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INTRODUCTION

The theory of spherical functions on semi-simple Lie groups has been developed
by Gelfand, Neumark, Harish-Chandra, Godement and others. Among them, Harish-
Chandra [13] proved that the totality of zonal spherical functions on a (connected)
non-compact semi-simple Lie group G with finite center, relative to a maximal compact
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6 I C H I R O S A T A K E

subgroup U, can be canonically identified with a quotient space of the form CyW,
where v denotes the cc rank 5? ofG, i.e. the dimension of a maximal vector part of a Cartan
subgroup of G and W the restricted Weyl group of G. Recently the theory has been
extended to the case of some classical groups over p-adic fields by Mautner [17],
Tamagawa [23] and Bruhat [4], [5]. The main purpose of this paper is to show that
the principal part of the theory, including the above-mentioned theorem of Harish-
Chandra, holds for a wider class of reductive algebraic groups over p-adic fields,
containing all simple classical groups without center.

To be more precise, let A: be a local field, G a Zariski-connected reductive algebraic
subgroup of GL(n, A), A a maximal A-trivial torus in G and N a maximal A-closed unipotent
subgroup of G, normalized by A (G, A, N, .. . being understood as to represent the
groups of ^-rational points); the pair (A, N) is then unique up to inner automorphisms
of G. Put dimA==v and denote by A" the unique maximal compact subgroup of A.
Then the restricted Weyl group of G relative to A, W=N(A)/Z(A), operates in a
natural way on A as a group of automorphisms, and hence also on the character group
(in the algebraic sense) of A, Y==X(A)(^ZV), and on the group of quasi-characters
(in the topological sense) of A/A", Horn (A/A11, CT) =¥00(^0'). Now let k==R
or C, and let U be a maximal compact subgroup of G; the quotient space S==U\G
is then the associated symmetric space. A C°°-function co on G is called a zonal
spherical function (or elementary spherical function) on G relative to U, if it satisfies
the following conditions

(i) ^{ugu')^^^) for all geG, u, M'eU,
(ii) <o( i )= i ,
(iii) (o, considered as a function on S, is an eigen-function for all invariant

differential operators on S.
As is well-known, the algebra (over C) of all invariant differential operators on S

is canonically isomorphic to the algebra of all W-invariant polynomial functions on
the dual of the Lie algebra of A, or, what is the same, on Y®C, so that it is actually a
polynomial algebra of v variables over C. (Thus the condition (iii) is reduced to
the v conditions corresponding to the generators of this algebra. Furthermore, it is
also known that the condition (iii) may be replaced by a similar condition for invariant
integral operators.) These being said, the theorem of Harish-Chandra asserts that the
set of all zonal spherical functions on G relative to U is identified with the quotient
space Y®C/W. The proof for this consists essentially in showing that, U, A, N being
taken suitably so that we have the decompositions

(*) G=U.A.U=U.AN,

the Fourier transformation with respect to zonal spherical functions (parametrized
by Y0C) gives actually an isomorphism from the algebra of the invariant differential
operators onto that of the W-invariant polynomial functions on Y®C.

The first difficulty, in translating these results from real to p-adic, arises from the
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THEORY OF SPHERICAL FUNCTIONS 7

difference of the nature of maximal compact subgroups. Whereas they are <( algebraic "
and mutually conjugate in the real case, they have no more such a property in the p-adic
case. As a matter of fact, we have to say that, for the time being, our knowledge on
this subject is still very poor. Therefore, in this paper, we will make certain assumptions
on G, assuring the existence of a favorable maximal compact subgroup U (the
assumptions (I), (II) in § 3). These assumptions are nothing but p-adic analogues
of some well-known properties of semi-simple Lie groups; in particular, the condition (I)
implies the possibility of a decomposition like (*), but A should now be replaced by a
bigger subgroup H, such that AcHcZfA), and W-invariant. On the other hand, as
we shall show in Chapter III, these conditions are satisfied by " all " known examples
of classical groups, by virtue of the theory of elementary divisors. Thus one may
hope to find a unified proof for these assumptions.

Now, under these assumptions, let oS^(G, U) denote the algebra (over C) of all
invariant integral operators on U\G, whose kernel is given by a function on G with
compact carrier. One defines a zonal spherical function as a function on G satisfying (i),
(ii) and the condition (iii) stated in terms of oS^fG, U); then a zonal spherical function
determines a homomorphism (of algebras over C) from J?(G, U) onto C and vice versa.
On the other hand, call H11 the unique maximal compact subgroup of H and put
M^H/H^Z'). Then our main theorem (Th. 3 in § 6) asserts that JS?(G, U) is
isomorphic to the algebra of all W-invariant polynomial functions on Hom(M, C*)(^.C'),
allowing this time negative powers in an obvious sense; thus "S?(G, U) is an affine
algebra of (algebraic) dimension v over C. From this follows immediately the analogue
of the theorem of Harish-Chandra asserting that the totality of zonal spherical func-
tions on G relative to U is canonically identified with a quotient space of the form (CT^/W
(Th. 2 in § 5). As examples, it will be shown that, in case G is a simple classical group
without center and U a maximal compact subgroup of G defined by a " maximal
lattice ", the algebra ^(G, U) is actually a polynomial algebra of v variables over C
(Th. 7, 9 in §§ 8, 9). More precisely, the so-called (local) " Hecke ring " -S^G, U)z
is a polynomial ring of v variables over Z.

These theorems are proved by the usual method of Fourier transformation and,
in fact, rather simply, compared with the real case. But to determine the explicit
form of zonal spherical functions and the Plancherel measure, it seems necessary to
know the (infinite) matrix of this Fourier transformation more explicitly. This has
been done by Mautner [17] for PL(s, A), but is still an open problem for the general
case. As a partial result in this direction, we will calculate in Appendix I (local) Hecke
series and especially ^-functions attached to GL{n. S{), where S{ is a central division
algebra over k, and to the group of symplectic similitudes.

Besides these, we will analyze in § 7 the behavior of zonal spherical functions
under a homomorphism X : G-^G', and especially under a A-isogeny (Th. 4). Here
we do not assume a priori the conditions (I), (II) on G, G' in full, and will see how
(parts of) the conditions on the one of G, G' imply the corresponding conditions on the
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8 I C H I R O S A T A K E

other. As another application, we will determine in Appendix II all zonal spherical
functions of positive type, or, what amounts to the same, all unitary equivalence classes
of irreducible unitary representations of the first kind, of PL(2, A), obtaining again a
result quite analogous to the real case.

A part of results of this paper (N° 7.3) has been announced in a short note [19],
which will also serve as an introduction to this paper.

The author has much profited by seminars on Spherical functions^ organized during
the period of 1960-62, by Professor Y. Akizuki, to whom this paper is dedicated with
sincere gratitude and respects.

Notations and Conventions. Throughout this paper, k denotes a p-adic number
field, i.e. a finite extension of the j^-adic number field Q^ . The valuation-ring
in k and its (unique) prime ideal are denoted by o, p===(Tr) , respectively, n denoting
a prime element. We denote by [ |p (or simply by [ [) the normalized valuation
of k, i.e.

1^=?-°^ for ^A,

q denoting the number of elements in the residue class field o/p.
All algebraic groups we consider are supposed to be affine, so that they are realized

as groups of matrices. Thanks to a result of Rosenlicht {Annali di Matematica, vol. 43
(^P)? P- 44)5 in ^y ^ch group, defined over k, the subgroup formed of A-rational
points is everywhere dense in the sense of the Zariski topology, provided all the connected
components contain a ^-rational point. Hence, in this paper, we will understand by
an " algebraic group over k ?? the group formed of A-rational points of an algebraic
group (in the sense of algebraic geometry) defined over k. If G is a (Zariski-) connected
algebraic group over k and if K is an overfield of A, the group formed of K-rational
points in the same algebraic group will be denoted by G1 .̂

In an algebraic group G over A;, one can consider two kinds of topologies, i.e.
the p-adic topology and the Zariski topology. Without any specific reference, the words
" closed " (orcc A-closed "), " connected5? will be used exclusively in the sense of the Zariski
topology, while the words <( open ", (c compact " will always be understood in the sense
of the p-adic topology. (< Closure " (in the sense of the Zariski topology) ofMis denoted
by cl(M). When G, G' are algebraic groups over k and 9 a A-morphism (i.e. a rational
homomorphism defined over k) from G into G', the symbols Im9==9(G), Ker(p=9~ l(I)
are used in the set-theoretical sense; thus 9"~1(I) is A;-closed but 9(G) is not, and (in case G
is connected) the image of 9 in the algebraic sense is cl(9(G)). (More generally, the
similar convention is made for any rational map defined over A:.) In particular, for
a A-closed normal subgroup H of G, we denote (by abuse of notation) the factor group
in the algebraic sense by cl(G/H).

As usual, for any ring R with the unit element i, R* stands for the multiplicative
group of regular elements in R, and M^(R) for the ring of all n x n matrices with
coefficients in R. The unit matrix of degree n is denoted by i^ (or simply by i).
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THEORY OF SPHERICAL FUNCTIONS 9

For X^eM^.(R) ( i^z^r ) , the symbol diag. (X^, . . ., Xy.) will represent a matrix of
degree ^==S^ of the following form:

/ X , .

\o X,/

Z, Q ,̂ R, C denote, respectively, the ring of rational integers, the rational number field,
the real number field and the complex number field; the real and imaginary parts of seC
are denoted by Re s, Im s, respectively. For a finite set M, the symbol # M represents
the number of elements in M. For a map 9 defined on a set M and for a subset M^
of M, the symbol cp M^ stands for the restriction of 9 to M^.

23S
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CHAPTER I

REDUCTIVE ALGEBRAIC GROUPS OVER p-ADIC FIELDS (1)

§ i. k-Borel subgroups.

1.1. k-Borel pairs. Let A; be a p-adic number field. An algebraic group G
over k is called a torus, if it is connected, commutative and consisting only of semi-
simple elements. For a torus G over k, there exists a finite extension K/A: such that G1^
is K-isomorphic (i.e. birationally isomorphic over K) to (K*)^; such a field K is called
a " splitting field ?? of G. In case this isomorphism is obtained in k, i.e. in case G is
A;-isomorphic to {k*)\ G is called a k-trivial torus. An algebraic group G over k is called
unipotent, if it only contains unipotent elements; a unipotent algebraic group G over k is
always connected and nilpotent.

Let G be an algebraic group over k. A maximal A-trivial torus (resp. maximal
A-unipotent subgroup) in G is a A-trivial torus (resp. ^-closed unipotent subgroup)
in G which is maximal with respect to this property. A pair (A, N) of a maximal ^-trivial
torus A and a maximal A-unipotent subgroup N in G such that A normalizes N is called
a k-Borel pair. For such a pair (A, N), AN becomes a A-closed subgroup of G, called
a k-Borel subgroup of G, which is a semi-direct product over A; of A and N. A typical
example of a A-Borel pair is

G=GL(^),
A=D(^,A;) (the group of all diagonal matrices in GL(^, A:)),
N^T^.A;) (the group of all upper unipotent matrices, i.e. matrices x=={^.)

with ^==i,^.=o for z>;, in GL(TZ, A;)).
It is known (Borel) that, for any pair (A, N) of a A;-trivial torus A and a A;-closed

unipotent subgroup N in G such that A normalizes N, there exists always a A-Borel
pair (A', N') with A/DA, N'DN and that all A;-Borel pairs in G are conjugate to each
other with respect to the inner automorphisms of G [12]. It follows that, for any
Borel pair (A, N) in G, we can transform G by an inner automorphism of the " ambient
group " GL(/z, A;) in such a way that A coincides with the connected component of the
neutral element of GnD(^,A;) and N coincides with GnT^.A:).

(1) For the fundamental concepts on algebraic groups, see [1]; especially on algebraic toruses, see [IS].
Cf. also [7], [12], [20].
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THEORY OF SPHERICAL FUNCTIONS n

i. 2. The following proposition gives a characterization of A:-Borel subgroups in
terms of the p-adic topology.

PROPOSITION 1 . 1 . Let G be an algebraic group over a p-adic number field k. Then,
for a k-closed subgroup H of G, the homogeneous space G/H is compact (in the p-adic topology),
if and only if H contains a k-Borel subgroup of G.

Proof. The proof is obviously reduced to the case where G is connected. Hence,
assuming G to be connected, let H be a A-Borel subgroup of G. Then since G/H
is identified (birationally) with the set of ^-rational points in a projective variety
defined over k [12], it is compact; whence follows the cc if " part of the Proposition.
Conversely, let H' be a ^-closed subgroup of G such that G/H' is compact. One
can take a A-Borel subgroup H of G containing a A:-Borel subgroup of H'. Then, from
what we have proved above, H7(HnH') is compact. Therefore HH' is closed in
the p-adic topology, so that H^HnH^HH'/H' is compact by the assumption.
But, since H is a A-Borel subgroup, it has a composition series (as algebraic group
over k): H == H()D H^D . . . D H, ={ i} such that the factor groups H,_i/H, are isomorphic
either to k* or to A; and it is then a trivial matter to prove inductively that
H^HnH^H (i^r). Thus we get H^HnH', i.e. H'DH, q.e.d.

COROLLARY. An algebraic group G over k is compact (in the p-adic topology} if and
only if k-Borel subgroups of G reduce to the neutral element.

In view of a decomposition theorem of Chevalley ([7], p. 144) it follows that
a compact algebraic group over k is necessarily reductive, i.e. isogeneous to the direct
product of a semi-simple algebraic group and a torus.

Remark, Proposition i. i and its Corollary are also valid for algebraic groups
over R or C. (The same proof!)

1.3. Maximal compact subgroups.

PROPOSITION 1.2 . If an algebraic group G over k has a maximal compact subgroup^
G is reductive.

Proof. Suppose that G is not reductive. Then, by virtue of the decomposition
theorem of Chevalley, G has a A-closed unipotent normal subgroup N^ + {i}. The
center N3 ofN^, being a unipotent commutative group, is A-isomorphic to a vector space
over k, i.e. we have a ^-isomorphism /: N3 -^k"1 (m> o). Then the inner automorphism I
defined by geG induces an automorphism of N3, which, by /, corresponds to a linear
transformation, denoted by py, of km. Let U be a maximal compact subgroup of G
and let L^c^cA^. Then, Ui={MeU|p^=LJ is an open subgroup of U and
hence is of finite index in U. Put

U-U^.U,, L=np^L,.

Then L is an (( o-lattice " in ̂  (see ?8.1) invariant under p^ (^eU). It follows that

U(^)=U./-1(7^-^L) (^1,2,...)
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12 I C H I R O S A T A K E

are all compact subgroups of G containing U, so that, by the maximality of U, one
gets f~l{n'~~iL)cU (2=1, 2, . . .). This implies that NgdJ, which is a contra-
diction, q.e.d*

Now, for a reductive algebraic group G over R, it is well-known that G has always
a maximal compact subgroup, which is R-closed, and that all maximal compact subgroups
of G are conjugate to each other with respect to the inner automorphisms of G.
Moreover, if (A, N) is an R-Borel pair in G and if A^. denotes the connected component
(in the sense of the usual topology) of the neutral element of A, we have
(1.1) G=U.A+N, U n ( A ^ N ) = { i }

for all maximal compact subgroup U, and
(1.2) G=UA+U
for a suitable U.

Unfortunately, in the p-adic case, we are not yet in possession of such a general
result. Since, however, the existence of a maximal compact subgroup with properties
similar to ( i . i), ( i . 2) is indispensable to the theory of spherical functions, we will assume
it in § 3; for classical groups, our assumptions will be verified case by case in Chapter III.
On the other hand, it should be noted that, in the p-adic case, the maximal compact
subgroups of a reductive algebraic group G are, if they exist, not necessarily conjugate to
each other with respect to the automorphisms of G and that they are not necessarily
corresponding in one-to-one way under a A-isogeny.

§ 2. Reductive algebraic groups.

2.1. In this section, G denotes a connected reductive algebraic group over
a p-adic number field A. Let A be a maximal ^-trivial torus in G, Y the character
module of A and let

dim A == rank Y == v.

If {7]i, . . . ,7^} is a system of generators of Y, the correspondence
(2 .1 ) A^->(^), ...,^))e(rr
gives a ^-isomorphism A^(A*)^.

Let 9, a be the Lie algebras of G, A, respectively. It is easy to see that, for any
A-homomorphism p from A into another algebraic group over A, the closure of the
image p(A) is again a ^-trivial torus. Applying this to p == adjoint representation of G,
we have

(2.2) 9-90+ s SY.
v(=r '_ £>Y 5
Y£r •

where rcY is the " restricted root system ?) relative to A [20] and
(2.3) Q^=={x€Q\M{a)x=-f{a)x for all ^eA},

QQ={xeQ\Ad(ci)x==o for all aeA}.
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THEORY OF SPHERICAL FUNCTIONS 13

It is clear that QQ is the Lie algebra of Z(A) (==the centralizer of A). On the other
hand, for any linear order in Y, put

(2.4) n== S Q
Y>0 •

and call N the corresponding connected subgroup of G. Then we have [20]:
PROPOSITION 2 . 1 The notations being as above5 Z(A) is a connected reductive algebraic

group over k consisting of only semi-simple elements^ N is a maximal k-unipotent subgroup of G,
normalised by Z(A), and Z(A).N is a semi-direct product of Z (A) and N over k.

2.2. For any connected reductive algebraic group G over A, we denote by X(G)
the module of all A-rational characters (i.e. A-morphisms of G into A;*). Furthermore
we put

(2.5) Gi=={^eG|^)=i for all xeX(G)}.

Then G1 is a connected A:-closed normal subgroup of G and there exists a ^-trivial
torus A' contained in the center of G such that

G-c^G^A'), G^A'^finite;

in other words, the natural homomorphism gives a A-isogeny: G1 xA'->G. To see
this, let S, T the semi-simple and the torus parts of G, respectively. Since ScG1,
it is clear that the closure of the canonical image of G1 in cl(G/S) is equal to cl(G/S)1.
On the other hand, for a torus, our assertion is known ([20], Prop. i), i.e. if A' denotes
the (unique) maximal ^-trivial torus in T, we have a A;-isogeny T1 xA'->T. It follows
also that cl(G/S)1, and consequently G1 is connected. Under the A-isogeny T-^cl(G/S),
induced by the canonical homomorphism, T1 corresponds to cl(G/S)1, whence one
gets G1 ==01(^.8). Thus one has

G—TxS—^xA'xS-^xA',

where G/^G' means that G is isogeneous to G'. This proves our assertion. It follows
that the homomorphism X(G) ->X(A') defined by the restriction is injective and has
a finite cokernel.

In partic ular, if G consists only of semi-simple elements (which implies necessarily
that G is reductive), it follows from Proposition 2.1 that G=Z(A) (i.e. A=A' in
the above notation), and hence by Corollary to Proposition 1.1 that G1 is compact.
Thus we obtain the following

PROPOSITION 2.2 Let H be a connected algebraic group over k consisting only of semi-simple
elements and A the (unique ) maximal k-trivial torus in H. Then H1 is compact and H is k-isogeneous
to the direct product ofH1 and A. Moreover, X(H) may be identified with a submodule of X(A) =Y
with finite index.

Let {Xi , . . . , X v } be a system of independent generators of X(H). Then the
mapping

(2.6) $ : H9A -̂  (x,(A), . . ., ̂ {h))e{ky
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14 I C H I R O S A T A K E

defines an injective homomorphism of H/H1 into (A;*)\ In case this mapping is
surjective, we say that H satisfies the condition (N).

2.3. We denote by u the unit group in k, i.e. u==o i l t. Let H be a connected
algebraic group consisting only of semi-simple elements and put

(2.7) H^AeHj^eu for all x^X(H)}.

Then we have the following
PROPOSITION 2.3. The notations being as above., H11 is the unique maximal compact

subgroup of VS.; it is a normal subgroup of H, containing H1. Moreover, there exists a subgroup D
o^H, isomorphic to Zv (v==rank X(H)), such that

(2.8) H==D.H11, DoH^i}.

Proof. Let <D : H->(Fr be as defined by (2.6). Then, since [Y : X(H)]<oo
(Proposition 2 .2)5 the restriction of 0 on A is a A-isogeny. Therefore, as is well-known,
0(A) is an open subgroup (in the sense of the p-adic topology) of [k*Y, of finite index,
and so is also 0(H). Now it is clear that H11 contains H1, which is compact. Since
Ip/H^O (H11) =0(^011^ we see that H11 is compact. Since H/H1 is commutative,
H11 is a normal subgroup of H. On the other hand, H/H^O^/d^H11), being
isomorphic to Z", does not contain any compact subgroup. Therefore H11 is a maximal
compact subgroup and, since it is normal, it is the unique maximal compact subgroup.
The existence of the subgroup D is obvious, q.e.d.

COROLLARY. AU=AnHU is the unique maximal compact subgroup of A.
We put

X(H)=Hom(X(H),Z).

For every AeH, the correspondence l^: X(H) ->Z defined by

(2.9) ^c)=ord,xW forxeX(H)

is an element of X(H), and the correspondence h->l^ is a homomorphism from H
into X(H), whose kernel is equal to H11. Thus, denoting by M the image of this
homomorphism, one has

(2.10) H/H^M.

When the decomposition (2.8) is fixed once for all, the homomorphism h->l^
induces an isomorphism of D onto M. Hence, when ^==m with rfeD, meM, one
writes

( 2 . 1 1 ) ^=7^;

by definition, one has
(2.12) l^1)^-^11^ for all ^X(H),meM,

•̂s

< > denoting the pairing of X(H) and X(H).
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THEORY OF SPHERICAL FUNCTIONS 15

If, in particular, H satisfies the condition (N), one has M==X(H). This is
surely the case for A. Thus we obtain the following commutative diagram

A/A" -^> H/H"

(2. 13) isom. inj.

Y -mj-^ X(H)

which allows us to consider that YcMcX(H).

§ 3. Fundamental assumptions.

3.1. Assumption (I). Let G be an algebraic group over k. We shall now make
two fundamental assumptions (I), (II) on G. In the first place, we assume

(I) There exist, in G, an open compact subgroup U, a connected (reductive) k-closed
subgroup H consisting only of semi-simple elements and a k-unipotent subgroup N normalised by H
such that the following conditions are satisfied:

(3.1) G=:U.HN=U.H.U,
(3.2) UDIP.

Let A be the unique maximal A-trivial torus in H; then we have
(3.3) AcHcZ(A).

Since AN is a A-closed subgroup ofG such that G/AN is compact (by (3.1) and Propo-
sition 2.2), it follows from Proposition i. i that (A, N) is a A-Borel pair in G. Let D be
a subgroup of H as described in Proposition 2.3. Then by (3.1), (3.2) one has
(3.1)' G=U.DN=U.D.U.

From this one concludes at once that U is a maximal compact subgroup of G and so,
by Proposition i. 2, that G is reductive.

Now HN is clearly a semi-direct product of H, N over k. Moreover one has
(3.4) HNnU=HU . (NnU).

In fact, for ^eHNnU, write u==hn with AeH, yzeN. Then the correspondence
u—>h being a continuous homomorphism (with respect to the p-adic topology), one
concludes that its image is compact and so contained in H", by Proposition 2.3.

LEMMA 3 .1 . Under the assumption (I), suppose further that G is connected, that H satisfies
the condition (N) and that HnG1 is connected, G1 being defined by (2.5). Then we have

(3.5) G=H.G1, U^IP.U1,

where U^UnG1.
Proof. Since H contains the unique maximal ^-trivial torus A' in the center

of G and since HnG1 is connected, it follows from what we stated in n° 2.2
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that H ̂  (H n G1) X A' and G = cl (H. G1). Hence the restriction homomorphism
X(G)—^X(H) is injective and, if one identifies X(G) with its image (i.e. the annihilator
in X(H) of H n G1, which is connected), X(H) /X(G) has no torsion [i8j. Therefore one
may take a system of (independent) generators {^, . • . , Xv} of X(H) in such a way that
{Xi? • • - 5 Xv'} (^' =rank X(G)) forms a system of generators of X(G). Since H satisfies
the condition (N), one concludes from this immediately that for any geG there exists
AeH such that xC^^xW ^or a!1 X6^-^), i.e. A'^eG1, which proves the first
equality (3.5). If, in the above, geV, one has %(,?)eu for all ^eX(G), so that
one may choose the above h so as to belong to H11. This proves the second equality
(3.5), q.e.d.

Remark. In case H=Z(A), the third assumption in Lemma 3.1 is surely
satisfied. In fact, call A" the connected component of the neutral element of AnG1.
Then clearly A=cl(A\A' /) and one sees that Z(A)nG1 is equal to the centralizer
of A" in G1. Hence Z(A)nG1 is connected ([i], Prop. 18.4).

It follows that, under the assumptions of Lemma 3.1, one may replace U by U1

in (3.1), i.e.
(3.1)" G^U^HN^U^H.U1.

Furthermore, since NcG1, one gets also
(3.6) G^UMHnG^N^U^HnG^.U1.
This shows that G1, U1, HnG1, N also satisfy assumption (I).

3. a. We give here several procedures which allow us to construct groups satisfying
assumption (I), starting from other such groups.

PROPOSITION 3.1. If G,,U,,H,,N, ( z = i , 2 ) satisfy (I), so do also G^xGg,
Ui ^ .H^xH^NiXNa.

Trivial.
PROPOSITION 3.2. Let G, U, H, N satisfy (I) and assume further that G, H satisfy

the conditions stated in Lemma 3.1. Let X==X(G) and X^ a submodule of X such that X/X^
has no torsion. Put

G'={geG\^{g)=i for all ^XJ.

Then, G\ U*==UnG*, H* ==HnG*, N also satisfy assumption (I).
Proof. One identifies X with the character module of the ^-trivial torus

cl(G/G1). Then, G* is the (complete) inverse image, under the canonical homo-
morphism G-^cl(G/G1), of the annihilator of X^ in cl(G/G1), which is a subtorus by
the assumption [18]. Therefore G* is connected. As we have done in the proof
of Lemma 3.1, one may consider that XcX(H); then, by our assumptions, X(H)/Xi
also has no torsion. Hence, by the same reason as above, H* is connected. Now,
since G* contains U1 and N, it follows from (3.1)" that

G^U^H^N^U^HMJ1

and afortiori (3.1) for G*, U*, H*, N. One has also H^H^G^cU*, i.e. (3.2), q.e.d.
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THEORY OF SPHERICAL FUNCTIONS 17

PROPOSITION 3.3. Let G, U, H, N satisfy (I). Z^ Z be a k-trivial torus contained
in the center of G. Put
(3.7) H^he^^eZT^ for some meZ}

flW ^ft&^ that Ho normalises U. 77^ G=G/Z, U= (HoU)/Z, H=H/Z, N=NZ/Z
also satisfy (I).

JW/'. First we note that, since Z is a ^-trivial torus, the canonical homo-
morphism G->cl(G/Z) is surjective, i.e. cl(G/Z) ==G/Z. Since Z is contained in
any maximal A-trivial torus, we have ZcH. Hence, from the definition, it follows
that HQ is an open subgroup of H such that Ho/(ZH11) is the torsion part of H/(ZH11).
HQ/Z is therefore the unique maximal compact subgroup of H==H/Z. Furthermore,
by the assumption, one sees that (HoU)/Z== (HQ/Z) . (UZ/Z) is an open compact
subgroup of G=G/Z. Our Proposition is now obvious, q.e.d.

3.3. Weyl groups. Let the notations be as in N° 3.1. For jeN(H) (==the
normalizer of H), the inner automorphism Ig defined by s induces an automorphism
ofH, and hence that of X(H), which we call w^ by the formula
(3.8) (^X)(^-1) =XW tor all AeH, zeX(H).

Since A is the unique maximal A-trivial torus contained in the center of H,
Ig leaves A invariant. Therefore, Wg can be extended to a (uniquely determined)
automorphism of Y=X(A), which we denote again by w^ by
(3.9) {Wy7]){sas~1) ==^{a) for all fleA,7]eY.

The group formed of all Wy (^eN(H)) is called the (restricted) Weyl group of G
relative to H and is denoted by Wg. The kernel of the homomorphism s->w^ being
given by N(H)nZ(A), one has
(3.10) WH^N(H)/(N(H)HZ(A)).

As stated above, Wg may be regarded as a subgroup of the Weyl group W^ of G relative
to A. In case G is connected, W^ is the Weyl group of the restricted root system r in
the usual sense [20].

WH also operates on X(H) =Hom(X(H), Z) in a natural manner, i.e. by
( 3 .11 ) <^<o, wj> ==<co, j> for x^X(H), coeX(H).

Then (in the notation ofn° 2.3)3 for j-eN(H), AeH, one gets from (2.9), (3.8), (3.ii)
the relation

(s-^) ^A==^s--
Thus WH leaves McX(H) invariant.

3.4. Assumption (II). Suppose that there is given a subgroup W of W^ such
that every weW can be written in the form w=^w^ with MeN(H)nU. As we have
seen in n° 3.3, W operates on M. Taking a linear order in M, put
(3.13) A=={meM[^m<m for all weW}.
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Then it is clear that A is a " fundamental domain 9? of W in M, i.e. every meM
is equivalent, under W, to one and only one element in A. From (3.1)'5 (3.12) and
from our assumption on W, it follows that

(3.14) G^UJJ^U.

Now we state our second assumption:
(II) The notations being as defined in n0^ 2.3, 3.3, there exists a subgroup W of Wg such

that every WE^N can be written in the form w==w^ with ^eN(H)nU and a linear order in M
satisfying the following property: If 7rmNnU'7^:rU=|= 0 with meM, reA, we have m^r,
where A is a fundamental domain ofW in M defined by (3.13).

This implies the following weaker condition:
(Hi) The notations being as above, the double cosets UT^TJ (r^A) are mutually distinct.

(In other words, (3.14) is a disjoint union.)
In fact, let UT^L^LW'U with r, r'eA. Since we have Tr^eU^U, it follows

from (II) that r'<r. Similarly we have r^r' and so r==r'.
Under the assumption (Hi), every geG can be expressed in the form

g^ur^u'y u, u'eV

with a uniquely determined reA; therefore one puts r==r(^). Then the function
r : G->A is characterized by the following properties

(3.15) r(ugu'} ==r{g) for all geG, u, u'eV,
/•(Tr^^r for all reA;

if moreover (II) is satisfied, we have

(3.16) r^n^m. for all meM, ^eN.

The existence of the function r satisfying (3.15), (3.16) (resp. (3.15)) is equivalent
to (II) (resp. (Hi)).

We list below some direct consequences of the assumption (II).
i° If T^NnU+o, we have m==o. In fact, it follows from (II) that m^o.

Since we have also Tr^NnU^ (^NnU)"^ 0, we have m^o; hence m=o.
2° For AeH, one has

(3.17) h^un^u-1 (mod. H11) with z/eN(H)nU.

It follows that, for A, A'eH, one has UAU=WU if and only if

h'=uhu-1 (mod. H11) with MeN(H)nU.

(Note that this is a consequence of only (Hi).)
3° r{h) for AeH is invariant under the inner automorphisms of G, i.e. if A, A'eH and

h'==ghg~1 with geG, we'have r (A')==r(A). In fact, it is clear that, in replacing h
by uhu~1 with ^eU, if necessary, we may assume, without any loss of generality,
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THEORY OF SPHERICAL FUNCTIONS 19

that /^eA, i.e. ^==r(A) (and similarly that l^^r^h')). Now, let g==uh^n with
ueV, h^eH, yzeN. Then one has

A' =^- •1 = uh^nhn^h^u-1 == u{h^hh^} n'u-1

with Tz'eN. Hence, by (3.15), (3.i6), one gets
r^)^^^^-1)^^^^/^^).

Similarly, one gets r(A)^r(A'); hence r(A')==r(A), as desired.
40 M^ ̂  W=WH==W^. In fact, if W=(= W^, there would be F+ r' in AnY such

that r'=wr with weW^, because Y is of finite index in M and AnY is a fundamental
domain of W in Y. Then we would have T^' =EsnTs~l (mod. H11) with ^eN(A), which
contradicts 3°.

§ 4. Haar measures.

4.1. In this section, G denotes an algebraic group over k satisfying the
assumption (I) with respect to U, H, N. The groups G, U, H, N are then all
(< unimodular 5?, i.e. their left-invariant Haar measures are also right-invariant. We
denote by dg, du, dh, dn the volume-elements of the (both-sides-invariant) Haar
measures of G, U, H, N, respectively, normalized as follows:

(4.1) f dg=[ du==f dh=( dn=i.v * / Ju 6 Ju Jn11 JNOU

Then the left- and right-invariant Haar measures of HN are given by
(4.2) d^hn) =dh.dn, d^hn) =S(h)dh.dn,

8 being a positive quasi-character of H (i.e. a continuous homomorphism of H into the
multiplicative group of positive real numbers with respect to the p-adic topology)
defined by
(4.3) d{hnh-l)=S{h)dn.

For any integrable function f on G, one has

J^/W^-J^ ^Auhn)du.d,{hn),
or symbolically
(4.4) dg=du.d,{hn) ==du.8{h)dh dn.

We need in Chapter II, § 5 the following transformation formula of the relatively
invariant measure on U/(UnHN).

LEMMA 4.1. Let go^G. For ueV, write g^u^u'h'n' with M'eU, A'eH, Tz'eN.
Then the cosets ^(UnHN), A'H11 are uniquely determined by g^ and ^(UnHN). Denoting
by du the volume-element of a relatively invariant measure on U/(UnHN), we have

(4.5) du^S^du'.

(Note that, since S^^^i, S(A') depends only on the coset AW.)

243



20 I G H I R O S A T A K E

Proof. By (3.4)3 the first statement is obvious. To prove the second,
let A, n be " generic " elements in H, N, respectively, and put g=uhn. Then
gQ'lg=ufhtnthn==uf[hth){h~lnfhn). Hence, by (4.4) and by the invariance of the Haar
measures, one has

d^g) ̂ du'^h'h^d^h^d^n'hn)
=du\S{h')nh)dhdn

=dg==du.S{h)dhdn,

whence follows (4.5), q.e.d.
4.2. An integral formula. Let

9=9o-l- ^-flrver

be the decomposition of Q given in N° 2. i. Since HcZ(A), all the subspaces 9^ (y^)
are invariant under AdA(AeH) , Ad denoting the adjoint representation of G. One
denotes by Ry(A) the restriction of Ad A to 9^. Then det(Ry(A)) is a ^-rational
character of H, whose restriction to A is equal to ^.y (in the additive notation),
d denoting the dimension of 9^. Thus, identifying X(H) with a submodule of
Y=X(A), one gets ^.yeX(H) and
(4.6) det(R^(A)) == (^.Y)(A) for heH.

Moreover, taking a so-called Weyl basis of (^=9® A (k == algebraic closure of A;),
one sees immediately that Q_^ may be identified with the dual of 9^ with respect to
the inner product induced by the Killing form. Since this inner product is invariant
under Ad h (AeH), one has
(4.7) R_^ is equivalent to tR^l.

Now, for AeH, denote by Ad^(A) the restriction of Ad A on n== S 9 , and put
Y>0

(4.8) A(A)=|det(Ad»(A)-iJ|p
-n|det(R,(A)-i,)|p,

Y>0

i^, i^ denoting the identity transformations on n, 9^, respectively. Then we have
LEMMA 4.2. For AeH with A(A)=[=o, the mapping

^ : N9 n —>%'=== hnh^rT^

is an injective rational mapping from N into itself, the image (̂N) contains a ^ariski open set
in N and one has
(4.9) dn'=^{K}dn.

Proof. Every weN can be written uniquely in the form
n = exp x = exp( S x^) with x = S A^en, x^eQ^

and one has, for AeH,
^A-l=exp(Ad(A)^) =exp( S R^(A)^).
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THEORY OF SPHERICAL FUNCTIONS 21

Therefore one has hnh^^n if and only if R^{h)x^==x^ for all y>o; in particular,
if A(A)+o, the latter condition implies that x==o, i.e. n=i. Thus, for AeH with
A(A)=ho , T^ is an injective rational mapping from N into itself. Applying the same
consideration to N^, k denoting the algebraic closure of A, one sees that ^(N^) contains
a Zariski open set in N7' ([i6], p. 88, Prop. 4). Now, let neN\ Since one has
Y/^(7^0) =v^)0 f01' a11 automorphisms (?ofA: over k, it follows from the injectivity ofY^
that, if Y^eN, one has n°==n for all <r, i.e. 72 eN. In other words, one has
Y^(N)== lF^(N /c)nN, which proves that Y^(N) contains a Zariski open set in N.

Now to prove the last assertion, we regard xeN as a left-invariant vector-field
on N (in the algebraic sense) and denote by x^ the tangent vector at yzeN determined
by x. Then one has

(4.io) d^W == (Ad(^). (Ad(A) - i)x)^^

dV^ denoting the <( differential " of the rational mapping Y^. In fact, by definitions,
one has for any rational function/on N, defined over k and regular at ^,

^(^-[^o.exp^))"
J x = o

and therefore

W.^J(/)^J/oYJ

== \ "L f(hn. pyn^yU-1 pvr»r_•)^w1^=== [,-/(^o.exp(X^)A-l.exp(—^)7^o-l)
|_aA I X = = 0

= [-./(^oA-^o'^^o^P^Ad^)^) exp(—XA?)7^o-l)^
L^ J x = = o

=^rf/(^oA-l^-l.exp(XAd(^)(Ad(A)-1)^)1
L"7^ Jx=o

which proves (4.10). Now if we denote by co an invariant differential form of the
highest degree on N and by W,, the linear mapping on the space of differential forms
on N extending the dual of rfY^, it follows from (4.10) and from the fact that
det(Ad^)) ==i that

^.^-^==det(Ad,(A)-iJ^.

Since we have symbolically fl?/z==|(i)Jp, up to a constant multiple ([26], 2.2), we
obtain (4.9), q.e.d.

By the similar argument as above, we get also

8W=[det(Ad^(A))|p
= n|det(R,W)|p,

Y>0

or by (4.6)

(4.n) 8= Ft I r^lp (in the multiplicative notation).
Y>0
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Put further
(4.12) D(A)=n|det(R^)-i,)|1;2

y e r

Then from the definitions and from (4.7) one gets easily the following relations

(4.13) D^-D^),

(4.14) D(A)=8^WA(A).

It should be also noted that one has
(4.15) ^hh^)=^(h) for all h, ^eH.

LEMMA 4.3. Let f be a (complex-valued) function on G with a compact carrier, satisfying
the relation

f(ugu') =f{g) for all geG, u, iz'eU.

Then, for hefl with A(A)=t=o, we have

(4.16) ^Wf^ghg-^dg^W ^f{hn)dn,

dg denoting the volume-element of a (suitably normalised) relatively invariant measure on G/A (1).
Proof. Since one has dg=du.dn.dh for g^unh, one has symbolically

dg==du.dn.dhy dh denoting the volume-element of a relatively invariant measure
on H/A; here we normalize dh in such a way that J^^^1- Then the left-hand side
of (4.16) is equal to

D^ Ju JN L^^1"1^1^du dn dhl

=D(A)f ( f f{nh^ih^n~^dn\dh^ (by the assumption)

^D^A^-1)-^ ^ (f/^A-1^)^')^! (by (4.9)> (4.15)).
J .H/A \ */ -N /

Since h^hh^^h (mod. H11), one gets from the assumption f^hh^n') ==f{hn'); therefore,
by (4.13), (4.14)3 this last expression is equal to

=8W J f{hn)dn, q.e.d.

Since D(A) is invariant under the inner automorphisms defined by elements
in N(H), this Lemma implies that, if one puts

7W=8^) ^f{hn)dn,

^m\ viewed as a function of meM, is invariant under the operation of the Weyl
group WH.

(1) This is an analogue of an integral formula of Harish-Ghandra ([13], p. 261).
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CHAPTER II

THEORY OF SPHERICAL FUNCTIONS

§ 5. Zonal spherical functions (1).

5.1. The algebra oS^G, U). Let G be a unimodular locally compact group and U
a compact subgroup of G. We denote by <^f=oSf(G, U) the algebra over C formed
of all complex-valued continuous functions <p on G with compact carrier and satisfying
the condition

(5.1) ^{ugu') =^{g) for all geG, u, u'eV,

the product in JS^ being defined by the " convolution "

<p*+(^) ̂ S^ggrWgi)^
If U is an open subgroup and if the Haar measure of G is normalized in such

a way that | dg= i, the characteristic function CQ of U is the unit element of the
algebra oSf. Moreover, in this case, all Z-valued functions in o§̂  forms a subring, which
we denote by oS^(G, U)z. From the arithmetical point of view, it is important to
consider this ring.

The following theorem will be proved:
THEOREM i. Let G be a connected algebraic group over a p-adic number field k and U

an open compact subgroup of G, satisfying the assumptions (I), (II) {see § 3), and let v be the
dimension of a maximal k-trivial torus in G. Then the algebra »Sf(G, U) is an affine algebra
of (algebraic) dimension v over C, i.e. a (commutative) integral domain with unit element, which
is finitely generated over C and of transcendence degree v over C. Moreover^ if A {see n° 3.4)
is generated (as semi-group) by r^, . . ., r^ and if c^ denotes the characteristic function of

UTT^U, JS?(G,U) is generated over C by c^ (i^/).
Remark. If, besides the above assumptions, an additional condition that

(5.2) U7^^NnU7r^U=U7^^ for all reA

is satisfied, we shall see that oS^(G, U)z is generated (over Z) by c^ (i^z</).

(1) For the fundamental concepts on spherical functions, see [II], [22].
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5.2. G, U being as above, a complex-valued continuous function co on G in
called a ^<ma/ spherical function (abbreviated in the following as z.s.f.) on G relative to U,
if the following conditions are satisfied:

(i) O)(M^M') =o)(^) for all geG, u, u'eV.
(ii) (o ( i )== i .
(iii) For every 9eJSf, <o is an eigen-f unction of the integral operator defined by 9,

i.e. we have

(5.3) (p*(o=\,co

with \eC.
We denote by ^=Q(G,U) the totality of z.s.f. on G relative to U. For

coeQ, we denote \ in (5.3) by fi(y), i.e. we put

(5-4) ^(?)=J^9(^M5~1)^-

Then it is clear that co is a homomorphism (of algebras over C) from oS? onto C.
Conversely, if U is an open subgroup of G, it is easy to see that any non-trivial
homomorphism <o :c2:?->C comes in this way from a uniquely determined z.s.f. co
([22], pp. 366-367). Thus, under the assumptions of Theorem i, £1 may be viewed as
a model of the affine algebra oS?. More precisely, the correspondence

ti9(0<——>W1)), ...,<0(^))

gives a bijection of 0. onto an affine variety associated with oSf == C^, ..., c^].
5.3. Construction of ̂ s,f. From now on, until the end of § 6, we assume that G

is an algebraic group over k satisfying the assumption (I) with respect to the
subgroups U, H, N and that the Haar measures are normalized as stated in N° 4.1.

In order to construct z.s.f. depending on complex parameters, we make use of
the representations of the " principal series " of G. Namely, let a be a quasi-character
of H (i.e. a continuous homomorphism of H into C* with respect to the p-adic topology)
and call ̂  the Hilbert space formed of all complex-valued measurable functions /
on G satisfying the following conditions
(5.5) f{ghn) =a(A)/C?) for all geG, AeH, T^eN,

(5.6) ii/ir-Jj/^i2^^
the inner product in J^ being defined by

<f^f.>=^W}fWu.

For g,eG, /eJf01, we put

(5.7) (T,V)(^=/(^)-
Then we have:
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PROPOSITION 5.1. In the above notations, for every go^G, /ejf^, we have T^/ej^,
and T^ is a bounded operator on J .̂ The correspondence gQ->T^ is a strongly continuous
representation of G (with respect to the p-adic topology} by bounded operators on ^a.

Proof. It is clear that T^/satisfies the condition (5.5). If we put U=U/(U n HN),
it follows from Lemma 4. i that

\m\\^^\j{g^u^du
=^\f{u'h'n'^Wdu'

=^\fW\^WWdu'.

Since |a(A') |2 S(A') is a continuous function of ^(UnHN)eU, we have
[a^pS^'^C with a positive constant C. Therefore we have IIT^/II^CH/H2 ,
i.e. T" is a bounded operator on e .̂ Moreover, if go^U, we may take as u'-^gQ^u,
A'=7z'==i, so that T^Q^eU) is a unitary operator. Now the correspondence go-^T^
is clearly a representation; to prove that it is strongly continuous, it is enough to show
that, for a fixed/ej^706, go-^T^f is strongly continuous at gQ==i. Since/can be
approximated by a continuous function in J^ as closely as we wish (with respect to
the norm in j^), we may assume that/is continuous. Then/is uniformly continuous
on U and our assertion is obvious, q.e.d.

From the above proof, we obtain.
COROLLARY i. The representation T01 is unitary, if and only if

(5.8) |a|28=i.

The representation T" is called (< of the first kind " (relative to U), if there exists
an element ^=t=o in ̂  such that T^=^ for all ue\J.

COROLLARY 2. The representation T" is of the first kind, if and only if

(5.9) 00(1?)= i.

Proof. If there exists ^ as stated above, one has ^(uhn) ==00(^)^(1)5 so that
^(1)4=0, o^H^^i. Conversely if a(HM)==I3 one can define ^ satisfying the above
condition by putting
(5.10) ^(^n)=a(A), q.e.d.

In case a satisfies condition (5.9)5 one sees readily that

(5-") ^a(5)=<^,T^,>=J^,(5-^)^

is a z.s.f. on G relative to U ([22], p. 370). In particular, if a is a restriction on H of
a quasi-character of G, denoted also by a, which is trivial on U and N, we have

(5.12) ^-a-^).

5.4. Parametri^ation of ^.sf. Now we introduce complex parameters in {co^cO
as follows. If a is a quasi-character of H satisfying (5.9), a is uniquely determined
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by o "̂1) (meM) (see ?2.3) 3 and the correspondence m-^log^Ti"1) is a homomorphism
from M into C. Therefore one can find seX(H)®C such that

(5-13) o^"1)^-""

m.s denoting the natural pairing of meM cX(H) and seX(H)®G; such s is uniquely

determined modulo ,——M, where
logy

(5.14) ]V[={seX(H)®C]m.seZ for all meM}.

Thus we obtain a canonical isomorphism

(5.15) Hom^/H^ C*) ^X(H)®C/^M).

If {^ ..., Xv} ls a system of generators of X(H), our correspondence can also
be defined by the relation

aW -niXzWIp^s^S^ with ^eC.
i i

1

When (5.13) holds, we write a^->s. When S^^—s, we put ^==^.
Now the operation of Z<;GW=WH on X(H) can be canonically extended to a

C-linear transformation of X(H)®C, leaving M invariant. Then we have
PROPOSITION 5.2. We have

(5.16) ^-s^)-6^"1).

(5.17) ^ws-^s for all we^

Proof. As in Lemma 4. i, put g^u=u'h'n\ Then g^u^u^n'}-1 =uhf~lnlf with
n^eN. Hence from the definition and Lemma 4.1, we have

^(^^-J^a^O^^'-J^WSW-1^

-J^a-S-^O'^^^-s^o).

1 1
because, if S^a^s, one has S^S-^a-^^—s. This proves (5.16). The proof of
(5.17) (depending on Lemma 4.3) will be given in N° 6.1, q.e.d.

In the following we denote by W. (wl- M\ the group of ( < affine transformations "
v g q ' <2ni A)Tof X(H)®C generated by W and by the group of translations defined by i^.^'

Since W leaves M invariant, W. (-^M) is actually a semi-direct product of these
\log? /

two groups. From (5.17) it follows that two parameters s, s'eX(H)OOC which are

equivalent with respect to W.i-^-^s} give one and the same z.s.f. Actually we
\fo^ Q iwill prove the following.
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THEOREM 2. The assumptions being as in Theorem i, all ^.sf. co on G relative to U can
be written in the form co=co, with seX(H)®C$ and we have ^,==^ for s, s'eX(H)®C,

if and only if s, s' are equivalent with respect to W. ( 2nl M\
Vog ? /

Thus tl==^(G, U) is analytically isomorphic to the quotient space

X(H)®C/W.f^M|.v°g ? /
§ 6. Proofs of the main results.

6.1. Fourier transform. We keep the notations in § 5. For <pe^, we define
its Fourier transform 9 by

(6.1) y(s) =co,(<p) = J^ 9(^)0)^-1)^.
i

Then we have, if (^a^-^s,

^(s)-^^?^)^^)^^ (by (5.11))
=: J^(^a(^ (by (^ ^) ->(^-1, ̂ )

"^ujHjN9^^^^)^-8^)^^ ^y (4.4))

=:JHJN9wa(A)8W^^ (^ (5-10))-
Hence, putting

(6.2) ^^S2^) ^{hn)dn,

which depends actually only on the class of h (mod. H11), we have

(6.3) ?(s) = S ̂ (T^S^"1) = S ^(T^-111-5.
mGM m£M

Since 9 has a compact carrier, one has ^(T^+O for only finitely many meM.
Incidentally we notice that (5.17) is equivalent to the fact that the Fourier coefficients
^{-n^) (meM) are invariant under the operation of the Weyl group W, which was already
established by Lemma 4.3. This remark completes the proof of Proposition 5.2. Now
by virtue of (5.17), we can further transform (6.3) in the form

(6.4) ?(s)= S^). S y-^
reA" / w:W/Wr

the second summation being taken over a complete set of representatives of W/W,., W,
denoting the subgroup of W consisting of all the weVf leaving r invariant. Thus,
if we denote by {m^, ..., m^} a system of generators of M, 9 is a Fourier polynomial
(allowing negative powers) in ^m(^)•s ( i^z^v) invariant under W. We denote the totality
of such Fourier polynomials by C^- .̂
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6.2. Up to now, we have not used the connectedness ofG and the assumption (II).
Now we shall show that, under these assumptions, the correspondence <p->$ gives
actually an isomorphism of oS?(G, U) onto C[q^ •s]w.

For reM, we denote by ^ the characteristic function of the double coset UTT'U.
Then, by assumption (II^), {^(reA)} forms a basis of JS?(G, U) (over C). On the
other hand, if we put

^ ^^w^-8'

{F, (reA)} forms a basis of C^"-']^ By (6.4), we have

(6.6) ^S^X..r r'eA

Here we h9.ve, for every r, meM,

(6.7) ^W^SWf^^dn

=82(7^m).meas. of ((^-'"U^^nN).

Hence it follows from (II) that we have T^(7^^f)==o for r, r'eA, r<r', and it is clear
from the definition that ^(7^) =4=0 for all reA. These mean that the infinite matrix
(^(Tr^)) with the indices r, r'eA arranged in the linear order < is of the lower triangular
form with non-zero diagonal elements.

We shall now show that the matrix (^(T^')) has actually an inverse matrix. For
that purpose, let T (resp. S) be the torus (resp. semi-simple) part ofG, let A' (resp. A") be
a maximal A-trivial torus in T (resp. S) such that A==cl(A'.A"), and put YQ=X(A)(X)Q^
YQ:=X(A')®%,YQ==X(A")®Q, and YQ=X(A)®%; then YQ is identified with the
direct sum ofYQ and Yg, and YQ with the dual space ofYq over Q^. Moreover, call M"
the intersection of McYq with the annihilator of Yq. From what we have stated
in n° 2.2, M" can be also defined as the submodule of M formed of all meM such
that ^{7^)^==! for all x^G). Then we have

LEMMA 5. i. If T^NnU-T^U+o with m,reM, we have m=r(mod. M"),
Proof. Let ^ be any A-rational character of G. Then, since N has no non-trivial

A-rational character, we have /(N) == i. On the other hand, we have clearly | -^(u) L == i
foral lMeU. Therefore, if ^e^NnU^U, we have |x(^) lp== [/(^ lp==lz(^) Ip and
so [^(Tr"1""') |p= i. As this holds for all ^eX(G), we have m—reM", q.e.d.

LEMMA 5.2. For every reA, the set of r'eA such that r=r'(mod. M") and r'<r
is finite in number.

Proof. We extend the linear order in M to that in YQ in a natural manner.
Then there exists a Q^-linear form L on YQ, not identically zero, such that, for xeY^y
L(;v)>o implies x>o (and hence that A:>O implies L(^)^o). For each weW,z£;4=i,
we can define an order in Yq by

x> o o (i —w)x> o,
w
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which induces a linear order on the factor space of YQ modulo the subspace formed
of all XE^Q such that wx=x. Hence, similarly as above, there exists a non-trivial
linear form L^ on YQ having the property that L^{x)>o implies x>wx (and hence
that x>wx implies LJ^o and that x==wx implies L^{x) ==o). Therefore, if we put

AQ={^£YQ| x^wx for all weW},
AQ=={xeY^\L^x)^o for all weW},

AQ is contained in AQ and the interior ofAq is contained in AQ. Since W = W^ is the Weyl
group of the restricted root system of G relative to A, we can conclude from this that
we have AQ==AQ and that AQ is a (closed) " Weyl chamber " ofW. Thus AQ is actually
a closed cone defined by v'^rankY") linear inequalities L,(x) =L^{x)^ o (i^z^v").

Now consider first the case where X(G) == i, i.e. YQ==YQ. The L/s being linearly
independent, we can write as L=S\L, with \e%. Here we assert that all \. are >o.
Clearly, it is enough to show that, if L,(A:)^O for all i (i.e. xeA^) and ^=ho, then
L{x)>o. From the assumption, it follows that x^wx and so L{x)^L{wx) for all weW.
But, since YQ={O}, we have S wx=o. Hence, if L(^)^o, we would have L(wx)==o

for all weW. But this is impossible, because for any A:=|=O, the set {wx\we\V} contains
always v" linear independent vectors. It follows that, for any reA, the set {A-eAgl^^r}
is bounded, and therefore that {r'eA[r'<r} is finite.

In the general case, we have, from what we have proved above, L =S\L, (mod. Yg)
with \>o. Hence, if x—r is in the annihilator of Yq and x^r, we have
L(r—:v)=2\L,(r—x)^o. Therefore the set formed of all xeA^ satisfying these
conditions is bounded, and so the intersection of it with A is finite, q.e.d.

From Lemmas 5. i, 2, we see that the matrix (^(rr^)) (r, r'eA) can be decomposed
into the direct sum of the (countably many) matrices (^(^^(r, r'eA, r=r'(mod. M")),
each of which is of the lower triangular form with respect to a set of indices isomorphic
to { 1 , 2 , ...}. Hence r?r(7^)) has an inverse matrix of the same form. Thus we
conclude that the mapping 9 -><p is an isomorphism (of vector spaces over C) from oSf(G, U)
onto C^'8]^ Since it is also a homomorphism of algebras over C, we have proved the
following theorem:

THEOREM 3. The assumptions being as in Theorem i, the Fourier transformation (p->y
gives an isomorphism (of algebras over C) from oSf(G, U) onto C '̂̂ , the algebra of all
^-invariant Fourier polynomials in q±ml•s with coefficients in C, {m ,̂ ....m^} denoting
a system of (independent) generators of M.

Remark 1. The connectedness of G was needed essentially only in the proof
of Lemma 5.1. (We used it also in the proof of Lemma 5.2, but this is not indis-
pensable.) As is seen from that proof, this condition may be weakened, without changing
the conclusion, into any one of the following conditions, where G° denotes the connected
component of the neutral element of G :

(OJ The rank of the character module X(G) is equal to that of X(G°).
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(Og) In the notation of the assumption (I), we have G°=^ (UnG°)H(UnG°).
On the other hand, it follows from Lemma 5. i that, if the condition (II) is

satisfied for a linear order in M, the same is also true for any linear order in M inducing
the same order in M".

Remark 2. The formula (6.7) can be further transformed in the following form:

(6.8) ^(^-^WTnn. Yrm-^UVU^NnU^U)).

In fact, one first observes that by (4.3)
meas. of (NnTr^UTr111) =.S{^)-1.

On the other hand, it is easy to see that the cosets in (N^^~mV'^m)\(N^•K~mV^1:TV)
are in one-to-one correspondence with those in U^UT^NnLWU). From these
follows (6.8). Now, if the additional condition (5.2) is satisfied, we have Yrr^1 ^or

all reA. Therefore, in that case, the matrix (y^) (r, r'eA) and its inverse are integral,
so that the Fourier transformation (p-><p gives actually an isomorphism (of rings) of

the subring JSf(G, U)z= S c,Z of JSf(G,U) onto the subring S (S'^F^Z of
q r̂.

Remark 3. From the definitions, we have
c,{s)==#{V\VnTV)^{n-T).

Therefore we have

(6.9) c^-1) == # (U\U7.^U)-1^^.8~^(^)F^,
^r

which shows that ^(^"^ ls a W-invariant Fourier polynomial in y± m ^• s . But it
seems far more difficult to describe how C^TT"^ depends on reA. In any case, it
is one of fundamental problems in our theory to obtain a handy expression (analogous
to the <c character formula "?) for O^TT -r) or for Yrr"

6.3. Proofs of Theorems 2, 2. The first half of Theorem i follows from Theorem 3
immediately. To prove the second half, let {r^, . .^r^} be a set of generators
of A (as semi-group) and put c^-^c^. (Note that A, being defined by a finite number
of linear inequalities with integral coefficients, has clearly a finite set of generators.)
The notations being as in the preceding paragraph, let A^ denote an intersection of A
with a coset modulo M"; by Lemma 5.2, A is isomorphic (as ordered set) with the
set of natural numbers. We prove, by induction on reA^, that Fy can be expressed
as polynomial in ^(1), . . ., ^(z) with coefficients in C.

For that purpose, denote, for every reA, by 9.R,. the vector space over C generated
by F,» with r'eA, r'<r, r=r'(mod. M"), Then it is clear that we have
(6.10) F,.F,,==F^ (mod.9K^)

for every r,r'eA. It follows that
(6 .11) F,.a^caR^, m^m,.cm^^.
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On the other hand, by n° 5.2, we have

(6.12) ^T==\FT (mod.SK,)
_i

with X,=Yrr8 W+o.
Now let re A and suppose that our assertion is true for all r'eA , r'<r. Since

i
{r^, ..., r^} is a set of generators of A, r can be expressed in the form r== S n^
with ^.eZ.^o. Then from (6.10), (6.n), (6.12) we have

n^ = Il(\wW. = (nx^)F, (mod. 9^).
I t I

L/ ;

Hence, applying the induction assumption on F,,eS(H,, we conclude that F, is a poly-
nomial in ^'s with coefficients in C. It follows then by Theorem 3 that -^(G, U)
is generated over C by c^ ( i^z</ ) . ^

(By the same arguments, replacing F, by 8 2^T)Fy and C by Z in the above
proof, we can also conclude that, under the condition (5.2), oSf(G,U)z is generated
(overZ) by c^ (i^'^).)

As to Theorem 2, we have to prove the following two statements:
i° Every coeQ can be written in the form o)=c0g with S£X(H)®C.
2° We have cog = (Og», if and only if

s'=ws (mod.——Ml with weVf.
\ log q J

To prove i°, let co be any z.s.f. on G relative to U. Let {m^, ....m^} be
a system of generators of M and put X^^"11*5. Then, by Theorem 3, o§f can be
identified with the subalgebra of C[X^1, ...,X^1] formed of W-invariant elements.
Since C[X^1, ...,X^1] is integral over JSf, the homomorphism o : JSf-^C can be
extended to a homomorphism, denoted again by co, from C[X^1, ...,X^1] onto C
([i6], p. 8, Th. i, p. 12, Prop. 4). Since 6(X,) ==(= o, one can put <o(X^) =^8* with s^eC.
Take seX(H)®C such that m(^).s=s, ( i^z^v) . Then we have Q==&^ so that 00=005.

Proof of 2°. For s, s'eX(H)®C, we have c*)g=(o^ if and only if $(s)=$(s')
for all 9 e<JS?, or, what amounts to the same by Theorem 3, <p(s) = $(s') for all ^eCl̂ 1'51]̂

But this last condition is clearly equivalent to saying that s'=ws (mod.——M]
with weW. v log? /

§ 7. Homomorphisms.

7.1. Let G, G' be two algebraic groups satisfying the assumption (I) with respect
to U, H, N and to U', H', N', respectively. We suppose further that there are
given WcWg, resp. W'cWjp, and their fundamental domains A, resp. A' (defined
by (3.13)) and that G' satisfies assumption (11^) with respect to A'. Let X be a
homomorphism from G into G' satisfying the following conditions (i), (ii), (iii). (In
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this paragraph, it is enough to assume that X is continuous in the sense of the p-adic
topology.)
(i) X(H)cH', X(N)cN', X(U)cU'.

Then, since X(H11) cH'11, X induces a homomorphism

M(^H/H11) -> M'^H'/H'11),

which we denote again by X, such that X(/J ==^) for all AeH.
(ii) X(A)cA',
(iii) U is normal in X'^U').

It follows from (i), (iii) that

(7.1) X-^U^ U T^U,
m GM^

T^L^Uii:"1 for all meM^,

where M^ denotes the kernel of X : M->M'. More generally, one obtains
LEMMA 7.1. We have

(7.2) ^(U'^U^U^-W^U^U^U

^"^UW^ U U7tm^U (disjoint union).
meM^

7n o^r words, we have U'X(^)U'==U'X(^)U' î  anrf on/y ^ we have

U^U^ -̂Î UT^U)

z^^A meM^, where m. is uniquely determined by g, g^.
Proof. According to (3.14), one puts g^u^u^, gl=u^nTlu^y X(^) ==u[\{g)u^ with

u^ .. ., ^eU, u[, u^eU\ r, r^eA; then one has T^g)?^1'1)^^) ^^^(^^(Tr1')^^)^.
Hence from (i), (ii) and (II^) forG', one gets X(r^)==X(r), so that r^==r+Mi with meM^.
Then g^u^i^u^ {u^^g^^^u^ eVgr^V by (7.1) (and similarly ^eU^U).
To show the uniqueness of m, let Ug-r^U ^Vg-n^'U with in.m'eM^. Then we
have U^mU=U^mU7Tm'-m, so that ^m+^(m'-m)eU^mU for all ZeZ. But this is
impossible unless m^m', because U^T^U is compact and {^^'jm^eM^} is
discrete, q.e.d.

It follows, in particular, that in the above notation, i f^==^, we have r==r^,
i.e. G also satisfies (Hi).

Now, let JSf==J5?(G, U), JSf^JS^G', U') and, for yeJSf, define <p'eJSf' by

W)- ^,^9(^^=,^9(^m)

(7.3) < = f ^g)dv== S q)(^) if ^EU'X(^)U',
•/ A ^u j m £M^

o if^^U^G)^.
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From Lemma 7.1 it is clear that 9' is well-defined and belongs to oSf'. We put
cp' ^^((p). The mapping \* can also be defined as a linear mapping JSf ->JS?' such that

(7-4) X*(^)=^ for all reA.

We now assume further that X satisfies the condition
(iv) X(G).U'=U' .X(G).

PROPOSITION 7.1. Z^ G, G' 6^ ^o algebraic groups over k satisfying (I), (II J ^rf
fe^X ^ a homomorphism from G ̂ o G' satisfying (i), (ii), (iii), (iv). Then

a) X* ^ a homomorphism (of algebras over C) /nwz J^(G, U) ^o ^(G', U').
b) For o/eQ(G', U'), we have co ==(o /oXeQ(G, U) ^rf

(7-5) ^OP)-^^?)) ^r ^ 9eJSf(G,U).

Proo/. ^ If ^((p,) ^(^ ( z = = i , 2 ) , we have

(9l*92)(^)) -J^PK^^l)^^!-1)^

''J^L^^^^^^)^^^1^^"1)^^)^' (^ (iv))
=J^?l(^^l))y2(^^)-l)^(^l)

^jG/X-W^^Jx-^U.^^^^Jx-^U,^^1^1^^

(by (7.3)),
where the measure on ^G^G/X"^!) is normalized in such a way that the total
measure of the open subgroup X(G) nU'^X'^U')/^"^!) is equal to i. Hence the
last expression is equal to

= JJ^^l^W^'\)^2^2

=X*(<^*92)X(^).

On the other hand, if ^'^X(G)U', we have clearly

(^l*^)^-^?!*?^)^.

^ It is clear that o/oX satisfies the conditions (i), (ii) of z.s.f. If X*((p)==q/, we
get quite similarly as above

w^t)W)=S^f(^g)g^/(g[-l)dg[
-J^^y'^^i))^'^^)-1)^^)

-Lx-^Jx-.u^^^)"'0^^1)^^)^

^J^y^)^'0^^1)^
^(y^co'oX))^).
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Thus we have
(p^co'oX)^)^^*^)^))^^^).^^)),

n TVO r î  At flip- CQm^ fimp> / ^ c^ ic -r»rr»\7F»rwhich proves (in) (in N0 5.1). At the same time, (7.5) is proved, q.e.d.
7.2. Isogenies. We first apply the above considerations to the case of a

A-isogeny. Let, as in N° 7.1, G, G' be algebraic groups over k satisfying (I) and
suppose that G' satisfies (11^); we suppose futher that G, G' are connected and
that W=W^,W'==W^, where A, A' denote the unique maximal ^-trivial toruses
in H, H', respectively. Let \\G->G' be a A-isogeny satisfying (i). Then, A, N
and A', N' being the subgroups of G, G', respectively, corresponding under X, we have

(7.6) A==the connected component of X^A'), A'==cl(X(A)),
N==the connected component of X^N'), N'=X(N).

From the maximality of U, we also have

(7.7) U^X-^U').

Thus (iii) is trivially satisfied. Here X : M->M' is injective, and, by our assumption,
W, W may be identified with each other canonically. Therefore, taking a linear order
in M induced from that in M', we have

(7.8) A^X-W,

or A=A'nM, when we consider that McM'. Thus (ii) is also satisfied. Therefore,
as we stated in 7.1, G satisfies (Hi). Furthermore, it is clear that if G' satisfies (II),
so does also G.

To proceed further, let us first note that X is not necessarily surjective. In fact,
it is known that X(G) is a normal subgroup ofG' and that G'/X(G) is finite, commutative. (This
is true for any isogeny between connected algebraic groups over a p-adic field. See [15],
Prop. 3.) It follows, in particular, that X satisfies the condition (iv).

PROPOSITION 7.2. The assumptions being as above, G7(X(G)U') is canonically isomorphic
to M7X(M).

Proof. Since X(G)U' is a normal subgroup ofG' containing N'=X(N), we have,
by (3.1), G'^H'.^G)!^. Next, we assert that

H'n^^U^X^H711.

In fact, let H'n (X(G)U')9A' =X(^)z/' with geG, u'eV and put g==u^ with
AeH, u^ ^eU. Replacing h by uhu~1 with ^eN(H)nU, if necessary, we may assume
that /^), 4., belong to one and the same fundamental domain w ' K ' (w'eW). Then,
from h' =\{u^\[h)\{u^u1', we have r{h'} =r(X(/z)) and so 1^=1^, i.e. we obtain
A'=X(A)M" with z/'eH'11. This proves the inclusion c; the inverse inclusion is trivial.
It follows that

(7.8) G'/^^U^^H'/^H)^11).
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On the other hand, since M^H/H11, M^H'/H'11 and ^(H^X^nH^ we have
(7-9) HV^^H^^M'/^M).
From these, we conclude the Proposition, q.e.d.

We denote by S the character group of G7(X(G)U') and consider ^eS as a function
on G'. Then S operates on JSf'^oS^G', IT) by

(7.10) (^W-^).^') for SeS,9'ej6f'.

The correspondence y'-^<P' is clearly an automorphism of oSf' (as algebra over C).
We denote by -Sf(G', U')3 the subalgebra of oSf' formed of all S-invariant elements.
Then we have

PROPOSITION 7.3. The assumptions being as above, X* is an injective homomorphism
{of algebras over C) from JSf(G, U) into JS^G', U') and its image is equal to J^(G', U')3.

Proof. Since X satisfies the conditions (i)^(iv), it follows from Proposition 7.1
that X* is a homomorphism. Since X : M ->M.' is injective, it follows from (7.4) that X* is
injective. Finally, it is clear that an element <p' ofoSf(G', U') belongs to the image ofX*,
if and only if its carrier is contained in U'XfG), and this latter condition is equivalent
to saying that 9' is invariant under S, q.e.d.

Remark. It is easy to see from the definition that
X*(JSf(G, U),,) =X*(J§f(G, U))n^(G', U^= (^(G7, U7),)3.

On the other hand, 3 operates also on tT =£2(G', U'). Namely, as is easily
seen, for every ^eS, co'e^', we have S.^'e^ ([22], Prop. 5) (in particular, putting
o/==i (constant), we have ^e0'). From the definitions, it is clear that

( 7 . 1 1 ) <o'(SyO-rM<P').

Now, as stated in N08 5.3, 5.4, a part of W is parametrized by

X(H')®C/W\^^M^; for seX(H')®C, denote by co, the corresponding z.s.f.

on G\ Then we have the following

LEMMA 7.2. If ^|H'<-^Sp(mod. .^^lOn ^ ^ jw^ o/N0 5.4, we have
\ ^S ? /

(7.12) F1.^^.

Remark. This Lemma is valid for any quasi-character ^ of G' which is trivial
on U' and N'. i

Proof. If S^^-^s, one has

Hence one obtains
^{^-^W^W

r1.^^')-^^-1)^,^^-1^^
-S^W^du^
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because ^(U') =^(N') == i. As ^^-»s^, one has S^^-^s+s^. Hence the last
expression is equal to 0)3 4.3. (^')? q.e.d.

By (7.11)3 (7 . i2 ) is equivalent to

(7.13) C^s^^s+s,).

Next, let us consider the correspondence Q'9 o/ —-co = co'oXe'Q more closely. Let
XH : H ->H' be the restriction ofX on H and ̂  : X(H') -^X(H) its<( dual ". Then ̂  is
injective, with finite cokernel, so that it can be extended canonically to an isomorphism

X(H')®C -^X(H)®C,

which we denote again by ^X^. Since we have ^(M') cM, it induces a homomorphism

from X(H')®C/W\^^M^ onto X(H)®C/W. (^-^l}. We now assert that the\]ogq ] \logy /
following diagram is commutative:

Q <—————————————— Q:

(7.14)

X^^C/W.f^Ml
Vlog ? /

X(H')0C/W\ ^^7rt-M^
Vlog ^ ^

Namely we shall prove the following
LEMMA 7.3. If seX(H)®C, s'eX^'^C are such that s==^(s'), we have

(7• I5) co,==<oX,

or equivalently, by (7.5)3

(7.16) $(s)==X*9(s') for all (pe^G, U).

Proo/. In view of (6.3) and the relation m.s^^m^s' (meM), it is enough
to show that we have

T^) ̂ (^(T^) for all r, meM.

By (6.8) and by the coincidence of 8 for G and G', this is equivalent to

# (U^U^UnU^N)) = # (U^^'Ti^U'nU'TT^N')),

which can be proved as follows. From Lemma 7.1, we have X-l(U /Tcx(r)U /) ^UT^U.
Since N^^N) CX(G), it follows that

(^(^N') nU'Ti^U'=X(7^:mNnU7^^U).
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This shows that the mapping

U^UT^UnUT^N) -^U^^'TT^U'nU^^N')

defined by Vg-^V'^g) (^eTCmNnU7^^U) is surjective. It is also injective because of
the relation (^TT^N') nU'^(T^NnU). This proves our assertion, q.e.d.

The formula (7.16) implies the commutativity of the diagram

,S?(G, U) -^> JS?(G\ IT)

(7.17)

w-r -> W'T\
where the second horizontal homomorphism is defined by the correspondence ^m•s -^q^s.

Finally, let us suppose that G' (and hence also G) satisfies the assumption (II).
Then it follows that the mapping 0,^-0.' in (7.14) is surjective and that we have
(^oX==G)2oX for c^, c^eO' if and only if u[=^.^ with ^eS. In fact, the <( if" part
being trivial, suppose that cog oX = 0)3 oX with s^, SgeX^^O^C!. Then, by Lemma 7.3,

we have \(s^=\{s^(mo± Vf .^-M\, and so s^sjmod. W. ^^'(M)^.
\ log? / \ l°g? /

On the other hand, by virtue of Proposition 7.2, we have

(7.18) ^(^/M^j^s^mod.M')!^^

Hence it follows that So==Si+s^ (mod. W. —7T— M'l with ^e3, and so, by
\ log 9 /

Lemma 7.2, cog =^~ l.c0s , which proves the " only if" part. Thus Qcan be identified
with ^7^* Summing up, we obtain

THEOREM 4. Let G, G' be two connected algebraic groups over k satisfying assumption (I)
with respect to U, H, N and to U', H', N', respectively, and let \ be a k-isogeny from G to G'
such that X(H)cH', X(N)cN',X(U)cU'; suppose further that G' satisfies (II) {with respect
to W==W^). Let S be the character group o/'G7^(G)U' (which is a finite commutative group).
Then, G satisfies also (II) with respect to W=W^ and the linear order in M induced from that
in M7; and

a) S operates on JS^G', U') by (7.10), and JSf(G, U) can be identified with J^(G', U')2

by the mapping X* defined by (7.3). Moreover the diagram (7.17) is commutative.
b) S operates on £i(G', LF') similarly, and Q(G, U) ffl/z &<? identified with 0.{G\ U')/E

4^ ̂  mapping Q(G', U^ao'-^o/oXe^G, U). Moreover the diagram (7.14) ^ commutative.
Remark. Supposing only that (II^) and Theorem 3 (hence also Theorem 2) hold

for G', U', instead of assuming the assumption (II) for G', in the above theorem, we
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can conclude that Theorem 3 for G, U, as well as the statements a), b), hold. In fact, in
view of the diagram (7.17) and Proposition 7.3, it is enough to show that J?'(G', U')2

and C^-8]^ are corresponding under the isomorphism eS^G', U^C^-8]^.
But this follows immediately from (7.13) and (7.18).

7.3. As a second application ofN° 7.15 we consider the case where X is injective.
Namely, let G be a A-closed subgroup of G' (both satisfying (I)), and suppose that
\== identity satisfies the conditions (i), (ii). Then, again from the maximality of A, N, U,
we get

(7.19) A=the connected component of A'nG,
N=N'nG, U=U'nG.

Thus (iii) is trivially satisfied. It follows that, if G' satisfies (Hi), so does also G.
On the other hand, since H^^HnH'11, X : M->M' is injective, and by what we have
stated in N° 3.4, 3°, it can readily be seen that

(7.20) A=A'nM.

Therefore, it is clear that, if G' satisfies (II), so does also G (with respect to the
induced linear order in M).

Now, it is known (cf. N° 8.2) that G'=GL(^, k) satisfies the conditions (I), (II)
with respect to

H'=A'=D(TZ,^), N^T^n,^),
U'=GL(TZ,O),
W = ©„ (symmetric group of n letters);

in this case, M' is canonically identified with Z^ and, taking the lexicographical linear
order in M', we have

At={m={m,)eMf\m^ .. .̂ J.

For GcGL(%,A), put U==GnGL(^, o). Then, the conditions (I) for G, U
and (i), (ii) for \= identity can be stated as follows:

(I*) There exist, in G, a connected k-closed subgroup A contained in D(w, k) and a k-closed
subgroup N contained in T^/z, /;), normalised by A, such that we have G==U.AN==U.A.U.

(II*) There exists a subgroup W of W^ such that every weW can be written in the
form w==w^ with MeN(A)nU, and that, for m= (m,)eM (cZ^ with wm^m for
all weVf {with respect to the lexicographical order in Z^), we have m^ .. .^^.

Therefore, from what we have stated above, we obtain the following:
THEOREM 5 [19]. Let G be a (connected) k-closed subgroup of GL(^, k),

U=GnGL(7z, o), and suppose that G, U satisfy the conditions (F), (II*). Then Theorems i,
2, 3 hold for G, U.

As is seen from (7.20) and N° 6.2, the connectedness assumption on G is unnecessary.
Theorem 5 can be applied, for instance, to SL^.A:), Sp(n, k), S0{n, A, S), taken in a
suitable matricial expression.
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Example. S0(w, A, S). By definition,
S0(^, A, S) =={^GL(7z, k) |^=S, dot ̂ = i},

where S is a non-singular symmetric matrix of degree n. By a theorem of Witt, S can
be transformed into the following form

(o o i\}v

S= 0 SQ 0 p^o, ^==7Zo+2V,

i. o oy}v
/O I\

t === . •• , SQ == symmetric matrix of degree HQ corresponding to an <( anisotropic 55

VI 0/ quadratic form (i.e. for xek^, ^80^=0 implies x==o).

Then, from the theory of maximal lattices (cf. § 9), it can be verified that
G=SO(72, k, S) satisfies (F), (IF). But, if we consider the group of similitudes with
respect to S instead, it appears that (I*) is not always satisfied.

Remark. Proposition 7. i cannot be applied, unless the condition (iv) is satisfied.
It can surely be applied to SL(TZ, k), and more generally to the situation considered in
Proposition 3.2. In these cases. Lemma 7.3 (i.e. commutativity of the diagram (7.14))
can also be proved.

7.4. Finally we apply our considerations in N° 7.1 to the situation considered
in Proposition 3.3. Namely, let G be an algebraic group over k satisfying (I), (II^)
with respect to U, H, N, WcWa, let Z be a ^-trivial torus contained in the center ofG
and put
(7.21) G==G/Z, U==(HoU)/Z, H=H/Z, N=ZN/Z,

Ho being defined by (3.7). Suppose that Ho normalizes U. Then G satisfies (I)
(Proposition 3.3). We now prove that G satisfies also (Hi). In fact, put

(7.22) Mo={meM[xm==^ for some xeZ,^eZ}.

Then, Mo^Ho/H11 and so M^H/H^H/Ho^M/Mo. Since W operates trivially
on MQ, the fundamental domain A consists of cosets modulo Mo, and A=A/Mo is
clearly a fundamental domain, in M, of the group WcWjj (W^W) determined by W
in a natural way. (More precisely, we may assume, without any loss of generality,
that the linear order in M defining A is " adapted " to Mo, i.e. satisfies the condition
that, if m, m'eM, m^Mo, m>o, m=m'(mod. Mo), then m'>o. Then, the linear
order in M induces in a natural way that in M=M/MQ, and the fundamental domain
of W defined by the latter is precisely A.) Then, it is clear that

G= U LWU (disjoint union),
re A

which proves our assertion. It is also clear that, if G satisfies (II) (with respect to a
linear order in M adapted to Mo), so does also G (with respect to the cc induced " linear
order in M).
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Now, call X the canonical homomorphism G-^G === G/Z. Then, by our assumptions,
X satisfies the condition (i)^(iv) (U', H', N', A' being replaced by U, H, N, A, respec-
tively). We note that, in the notation ofN° 7.1, we have \~l(Vt) ==HoU, M^==M().

PROPOSITION 7.4. The notations and assumptions being as above, X* is a surjective
homomorphism {of algebra over C) from °Sf(G, U) onto oS^(G, U), and its kernel is equal to the
ideal generated by CQ—^(meMy), or, what amounts to the same, by CQ—c^) (i^'Oo)?
{m^, . . ., m^0} (vo == rank Mo) being a system of generators of M().

Remark. It is easy to see that X*(oSf(G, U)z) ==JSf(G, U)z. Therefore, by this
proposition, JSf(G, U)z can be identified with the factor ring of oSf(G, U)^ by the ideal
generated by CQ—Cm(meMo).

Proof. The first statement is a direct consequence of Proposition 7.1, (7.4) and
what we have stated above. To prove the second, choose a system of representatives {r}
ofA/Mg. Then every (peJS?(G, U) can be written uniquely in the form

(7-23) 9 = s Ji^^^r:A/M.o m£Mo

with \ mGC, and we have
^(<p)= S ( S \j,

r:A/Mo m£Mo

Therefore, we have X*(<p) ==o, if and only if

(7-24) r11^^0
m£Mo

for each r. On the other hand, from our assumption on Ho, we have

^^m=cm*CT==ct+m for a11 reM, meMo.

Hence, putting ^=^(1), we have, for m==Syyal(^)3
i

^-^m=(^))nl*•..*(^o))^vo*^,

(c^)"1 denoting the n^-th power of c^ with respect to the convolution. Thus our
assertion on the kernel of X* is reduced to the following, easy, purely algebraic lemma:

LEMMA 7.4. Let

9(X) - S ^,^X? ... X^EC[X?1, ..., X^].
Hi, ...,n^= — oo '

Then.wehave S X^ ^ ==o, ifand only if'y belongs to the ideal generated by i—X^(i^zO).
HI, ...,n^ 1 ? "*' v

Now assume that G is connected and satisfies (II) and consider the relation
between Q==£2(G,U) and ^==£2(G,U). By Proposition 7.4, Q can be identified
with the subset of 0. formed of all coeQ satisfying the condition

&{CQ—^m)^0 ^or au meMo,

or equivalently, if we write (o=<x>s with seX(H)®C,

^mW == I ^or a^ III^MO.
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Now, from (6.3), we have

41

^(s)^-"1-m.s for meMo.
i

In fact, from the definitions, we have S2 (TC^^I for meM^; and if ^'NnU^U+o
for meMo,m'6M, we have (^""^nU+o and so m'==m (N° 3.4, i°). Hence
by (6.7) we have

- ^m^ \ ! ifm'=m,
^m')==

if m' + m,

which proves our assertion. It follows that, for ^eQ,, we have o)g et2, if and only if

(7.25) m.s=o(mod. ,——Z\ for all meMn.
\ log? /

This result can also be obtained from the commutativity of the following diagram:

t2 - Q

(7.26)

X(H)®CIW.(^-M\ ^ xf^^c/w.^-2^^,
Vog? / Vog? /

which can be proved quite similarly as Lemma 7.3. Thus we obtain
PROPOSITION 7.5. Let the notations and assumptions be as stated at the beginning of

the paragraph^ assume further that G is connected and satisfies (II) with respect to WcWji and
a linear order in M adapted to M(). Then, G = G/Z satisfies also (II) with respect to W === W^
and the induced linear order in M==M/Mo; and ti can be identified with the subset of ^formed
of all (x)g such that

m . s = o ( m o d . — — Z ( for all meMo.
log?

Moreover^ the diagram (7.26) is commutative.
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CHAPTER III

CASES OF CLASSICAL GROUPS

§ 8. Cases of GL{n, ̂ ), SL(n, ̂ ) and PL(w, ̂ ).

8.1. Theory of elementary divisors. Let S{ be a central division algebra of degree rf
over k. The unique maximal order and its unique (two-sided) prime ideal are denoted
by 0,^p==(n), respectively, n denoting a generator of ^p. As is well-known, we
have pO ==^, N(^P) ==p, N denoting the reduced norm of Kfk.

Let V be an n-dimensional right vector space over S{. A subset L of V is called
an D-lattice, if L is a finitely generated (right) 0-submodule of V such that L^ = V.
For any subset X and an 0-lattice L in V, we put

(L : X) ==Min{ord^|^, X^cL}.

An element ^ o f V i s called " primitive 9) in L, if (L : x) ==o.
Then the following statements are fundamental (see, for instance, [6]):
(E^) For any D-lattice L in V, there exists a basis (^, ..., ̂ ) such that

(8.1) L=2;^D.
i=l

Remark. As ^, we may take any primitive vector in L. It follows that the group
of units U (relative to L) operates transitively on the set of all primitive vectors in L.

(Eg) Let L, L' be two ^-lattices in V. Then there exists a basis (^, .. ., e^) of\ such that
L=S^O,

(8-2' L«£,y.
i

with r^ .. . ̂ r^. The ordered set of integers (r^, . .., rj is uniquely determined, independently
of the choice of the basis (^, ..., ̂ J.

We call (r^, ..., rj the (exponential) elementary divisors of L' relative to L and
denote it by <?(L' : L):

.(L-L)^,...,^).
Remark i. We have

(8.3) (L':L)-r,, (L:L')=-r,.

Remark 2. As ^, we may take any vector such that (L :^)==o, (L' :<?i)==ri.
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8.2. Proofs of (I), (II) for GL{n, ft). We now fix an 0-lattice L in V and a basis
(^, .. .5 e^) of V satisfying (8.1) once for all, and set as follows:

G === the group of all (non-singular) ft-linear transformations of V
==GL(7z,ft),

U={^eG^L=L}==GL(72,D),
H=={AeG|^,==<?^ with ^eft {i^i^n)}

^D^ft^ft^,
N=={n6G|^,=^.+S^ with ^eft(i^^)}

==T^,ft).

Then, it is clear that G may be viewed as a connected algebraic group over ky
of which U is an open compact subgroup, H a connected A-closed subgroup consisting
of only semi-simple elements and N a ^-unipotent subgroup normalized by H.
Moreover, the center of H is equal to A=D(^,A:) and we have H==Z(A). The
condition (3.2) is obviously satisfied.

Now systems of generators of Y==X(A) and ofX(H) are given, respectively, by

(8.4) ^ ; A^=diag.(S,) —> ̂  (i^<n)

and by

(8.5) X.: H^=diag.(y -> NS, (i<z^),

N denoting the reduced norm of ft/A:. Here N is surjective, so that H satisfies the
condition (N). We have ^ == d^ on A. Hence, if we identify Y with V1 by means
of (v^, .... Y)J and if we consider as YcMcX(H) cQ^, we have

(8.6) M^X^——Z^

For m== {mjd, . .., mJd)eM, we put

(8.7) T^^dla^II^, ....n^).

This notation is concordant with that introduced in N° 2.3.
It is clear that (in the notation ofN° 3.4) we may take, as a group W, the symmetric

group ©„ of n letters, operating on M as a group of permutations of the coordinates.
Then, taking a lexicographical linear order in McQ^, we have

(8.8) A=={meM|w^ .. .^wj.

Applying (Eg) to L'==^L, we see that we have geUn^U with reA, if and only
if e{gL: L) ==rfr. {e{gL : L) is called the " elementary divisors " ofg relative to L).
Therefore we have

G= U UTT'U (disjoint union).
r £ A
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This proves G == UHU and (II^) with

(8.9) r{g)=y(gL:L).

We now give proofs for the remaining parts of the assumptions (I), (II).
Proof of G==U.HN. Let geG and put (L : ge^) ==—Wi. Since U is transitive

on the set of all primitive elements in L, there exists ueV such that ^^-Ml==t^.
This means that we have

/n^ *\
^"(o J

where g^ is (a matrix of) a linear transformation induced by g on V/^ (with respect
to the basis (^, ..., ^)(mod. ̂ )). Therefore, by induction on n, we get the assertion.

Proof of (3.16). Let g = i^n with m = (mjd, ..., wjrf), yzeN, and let
'""^C?) ̂ {hl^ • • - 3 ^nW- ^e have to prove that r^m. First, since {gL :L)==r^
we have e^Il^egL, on the other hand, ge^=e^^.ml is primitive in ^L. Hence one
gets r^m^. If r^==m^ it follows from Remark 2 to (Eg) that there exists a basis
(^, ^25 ..., ^) ofV such that

L =^0+Z;<0,

^L=^r-+s<r<•
t=2

(n^ *\This implies that, if we put g == (, the elementary divisors of g^ (relative
6l/

*

0 gl)
to L = L/^0) is given by (fg, ..., rj. Hence, if one proceeds by induction on TZ, one
gets (r^, ..., rj^ (^2, ..., wj by the induction assumption, q.e.d.

Remark. If r == m, we see from the above proof that the e\ may be chosen in
i-i

such a way that e[ •=. ̂ (mod. S ̂ .0). It follows that we may write g = UT^ with ueV n N.
In other words, we get

^N011^1;= (UnN)^.

This proves that the additional condition (5.2) is also satisfied. (Hence the same is
also true for any algebraic group GCGL(TZ,A:) satisfying (I*), (II*) stated in N° 7.3.)

8.3. It is now established that all results in §§ 5-6 can be applied to G = GL(TZ, ^),
U=GL(TZ,O). We shall determine here the isomorphism »Sf(G, U^C^-8^ more
explicitly. We identify X(H)®C with C" by means of the basis (Xi , . . . , z J . Then it
is clear from the definition that for m == {mjd, ..., mJd)eM., s = (^, ..., jjeX(H)®C,
we have

n

(8.10) m.s== S 77 .̂.
t= l

On the other hand, it can readily be seen that for A==diag.(^)

( 8 . 1 1 ) S^niNO;.)!^1-21"'.
t=i
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Therefore, ifS^^sin the sense ofN° 5.4, we have
n /. n+l\

a(A)=^|N(S,)|;<+(l-^d,
i=l

or equivalently,

(8.12) ^m)^-f"^.+(< '4-̂

Now, Cy-'^ is the algebra ofal] symmetric Fourier polynomials in q±sl, ..., ff±s»
It is therefore generated over C by the fundamental symmetric polynomials' '

F,M(S)=^S^^-^+-+^) (^^
and F,(n)(s)-l=y£s., where

ic

(»-.3) ,-(^4,0,...,0).

Putting c^^fx), we have the following relation

(8.14) ^^("-^p^

In fact, if in (6.6) ^'(TC^+O with r=(rJd)eA, we have by N" 6.2, r^"',
2r,=%, but this is possible only for r=r^. Hence by (6.8), (5.2), (8.n), we have

^)(^)= S-^')^1""-'^ forr^rCO,
o for r+r^,

which proves our assertion. Thus, as a special case of Theorem i, we obtain the following
THEOREM 6 (i). Let G=GL{n, ft), U=GL(», 0), where ft y a ̂ W division algebra

over k and 0 is the maximal order in ft, and let c'" be as defined above. Then JS?(G, U) is isomorphic
to the polynomial algebra C[X,..... X,. _ ̂ , X^ l} by the correspondence c^ -^ X; (i < ̂  n).

As remarked after Theorem i, we can also conclude that £'{G, UL is a polynomial
ring Z[cW, ....^"-V^'].

8.4. Groups isogeneous to SL(n, ft). The notations being as before, we consider
first the case of

G=PL(w,f t )=GL(K,f t ) /Z,
where

Z==the center of GL(ra, ft) ={$ i,,[^*}.

In the notation of Proposition 3.3 and ?7.4, one has
(8.15) Ho=(diag.(Si, ..., ^.)|^,6ft*, ord^= ... =ord^J,

which surely normalizes U. Therefore, by Proposition 3.3, we see that G satisfies
the assumption (I) with respect to

(8• I6) U=(HoU)/Z, H==H/Z, N==NZ/Z.

(1) Tl-i, result was first obtained by Tamagawa [23] by a different method.
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Moreover, denoting always the things relative to G by the corresponding symbols
with bar, we have

A=A/Z,
Y == X(A) == {S»^ | ̂ m, == 0} cY,

(8.17) _ * i

X(H)={2^..|2m.=o}cX(H),
t t

M==M/MO, Mo== ,(^3 . . . ,w) |weZ

If we take, as W, the group induced by W== ©„ on M, and, as the linear order
in M, that induced from. the lexicographical order in M, we have

A=A/Mo.

Thus the assumption (II) is also satisfied.
Moreover, X^^C may be identified with the linear subspace

{s=(^i, ...,^)|S^=o}i,

of X(H)®C==Cn, and if we denote by m the class of meM^.Z" modulo Mg,

m.s (meM, seX(H)®C) is given by the same formula as (8.12). On the other hand,
we have 8(7^) =8(7^), and o^^Tr111) for all aeHom(H/H11, C*)=Hom(H/Ho, CT).

Now, by Proposition 7.4, we have

(8.18) JS?(G, U) ==^(G, U)/^-^);

by Theorem 6, this is isomorphic to

C[Xl,...,X,_„Xtl]/(I-XJ
^C[Xi, ..., X^_J

by the correspondence 7^ =^)->X, {i^i^n—i).
Now we have X(G) ={N}, N denoting the reduced norm of M^(^)/A:, and it

is known that all (connected) algebraic groups isogeneous to PL(n, Si) are given by

(8.19) G^ ={(g, S) eGL(7z, 5^) x^|N(^) ̂ ^^/{(Sin, ̂  \W

where r is a positive integer dividing nd. Applying Propositions 3.1, 3.2, 3.3 and
?7.2, one sees at once that all these groups satisfy (I), (II) with respect to the maximal
compact subgroups

(8.20) V^={{^.u, 7])|S;e5T, ueV, r^ek\ ord^=^ ord^}/{(Si,, ̂ )|^}.

In particular, we have

G^ = G1 - SL(TZ, K) = {geGL{n, R) |N(^) = i}.
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Denoting always the things relative to G11' by the corresponding symbols with superscript^',
we have

HW=HaGW={h=diag.^)\n^)=i},

A<1' = (the connected component of An G'11) ={a = diag.(S,) | II ̂  == i},
Y(l)=X(A<l))==Y/Z(SYl.),

(8 .21) X{HW)=X{H)IZ(^/

M'1' = {m = {mjd) e M [ S OT, = o},

W11'= (restriction ofW=<5,, on M'1'),
A^^AnM'1'.

X^^^C may be identified with the factor space

X(H)®C|^C=Cn|{{s,...,s)\seC};

and if we denote by s the class of seX(H)®C modulo (2y,)C,

TO.S (meM11', seX^'1')®^

is given by the same formula as (8.10), and formulas (8.11), (8.12) remain true
for A.T^eH'1'.

From the results in § 7 (Th. 4, Rem. in NO 7.3, Prop. 7.5), the following diagram
is commutative

(8.22)

{(^^••^JISj^o}

Finally, let X be the canonical isogeny G^-^G, and put

3,== character group of G^G^U.

We have X(GW)U== (N-1^) .HoU)/Z, and it is easy to see that, for geG,
r^ nd

we have ^N-1^) .HoU, if and only if ordyN(g) =o(mod. x,), where x,=(7z,^/r).
It follows that S^ is a cyclic group of order x^.

By Theorem 4, we see that the natural mapping ^(G^, U^)^- Q.(G, U) is i : ̂
and that ^(G^, U^^ can be identified with the subalgebra of ^f(G, U) formed of
all Ey-invariant elements. Under the Fourier transformation, this subalgebra corresponds
to the algebra formed of all symmetric Fourier polynomials in q^^ consisting of
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only terms of degree divisible by x^. This means that, under the isomorphism
jSf(G,U)^C[Xi, . . . ,X^_J stated above, JS^G^.U^) corresponds to the subalgebra
formed of all polynomials in X^, .. ., X^_^ consisting of only terms of weight divisible
by x^. Thus we have proved

THEOREM 7. The notations being as above, oS^(G, U) is isomorphic to the poly-
nomial algebra C[X^, . . . ,X^_J by the correspondence ^—^X^. Under this isomorphism,
oS^G ,̂ U^) corresponds to the subalgebra formed of all polynomials having only terms of
weight divisible by the greatest common divisor of n, ndfr.

In view of Remarks after Propositions 7.3, 7.4, we see also that
jSf(G,U)z=Zp, ....^-^ and that HG^, U^z corresponds to the subring of
oSf(G, U)z formed of the polynomials of the type described in the above theorem.

§ 9. Cases of groups of similitudes (1).

9.1. Theory of elementary divisors. We treat the following five cases simultaneously:
(0) the case concerning a quadratic form,
(Sp) the case concerning an alternating form,
(U) the case concerning a hermitian form,
(U4') the case concerning a quaternionic hermitian form,
(U~) the case concerning a quaternionic anti-hermitian form.

For proofs of the results in this paragraph, see [9], Ch. II, § 9 for (0), [ssi], § i
or [5] for (Sp), [5] for (U), [21], § 3 for (U^, [24] for (U-) (2).

Let K be equal to k in the cases (0), (Sp), a quadratic extension field of k, of
ramification exponent e, in the case (U) and a (unique) central quaternion division
algebra over k in the cases (U4"), (U~). We denote the (unique) maximal order in K
and its prime ideal by 0,^5= (II), respectively.

Let V be an yz-dimensional (right) vector space over K with a non-degenerate
bilinear (resp. sesquilinear) form < > of the following type:

symmetric bilinear form in the case (0),
alternating bilinear form in the case (Sp),
hermitian sesquilinear form in the cases (U), (U4'),
anti-hermitian sesquilinear form in the case (U~).

Let v be the Witt index ofV and put 7z==^o+2v. A system of vectors {^,, e\ ( i<z<v)}
in V is called " canonical ", if the following conditions are satisfied

<^, e\> =o,,, <^, <?,>=<^, ^>==o for all ij.

(1) For the fundamental concepts on quadratic forms, hermitian forms, etc., and the corresponding classical
groups, see [2], [8], [9]. Cf. also [25].

(2) Though these references still do not cover the results in full generality, it is not difficult to complete
them, e.g. by generalizing the method in [9]. The author should also mention that the main idea in this section
has been given by Tamagawa through several lectures at University of Tokyo in 1960.
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For an 0-lattice L in V, we define its (exponential) norm n (L) as follows:

49

(Q.I)

Mmordy(L<x, x>\ \xeLi in the case (0),

Min{ordp<^,j/> \x,yeL} in the case (Sp),
n(L) = rLh8')

Max{/|<^, x>epL ^ J, <x,y>e^ for all x, jyeL} in the case (U),
Mm{ord^<x,jy> j^j/eL} in the case (U^,
Max{/|<A:, x>e{^1)" for all xeL} in the case (U-),

where ^8 is the different ofK/k in the case (U) and (^)- ̂ S—lfl^^K^conju-
gate of S) in the case (U-). (Note that, in the case (U), i f < ? = i , the conditions

[-LLS-j
<c <x,x>ep1- e for all ;veL " and " <x,jy>e^1 for all x,jyeL " are equivalent,
while, if ^=2, 8=1, the second condition implies the first.) An 0-lattice L is called
maximal, if it is maximal among the 0-lattices in V with the same norm.

Now the following results are known:
(Ei) For any maximal ^-lattice L of norm I in V, there exists a canonical system

{^, e[ ( i^^v)} such that

(9.2) L==ie,D+ie^+L^
»=1 i = 1

where L^ is the unique maximal ^-lattice in Vo= (S^K+S^K)1 (1 denoting the orthogonal
complement) of the smallest possible norm ^s/. (^(L^) ==/ or /+ i . )

Remark i. We have dim Vo==^4 for (0), ==o for (Sp), ^2 for (U), ̂  i for (U-^)
and ^3 for (U-); and L^ is defined as follows:

(9-3) ^={xeV^<x,x>ep\ for (0)
W}

resp.<^,^>ep1- e J, for (U)
r̂ -n

resp.<^,A:>ep1 2 J, for (U-^-)
resp;<^^>e(^/)-} for (U-).

Remark 2. As ^ (resp. ^i, ^), w-e may take any primitive isotropic vector in L
(resp. any pair of isotropic vectors ̂ , e[ such that <^, e[> == i, (L : ̂ ) == o, (L : ̂ ) = /).
It follows that the group of units (group of linear transformations leaving < > and L
invariant) operates transitively on the set of all primitive isotropic vectors (resp. of
all pairs of isotropic vectors satisfying the above conditions).

(Eg) Let L, L' be two maximal ^-lattices in V, of norm /, /', respectively. Then there
exists a canonical system [e^ e[ ( i ^?^v )} in V such that

(9.4) L=ie^+ie^+L^
i -^ 1 i'=l

L'=i^r.+2:(';<P''-ri+Lo i ')
t = = l l -=l
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with r^ . . . ̂ r^ - (/'—/). The ordered set of integers (r^, ..., rj is uniquely determined^

independently of the choice of the canonical system {^, e[}.
We call (/i, . . . 3 ^ ) the elementary divisors of L' relative to L and denote it

by £(L' : L).
Remark i. We have

(9.5) (L ' :L)=r i , (L:!/)^^-/'.

Remark 2. As ^i (resp. e^ e[), we may take any isotropic vector such that
(L : e^) ==o, (L' : e^) =r^ (resp. any pair of isotropic vectors e^ e[ such that <^i, e[> ==i,
(L : .1) =o, (L' : e,) =ri, (L : .;) =1, (L' : .,) -//-^).

9.2. Proofs of (I), (II) ybr groups of similitudes. We now fix any maximal 0-lattice L
in V and a canonical system {^, e[ (i^z'^v)} satisfying (9.2) once for all; we take
furthermore a basis (j^, . . .3^) of L^ and understand that a K-linear transformation
ofV is represented by a matrix, whenever necessary, with respect to the following basis ofV:

(e-^, . . . 3 ^y 5 J 1 3 • • • 5 Jno 3 ^ 5 • • • 3 l̂) •

In the following, we make a convention that the index i always ranges over i, ..., v.
Let us set as follows:

G==the group of all <:c proper " similitudes of V with respect to < >
=the connected component of {geGL(n, K) \<gx, gy> ==^{g)<x,y> for all x,yeV}

(^ : G-^k* is the " multiplicator ").

Remark. The group of all similitudes is already connected except for (0) with n
even and for (U'~). For these cases, proper similitudes are defined by the condition

n ^ ^
det^) =^)2, resp.N(^) =^{gY, N denoting the reduced norm of M^(K)/A.

^ . /O 0 ^\
U={ueG\uL=L}^ueG ^M-'ejo 0 ^~11 ,

( V^B1 ^ 0 /
H={AeG|^=^,^;=^ with So ^'eK}

={A=diag.(^, . . ., ^, Ao, So^-1, . . ., SoSi-1) I^K', So^ ^O^GO with pLo(Ao) -So)
{{KVxk' if^o-o,

^((K^xGo if ^o>o>

(Go==the group of proper similitudes of Vo\
^o== multiplicator of Go /

N=GnT M (7^ ,K) • [n=

i\ * j ;\ * i *0 ^ !
—"r"t-——-"-isL.'-.
. \o\\-

1 | 0 M /

2:4
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It is clear that U is an open compact subgroup of G, H a connected A-closed
subgroup of G consisting of only semi-simple elements and N a ^-unipotent subgroup
normalized by H. Moreover, the center of H is equal to
(9.7) A = the connected component of G n D (n, k)

={a=diag.(Si, ..., ̂  ̂  ̂ \ ..., So2^-1) 1^, ̂ },
where (and henceforth) we put

(2) = ̂  if ^o = o,
I2 if HO>O;

we have also H==Z(A).
Now systems of generators of Y=X(A) and of X(H) are given, respectively, by

7 ) , :A9a—>^ (i^z'O),
(9.8) i

^==^:a-^^

and by
^ : H 9 A — ^ N ^ (i^z'O),

[L : h —> So except for (0), w : odd,

^ for (0), w : odd,
(9.9)

N denoting the reduced norm of K/A.
Proof of (3.2). One has IP^lTxG?, U denoting the group of units in K*

and G^=={Ao(=Go|ordp(A(Ao)=o}. From the uniqueness of maximal lattice of a given
norm in Vo, it follows that ho^G^ leaves L^ invariant, so that we have IPcU, as
desired.

We denote by d and e the degree and the ramification exponent of Kfk,
respectively, i.e.

d==e=i for (0), (Sp),
d=2, e=i or 2 for (U),
d=e==2 for (U-^), (U-);

and define do, ^ (^ dividing do) as follows

(9• Io)
^ ^ \ (2) except for (0), TZ : odd,

0 ) i for (0), n : odd,

ord^(G)=ord^(Go)=^Z.
"o

Since we have ^==d^ (i^^v) on A, it follows that, if we identify Y with Z^1

by means of (^, . . . ,^,7]o) and if we consider as YcMcX(H) C^4-1, we have

(9.ii)
M=lZvx-LZ,

e eo

X(H)=^x-Z.
ri rfo
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For m=={mje, ..., mje, m^e^eM, we put

(o 12) ^m_ diag.(n^..., n^, Tr^n—v, . .^^n—) _ if ^=o,
diag.(n^ ..., n-v, ^0, ^(^"n-^, ..., ^(r^oTr-^) if ^>o,

where CT denotes an element of GQ such that ordp^a) ==2/^o. This notation is
concordant with that introduced in N° 2.3.

Now, except for the case (0) with n == 2v (which will be treated separately in N° 9.5),
it can readily be seen that one may take, as W (operating on M=={m= (mje, m^)}),
the group generated by all permutations of (m^ . . . , m ^ ) and by the automorphism
w^ (i < i^ v) defined as follows:

(9.13) ^):^^-^+(2^
^•-^ W)

Then, taking a linear order in M induced from the lexicographical linear order in Q2"
through the injection

(m,M^m-^1 mv ^mQ ^ (^o î̂ n^vivisin-^ i—, . . ., —, —————, . . ., —————I^Sc ?
\ e e Co e CQ e J

we have

(9.14) A^r^f!1,!0)A — ) y — r t r0\\r r (=.7 r-> -> r ^> ^2/ r^Y — ^ r — i -, — i [ r^, TQe^i, r^ ... ̂  r̂ , ̂  ——to
( \e eQ/

Now applying (Eg) to L'=^L, we see that, except for the case (0) with yz=2v,
we have geV-n^V with r==(rje, ro/^)eA, if and only if e(^L : L) == (r^, ..., r^) and
onip^)^)/^.^.
Therefore we have

G= U UTC'U (disjoint union).

This proves G=UHU and (II^) with

(9-15) ^) = f18^ : L). T^dp^)).
\" ^J /

Proo/* of G==U.HN. If v=o, we have G==H, and our assertion is trivial.
Let v^i . Let geG and let (L : ge^) ==—m^. Then ^II""^ being a primitive isotropic
vector in L, one can find ueU with [L{u) == i such that ge^^.~ml==ue^. Then, since
we have <M~1^, e^>=[L(g)<x, ̂ >^~wl==o for all A:e(^K)1 (== orthogonal comple-
ment of ^K), we see that u~lg is of the following form

(n^ * * \
^~^= o gi *_ |

o o ^)n-7
where g^ is a similitude induced by g on (^K.)1/^!^ (with respect to the basis (^2, ..., ^)
(mod. ^K)). Hence our assertion follows from an induction on v.
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Proof of (3.16). Let g = n^n with m = {mje, ^o/^o)e ̂ ? ^ eN and let

y=r(g)==(r,ie,r^Y
We have to prove r^m. First it is clear that ro= (^/(2))ordppi(^) ==Wo. Hence,
if v==o, the assertion is trivial. Let v^i . Since (^L:L)==r^ we have ^II^e^L;
on the other hand, ^===^11^ is primitive in ^L. Hence we get r^m^. If r^=mi,
we have (L : ̂ ) ==o, (^L : ̂ ) =^, and hence, by Remark 2 after (Eg), there exists
an isotropic vector e^ such that <^, ̂ '> == i, (L : ̂ ')==/, (^L : e[') ==l-{-e ordp^^)—r^.
We now assert that, for any isotropic vector^'with the properties <^, ̂ '>= i, (L : e[')==l,
one can find M e U n N of the form

(' ' '\M==|0 I^_2 * j

\0 0 I/

such that ue^-= e^ ue[== e[ ' . In fact, put

^ '==^a+^(B+w with a,peK,^e(^K+^K)1.

Then, from the conditions on e[\ we have (B= i and a ^a+^w? w>==o. It follows
that the K-linear transformation u defined by

I ̂ 1-^1
u : e[->e['

I x->—e^<x, w> +x

meets all our requirements. Now, if we put ^"^^""^I'^Qrtn"^ we have
<^,^">==<^,^>^- r l=I and (L :^')==(^L : e^+r^—e.ord^g)^^ so that, by
the same reason as above, one can find M'eUnN of the same form as u such that

^=^=^--l^^rl,
^i-^'-rtWn-1.

/ir1 * * \
Therefore, if we put g = | o g^ * j, we have

o o ^w1!

(IT1 o o \
u-^gu9-^ o î o j.

o o ^n-^
It follows that r{g) ==r{u~lguf) = (r^, r(^i)), and, by the induction assumption,
that r(^i) == {r^je, ..., r^/^, roleo)^ (^2/^3 • • • 5 ^v/^? ^o/^o)? which completes the proof.
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Remark. If m==r, an easy induction on v shows that g can be written in the
form g==u^u^ with u^, z^eUnN. But, since 7^^M27I:~"^eUnN^ this implies that

^N0117^11= (UnN)^.

Thus the additional condition (5.2) is again satisfied.
9.3. The notations being as before, and still excepting the case (0), yz=2v, we

can now apply the results of Chapter II to determine oSf(G, U^^CI^'^ more explicitly.
It is convenient to distinguish the following three cases:

i° (2)^0=1, that is, <?= i , ^o=(2)?
2° (2)^o=2,

3° (2)^0=45 that is? ^=2^o=1? (2)= 2-
From (9.14)3 it can readily be seen that A is generated (as semi-group) by the

following (v+2) vectors:
±r(°),r(1), ....r^-1),^ in Case 10,
± r^, r^, ..., r^ in Cases 2°, 3°,

where
i

rw== (j3 • • - 9 75 °3 • • - 5 °9 °) (î '̂ ),\c' P /

rM'=(i, ..., i—) (Case i o)
\ (2)7

(9-i6) / _2^\ . Q o
I 1 ? • • • ? 1? / \ | 111 '-^<*OC 1 )
\ (2)7

r'0^./! i i\ . .,
(,...„-1 m Case 2°,
\c- c e'o/

(i, . . . , i , i) m Case 3°.

We put c^^-c^i}, c^^c^y. Then, from Theorem i, we obtain the following
THEOREM 8. Let G be the group of proper similitudes^ U a maximal compact subgroup

of G defined by a maximal D-lattice, and let c^ (o^ ̂  v), c^' be as defined above. Theny except for
the case (0), n== 2v, ^(G, U) is a polynomial algebra C^0^1, c^\ . . . , ̂ -1), c^'} in Case 10
and C^1, ^(1), . . . , c^] in the other cases.

Remark. We obtain also a more precise result that

jSf(G, U^ZI^S c^\ . . . , ̂ -^, ̂ '] or Z|y0^1, ̂ , ..., ̂ ].

The Fourier transformation of these c^ are described as follows. We iden-
tify X(H)®C with C+l by means of the basis (/i, • . . ^ / v ^ X o ) - Then, for
m == (mj^, m^Co) eM, s = (^, ^o) eX(H)®C, we have

d v , ^ om.s==- 2j w^+—mo^o,
C t == 1 CQ

278



THEORY OF SPHERICAL FUNCTIONS
55

or
/ \ ~ ̂ î ̂ i(9.17) ^-m.s^^ , ^m,s,

where
d do

n6 n — ^oyi==?% yo=r-
We put

X,=F^)(S)= S ^^"±^ (i^v),
»!<... <»K

X^=F,M'(S)=^« S ^-^--^
•i<...«^
Osgx^v

_ly;, v £« _f»-^o-^i3! <^(?l2+?t2),(9.18) <=i
v

_o —Ss.
$0 ?i 1 l m Case 10,

Xo=F,o)(s)= ^^^^ inCase^
v

_ -2Ss.
?o ? 1 l in Case 3°.

Then, by N° 6.2, we obtain the following relation:

^Xo,
(9- ̂  ^l)==\o+\A+ ... +X,X, (i^z<v),

^=W (in Case 10),
where

^-Yr^S"^^), ^^S"^^).

9.4. The notations being as before, let us now consider the group G=G/Z,
Z being the center of G. We exclude here the cases (0), n=2, and (U-), 72=1,
where G is commutative and Theorem 9 below holds trivially. Then, except for the
case (U), we have Z={^iJ^(=A*}. In the notation of Proposition 3.3, one has

(9.20) Ho={A=diag.((y,Ao,(Sol-l^l))|2ord^=ord,V.
a

We shall show that Ho actually normalizes U. In fact, let AeHo, written as above,
and let ord^=r. Then, ordp^^) == 2rje, and we see, from the uniqueness of
the maximal lattice of a given norm in Vo, that ^L^L^^^L^'. It follows
that AL=S^O+2^^~l^+AoLo^)=L^^. Therefore, for every ^eU, we have
uhL==hL, i.e. A'^AeU, as desired. Thus, by Proposition 3.3 and N° 7.4, we see
that G satisfies the assumptions (I), (II). Since

(9-2i) Mo==r^Z,
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we conclude by Proposition 7.4, Theorem 8 (or directly by Theorem i) that

JSf(G,U)=^(G,U)/(.o-^)
==C[y\ . . . , c^'] or C^, . . ., ̂ )]

where c^^c-^ r^ = (r^mod. Mo).
In the case (U), we have Z==={^i^|^eK*}. Though Z is a non-trivial torus,

the first Galois cohomology in Z being trivial, we still have G =G/Z==cl(G/Z). Then
one sees immediately that all conclusions of Proposition 3.3 and ?7.4 remain true
with Ho = ZIP. Thus we obtain again the same result.

THEOREM 9. The notations being as above and excepting the case (0) with n == 2v, oSf(G, U)
is a polynomial algebra C^, .. ., ̂ -1), c^'] in Case i° and C^, . . ., c^] in the other
cases.

Now, except for the case (U), the semi-simple part of G is G1. We note that
X(G) =={xo} wlt^ Xo given in (9.9). Though H does not always satisfy (N), it follows
easily from a theorem of Witt that we have G == HG1 and U = IFU1. Hence, we
can still apply Proposition 3.2 and N° 7.3, concluding that G1 satisfies the assump-
tions (I), (II). Denoting by X the canonical isogeny G^G, we see that, for geG,

one has g{mod. Z^^G^U if and only if ordp^) == o (mod. 2) . Hence [G : T^G^U] = 2
in Case i° and G^^G^U in the other cases.

In the case (U), we have to consider the group of all K-rational characters (instead
of X(G)), which is generated by [L and det. The semi-simple part of G is

G^=={gEG\^g)=det{g) =i};

and, more generally, all (connected) algebraic groups isogeneous to G are given by

(9.22) G^={(^, ^)eG xK'ldet^) -^/r, ̂ gY-WI{^n. ̂ I^K'}.

where r is a positive integer dividing n. Since we have again the relations
G==HG(1), U^H^UnG^) (1), it is easy to extend the considerations in N08 3.2, 7.2 to
see that all these groups satisfy (I), (II) with respect to the maximal compact subgroups

(9.23) ^-{(Sin.^^lSeK^^U.^K^r.ord^^ord^M^i^^lSeK'}

Moreover, denontig by X the canonical isogeny G^—^G, we see that, for geG, one has

.?(mod. Z)eX(G ( r ))U ifandonlyiford^)=Eo(mod.^. Hence [G : ̂ (G^U] = 2 in

Case i°, r : odd, and G=\{G{r))\J for all the other cases. (Note that in Case i° n
is necessarily even.)

(]) In order to have U^H^U n G^) in the case (V) v i h w==2v , f=2 , it is necessary to make a
restriction that n(L) = ord a (mod. 2), v\here a is an element of A: such that K==H\/a). In the contrary
case, G^), U^) do not satisfy condition (I).
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9.5. The case (0) with n = 2v. We have e == ̂  == (2) == i and H = A. In this
case, one takes as W the group generated by all permutations of (m^ . . ., mj and by
^(»i)^(»2) (^<^) with w^ defined by (9.13). Then, taking the same linear order in M
as before, one has

(9.24) A={r=(r,, ro)|r,, r^Z, r^ . . . ̂ _^Max{r,, To—rJ}.

It is not hard to prove I), II) in modifying the proofs given in ?9.2. The only points
to be noted are the following:

i° Let G be the group of all similitudes and U^^GGJ^L^L}. Then the
arguments in N° 9.2 can be applied to G, U, A, N. It follows, in particular, that
G=U.AN, which implies G=U.AN.

2° For r==(r^ro)eA, we have

(9-25)
(U^U) n G == U^U if r, =70,

2

(UVU) n G = U^U u UTT^U (disjoint union) if r, + TQ

2*

This implies G=UAU and (I^).
3° In the proof of (3.16), the induction argument should be applied for v^2,

the cases v==o, i being trivial.
/"--' y^/

Proof of 2°. We have [U : U] ==2 and, as a representative of the coset U—U,
one may take ^eU such that ^^7^m^/o~ l==Tcwvm for all meM. Hence our assertions

are obvious, except for the disjointness of UT^U, UT^^U for r with ^4=-°. To prove
2

/"s»/
this last point, suppose that it were not true. Then one can find ueV—U such

/-«^
that nTu'^:~TeV. We may assume, without any loss of generality, that w(L)=o

and ^>-°. Then, denoting u in the from ( 1 12) with u^u^ u^ ^eM(o), one
2 \^21 ^2 /

sees that M^=o(mod.p) ; consequently, ^, u^ are non-singular. Putting u^==xu^,
i p i i • / /° ^ / \ /° ^ i iu^-==-yu^ one has from the relation u\ 1^== (Ji(^) I I that 1^3 ^ are skew

symmetric and ^( i + ̂ y^ = (JL(^) L. It follows that

det(.)-det(1 ^.det^ 0 ^v / \^ i/ \o ^/i ^ -^r 0
^ I/ \0 Z/J

=det(i—^) det(^) det(^)
^{u}\

i.e. z/eU, which is a contradiction, q.e.d.

^J
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Now A is generated by the following vectors

(9.26)

i

r^ ==( i , .... 1,0, . . . , o ) (i^y—2),
r^=(i, . . . , . . . , 1 ,0 ,1 ) ,
r ^ ' — f i i i 1}• —— \1? • • • ? • • • 9 l ) ^ 1 )f

±r(°)=±(i,...,...,i,i,2).

Therefore, putting c^ = ̂ (i), ^(v)' == c^y , c^" = w , we conclude:
THEOREM 8 add. In the case (0) with ^=2v, v^2, "Sf(G, U) is a polynomial algebra

C^1,^, ...,^-2^,^].
Similarly, for G = G/Z, U == UZ/Z, we obtain
THEOREM 9 add. 7n the case (0) z^A 7z==2v,v^2, oSf(G, U) ^ a polynomial algebra

C[^, ...,?v~2),^,^'].
It should be noted that by means of the mapping

(9.27) JS?(G,U)99~>9|GeJS?(G,U)

-S?(G, U) can be identified with a subalgebra of JS^(G, U) consisting of elements
invariant under the outer automorphism of G defined by UQ. On the other hand,
we have [G:X(G1)U]=2 and ^(G1, U1) can be identified with a subalgebra
C[^ ..., ̂ -2), ?vr, c^^m^'] of JSf(G, U).

^ '̂ /-> /̂

Remark. We can consider oi^(G, U), in general, for the case (0) with n even.
c^ '̂ r<^

But, except for the above case, the correspondence (9.27) is an isomorphism ofoSf(G.U)
onto JS?(G,U).

282



APPENDIX I

CALCULATION OF SOME
(LOCAL) HECKE SERIES AND ^-FUNCTIONS ATTACHED TO CLASSICAL GROUPS

1. Case of GL(n, A). Let A be a central division algebra over k, G = GL(n, ^t) and let the notations be
as introduced in n° 8.2.

For a non-negative integer Wp, put

(^ ^.^^eGL^^nM^lordp^)^^}.

Then we have
^m.= U UT^U,

'e^n.
where

n2
t=l

(2) K'm^^=We\\r^ 2r,=^}

={r=(r^)eM|r^...^r^o, 2 r^mo).
i=l

Therefore, denoting by Ty^ the characteristic function of 3^ , we have
(3) ° .̂= s ;

^m.

The (local) "Hecke series" attached to G is, by definition, a formal power series with coefficients
in ^(G, U)^ defined as follows:

(4) T(Y) = S T^ V10.
Wo =0

Our purpose here is to obtain the "Euler expression" for this r(Y). By virtue of our main results (Th. 3,
N° 8.3), T(Y) may be equivalently replaced by its Fourier transform

(5) ^(s,Y)= 2 ^(s)Y^o,
m® =0

which is a formal power series with coefficients in C^81, ..., q±sn](5n^
Now, by (6.3), (6.2), one has

^(S)= 2^m)^m.s,
meM
I

^.W^W-f^^n^n,

where
1 _/,Wn+l_.,,- -^(^-^m, -Sm,^

^(^)==q i' 2 / , ^-m.s^^ ,
/ dS(n-i)w,

f T^ (71^)^== \ meas- of (Nn^-mM„(C)) =^ i if w,^o, Sw, ==^,

0 otherwise.
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It follows that

(6) ^(s,Y)= S ( S /"T^'-^AY'1'"
Wo=0 1 w^O »

\2wi, = Wo /
oo n ( d^^-^—s. \= s n (,/ 2 ^h

Wi,...,w^==0 i=l
n / ^n-1 , \-n (i-/^-8^)-1.

i=l

This shows that ^(J,Y), hence also r(Y), is actually a rational function in Y. By (8.14), ^(^Y) may also
be written in the form

/ „ ^(n-1) _ _ _ I"1

^(S,Y)== i+ S (—1)^ 2 f S ^ ^ - ^W^
I ic=l \ti<...<i>c / /

/ n ^^-1) . . \-1

= I+ S (-1)^ 2 ^Y^ ,
\ %-1 /

or equivalently,

( „ x(x-l) \ - 1
(7) T(Y)= i+ S (-1)^ 2 ^Y" .

%=l /

This formula was first obtained by Tamagawa [23].
/•'•»»/ .,

Now the quasi-character |N(5)|^ of G is considered as a z.s.f. and, in fact, from (5.12) and (8.12) we
have

\^(§)\y^=^(§)

with

s^(.+^.X+^,...,>-^).

The corresponding ^ (s^, i) is nothing other than the usual<( ^-function " of G:

(8) ^)=^(s^i)= n (i-^-1)^)-1.1=1
2. As another example, we consider in the rest of this Appendix the case where G is the group of

similitudes with respect to an alternating bilinear form, whose matrix we suppose to be of the following form:

( ° ^ . - ( ° - - 1 }
\ L ohv9 '-[,' o)'

In this case, we put

(9) ^={^eGnMJO)|ord^)=mo}.

Then we have
3£ == U UT^U

mo A +

^^o

with

(10) A^={r=(r,, ro)eA|r,^o, rg-r^o, ro=Wo}
={r=(r^, Wo)eM|wo^ri^ ...^^^^0/2}.

The series r(Y), ̂  (s, Y) are defined in the same way as in N° i.
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Now, for m=(m^,Wo)eM, we have

1 ^m^^-i+l)m,
( 1 1 ) 8 W=q l

I - ^^r^)
(12) ^.(^}=l zl ^{rMm^ % lf Wo=w; and o^w^Wo(K^v),

W,^ / JWlo^ ?'! ̂  ... ̂  y<y ̂  0

\ o otherwise,

where Y^.)(^.) is the y for GL(v, k), i.e.

^)(m,) ==^ (UA(u^u,nu^N,))
with Ui == GL(v, o), NI == T^tv, A:).

Proof of (n). First an easy computation shows that neN can be written uniquely in the form

/ ^ /x! ° W^ '̂ 12^(I3) ^(o ^xr^Ko i;)
with

xl = ( o ' " *?J£TM(^A: )? Y12 :== ̂ '^: symmetric•
/AI o \

Hence for h == | ^ ,—1 | with AI = diag. (^), we have
\ ^ 1 /

, _i /^iXi^-1 o \ /i, So~^lYl2^\^ ==^ o ^-^xr^^Mo z, ;•
Thus the transformation n—>hnh'~~ induces the following transformations:

Xi->^X^f1 or ^.->^.^-1,

^2 -> So"1^^^ o1' ^ -^ So'1^^^;.

Since ^=11 dx^ II ^p we have
i<j i^j

v^+l)
sw= n 1^1 is,!-1.!^ 2 n i^ns, i

i < j i ̂  j

v(v+l) ^

=|£ol 2 n IS,]2^-^1), q.e.d.
i=l

Proof of (12). One has
1

^(^-^(^J^m^)^

T^ being the characteristic function of X , defined by (9). Hence we have ^„l»(TCm)+o, only if m^m' and
o^m^rriQ (i ̂ i^v). Hence, assuming this, let us consider the condition for T^n (neN) to be integral. Writing neN
in the form (13), we see that -n^n is integral, if and only if

TC^XI , TC^^TC^ Xi) ~ 1, TC^ X^Y^

are integral. If we call (r^) the elementary divisors of T T ^ X ^ , the integrity condition for the first two is equivalent
to saying that (r^) satisfies the condition

(14) rn^r^ .. .^s-r^ o.
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Moreover, writing ^^^u^u^^^u^Y^1 with ^, ^GU^, we see that n^X^ is integral,

Sir,
if and only if TC^Y^ is integral, and that, for a fixed X^, the measure of such Y '̂s is equal to q 1 \ Thus we
conclude that the measure of the n's for which the elementary divisors ofT^X^ are (r,) is equal to

v v
Sir, Sir,

J^^)(^)Xi)^.^ =s-l(^))^^.^ ,

where 8, y are the ones for GL(v, k), i.e.
-S(v+l-2t)^

§(^1))=^ l

From these follows (12), q.e.d.
From (12) we obtain the following formula:

oo / -Sw^s^
05) ^(S,Y)= S ( S (3^ l IY^,

Wo = 0 \0 ̂ m, ̂ Wo /

where we put
S -̂w,.) v(v+l)

(I6) Pm^SY^m,)^ , Yo==y 4 'Y,

the summation on (r,) being taken over all (r,) satisfying the condition (14). (Note that we have Pm==°»
unless o^m^niQ.)

3. We can calculate (3^ explicitly for v==i ,2 . For v=i, it is clear that

o ^p ifo^w^Wo,
ml'wo lo otherwise,

so that we have

^(s,Y):
(i-Yo)(i-<7-^Yo)*

(Since G^GL(2,^), this is, of course, a special case of (6).)
For v=2, we know that Y(r.)(w) is S^011 explicitly as follows:

S^ /l-wl if r i=Max{wi, m2},r i+r ==mi 4-7712,
(I7) ^K^)" q^-^—q-1) if ri>Max{772i, 7723},ri+r2==77!i 4-^2,

o otherwise,

whence we obtain immediately

(I8) l̂ .m.,̂
I 4-Min{77!i,77!2, TTlQ——TTZi, TTlQ——m^} (l——q 1) if 0^772^ TTZQ,

0 otherwise.

(19) ^(S,Y)== S / S iBmy-7"181-^81^-
Wo =0 \0^m.^mo /

I-<7-(1+^+^)Y2

(I—Yo)(I-^-slYo)(I—^-slYo)(I—^-sl-s'Yo)

In terms of the notations introduced in N° 9.3 (Case i°), we may write

i-^XoY2
^(S,Y)==-

3 9

-^XgY + ̂ Xo(2 4- X^-^XoX^Y3 4- ̂ X^Y4

^5
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On the other hand, the transformation formula (9.19) can also be calculated explicitly as follows:

^°)=Xo,
(20) ^l)=(^_i).^2x^

W^q^.

Thus we get the following formula which was obtained also by Shimura:
I—^(0)Y2

(21) T(Y)=
I —^Y + ̂ (°)((i + q2) + cW^—q^WY3 + qWW

In general, it might be conjectured that ^(s, Y) is a rational function in Yp of the following form:

^{ v\ _ polynomial of degree 2^—2 in Yp ^T^S, I;—————,=,———-——————_—————^——-— {.)
11 (i —q~~ s^ "" - VYo)

t\<...<^
O^K^V

4. Calculation of ̂ -function. From (5.12) and (n), we have

l^lp^co (g)
^0

with

Therefore

,,,_,,. ..,̂ -̂ ).^l^—19 • • • 9
v(v+i) '

W=^(S,.,.)=J^^|^)|^

is the usual ^-function.
More generally, we shall put

(22) S^=(^+V,..,X+I,X,-V(^-I))

and calculate
-S(X+v+l-t)w,

^(^X.^)-2?^ i Y^,
v(v4-l) ^

where YQ==^ 2 'Y.
For that purpose, we introduce some notations. We denote by p == (po» Pi? • • • » P^) an ordered set of integers

such that
Po-t^P^ ...<Px=^

An element r=(r,) satisfying (14) is called of type p if

ri== ... ==rp^>rp^ i== . . . ==r^> ...==r^

and, when that is so, we write rep. Then we obtain the following formula

(23) S(3^-^+'-+l-.)».,=SQp S ,-̂ +.)r,,
(m )̂ p Wo ̂  ri ̂ ... ̂  r^ ̂  0

(r»)ep
where

Qp-
(i-^r1)...^-^)

n{(i~y-1)... (i-<7-(p<-p»-i))}»
In fact, we have

-S(X+v+l-i)w, -S(X+v+l-i)^
Sp^ l == S T(^^^ i

(w*,) (m,),(r,) V I A l/

-S(X+v+l-i)r^
=S#(Ui\U^U^ i

(r^)

/̂"
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where the summations on (r^) are taken over all (r^) satisfying (14). Here we have easily

# (U^Ui^Ui) == [Ui : Ulr^T^UTT-^)]
S(v+l-2t)^

=?• Qp,
if (r^) is of type p. From these follows (23).

From (23) we get
/ -S(x+t)^ .

(^ ^x^-SQp S ^ - Y^l
P \Wo^ri$5...^r,.$?0 »v (^)ep /

/ p,(p,+l) \
^-l y~^~~~^~^ \ i_vo | n —q—————-°— I ___-————.

-^•i-Yo-L11, ^^_^±1) • -.x-^t1) •
V i-^ t 2 Yj i-, 2 Yo

Thus we see that ^(s^ ^ , Y) is actually a rational function of the following form:

^ _ polynomial of degree v — i in Yp
T(s^0 ) =——————^7————,,. z (z+l )——. '

(i-Yo)n [,-q 2 yj
i=l

In particular, we have
polynomial of degree v—i in q~

(25) <;(AO)=———~/————v(v+l) .(.+1) , \ •
nd-,-^-^-'-)

1=0

APPENDIX II

DETERMINATION OF ZONAL SPHERICAL FUNCTIONS OF POSITIVE TYPE ON PL(2, M)

1. ^.s.f. of positive type. Let G be a unimodular locally compact group and U a compact subgroup.
A z.s.f. co on G relative to U is called ( t of positive type ", if it satisfies the condition

(1) „ \ ^(gg^^^gMg'Wg"^ o
J GrJ Or

for all cpeJS?(G, U). The totality of such <o's is denoted by ^+ ^^'^(G, U). It is well-known that we have,
for coen4',

(2) (^"^co^),

(3) l^)|^i.

A character of G (i.e. a continuous homomorphism of G into the multiplicative group of complex numbers of
absolute value i) which is trivial on U is contained in Cl ; in particular, the constant 1 belongs to Q. . For
yG^G,!!), we have clearly(4) ^w- r<p(^-

J G

LEMMA i. Let o>£^ .
a) If (p6^(G,U) is <{ self-adjoint " (i.e. y^"1) =cp(^)), then fi(y) is real.
b) If (pGo^G, U) is (< non-negative " (i.e. (p(^)^ o), then we have

(5) | (5(9)1^? (9).
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Proof, a) From the assumption and (2), we have

^((p)=Jyte)(o^-l)^==J(p^-l)cote)^=(o((p).

b) From the assumption and (3), we have

1^(9) I^J<Pte) \^(g~~1) l^j9te)^=T(y), q.e.d.

In case ^(G, U) is commutative, it is known [11] that, for every irreducible unitary representation T of G
in a Hilbert space ̂ , the dimension of the subspace ̂  ofjT formed of all the elements invariant under T (ue\J)
is at most i. When we have actually dim ̂  - i (where ̂  need not be supposed irreducible), call .0 an element
m "^r with | \VQ\ \ = i; then the function denned by

(6) ^§)=<V^TgVQ>

is a z.s.f. of positive type. Conversely, every coG^4- is obtained in this way. Thus ̂ + is in one-to-one corres-
pondence with the set of all unitary equivalence classes of the irreducible unitary representations of G such
that °jf+ {0} (i.e. (< of the first kind ").

2. Case of PL(2, ^). In the following, we propose to determine all z.s.f. of positive type on G = PL(2 5t)
relative to U_(m_the notations of NO 8.4), ^ being a central division algebra over k. By the results in § 8, we know
that n=Q(G,U) is parametrized by s = (s, —s) with seC; hence we write co, instead of co,. We have
(QS == cog' if and only if

(7) ^^(mod^z).
\ logq /

Now let 3^, T^ be as defined in Appendix I, NO i and denote by T^ the characteristic function of
^m = (^m^-o) 1'^" Then we have

W .^r^-^^8-^^^^m)=g2 ^-
q —q

d denoting the degree of ^k. In fact, as is easily seen (or by (7.5), (7.26)), we have co,^) = O>,(T.J == ^(s, — ?)
By Appendix I, N° i, we have

^-^= S ^(TC^)^-^)8

m = (mi.Wg)
dm

„ n-+(W2-Wi)s

2j q
m^O

Wi +^2 ==m

T </M+1)S—(7-(W+1)<?

• ^ — ^ - ^ '
In particular, we get

d

(9) ^.(Tl)=^2(^+9-s)

and, as 1 =(0d?
2

(10) l(Ti)=^+I.

Now, let cogen4'. Then, since T^ is clearly self-adjoint and non-negative, it follows from Lemma i that (O^T )
is real and that we have

l^(Ti)[<^+I.

From (9), this implies that, for seC with (OgeH4', we have only the following three possibilities:
i° Re s==o,

2° ——<Re s<-, Re j+o , Im s=o (mod. TC Z\
q2 2

- - | mod. ,
2 \ log q

•?=o ( mod. ,——Z |,
\ log ^ / ?

y s ^ ^ l m o d . ^ z } .2 \ log q ]
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We know already, by Corollary i to Proposition 5.1, that the case i° comes from the unitary representations
ofG of the tf principal series ". (Note that in general the representation T0' constructed in N° 5.3 is reducible and

1
containing the irreducible representation corresponding to 6)3 ((^a-'—^s) just once. For the case where T01 itself
is irreducible, see Bruhat [3].) On the other hand, it is clear that the case 3° is realized by the usual characters
of G, i.e.

C0o==l for j=+- (mod.-——Z| ,
(u) 2 v log? /

^-)=(-,)0^) „ -±^(»od. ̂ Z),

/^^/

g denoting the class of ^GGL(2, ft) modulo Z and N denoting the reduced norm of M^ft)/^.
In the rest of this Appendix, we shall show that the case 2° with ^GR comes also from certain unitary

representations of G (called <( supplementary series "). In view of Lemma 7.2, applied to the second character
in (n), this implies actually that the whole case 2° takes place. Thus we shall have the following theorem:

THEOREM. Let S{. be a central division algebra of degree d over k. Then the totality of zonal spherical functions of
positive type on G=PL(2, ft) relative to U is given by the co -co/ _gx with s in the ranges J°, 2°, 3° listed above.

This result, as well as its proof, is quite analogous to that in the real or complex case (see, for instance [10]).
3. Another formulation of the representations of principal series. In order to construct representations of

supplementary series, it will be convenient to modify the representation (^a, T01) given in N° 5.3 in the
following way.

Let G=GL(2, ft) and we use the same notations as in N° 8.2. Put further

(-) ^("^C ^l-
Then, as is well-known (and easily verified), we have the following <( cellular decomposition ":

G=N'HNUiHN, l= (° I ^ ,\ i o/

in other words, every g(=G can be written uniquely either in the form g=nhn or in the form g==ihn
with n'eN', AeH, neN. Hence, N' can be identified with a subset of U = U/(UHHN) ̂ G/HN, and in fact one
has then U = N ' U { class of l). If \J3u'<—>n (^Gft), and if dx denotes an (additive) Haar measure of ft, the
following transformation formula of the measures is easily verified:

(i3) du^c^^dx,

where c is a constant and 4'8 is as defined by (5.10) (i.e. if n^==uhn, we have ^S^) ==^W)« 1̂  tne Haar

measures are normalized in such a way that _^== dx=i, we have c = ( i -{-q~ )~~ -
JV J O

Before proceeding further, we prepare some routine properties of (non-commutative) linear fractional
transformations.

LEMMA 2. Let ^==(^11 812) eGL(2, ft), ̂  eft and suppose that —^l2+^22+o• Then we have
\g21 8221

^ (§11 ^2\"'1 / I 0\ / I 0 \ / * 0 \ / I —gl2J(g~~\^\(4 ) Li 822) ^ iM^r1.. iMo 3(g-\.))[o i ;
where we put
, . ^"~1.A?= (—-^rl2+^22)~l(^^ll—?2l)>

3(g~1, x) == (—^12+^22)~1-

It follows immediately that we have

(^l)''1^^!'1.^"1^),

3((ggi)~1,") =j(,?r1, g^^ws^,")
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for all ^,.^i£GL(2, .ft), A" 6^, whenever the right hand side has meaning. Moreover, we have

(17) iNte-1.^—^""1.^) lp= |N(^—^i) lp|N(j(g-1, <i)jte-1, ̂ ))^te) Ip,
(18) ^g-^.x) = ]N(J(g-1, x)) \^ \^(g) fydx,

t^ul

N, N denoting the reduced norms of S^lk, M^ft)/^, respectively. By virtue of (16), the proofs of (17), (18) are

reduced to the cases of ^ == ( | , ( L ( 1 r } -
\ I I / \ I O / \ 0 ^ 2 /

1
Now let a be a quasi-character ofH such that ^a-*— .̂?!, Jg) and let ̂ a, T" be as defined in N° 5.3. By

what we mentioned above, /EJf" is uniquely determined by its restriction on N'; hence we put f(x) ==f(n^)(xES{)
and consider fE^^ as a function on S{. Then, it is clear that, if u<—>n^, we have

/M-^WW-

Thus, in view of (13) and (5.6), ̂ a may be regarded as the Hilbert space formed of all (classes of) measurable
functions / on ^ such that

ii/ii'̂ J^W^"^1"'J M ' '

the inner product being defined by

(19) </i,/2> -^J^AM^W+sj^^)^.

By Lemma 2, the operation of T^eG) is given by

(20) T^/M^te-^^jNUte-1,^))!^8^8^^^)!;8^!-
Note that, in view of the relation

/i o\ ( x - 1 — i \ ( x o \ /i x^\
[x iM i o ) [ o X - 1 ) [o i )'

we have
i if xec

W='("(^ ^^INWI^-^ if^O.
(2I) w-l^ ^^iNwir"-'

4. Changing the inner product. The notations being as before, let hereafter ^== j , ^=— s (which implies
that a is real) and put

(22) P = — 2 R e j — d .

Let ^f" be the subspace of Jf0' formed of all continuous functions on S\. with compact carrier. We now
consider an integral operator defined as follows:

(23) A/M^,W j^| ̂ (x-x,) \^Ax,)dx,.

PROPOSITION. The notations being as above, if p>—d, A is a hermitian operator on ̂ 'a, whose domain of definition
contains JF" If moreover p<o, A is a positive semi-definite.

Proof. Let / be an integer and let { x ^ } be a system of representatives of ^/^; denote by c^^. the charac-
teristic function of x^ + ̂ l. Then, if p > —d, an easy computation gives

(24) A^=^ ^(p+d)-I".! .y^.+g"1" 2 Wx,-x,) |P^,
( I — ^ p a j ^ - i

It follows, in particular, that, for -veft with ord<p x sufficiently small, we have (Ac^ j,) (x} = q~ ^y,(x). This
shows that Ac^^.e^", and more generally that AfE^ for all/e^^. From the definition, A is clearly hermitian.
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Now to prove that A (p<o) is positive semi-definite, it is enough to show that, for every %^o,/, the matrix
(<Ac^^., c^.>) of degree q , with x^, x» ranging over a system of representatives of ^ f^ is positive
definite. From (24), we have

-ife+ai) '-?"" ;f, .
<A^i,^,^.>= i-,-"-"

^-^IN^—^IP if.+7.

Hence, writing the matrix in question, with the indices ordered suitably, in the form cq~ w^" -"'A^, one has

i—q"61 /A^""^ q^ \
——q-—— (>^), A(x)==( • • .
I-^-P-^ v Th \ ̂  A^)

.,,._,,,, ..<:».;•„)
^L

whence, putting E^ = ( . . . . . . ( and making use of the assumption p<o, one can prove by an easy induction
on x that XI • • • I/

A^>^E^o (x^i).

This completes the proof.
It follows that, defining a new inner product in ^a by

(25) </1,/2> ' =^<A/i,/2> =C</i, A/2>

= JJ | N(^-^) ̂ y^/a^a) ̂ 1^2 (-^<p <o)
^ M

and completing J^" with respect to this inner product, one obtains a Hilbert space, which we denote by ^/a.
From (17), (18) one sees at once that the operator T^gGG) defined by (20) is a unitary operator ofj^'01. Finally,
from (21) and (24), it can readily be seen that ^'a60'^01 anc^ tnat

^ p-2d

A^=X^, ^=-
-,-^

whence one gets
<^, T^>'/<^, <^a>'==<k, T^> =^(g).

Thus one concludes that the z.s.f. of positive type associated with (^/a, T01) (or, more precisely, with the irre-
ducible component of it containing ̂ ) is precisely (o^

In particular, if s is real, we have —d|2<^s<o, and the representation T*" gives actually a representation
of G==G/Z. This completes the proof of our Theorem.
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