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CORRECTIONS TO :

DIFFERENTIAL TOPOLOGY FROM THE POINT OF VIEW
OF SIMPLE HOMOTOPY THEORY AND FURTHER REMARKS

by BARRY MAZUR (1)

§ i. Corrections to : Differential Topology from the Point of View of Simple
Homotopy Theory and further remarks.

The purpose of this note is to atone for some of the sins committed in [i].
Namely: Chapters I I I and IV:
Lemma 3.2 page 19 is false, and even if it were true it would be a bad idea to

pass to such equivalence classes of cell decompositions. In fact, the notion of equi-
valence given on page 18 is unnatural.

In expiation, I gave (hopefully!) the right definition of equivalence in [2]. It is
that definition (Definition n, sec. 5) which meshes well with the proofs of [i]. As a
consequence, one must also modify the definition of neighborhood of chapter IV. This
is done in sec. 8 of [2], and the terminology is changed from ".neighborhood 3? to
c< solid ", which is really more appropriate.

Here is a sketch of the new definitions:
i. D-isotopy or Isotopy of differentiable cell decompositions:
An object of the form

X={(Xo, . . . ,XJ ; ^i=i, . . . , v }

and projection maps
7T, : X,-^I (Z=0, . . . , V )

where X^ == X^U^p.D^ x Dm~mi x I and the cp^ are differentiable imbeddings such that

BD^xD^^xI -^ OX,.,

(1) Research was supported in part by NSF-GP 1217.
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82 B A R R Y M A Z U R

is commutative. (Thus X is a one-parameter family of cell decompositions). Restricting
everything to any tel we obtain a differentiable cell decomposition

x,={(7ro-1^}, ̂ {O,..., ̂ {Q); ^^{Q)}.
Two cell decompositions X^, X^ linked by an isotopy will be called isotopic.

2. Expansion Equivalence. — Two cell decompositions M(), M^ are expansion equi-
valent if there are cell decompositions

M^ == M^ U irrelevant additions
( z = o , i )

such that MQ is isomorphic with M[.
3. D-equivalence: The equivalence relation generated by
a) isotopy;
b) re-ordering equivalence;
c ) expansion equivalence.

Any D-equivalence gives rise to a unique isotopy class of differentiable isomorphisms
which will again be called D-equivalences. (They sire free: i.e. they do not preserve
the decomposition, of course.)

2. Structure weakening: Consider the categories:
Co : differentiable manifolds (with boundary); differential imbeddings.
CH : topological spaces; homotopy classes of continuous maps.

(In CH set B*X=X).

Then we may form cell decompositions in each of the categories. A differentiable cell
decomposition has already been defined; a cell decomposition of C^ is defined similarly
where the maps are of Cg and ^ is replaced by ^*. Thus we obtain two categories of
cell decompositions (maps are inclusions), and a structure-weakening functor:

P : DO^DH.

Any notion in Do has its weak counterpart in D^.
3. Let XeDjj. An n-dimensional solid over X [in Dg) is a pair (M, 71), where

Me Do, TT : pM->X is a Da-equivalence.
An isomorphism

Y : (Mi, Tii) ^ (M^, 713)

between two M-solids is a D-equivalence

Y : Mi >M^

giving rise to the diagram
pMi -^--> pMa

TTi '^ ^' TTg

X
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DIFFERENTIAL TOPOLOGY FROM THE POINT OF VIEW OF SIMPLE HOMOTOPY THEORY 83

(commutative up to Cg-isotopy). (Broken-line arrows mean that they do not preserve
decompositions.)

Let N^X) denote the set of isomorphism classes of m-solids over X.
With the understanding that we are always studying cell decompositions, up to

this equivalence, we need never deal with (< cell-filtrations 9?, that horror defined in [i].
(The reader should therefore skip Chapters III, IV and, rather, consult [2].)

Chapter V I I :

In chapter VII, page 37 line 2, change the hypotheses to read m>2, n>2.
Otherwise, for %==o, i, 2, the existence of homotopy-isolation data would not insure
the existence of isolation data. Consequently, one needs the extra hypothesis n>2
throughout chapter VII.

Chapter V I I I :

(i) The key geometric result of the theory is lemma 8.3. Since the hypotheses
of chapter VII have been strengthened, and all our definitions have been changed, we
must take up the proof of this lemma again. There are a few things to notice. Namely,
after our new definitions, we do not have the contravariant map ^3 and therefore the
statement of the lemma must be changed; and with the new hypotheses for Chapter VII,
we must exclude the case k ==5 which therefore remains unsolved. Finally, in this
corrected proof, a gap in the old one (pointed out to us by C. Zeeman) will be filled.

(To obtain a suitable notion of the essentiality of this lemma for our theory,
one should notice that it, coupled with Prop. 5.4 of page 30, yields the nonstable
neighborhood theorem for k'>_dim K+5 immediately.)

Let
i : fi -> K'^KU^U^V^1

be an elementary expansion, and let
^NTO-^N^K-)

be the <( irrelevant addition " map defined by lemma 8.1, p. 43.
Lemma (new 8.3). — If

(1) A;>:max{dimK+i, M+4},

(2) k>^

then ^ is a bijective isomorphism.
Proof. — a) If^Mo is equivalent to ^M^, by definition, M() and M^ are expansion-

equivalent to equivalent cell decompositions. Hence they themselves are equivalent,
and ^ is injective.

b) Let us show that 4 ls surjective. [I assert on line 12, p. 45, that since

Ne^(K*), N^MoU^xD^UpD^xD^-1.
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84 B A R R Y M A Z U R

That needs proof. Therefore, to begin:]
Lemma i. — Assume: (a) k>m+2; ((B) k>^. Then, if NeJ^K*). N can be written

(up to equivalence) as:

^=={MoU^DmxDk-m)\J^Dm+lxDk-m-l.

Assume Lemma i for the moment. Let us prove i^ surjective in three cases:

I) The case m>2:
Then the techniques of chapter VII apply, and the argument of p. 45, 46 yield

N^Z'^MO (p. 463 line 10).

II) The cases m==o, i:
Trivial for dimensional reasons.

Ill) The case m==2, k'>_6:
Then (after Lemma i) N= (M^U^xD9) U^xD5-1 where k—2==q>,^ Let

TT = TTi (Mp) w 7^1 (^Mg). The map
9 -.s^aMo

is null-homotopic since it is null homotopic in Mo. Since dim ^Mo>5, 9 is an unknotted
imbedding. Let M^MoUpD^D3.

Consider the natural maps

^MoVS2^— (aMo—im9)vS2<— (8MQ—im^)\J^{'D2x{x})ceM^

where ^e^D3, and A is a homotopy equivalence which is the identity on 8M.Q—im 9,
and a map of degree +i from D^-j^} to S2. Then these maps are all isomorphisms
for 7^2, and we obtain the following commutative diagram:

^(aMi) % Z[7r]e7r2(aMo)

»i i®<,

^W w Z[n]@^{M,)

(Z[7r] is the integral group ring of TT, regarded as an abelian group). The vertical
maps are the natural ones.

Let SeTT^Mi) denote the homotopy class of ^. Then we have
^(S) = 1 .IeZ[7T] CZ[7T]®7T2(Mo).

Consequently: (*) S=1.I®^ for xen^Mo).
Let f: ffSf-x)^A^ be a differentiable map representing the homotopy class S

such that /(^D3) intersects the pole ^X^D^C^Mi exactly at one point p, and
transversally at p. This is possible after (*). Since dim ^M^^ 5, /may be approximated
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DIFFERENTIAL TOPOLOGY FROM THE POINT OF VIEW OF SIMPLE HOMOTOPY THEORY 85

by an imbedding g. If the approximation is sufficiently close, we may be sure that g
has exactly one polar intersection also, which is transversal. Since g is homotopic to dj,
Theorem 2 o f § 2 below applies, yielding the following result: <p is differentiably isotopic
to an imbedding 9" which has exactly one transversal polar intersection. Thus the
arguments of p. 45, 46 again apply.

Proof of lemma i. — We may take N properly ordered,

N^MoU^D^xD^U (D^D^-^U {Dm+ixDk-m-l)y^J^Dm+lx'DJC-m-l (etc.)

where (etc.) refers to the remaining handles. The handles (D^ x 'Dk~m). may be removed
from the vicinity of (D^xD^) CMoUD^D^ by differentiable isotopy. Therefore
we may reorder the attaching " U^D^xD^-^1 " to come after all the (D^D^^.,
which we may now (< lump 5? into the Mg, and write:
N^MoUpD^xD^^U

(U^Dm+lxD^-m-lU^...U^Dm+lxD^7m-l)U^Dm+lxD/c-m-l (etc.)

We may also regularize thefy by isotopy so that
(*) f^m+lx^m~l)^mx^~mc^mxwu^m

(where ^D^ C ciV refers to the upper or lower hemisphere in SQ7).
Since K* is an elementary expansion of K, we have that there is a continuous map,

8Dm+lxl-f>N such that

(i) /I^D^XO-^

(ii) /(aD^^x^riD^xD^-^—D^^

for some pE8Dk~m (which we may take in BD^).
Lemma 2. — After a differentiable isotopy (P() of N, we may find a continuous map f

satisfying (i), (ii) above {for ^==T?^) such that
(**) /(aD^x^noxD^-1^ (j=i, ...,m).

For simplicity, denote P^-^xD^"1 (the j^ (< pole "). Call an element in
/(^D^x^riP, a (( polar intersection ".

Assume Lemma 2, for the moment. If (**) is true, then by an <c expansion
isotopy " centered at the pole Py, we may obtain:
(***) /(aD^x^nD^xD^-1^.

Since f\ ̂ ^'^^{o}^^, we may then arrange
^(aD^xD^-^nD^xD^-1^.

Then we may reorder N, having the " ^ "-handle glued prior to the (< fj "-handles.
Moreover (***) assures us that we have a map

/: BD^xI^MoU^xD^U^D^xD^-1
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86 B A R R Y M A Z U R

This means that we finally find ourselves in the situation I blithely took to be the " given "
in my original proof.

Proof of Lemma 2. — By choosing f in general position we may suppose the inter-
section f{()Dm+lx I) Ft P̂ . transversal. Therefore there are only a finite number of polar
intersections. Let us " remove " them, one at a time

Removal of a Polar intersection [x}:

Choose nonsingular paths:

T r - -

Y2 • • •

Y3 - -

From ^P to x

From x to f{8Dm+lx{o})

From y 2(1) to yi(o)

along P^

along /(BD^x I)

along BN

with these properties:
1. YI should contain no other polar intersections (possible since dim Py > i

by (a)).
2. Y2 should be disjoint from the image of the singular set SC()Dm+lxI under

the mapV (possible since dim S <^ 2 (m + i) — k^ (m + i) — 2 by (a) and therefore S cannot
separate x from 8Dm'}'lx{o}).

3. The path Ys should be extendable to a path defined for o_^^2 and should
be so that the circuit ^==^^^2^^ is null-homo topic in N. (Possible since ^(N, ^N)=o
by hypotheses (i) , (2) of the main lemma).

Let crCN be a nonsingular 2-disc whose boundary is y (possible by ((B)). Orient
everything in a neighborhood of oCN. Let P^ : o<^t<^2 be a differentiable isotopy
of (N, ^N) possessing these properties:

(i) PO==I .
(ii) P( has support in some small neighborhood of Ys •
(iii) P,(Y3(o))=T3(^ 0^2.
(iv) The intersection of A=Pl/(aDm+lxI) and BP, in BN aty3(i) is transversal.
Now up to isotopy there are precisely two such P/s [since c)Pj has positive dimension

by (a)), corresponding to plus and minus intersection indices between A and SPy
at ^3(1).
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3P

^- --- --^

^ i
Y3

/
-/fOD x(0} )

Choose that P^ which yields an intersection index different from the intersection index
of P, and f{c)Dm+lxI) at x. After that isotopy P^ we have introduced a new polar
intersection y.

fOD xl)

It has an opposite index to x, and a yields cc homotopy-isolation data ".
Now we may replaceyby a map g which differs fromyonly in a small neighborhood

of r, the segment between f~l{x) and f~l{y) in f~1^^ such that
a) f=.g on 8Dm+lx^I (therefore g obeys (i), (ii));
b) g has precisely two fewer polar intersections than f (namely x and y ) .
One constructs g by means of CT, but first we make a few remarks about how a

meets f(c)Dm+lxI) at F. Again by (a), if a is chosen in " general position with
respect to y^D^^xI) "3 the normal directions along from F will be transverse to
/(aDm +1 X I). (Remark: int a may intersect /(^D^ +1 x I) at a finite number of unavoidable
points.) Now we shall modify y in a neighborhood R of f~l^ (( guided by a 5?.

Let cr' be an enlargement of <r, as visualized below. Let ^(T'=Y^UY'. Let
Y^xQCP be a tubular neighborhood ofy^ in P, and choose some product coordination
^ ' X Q^ of a neighborhood of a ' so that the image off in a neighborhood of y' may be
described as y' xQ,==y(R). As indicated below, modify y as follows:

(i) g ==f outside R.
(ii) ^(R^^xQUa-xaQ,

before after
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88 B A R R Y M A Z U R

Notice that this g may have more ^//-intersections than / because of the paren-
thetical remark above. The important thing is that g satisfies a), b) above, and is
continuous.

(ii) Since we have included a new hypothesis (i.e. (2): k>^) in lemma 8.3,
we must include a new hypothesis: k>^ in the nonstable neighborhood theorem (p. 47).

§ 2. Low Dimensional Intersections:

Let A, B be compact differentiable manifolds, and j^, f^ : A—^B differentiable
imbeddings.

Consider the following weakening of the ordinary notion of differentiable isotopy:
Definition i. — Let LcA, KcB be finite subcomplexes. Then f^ is congruent

to f^mod(L-^K) if:
Given any regular neighborhood ofK, McB, there exists a regular neighborhood

of L, NcA, and a differentiable isotopy cp^ : A->B such that
a) ?o=/o;
b) <pi(N)CM;
c ) cp,|A-N=/,|A-N.

This is a weakening of differentiable isotopy and taking L==0, K==0 one gets exactly
differentiable isotopy.

Definition 2. —fo is congruent to f^modq (written: /Q^f^modq)) for q^>_o an
integer, if there are complexes K^, L9"1 (of dimension q, q—i respectively) such that
/o=/imod(L^1-^).

(Is this an equivalence relation? We have introduced this notion to obtain the
following theorem:)

Theorem i. — Assume dim A = 2, dim B == 5, and thatf^ is homotopic to f^. Then
/o=/i(mod i)

Proof. — In this range of dimensions, if/Q and f^ are homotopic, then they are
regularly homotopic.

Let f^ (o^_^ i) be the regular homotopy, f : A x I ->B. Then we may assume that
there are exactly a finite number of points p-^, . . ., p^ at whichy fails to be a differentiable
isotopy, and the immersions ft possess only double points. Consider a pair of double
points {(j^i, ^o)(^25 ^o)} ^d ^or simplicity of notation assume this to be the only pair.
(Our proof works as well in general.) Set Py={^.}x [o, to} cAxI for j= i , 2 .
Find y, a C^-approximation to f which is equal to f except in a small neighborhood
of PiUPg, and such that:

a) f'\ Py is a differentiable imbedding possessing a nonsingularjacobian for j = = i , 2 .
b) f\p^ ^=//(Pl)n/'(P2)=//G^ ^o).
To obtain y a differentiable imbedding on P .̂ is easy. To insure that it have a

nonsingular jacobian involves a slight calculation: If G^ ^ is the Grassman manifold
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DIFFERENTIAL TOPOLOGY FROM THE POINT OF VIEW OF SIMPLE HOMOTOPY THEORY 89

of n-planes in w-space, then dim Gg 5 = 6, dim €14=3. Consequently a path of 2-planes
in 5-space may be C1 approximated by one such that no 2-plane of that path contains
a given line. To obtain b) is also easy.

Then /' will be, again, a regular homotopy with only one pair of singular points:
(A. Q^ (A. Q' Let Sy^D^x [o, to—S] (j== i, 2) be tubular neighborhoods of P,,
small enough so that / is a differentiable imbedding on S, (possible by implicit function
theorem, since the jacobian of/is nonsingular on P.).

Now modify/' to/" which is C^-close, has all the nice properties of/' and the further
property:

/"(AxI—intSiUSg) does not intersect the lines /"(P,). (Possible since 3+i<5.)
By compactness there are differentiable tubular neighborhoods R. of /"(P-)

such that /"(AxI—in^SiUSg}) does not intersect the R,.
Since/" is a differentiable imbedding on Ŝ . we may cut R^, Sy down to smaller

tubular neighborhoods RJcR^S^CS, where S; =:D^(e')x [o, ^], ^=^—S', which are
adapted to one another in the following sense:

/"(S;,^S;)C(R;,aR;) ^1,2.

To do this, a suitable version of the tubular neighborhoods lemma must be used.
We may conclude:

(*) /"(AxI—S^US^) does not intersect R^URg.

Notice:
1. f\' is a differentiable isotopy as t ranges in f^, i] (^===^4-8').

For simplicity of notation, set

D^D^UDKs'); R'^RiURg.

Then:
2. f [ ' : (A—int D', BD') -̂  (B—int R', 8R')

is a differentiable isotopy for te[o,t^].

3. /;' : (D', ^D') -> (R', BR')

is a regular homotopy, which is a differentiable on 8D' and a differentiable imbedding
for t=t^

After (3) we may apply the isotopy extension theorem (relative version) to obtain
a differentiable isotopy

gt : (D', 3D') -^ (R', 8R') te[o,t,]
such that

a) &,=/;:

b) gt 8D'=f['\8D'
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Now set h\ : A->B to be the (not yet differentiable) isotopy o^t^i given by:
a) h[[a) ==/;(fl) if fl^D or t>_t^
b) ht{a)=gt{a) if aeD', t^.

This isotopy is not yet differentiable at ^D'x[o,^], but it may be smoothed.
Let hf be a differentiable isotopy which is C°-close to h[ and C^-close except in a small
neighborhood about 3D'.

Set Kl=fff('P^Ufff{'P^. Then R' could have been chosen small enough so as
to be contained in a regular neighborhood of K1.

The final differentiable isotopy ^ is C^-close to the original f^ except in some
small neighborhood of D' (i.e. some small neighborhood of 'L°==[p^(J[p^cA)
and ^(D^CR'. Consequently ^ may be approximated by a differentiable isotopy cp
which is a congruence (mod[L : K]) between^ and^. Thus theorem i is proved.
It will be used in the following application:

Let Y^Z5 be a compact submanifold. Let f,g\Y^->7? be homotopic
imbeddings of the compact differentiable 2-manifold X2 in Z5.

Theorem 2. — Suppose ^(X2) meets Y3 transversally at k points (o^A<+°o). Then
there is a differentiable isotopy ft : X2—^5 such that fo==f and Yi(X2) meets Y3 transversally
at exactly k points.

Proof. — By theorem i, f=g{modi). Thus f= g mod(L°-^K1). We may
assume first that L° does not intersect ^"^(X2) DY3) since these are both zero-
dimensional sets which may be moved about by differentiable isotopy. We may also
assume that K1 doesn't intersect Y3, after a slight C^-perturbation of Y3, say. Let M,
N be regular neighborhoods K1, L° respectively such that
a) MnY3^
b) NtV^^nY)^.

Applying theorem i we obtain a differentiable isotopy j^ such that
(i) /o=/;
(ii) A(N)CM;
(iii)^|(X-N)=^[(X-N).
We obtain the following string of equalities:

A(x)nY=/,(x-N)nY=:^(x-N)nY=^(x)nY
(the first because /i(N)riY=0, after (ii) and a}', the second after (iii); the third
because ^(N)flY==0, after b}).

Theorem 2 is therefore proved.

§ 3. Correction to : Definition of Equivalence of Combinatorial Imbeddings.

Let me take this opportunity to warn the reader of an error in [3]. Namely:
p. n, condition (iii) in § 9 is impossible to obtain in general. Rather, one gets a union
of intervals. The proof of the main theorem, however, can still be carried out. One
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DIFFERENTIAL TOPOLOGY FROM THE POINT OF VIEW OF SIMPLE HOMOTOPY THEORY 91

should do it in a more direct way, however. The function spaces introduced in § 15
are unnecessary.

The reader is referred to the recent I.H.E.S. seminar of C. Zeeman for a complete
theory of combinatorial isotopy, which makes [3] unnecessary.
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