : GL^i(A, q)->C, extending K^. We seek to show, under the hypotheses of
either Proposition 8.5 or Proposition 8.6, that the map ^n+i ls a homomorphism
satisfying (8.2)^+1. The remarks after Corollary 8.10 show that this will suffice to
prove Propositions 8.5 and 8.6.

Write

H={(reGL^,(A, q) IK^M^K^^K^^) for all a'eGL^^A, q)}

and N^TeGL^^K^TCTT-1)^,.^) for all <reGL,^(A, q)}.

The condition that K^+i be a homomorphism is that H = GL^_^(A, q). Since ^+1^3,
condition (8.2)^+1 just means that GE^i(A)cN.

Lemma 9.1. — a) H is a group, and it contains all matrices of type L in GL,^_^(A, q).
b) N is a group, and it normalises H.
Proof. — a) If creH then

1 ̂ n+l^'^^n+l^K+l^''1) ^ Kn+l(^ - l)=K^((T)- l.

Hence, if ^eGL^^A, q), then ^n+l^f)==^+l{^~~l^)=^n+lW^n+l^~l^), so
Kn+l( ( 7 - l ( y /)= Kn+l(^) - lKn4-l(C T /J=Kn+l( ( 7~ l)Kn+l(C T /)^ Le- ^"^H. SuppOSC ^eH also.

Then K^+l((7lCTCT /)=K^_^(CTl)K^+l(CTG /)=K^+l(CTl)K^+l(CT)K^+l((y /)=K„+l((ylCT)K„^l(^ SO

GTiO-eH. This shows that H is a group. Lemma 8.12 implies that H contains all
(T£GL^(A, q) of type L.

It is clear that N is a group.
If T(=N, (T(=H, and <y'eGL^i(A, q), then

Kn+l((T ' ' l c^T) (T /)==Kn+l( (yTC^ 'T- l)==Kn+l( (7)Kn+l(Tcr /T~ l)

=Kn+l( ( 7)Kn+l(C T /)= Kn+l(T - - l C T T)Kn4-l( ( 7^
hence T ^TeH.

4/4
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Lemma 9.2. — A subgroup KcGL^(A, q) which contains all matrices of type L
and which is normalized by E^i(A), is all of GL^,(A, q).

Proof. — The matrices of type L contain GLJA, q) and, therefore, all matrices
I+te^{teq). The smallest group containing the latter and normalized by E^^(A)
is E^i(A, q). Therefore K contains GL^(A, q).E^(A, q), which is all ofGL^A, q)
thanks to Theorem 7.5 b) and our hypothesis (7 .2)^+i above.

CW/ary 9.3. — If GE,,^(A)cN then K^i is a homomorphisn satisfying (8.2)^,.
This follows immediately from Lemmas 9 .1 , 9.2, and the remarks preceding

Lemma 9.1 . The rest of our arguments will be concerned with showin? that
GE^,(A)cN.

Lemma 9.4. — N contains all matrices of the form

( u * *\
T= o v * )

o o vf

where v and v are units and VGGE,,_((A).
Proof. — These matrices form a group, of which those of the types

/ i o o\
Ti=diag(Mt, . . . , "»+ i ) , T a = = o v o l , and ^=I+fe^,

\0 0 I/

where the u, are units, veGE^(A), teq, and (;J)=(i, 2) or (n,n+i), form a set
of generators. It therefore suffices to show that, for T one of these types, and for
oeGL^+ifA.q)^, that K^^TCTT-1)^,,^^).

If a= asp in standard form, then, for T = T^ or Tg, TCTT- l = (-roci-1) (TST- 1) (rp'T-')
is still in standard form, and it follows easily from hypothesis (8.2),. that

^^(TffT-^K,,.^^).

Suppose next, say, that ^=I+te^,teA. Then a^raT-1^' Y") is still of type L,

with a'=TaT-1. Moreover ^'=^-^=^ ^\ is still of type R. Finally, if

£=^+^+1,1, then ^-^I+se^^-ste^^^I-ste^^)^. Here p,=(1 0)

is of type R with P.eEJA, q). Therefore TOT-' =a's(pj') is in standard form,
so K^I(TCTT ^^(a'^J^^K^K^K^^K,,.^), by virtue of (8.2),..

In^case T = / + ^ ^ ^ ^ the argument is similar, except that this time we have
TST ^ocie, where a, is a factor of type L that can be absorbed with TaT-1.

At this point we shall use condition (8.3),. for the first time. This says that ker(^)
is invariant under transposition. Consequently the map (T^ on GL»(A, q) induces
an antiautomorphism, x^x, on im(KjcC. It is defined by the formula

^(^K^O).

47S
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/O 0 I \
Let cp== o 4_i o eGE^^(A). Note that cp^cp"1^^. For oeGL^^A)

write \ i o o/
^^^(pCTCp"''1)^^1^)^"1.

It is easy to see that a 1->^ is an antiautomorphism ofGL^i(A), preserving GL^^(A, q),
and that ? == a.

Suppose a=( j is of type L. Then a direct calculation shows that
fo i . . . o^

1 ^1 \ '^ ^ 4-..^^ -D T-T/^ .. __-„--1 ,^l,/.^/. - I : ° :
0 . 1

\i o . . . oy

{ ^1 ) is of type R. Here a. ==71071 1, where n==\ • . : |eGEJA).\o 1^/ • J i 1 ? l o . i \ w v /

Similarly, if ^==P 9 } if of type R then "p ==( ^ p1') is of type L, where PI^TT-^TT.

Finally, if £==^+^n+ i i? then T==c.
Suppose creGL^^A, q) has a standard form (7==occ(B. The discussion above

^ ^•''c^
shows that ^?== P£ a is a standard form for ̂ 5, so ^^(^^K^p^K^f1^), in the notation
above. Thus

^n+l(^)-^nW^l)

^{^(n^-1)^-1^))

-'(Kj^KjP))
T^ /'^•^== Kn+ll ( 7J•

Now suppose that reN; we claim that TeN also. For

Kn+l^Cr^-1)^^^^^-1^)-)

T / —1^^ \
== ^+1^ ^)

-^n+l^)

-Kn+1^)
We have thus proved:
Lemma 9.5. — 7/^ reN ^TZ '^eN.
Lemma 9.6. — A subgroup of GL^_^(A) containing all the matrices in Lemma 9.4,

invariant under Th>^?, and containing

/In-l 0 0\

7T=j 0 0 I )

\ 0 I O/

contains GE^_^(A).
Proo/. — GE^i(A) is generated by diagonal matrices and by elementary matrices.

Lemma 9.4 gives us all diagonal matrices and all elementary matrices /+^ except
those with i = n +1 or j = i.

But Tc(/+^^)7^- l==/+^+l,n. and [^^l,,, ^+^•]==^+^+1,J• for

j^pn.n+i. Hence we have all I+te,j with j 4=1. Next note that {I+te^_^.^^=I+te^
f o r J 4 : I , ^ + I 5 so we lack only ^+^n+i,r We obtain the latter as [^+^n+i n ? ^+^n J-
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§ io. Proof that 7:eN.

We want to show that GE^i(A)cN, and Lemmas 9.4, 9.5 and 9.6 make it
sufficient to show that TieN, where

/4-i o o\
7r==( o 0 I )

\ 0 I O/

This amounts to showing that

(10.1) K^^Tr-1)^^^)

for creGL^(A, q).
Lemma 10.2. — a) The matrices a for which (io. i) holds are stable under right multi-

plication by matrices pi of type R, and under left multiplication by matrices

(.0.3) .,=(:• ^).

b) It suffices to prove (i o. i) for a of the form a == ac, where e == / -|- te^ +1 i, and where

oc==( i is of type L. If we further assume (7.2)^ <?W (8. i)^_i ^^z we can even restrict a

to have the form

(10.4)

/i a^ . . . ̂  \
0 ff.^ . . . ^2n

. ° ^-1,2 • • • ^-^n ,

^ni an2 ^n /

Proof. — a) If [B is of type R then so is Tr^-rc"1, clearly, and (8.2),, implies
K :n+i(T CPl7 T - l)= Kn+l(Pl)• Similarly, if 04 is as in (10.3) then 7ro4Tc~1 is of the same
type, and K^ ̂  (7104 Ti:"'1)^ 1^^(04), clearly. Nowif K^^^na^^^K^^^a) then, using
Lemma 8.12,

Kn4-l(^al^l^ - l)=Kn+l(TCalTC- l)K^+l(^CT~ l)Kn+l(TCPl^~

=^n+l^l)Kn+lWKn+l^l}=Kn^l^l^l)'

b ) Using a ) y in order to verify (io. i) for a given o, we are free to first modify a
on the right by factors of type R, and on the left by factors of type (10.3). The former
permits us to render a of the form a == ocs, as indicated in the lemma. If we assume (7.2),^
and (8. i) ̂  „ i then it follows from Lemma 8.9^ that we can write oc == 04 s^ ̂ , a standard

form in GL^(A, q). Since oq=( [ ( it follows that oci==( l ( is a matrix of

type (10.3). Replacing a by 04" ̂  therefore, which we can do thanks to part a), we can
assume above that a==£ip^ , a standard form in GL^(A, q). This implies that a has
the form (10.4) above. Q.E.D.
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Proof of Proposition 8.6 (concluded):

Since (7.2),, and (8. i ) ^ _ ^ are part of the hypotheses of Proposition 8.6, we can now
finish the proof of that proposition by verifying (10. i) for (7==as where s.=I+te

teq, and where ^^=\ T! with a as in (10.4).\o i/ ' A /

Note first that if s,=/-^^eE,(A,q) then ^a-P *V where

^2n

^n -1,2 "n-^n

^2—^1^12 • • • ann~anlaln^

Hence, if K^=KJGL^,(A, q) then

^i^)^^)-^..^),

clearly. Thus we must show that ^n+i^^^^^n-iW'
/^\

Writing Y = = ( : ) we havew
/ I 4-^1 ^12 . .^12

fl^n .tc^
^ /a+Y(^o , . . . , o ) Y\^

V o . . . o i /
a == as

tc., -1,2

^ln

hn ^

^n-\,n "n—l

^nl+^n ^2 • • • ^

Writing T == TrcrTT"1 we have

/ i+^
^0 ^,n-l a.2n

.̂ ^n-1,1 • • • ^n-i^n-i ^n-\ an-l,n
0 . . . 0 I 0

V^i+^n ^o . . . a,'n, n — 1

We now proceed to put T in standard form, so that we can evaluate K ^ . J r ) .
n-l'a. o)

Set ai-l^ J, where a,=/-( S^,J. Then
x / »= i

OCiT:

^22 • • • ^2,^-1

0 ^n-1,2 • • • a1,2 • • • "n-l.n-l
t 0 . . . 0

Al+^n ^2 . • . '̂TO, n — 1

0 <Z

0 ^n

In

o a,
i o

'n — 1, n

^
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Set (X2=7C£~1TC~1==( 2 j , where oL^==I—te^y and set £i==^+^n+i, i? where
s==a^+tc,^ Then

p^w^; ;)
is of type R, where

( a22 ' • - ^n-l . ° ^2n \

6= : : : : |.—ta^ . . . —^i^-i i —^i^ f
^2—^12 • • • ^n,n-l~^l,n-l ^n ^n—^lJ ,

Therefore T^aaal)"1^ is a standard form, so K^^^K^aga^'^K^^^K^p),
since clearly ai, o^eE^A, q). ^ _ ^

InGI^(A,q) set §=/+ ( S; ^•+l^-l.j)+ toln^-l,n• Then since

J'-l

^ — sa^ + ̂ n == ̂  — ̂ nl + ̂ J^zj + ̂ n ̂  ̂ nj — ̂ l^zj.

we have

/^22 • • • ^n-l ° a2n \

P8^] ^-1,2 • • • ^-l,n-l ° ^n-l.n

( 0 0 1 0

\an2~anlal2 • • • ^n, n -l—Ail^l, n-1 ^n ^nn—^nl^ln/

Now p8 is conjugate, by a permutation matrix, to

/ . . °\
y= o |.

'n/\0 . . . 0 I /

Therefore, since 8eE^(A, q), it follows from (8.2)^ that

^M^^W^K^^K^^),

and so K„4. l (T)==K^(jB)=K^_^(a / ) , as was to be shown. This concludes the proof of
Proposition 8.6.

Proof of Proposition 8.5 (concluded):

Now it remains to prove (10.1) in the setting of Proposition 8.5. Thus n==2

and Kg is given by a Mennicke symbol, K^ ^(^ • Again it is enough, by

Lemma 10.2 b ) , to treat a of the form o==a£.
_ . - . . — /a y\ - i ia^\ a\c>\ i /^ i \ -i-r iWriting a==| | with a==| | and y^l I ? we can modny cr on the

5 \0 I / \^1 ^22/ \^/

left by a factor of type (10.3) to arrange that a^+o. (This is automatic if q=t=A.)
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With T == TTCTTT'" 1 we have
/a^+tc^ ^ ^2\

——(t I ° •
\^+^ ^ ^2/

Set 04==^ 1 j with 04 =( 1 ^, as above, so that

/^n o ^2\
0 4 T = ( ^ I 0 1.

\a^+tc^ c^ a^J

Since ^i+0? A/^^A is semi-local, so we can find an jeq such that t+s{a^+tc^)
is prime to a^ (see remark above Lemma 2.2) . We can further arrange that
,-=14-^4=0, and write t+s(a^+tc^=sa^^+tc. Then with 8=7+^3 we have

/^ii o ^12 \
Sa^T===( sa^-}-tc c ^22)-

\a^+tc^ Cg a^ /

Since (a^, sa^^ + ̂ ) is q-unimodular we can use (7.1) to find an

,,/^n ^LsL,(A,q)
i y<f 7^1 y "'• ' I/

V^l. W22/

such that

(10 .5) J'11 ^^^ ^
\^i+^ c ] \o y ]

c o • — /<^ 0\ -tor some x, y . Setting co = i j we have

(_ _ I x 1^ll^l2+swl2a22\

00804 T== o y w^a^+sw^a^.

^21+^2 ^ ^22 /

Therefore if ^==I+ue^, u-=a^+tc^, then

^^^-C 'p)
is of type R, where 6=P ^^t,+^,^ \

\c^—ux a^—u{w^a^+sw^a^')f

Finally T=(<^»§oCl)~ l e^p is a standard form for T, because

/ (°\\—„— ; (oa, (i)l | lco8ai= l \ s / \
\ 0 0 I /

is of type L. Since a^J—q^eE^A, q) we have

^M^w1)^)
^^(fa))-1^^).

^5<?
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To evaluate this we solve for CD from (10.5):

Iw^a^ + ̂ 12(^1 + tc) w^c\ ̂ /1 x\
\w^a^+w^(sa^+tc) w ^ c ] \ o y ] '

Since de tco=i , (10.5) shows that y=a^c, and hence a^c=w^c. But c^o by our
choice of s above, so a^==w^. Therefore o=w^a^+a^(sa^+tc), and since a^o
(by construction) we have w^ = — {sa^ + tc). The other coordinates give x = w^c and
^w^a^+w^sa^+tc).

Now we can write co 1̂1 ^12
[—(sa^+tc) a^}

and n^/^ii^ — {^21+^)^12+salla22\^(al^ sd—tca^\
\ * * / \ * * )

where rf==deta.
Using step ( i ) of the proof of Kubota's Theorem we have

^-^f"" (^21+^)1 ^[(^l+^^l^12 ^12

^11 J L ^11 J L^llJ

r^(^^22—flf)+^j-1
L ^11 J L ^11 JKn CO

__\s(a^a^-d)+tca^]~1

-[ a,, J ^^

[ t c a ^ - s e n - .
-[ .n J K2(a)-

Next KJB) = \sd-tca^~\ ̂  f^-^i2l [^-^12]
2 V P / L ^1^ J I ^ Jl ^n J

^ prfl prf—^gl _ [sd—tca^~\
"LJL ^11 J~[ ^11 J

because d is a unit and c==i+sc^. Finally, we have

KsM^K^)-1^)

^^(^f^12-^"1?^-^^]

L ^11 J L îi J
=K2(a)==K3((7). Q.E.D.

This concludes the proof of Proposition 8.5, and hence of part c ) of Theorem 4.1.
Part b) of Theorem 4.1 was proved in § 5 (Theorem 5.1). Part a ) will be deduced
in the following section.

§ 11. Further conclusions.

Theorem 11.1. — Let A be a commutative ring, let q be an ideal of A, and assume they
satisfy (7.2)^ and (8.1)^/or some ^3. Then for all m>_n\

a) E,(A,q)=[GL,(A),GL,(A,q)]; and
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b) The natural homomorphism

GL,(A, q)/EJA, q) -^ GLJA, q)/E,(A, q)
^ an isomorphism.

Proof. — (7.2)^ and Theorem 7.5 c ) imply that E^(A, q) is norma] in GL^(A).
In particular we can define G^ = GL^ (A, q) /E^ (A, q). Theorem 7.5^ implies that
G^->G^ is surjective. Let K^ : GL^(A, q)-^C^ be the natural projection. This
satisfies (8.2),, because of Theorem 7.5 d ) , and it satisfies (8.3)^ because E^(A,q) is
clearly stable under transposition. Finally the hypotheses (7.2),, and ( 8 . i ) ^ _ ^ make
Lemma 8.9 b) available, and the latter confirms (8.4)^. We now have all the hypo-
theses of Proposition 8.6, so we obtain an extension of K^ to a homomorphism
K^i : GL^+i(A, q)->C^ whose kernel contains E^_^(A,q). The map K^.^ therefore
induces Cin+i^^n suc^ tllat ̂  composite C^C^i-^C^ is the identity. Since, as
already remarked, C^C^i is surjective, it follows that C^-^C^i is an isomorphism.

Since (7.2)^(7.2)^ and (8.1)^ for all m>_n, by virture of Theorem 7.5 a ) ,
we can repeat the above argument, and prove part b) of the theorem by induction.

According to Theorem 7.5 d ) we have [GL^(A), GL^fA, q)]cE^(A, q) for
sufficiently large m. Hence

[GLJA), GL,(A, q)]cE,(A, q) nGLJA, q)=E,(A, q),

the last equality expressing the fact that C^->G^ is a monomorphism. Since ^^3
it follows now from (5.1) that

E,(A, q)-[E,(A), E,(A, q)]==[GL,(A), GL,(A, q)].

Since our hypotheses carry over for all m>n^ this proves a), and completes the proof
of the theorem.

Theorem 11.2. — Suppose the maximal ideal space of A. is a noetherian space of
dimension <_d. Then A satisfies (7.2)^ and (8. i)^/or all ideals q and all n>^d-\-2.

Proof. — This follows directly from Theorem 7.4 and Theorem 7.5 a ) .
Write

GL(A, q)=^UGL,(A, q) and E(A, q)-^E,(A, q)==[GL(A), GL(A, q)]

(see [i, Gh. I]). Then there are canonical maps

GLJA, q)/EJA, q) -> K,(A, q)=GL(A, q)/E(A, q).

The next corollary affirms, for commutative A, the conjecture of [i, § ii], except for
the probably unnecessary requirement of (8 . i )^_i .

Corollary 11.3. — Under the hypotheses of Theorem 11.2, the map

GL,,(A,q)/E,,(A,q)-^(A,q)

is an isomorphism of groups for all %;>flT+3 {and for all ?^3 if < /==i ) . Moreover
EJA, q)=[E^(A), E^(A, q)]=[SL^(A), SL.,(A, q)]=[GL^(A), GLJA, q)].
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Proof. — The first assertion, as well as the equality E^ (A, q) == [GL^ (A), GL^ (A, q)],
follows from Theorem 11.1 and Theorem 11.2 if d>i. The case d-= i and ^==3
works because condition (8.1)3 is supplied by (7.1).

The equality EJA, q)=[E^(A), EJA, q)] is (5.1) and the insertion of SL^
follows from this and the equation above.

The last assertion of Corollary 11.3 contains part a) of Theorem 4.1. Thus,
the proof of Theorem 4.1 is now concluded.

According to (5.2), EJA) is a finitely generated group if A is a finitely generated
Z-algebra, and ^3. Hence:

Corollary 11.4. — Let A be a finitely generated commutative Z-algebra ofKrull dimension <^d.
If K^A is a finitely generated abelian group, then GL^ (A) and SL^ (A) are finitely generated groups
for all n>_d-\-^ {and all n^ if d===i).

Examples. — Let A be a Dedekind ring of arithmetic type, and let T be a free
abelian group or monoid. Then it follows from the results of [3] that K^A[T] is finitely
generated. Therefore, for example, if ^, . . ., ^ are indeterminates, then

SL^Z^,...,^])

is a finitely generated group if n^_d+4, and, if k is a finite field,

SL,(A[A, ...,^])

is a finitely generated group if n^d-}-^.

One cannot generalize these results too hastily, as the following example shows.
Let A=={a+2ib\a, beZ}, a subring of the Gaussian integers, or, say, k[t2, t^}ck[t\
with k a finite field and t an indeterminate. Then if T is a free abelian group of
rank ^2, SLJA[T]) is not a finitely generated group for any %^>6. This can be
deduced from results of [3] and [7].
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CHAPTER III

MENNICKE SYMBOLS ASSOCIATED WITH Sp^

§ 12. Statement of the main theorem.

Let A be a commutative ring and let s denote the MXM matrix, £===( ° n) .
\ - l n 0 /

Then £==-—£, where the superscript denotes transpose. The symplectic group is
defined by

Span (A) == {aeGL,, (A) | a^a == s}.

This is the group of automorphisms of A2" leaving invariant the standard alternating
form in w variables.

Writing a wxw matrix in nxn blocks, we can express membership in Sp^(A)
by the condition:

/a PW ^ -^
\Y S)[-^ ^ )-1^

From this we deduce three immediate consequences. First

Sp,(A)=SL,(A).

Second, Sp^ contains all matrices

(i 2. i) (7 (J) and ( I 0} with a^a.\o I/ \a I/

The subgroup generated by these will be denoted

Ep2n(A).

Finally, there is a homomorphism,

(I^) GL,(A)-^Sp,,(A), ah>^ ^,

where ^^(^"^^a"'1). It is also known that SpgJA) cSL^(A).

(S o p o \

We shall agree to identify (^ ^eSp^A)with ^ ^ ^ ^ eSp^(A).

0 0 0 ij
This gives us the vertical map in the diagram of monomorphisms,
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(l2.3)

SL,(A)=Sp,(A)

[f.

GL^A) ̂  Sp^(A) ̂  SL^(A).

It is clear that the embedding SLg (A) ->SL^ (A) induced by^ differs from the inclusion
defined in Chapter II, § 4, only by conjugation by a permutation matrix.

Let q be an ideal of A. Then we write

and denote by

Sp^(A,q)=ker(Sp,JA)^Sp^(A/q)),

Ep2n(A, q)

the normal subgroup pfEp^(A) generated by all those matrices (12.1) for which a has
coordinates in q.

We can now state an analogue, for Spg^, of Theorem 4.1 on SL^.
Theorem 12.4. — Let A be a Dedekind ring of arithmetic type, let q be a nonzero ideal

of A, and suppose n^2. Then Ep^(A, q) is a normal subgroup of Sp^(A), so we can define
Cpq==Sp^(A, q)/Ep^(A, q), and the natural projection, K : Sp^(A, q)-^Cp^. There is a
unique map [ } : W^-^Gp^ rendering

S4(A,q)==Sp2(A,q) Sp2n(A, q)

W.
^

Cp,

commutative, and { } is a universal Mennicke symbol.

Invoking Theorem 3.6, where the universal Mennicke symbols are calculated
arithmetically, we obtain the following corollary:

Corollary 12.5. — Sp^(A) is generated by the matrices (12.1). Cp^ is independent of n,
and the natural map Cp^->Cp^, is an epimorphism of finite groups whenever o4=qcq'.
Moreover,

\ the roots of unity in A, if A is totally imaginary,
lim Cp ^ .
-^ f {1} otherwise.

Remark. — Using the fact that Sp^(A) is generated by the matrices (12.1) it is
not difficult to show that Sp^(A) is finitely generated (cf. [22]). (This is even trivial
in the number field case.) Moreover the commutator factor group of Spg^ (A) is trivial
for ^^3, and is a finite group of exponent 2 for ^==2.
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§ 13. Proof of Theorem 12.4.

Lemma 13.1. — The diagram (12 .3 ) induces diagrams

SL,(A,q)

[flv
fl2 2)

SL,(A,q) —^ Sp^(A,q) —> SLg,.(A,q)

^ Ea(A,q)
I.
y

/ 10 q\

EJA,q) —> Ep,,(A,q) -^ E,,(A, q).

Proof. — The only assertion here that does not follow immediately from the defini-

tions is that ^ ^JeEpgJA, q) if oceEJA, q). From the way these groups are defined

it is easily seen that it suffices to prove this when a is an elementary matrix, a is then

an element of some SLg, so we can carry out the calculation in Sp^. Say a===( 1 °).set -c:)and -(o :)•Th" -(;:). -c ^ —c i ̂
TCTT == o. Hence

// 0\-1// (T\ / / 0 \ / / + < T T (7 \ /a a\^ i ] [o /AT ir\o i-^r\o ^?

, /a 0\ // ^a^/a cr \
and ^(^ r ) ( ^ .\0 a / \o I / \o a/

Proposition 13.2. — Let A be a Dedekind ring, let q be an ideal of A, and suppose n^2.
a) ^P2n (A, q) == Spa (A, q). Ep^ (A, q).
b) Ep2JA,q)D[Sp^(A),Sp2JA,q)]DEp^(A,q /.q), where q'=A if ^3, aWq'

^ generated by all t2—^ teA, if n==2.
c) £z/^ subgroup of finite index in SpgJA) contains EpgJA, q) for some q=^= o.
This is a special case of results proved in [2, Ch. II].
It follows from part b) that Ep^ (A, q) is normal in Sp^ (A) so we can introduce

the canonical projection,

K : Sp^ (A, q) -> Cp, = Sp,, (A, q) /Ep^ (A, q).
we have fi ^ SL^ (A, q) = Sp2 (A, q) -> Sp,, (A, q),

and we further introduce /g: SLg(A, q) -> SpgJA, q)

which is the composite of the inclusion, S4(A, q) cGLJA), with the homomor-
phism (12 .2 ) : GL^(A)->Sp2jA). From Lemma 13.1 we see that Eg(A, q) cker(K^)
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for both i=i and a. Moreover (13.2) b) implies that [E(A), SLg(A, q)]cker(K^)
as well, for i=i and 2.

Now it follows from Lemma 5.5 that there exist unique maps { } , [ ] : W -^Gp
rendering

S4(A,q) Sp^(A, q)

1st row

w.
{ }
^ Cp,

and SL,(A,q) Sp2n(A, q)

W. Cp,

commutative, and they both satisfy axiom MSi for a Mennicke symbol.
Lemma 13.3. — If {a, bi), (a, &a)eW, then

pimu^M
MM I a }'

Before proving this we shall use it to conclude the proof of Theorem 12.4; this
will be accomplished by supplying the hypotheses of Theorem 3.7 for { }.

If (a,6)eW, then n-n-[ffj (a|

For if q= i—aeq we have (a, y)~, (i, o) so MSi implies ? == i. Using Lemma 13,3,
therefore, w

A2\^-PIM.^yl^+^^l^
a\ - [a\ \a) ~\ a}-\ a \-\a\-\a\ \ a \ \a

( b\In particular, {a, b) -> satisfies MSi.tb2}
\a\

/:Cp^C,Next let

be the homomorphism induced by the inclusion Sp^(A, q) -> SL^(A, q). The composite
/°{ }'==[ ]q : ̂ -^Ut ^ just the map denoted [ ] in Theorem 4.1. This is because,
as remarked above, the composite

SL,(A, q) —> Sp^(A, q) -^ SL^(A, q)

differs from the embedding used in Chapter II only by conjugation by a permutation
matrix, whereas C^ccenter(SL^(A)/E^(A, q)).
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Thanks to Theorem 4.1, we have now shown that the maps in the commutative
diagram

{y ^
W,7 I/q \ ^

n,\ c,

satisfy all the hypotheses of Theorem 3.7, so the latter implies f is an isomorphism
and that { } is a universal Mennicke symbol on W^. This proves Theorem 12.4,
modulo the:

Proof of Lemma 13.3. — If a=^ )eSLa(A,q) then\c d ]

a o b o\
o i o o 1 , r /a o

o b o\
i o o | , / , /a ° \, | and /oa==( ^ |o d o I J2 \o 7̂
o o i/

^ s \j s. \j \^ s ~\ r I — —7ia==| , | and /oa==( ^Jl I c o d o ] J 2 \o %
<o o o i

. ^ T -i / d -c\ / o i\ / o i\-1 -, , , ib\ , r&1where a== ̂ a ==( , |==| |a| | . ihe symbols { } and are\-b a/ \-i o; \-i o/ 7 \a} \_a\
the classes modulo Ep^(A, q) ofj^oc and^a, respectively. Hence it suffices to prove
the lemma in Sp4. Moreover since [Sp^(A), Sp^(A, q)] cEpg^(A, q) we can replace a
by ^ without changing the symbols.

Given [a, ^), {a, A^eWq choose a,==( ,)eSL2(A, q), i== i, 2, and set

[L 1 ( L \ \^ "{/

^===j^'y^ P2==yla2• Then 1 ^ 2^ is the image modulo Ep^(A, q) of

Pi!̂

^i —6:! o o \ / a o 62 o^
—^ 0; o °1 | ° I ° °

o o a b ^ ^ c ^ o d ^ o
o o q dj \o o o l y

î̂  —c! ^1^2 °
-^^<z ^ —b^b^ o

ac^ o ad^ b^
c^ o qrfg d^

Right multiplication b y e ^ ' -

< i o o o
b^ i o o
o o i —b^

<o o o i

gives

I —C^ ^1^2 —^1^2^1

o ^ —&i^ h\b^
dC^ 0 (2^ —^1^2 ̂ 2

<q^ o q<4 d^—b^d^
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Left multiplication by £3==!

i o o o>
o i o o

-ac^ —q^ i o
- c^ c^ o o i ,

f! —c^ d^ —b^dA

( o a —b.b. b\b^ \
gives 1 2 2 , where0 0 1 o i

\o c\c^ e ds /

e = c^—c^d^ and ^3 = d^—b^d^ + c^b^d^.

gives

Right multiplication by £3=

^ i o ad^b^ —b^d^
o a —ad^b^b^ h\b^
o o i o

\o c\c^ e—c^ d^

f i c^ o o^
o i o o
o o i o

' I o —ad2 by b.byd,1^2 U1U2U1'

Right multiplication by ^={ ° 1 b[b2dl 0

0 0 1 0

0 0 0 I

gives Y =
' 1 0 0 0
o a o b\b^
0 0 1 0

<o c^c^ o </3

If 03== ( 2 1 2 ) then Y is evidently conjugate in Sp4(A, q) to f^, so { 1 2} is the
\c^ ^3 / [ a }

image modEp2^(A,q) of T==£2Pl!B2£l£3£4• Since each £,eEp^(A,q) (thanks to

Lemma 13.1 for z = = i , 3 ) it follows that ^ 1 2 is the image of (B^ mod Ep^(A, q),
and this proves the lemma.
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CHAPTER IV

THE CONGRUENCE SUBGROUP CONJECTURE. APPLICATIONS

§ 14. First variations of the problem.

The results of the preceding chapters solve, for SL,^ (^^3) and Spg^ (^^2), what
we describe below as the <( congruence subgroup problem ". There is strong evidence
that similar phenomena should be witnessed for more general semi-simple algebraic
groups, so we shall formulate the question in this more general setting.

In this section we fix a global field k and a finite non empty set S of primes of k
containing all archimedean primes. We shall call S totally imaginary if all peS are
complex. This means A: is a totally imaginary number field and S is just its set of archi-
medean primes. Departing slightly from our earlier notation we shall write

0==0^={xEk\OY^x)>_o for all p^S}.

A^ denotes the adele ring of/:, and A^ the ring ofS-adeles of A, i.e. the restricted product
of the completions ky at all p^S. For any field F, pip denotes the group of roots of
unity in F.

Let G be a linear algebraic group over A, and let r=G^nGL^(^), with respect
to some faithful representation G->GL^ defined over k. The questions we shall pose
turn out to be independent of the choice of this representation. We write
r — r n G ^ ( ( P , q) for q an ideal of ffl, and call a subgroup of F which contains 1 ,̂
for some q + o, an ^-congruence subgroup of F. These are evidently of finite index in F,
and one can ask, conversely:

Congruence Subgroup Problem: Is every subgroup of finite index in T an ^-congruence
subgroup^

Two subgroups of G^ are called commensurable if their intersection has finite
index in each of them. The subgroups commensurable with F will be called ^-arithmetic
subgroups. In case A: is a number field and S is the set of archimedean primes then these
are just the arithmetic subgroups of Gj^ in the sense of Borel-Harish-Chandra [8]. We
obtain two Hausdorff topologies on G^;, the ^-congruence topology^ and the ^-arithmetic
topology^ by taking as a base for neighborhoods of i the S-congruence subgroups of F,
and the S-arithmetic subgroups respectively. Since the latter topology refines the
former there is a canonical continuous homomorphism

G^G,
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between the corresponding completions of Gj^. Write F and F for the closure of F^ — /"s
in G^, respectively, G^;. Clearly F is just the profinite completion of F, so it is a compact
and open subgroup of G^;. It follows that 7r(r) == F, an open subgroup of G^. There-
fore 7r(Gy is an open and dense subgroup of G^ so re is surjective. Writing

C^G^) == ker(Tr) == ker(7r | F)

we see that C^G^;) is a profinite group, and we have a topological group extension,

E\G,):i->C\G,)-^G^G^i.

Since both the right hand terms are constructed as completions ofG^ the inclusion G^ c Gj,
can be viewed as a splitting of E^G^;) when restricted to the subgroup Gj^cG^.

The congruence subgroup problem asks whether the two topologies above coincide,
or, equivalently, whether TT is an isomorphism. Thus we can restate it:

Congruence Subgroup Problem: Is GS(G^)=={I}?
The S-congruence topology on G is clearly just the topology induced by the

embedding G^->G(^S), which comes from the diagonal embedding of k in its ring
ofS-adeles. Therefore we can identify G^ with the closure of G^ in G^S) . In this connection
we have the:

Strong Approximation Theorem (M. Kneser [13]). — Suppose k is a number field and
let G be simply connected and (almost) simple, but not of type Eg. Then, if G^ is not compact
for some peS, G^ is dense in G(^S). I.e. G^==G^S).

Here " simply connected " is taken in the algebraic sense. It is equivalent to
the condition that for some (and therefore for every) embedding k->C, the corres-
ponding Lie group G^ is a simply connected topological group.

Congruence Subgroup Conjecture. — Let G be a simply connected, simple, Chevalley group
of rank > i, and let

E^G^i^C^G^G^G^i

be the extension constructed above. Then this extension is central, and

0s fG ̂ i^ ^ s is totally ^^^yk \{ i} otherwise.

Recall that G is a Ghevalley group if it has a split A:-torus of dimension equal to
the rank of G.

Theorem 14.1. — The congruence subgroup conjecture is true for G==SL^ (^^3) and
for G==Sp^(^2).

Proof. — First consider G==SL^ (^3), and write Eq==EJ^, q)c]^==SL^, q),
in the notation of Chapter II. It follows from Corollary 4.3 that E^ has finite index
in r (for q=(=o), and it follows from Theorem 7.5 e ) that every subgroup of finite index
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in r contains an Eq for some q+o. Therefore the E^ are a cofinal family of subgroups
of finite index so r==l imr/E^. Since r===l imr / rq we have

G^CS(SL^k))=ker(^ r)=lim r,/E,=limC,,

where CQ= Iq/E is the group occuring in Theorem 4.1. Now the conjectured evalua-
tion of C follows from Corollary 4.3. Since G is simply connected, it is known that Gj^
is generated by its unipotent subgroups, and hence has no finite quotients 4= { i} .
Therefore it must centralize the finite group C.

By density, therefore, C c center G^.
The proof for G=Sp^ (^^2) is similar. For E^ we take Ep^(^, q), and use

Corollary 12.5 and Proposition 13.2 c ) to verify that the E^ are a cofinal family of
subgroups of finite index. Then the theorem follows as above, this time with the aid
of Corollary 12.5.

Remarks, — i) Matsumoto [15] outlined a method for proving that CS(G^)={I},
starting from the assumption that this is so for SL.3 and S^. Mennicke (unpublished)
has also announced such a procedure. It seems likely that these methods might be used,
in conjunction with Theorem 14. i, to prove at least the finiteness ofC^G^.), and perhaps
even that it is a quotient of ^.

2) To prove the opposite " inequality " in the totally imaginary case the following
observation is useful: If p : G—^G' is a homomorphism of algebraic groups defined
over k there is an induced homomorphism C^p^) : C^G^) -> C^G^;), since p^ is auto-
matically continuous in both topologies. Now if we use the K^, in Chapter II to identify
G^SL^A:))^ ̂ , then every representation p : G->SL^ defined over k gives us a homo-
morphism ^ : C^G^;)--^. If we write the group Hon^G^G^.), (JL^) additively then
^->~^ defines an additive map

R^G^Hon^G,),^),

where R/c(G) is the ^-representation ring of G. The behavior under multiplication
is given by

p0s)(7=(dim p)cr+p^dim <?).

We thus obtain a pairing R^(G)xCS(G^)->[JL^; using subgroups of G isomorphic to SLg
this can be used to give lower bounds for G^GJ.

§ 15. Relationship to the work of C. Moore. The 66 Metaplectic Conjecture ".

Let L be a locally compact group (we shall understand this to mean separable
also) and let M be a locally compact L-module, i.e. a locally compact abelian group
with a continuous action L X M—^M. IfN is another such module we write Hom^ (M, N)
for the continuous L-homomorphisms from M to N. C. Moore [19] has defined coho-
mology groups H^L, M), n^o, which have the usual formal properties, and the usual
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interpretations in low dimensions if one suitably accounts for the topological restrictions.
In particular H^L, M) classifies group extensions

i ^ M - ^ E ^ L - ^ i,

inducing the given action of L on M, and where p and i are continuous homomorphisms
which induce topological isomorphisms M-^zM and E/z'M->L.

Examples of these are the extensions

E^G,) : i -> C^G,) -> G, -> G, -. i

constructed in the last section, provided we assume C^G^;) is in the center of G^. If we
put C=G^(GJ, and write ^-(E^G^eH^G,, C), then the fact that E^G^) splits
over G^cG can be written

.Gker^G,, G) ̂  H^G,, C)),

where we view G^->G^ as a homomorphism of locally compact groups, giving G^ the
discrete topology. Now if f : C->-M is a continuous homomorphism of locally compact
G^-modules then

/(.) eker^G,, M) ̂  H^G,, M)).

Theorem 15.1. — Let M be a prof mite G^-module. Then

Hom^(C, M) -^ ker(H2(G„ M) ̂  H^G^, M)),

by f\~^f{^}'> is surjective. IfG^ acts trivially on C and on M, and ifG^ has no non-trivial finite
abelian quotients^ then it is bijective.

Proof, — If ^ker^G,, M^H^G,, M)) let

i -^ M -> E-^ G^-> i

be an extension representing x. By assumption there is a section s : G^->E such that
NT^T fo^ T^. __ _

Write r for the closure of F in G^, and set F ==p~1 (F), so that we have an induced
extension

i -> M-.F-.T-> i.

This shows that F is compact and totally disconnected, since M and F are, so F is a
profinite group. Consequently s F extends to a continuous homomorphism ? : F—^F.
Therefore s : G^->E is continuous for the S-arithmetic topology, since it is continuous
in a neighborhood of i. The completeness of E now allows us to extend s to a continuous
homomorphism ? : G^->E. Now the square

E -"-> G,

G. —> G,
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^s /\

commutes on G^cG^, so it commutes because Gj^ is dense in G^ and the arrows are
continuous. Thus we have constructed a morphism

i —> M —> E —> G^ —> i
t t-
P I s

i -^ C —> G, —^ G, —> i

of group extensions, and^is therefore the required G^-homomorphism for which f(e)==x.
Now suppose given / : C -> M. Factor / into C -^ G/ker f-> M. Then g{e)

corresponds to the extension
i->C/ker/->G,/ker/-^G^i.

If it splits and if Cc center G^ then C/kery is an abelian quotient of G^/kery. If G^
has no non trivial finite abelian quotients then, by density, neither does G^, so C/ker/==o.
This shows, under the hypotheses of the theorem, that f^o=> g(e)^=o. Now if, further,
G^ acts trivially on M then H^G^, coker A)==Hom(G^, coker h)=o, so the cohomology
sequence of o -> C/ker f-> M —> coker h -> o yields

o=Hl(G„ coker A) -> H^G,, C) -^ H^G,, M).

Hence f(e)==h(g{e))^o. Q.E.D.
We can now restate the congruence subgroup conjecture cohomologically. We

can even generalize it in a natural way by no longer requiring that the set S contain the
archimedean primes, and even allowing S to be empty, in which case Ai==A^. For
reasons to be explained below we shall call this generalization the:

Metaplectic Conjecture. — Let k be a global field and let S be any finite set of primes of k
(possibly empty). Let G be a simply connected^ simple^ Chevalley group of rank > i. Then

for any profinite abelian group M on which G(^S) acts trivially^ there is a natural isomorphism

1. n-r2/r A/n restr tfvp i^^^(Hom(^, M) if all peS are complexker(H (G(^, M) --> H (G,, M)) =(^ otherwise.

More concretely, this means that there exists a central extension

(15.2) i ->^->G ->G^-> i,

which splits over G^cG^ , and that any other such, say

i - > M ^ E - ^ G ^ - ^ i ,

with profinite kernel M, is induced by a unique homomorphism pt^->M. Moreover,
for any non complex prime p, the restriction of (15.2) to the factor G^ cG^ has order
exactly [^ : i] in H^G^, ^).

The last assertion is deduced as follows: Let A-EH^G^, ^) be the class of the
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extension (15.2). For any p, G^==G^ XG(^P), and H^G^; ,^)==o because G^ i
generated by unipotents. Therefore if the restriction of x to H^G^; , ^) is killed by n
then it follows from the Klinneth formula that nx is the inflation of an element of
H^G^P), pi^) which splits on G^;. But, according to the conjecture, the group of such
elements is zero if p is not complex, and hence nx===o.

IS

The existence of (15.2) has been suggested by G. Moore as a natural generaliza-
tion of WeiP s c( metaplectic " groups [25]. The latter are certain two sheeted coverings

/">«>/
in the case G=Sp^. We might thus call the alleged G the " metaplectic group ofG "
over k. Moore, in unpublished work, has proved a number of interesting theorems in
support of the metaplectic conjecture, and he suggests that we allow an arbitrary locally
compact M in its formulation. His procedure, contrary to ours, is local to global.
This seems to be the most natural approach since we obtain no direct construction of the

/^^
local extensions (over the G^ 's) and because our method gives us no access to G when
there are real primes or when k is a function field. On the other hand:

Theorem 15.3. — If k is a totally imaginary number field then the congruence subgroup
conjecture/or G^ is equivalent to the metaplectic conjecture for G ;̂, plus the conjecture that G^(G^)
lies always in the center of G^. In particular all these conjectures are true in this case for
G==SL^(^3) and G=Sp^ (??_>2).

Proof. — In view of Theorem 15.1 we see that the congruence subgroup conjecture
is obtained from the metaplectic conjecture simply by requiring the sets S to contain all
archimedean primes. We must therefore show that this restriction costs us nothing
when k is totally imaginary.

Given any finite set S let T be the union of S and the set of archimedean primes.
Then A^A^xC

for some r^>o, since k is totally imaginary. Therefore

^AR^^AgX^-

Now Gc is a complex semi-simple Lie group which, by hypothesis, is simply connected.
It follows that

H l(Gc.,M)=H2(Gcr,M)-o

for any profinite abelian group M on which G^ acts trivially. From this it follows that
the projection

^A? -> ̂ Aj)

induces an isomorphism I-PfG/^, M) —> H^G/^T), M). The projection is compatible
with the embeddings ofG^;, so we have now a natural isomorphism

kerWG^, M) ̂  H^G,, M))
restr

^ker^G^), M) —^ H^G,, M)).
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Thus the metaplectic conjecture for S is equivalent to the same for T, and T contains
the archimedean primes, so the theorem is proved.

In case there are real primes the argument above decidedly fails, since, e.g.,
^(Gn) ^Z/sZ i fG is not of type G^. However, by a slight artifice, we can still deduce
a partial local result at the finite primes of any number field.

Theorem 15.4. — Let k be a number field and let q be a finite prime of k. Suppose G is
a simply connected, simple, Chevalley group for which the congruence subgroup conjecture holds over
all number fields (for instance SL^, n>_^ or Sp^, ̂ 2). Then H^G^ , ̂  ) contains an
element of order [^ : i],

Proof. — Ghoose a totally imaginary number field L which contains ^ and which
has a finite prime p such that Ly^k^ this is quite easy to do. Clearly then ^==^ •
Let S be the set of archimedean primes of L. Then, by the congruence subgroup
conjecture, we obtain a central extension

^
1 -> ^L -> GL -> G-AS -> I

whose restriction to G^ has order [^ : i], as we have seen above. Q..E.D.

§ 16. Recovery of G-representations from those of an arithmetic subgroup.

Let G be a semi-simple, simply connected, algebraic group defined over Q, and
let F be an arithmetic subgroup ofGq. In the notation of § 14 this is an S-arithmetic
subgroup where S=={oo}. We will write A/ for the ring of finite adeles of Q,. (This
is AQ^ in our previous notation.) The closure of F in G^f is a profinite group, so
there is a canonical continuous homomorphism

T. : r -> G^/,
where F is the profinite completion of F. The main theorem of this section will
invoke the following hypothesis:

/ a) 7r(r) is open in G^/.

b) ker(Tr) is finite.

It is easy to see that these conditions depend only on G over Q^, and not on the choice
of r. Moreover a) follows from Kneser's strong approximation theorem whenever the
latter applies. This requires, essentially, that all factors of G be not of type Eg and non
compact over R. Part b) is a qualitative form of the conclusions of the congruence
subgroup conjecture. It says, in the notation of § 14, that C^^G^) is a finite group.
In particular it has been proved above for certain G.

Conjecture. — (16. i) is true ifG is simple relative to Q^, and of (^rank (in the sense of
Borel-Tits [9]) ^2.
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Theorem 16.2. — With the hypothesis ( 1 6 . 1 ) , suppose given a group homomorphism
f '. r->GL,^(QJ. Then there is a homomorphism of algebraic groups

F : G-^GL,,

defined over Q ,̂ which coincides with f on a subgroup of finite index of F.
Corollary 16.3, — IfV is a finite ^-dimensional Q^[r]-module there is a lattice in V stable

under F.
Proof. — Say F : G->GL(V) agrees withy on F'cF, a subgroup of finite index.

Then one knows that F(F') is an arithmetic subgroup of F(G)q, so F(F') leaves some
lattice, say I/, invariant. Then L= S si,' is stable under F.ser/r"

Corollary 16.4. — Every exact sequence

o -> V -> V — V" -> o

of finite (^-dimensional Q_[r]-modules splits. In particular H^F.V^^o.
Proof. — Passing to a subgroup F' of finite index in F, this becomes a sequence

of r'-modules induced by an exact sequence of algebraic 33 G-modules over Q .̂ Since G
is semi-simple this sequence splits, and therefore it splits over F'. If g ' : V'-^V is

a F'-splitting then ^(^)==——_- S sgf{s~lx) defines a F-splitting.[1 : 1 J ser/r"
The vanishing of H^F, V) corresponds to the case V^^Q^ with trivial action.
Corollary 16.5. — If F operates on a finitely generated Z-module M then H^F, M)

is finite.
Proof. — Since F is finitely generated H^F, M) is a finitely generated Z-module.

Now tensor with Q^ and apply the last corollary.
Remark. — The vanishing ofH^F, ad), where ad is the adjoint representation ofG,

implies the <( rigidity " of F, i.e. the triviality of deformations of F in Gp (see Weil [24]).
Garland has proved that H^F, ad)==o for Ghevalley groups, and Borel proved rigidity
when G is semi-simple ofQ^-rank ^2 and such that every simple factor has Q^-rank > i.
Finally, Raghunathan [21] proved the vanishing of H^F, V) for these G and for any
faithful^ irreducible rational G-module V. On the other hand D. Kajdan has obtained
vanishing of H1 for the trivial representation in some cases.

Corollary 16.6. — Assume ( 1 6 . 1 ) and that Gq is generated by unipotents. Then every
group homomorphism f : GQ—^GL^(QJ is algebraic.

Proof. — It follows from Theorem 16.2 that there is an algebraic homomorphism
F : G->GL^, defined over Q^, such that F and f agree on an arithmetic subgroup, F,
ofGo. To show that F and f agree on all ofGq it suffices, by hypothesis, to show that
they agree on each abelian unipotent algebraic subgroup U of Gq. Since F is
algebraic, F(U) is unipotent in GL^(Q^). The group U is isomorphic to a vector space
over Q^, and F n U is a lattice of maximal rank in U. Hence, if we show thaty(U)
is unipotent then it will follow from Lemma 16.7 below, that f and F agree on U, since
they agree on the lattice F n U.
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Suppose ^eGL^(QJ is such that some power ofx is unipotent. Then the eigen-
values of x are roots of unity as well as roots of a polynomial of degree n over Q^. It
follows that they are N-th roots of unity for some N depending only on n, and hence x^ is
unipotent.

Now suppose xe\J. Then A:==JN for some j/eU. Some power ofy lies in FnU,
so some power of f{y) lies in / ( rnU)==F(rnU), which is unipotent. Therefore
f(x)-==f(y)^ is unipotent, as was to be shown.

Lemma 16.7. — Let k be afield of characteristic ^ero, and suppose x,jyeGL^{k) are
unipotent and that y^'==_/" for some m>o. Then x==jy.

Proof. — We can write a unipotent x uniquely as ;v=exp(X) with X(==log(^))
nilpotent, the (( series " exp and log here being in fact polynomials. Hence if x^'-^f^1

then mX=mY, so X==Y and therefore x==y.
Proof of Theorem 16.2. — Since F is finitely generated there exists a prime p such

that all elements off{T) are ^-integral. (For each generator Y» of F choose a common
denominator for^yj and^y^"1)? and takej& prime to all these denominators.) Then^
extends continuously to

/,:r^GLJZ,).

Replacing F by a subgroup of finite index, if necessary, we can identify F with
an open subgroup ofG^/ of the form II Ug, where Vq is a compact open subgroup of GQ ,
equal to G^ for almost all q. Then if q^p it is easy to see that the image of the ^-adic
group Vq in the j&-adic group GL^(Zy) must be finite.

Since GL^(Z^) has <( no small finite subgroups ", i.e. since it has a neighborhood
of the identity containing no non trivial finite subgroups, it follows by continuity of fp
that ^p(Ly=={i} for almost all q.

Passing again to a subgroup of finite index in F, therefore, we can arrange that
^ (U)==i for all q^p. Thus f factors as the composite

r^U^GL,(Z,),

where 9 is a continuous homomorphism. Now by the theory of j&-adic Lie groups
(see [23, III (3.2.3.1)]) 9 is analytic, and its tangent map at the identity is a
homomorphism

L(9) ^Q^-^U^)

of the associated Lie algebras over Q^,. Since G is semi-simple and simply connected
there is a unique homomorphism of algebraic groups, F : G->GL^, defined over Q^,,
with tangent map L(y). Therefore F agrees locally over Q ,̂ withj^, so F coincides
withy on a subgroup, P, of finite index in F. It remains only to be seen that F is defined
over Q^. This follows from the fact that F(F) =/(?) cGL^.QJ, and the fact that F
is Zariski-dense in G.
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