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MANIFOLDS WHICH ARE LIKE PROJECTIVE PLANES
by JAMES EELLS, Jr. (1) and NICOLAAS H. KUIPER (2)

INTRODUCTION

This paper presents a development of the results we announced in [6]. We deal
with the following question, which we state here in rather broad terms: Given a closed
n'dimensional manifold X such that there exists a nondegenerate real valued function f: X->R
with precisely three critical points. In what way does the existence of f restrict X ? The problem
will be considered from the topological, combinatorial, and differentiable point of view.

The corresponding question for a function with two critical points (which is the
minimum number except in trivial cases) has been studied by Reeb [25], and Kuiper [17].
In that case X is homeomorphic to an ^-sphere, and Milnor [19] used this fact in his
discovery of inequivalent differentiable structures on the 7-sphere.

Qualitatively speaking, our results are of the following sort:
1) Dimension and cohomology. — The only values of n possible are 72=2772=0, 2, 4,

8, 16. In these cases X has the integral cohomology structure of three points (72=0),
the real (^=2), complex (^=4), quaternion (n=8), or the Cayley (72=16) projec-
tive plane.

2) Homotopy type. — If 72=0 the space X consists of three points. If 72=2, the
space is the real projective plane. In the other dimensions X is connected and simply
connected, and has a natural orientation. There is one homotopy type for ^=4, six
homotopy types for 72=8, and sixty homotopy types for 72= 16. These are all repre-
sented by certain combinatorial manifolds X^ described in Section 2.

3) Topologically, X is a compactification of numerical 2772-space R2"* by an 772-
sphere. Combinatorially and differentiably, X is obtained by attaching three cells
to each other along the boundaries. In particular in the differentiable case with 72=8
or 16, X is homeomorphic to the Thorn complex of a sphere bundle over a sphere, that
is the one point compactification of the associated disc bundle.

4) Differentiably, there are infinitely many distinct cases for 72=8 (and quite
possibly for 72=16). Their associated combinatorial structures (hence these manifolds
themselves) are classified by their Pontrjagin classes. For 72 = 2 there is only the real
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6 J A M E S E E L L S AND N I C O L A A S H. K U I P E R

projective plane. For 72=4 we do not have complete results, partly due to the possible
existence of knots.

5) All differentiable manifolds of the same dimension belong to the same unoriented
cobordism class. In case 72=4 the manifolds admit almost complex structures, all
belonging to the same complex cobordism class. In cases n==8 and 16 the manifolds
determine infinitely many oriented cobordism classes, classified by their Pontrjagin
numbers.

6) Combinatorially, there are infinitely many distinct examples for n=8 and 16,
distinguished by their Pontrjagin classes. Certain of the combinatorial manifolds admit
no differentiable structure.

It seems plausible that the given combinatorial examples form the complete set
of all combinatorial solutions of our problem for ^+4. We hope to come back to
this problem in a later paper.

Our primary tools are: i) Morse's theory of nondegenerate functions and defor-
mations, also in a topological version, and in particular modified to get isotopic defor-
mations. These are applied in order to obtain a convenient decomposition of the
manifold X; 2) the precise knowledge of the structure of the appropriate orthogonal
bundles over spheres; in particular their characteristic classes and Hopf invariants;
3) knowledge of certain homotopy groups of spheres; 4) (partial) knowledge of certain
differentiable structures on S7 and S15.

182



ON THE TOPOLOGICAL STRUCTURE OF X

In this chapter we present those aspects of our problem which we can handle
simultaneously in the topological, combinatorial, and differentiable cases. We will
suppose that X is a closed (i.e. compact and without boundary) yz-dimensional manifold;
we will refer to X as a topological n-manifold or C°-n-manifold. If moreover a combi-
natorial or a differentiable structure of class C°° is assumed, we refer to X as a combi-
natorial (C0^) or a differentiable (== C°° = smooth) yz-manifold.

i. Nondegenerate functions.

A) The differentiable case (C°°).
If /: X-^R is a G00-function on the C^-TZ-manifold X, then the differential df

and the second differential d^of/sit a point aeX are the operators which assign to
any differentiable map g : R->X with g{o) == a the values

^..^(dMlm '=0

^..^Qfwm,^.
dt2 |

If 9 : (U, a) -> (R^ o) for aeUcX is an a-centered G00-coordinate system (9, U),
and <pi, ..., cp^ : U->R its C^-coordinates, then

and

df^^d^
C^i

^/= S^,,^^?, + ̂ i^rf2^.'7 ^9^9, / 8^i

The tangent space T^ is the dual of the vector space T^ of all differentials at a. The
corresponding vector bundles over X are T(X) and T^X).

The point a is said to be ordinary if df(a) 4= o, and critical if df{a) = o. In that
latter case d^f^d) is a quadratic form. The critical point is called nondegenerate if the rank
of this form is n. The index of the critical point a is the index of the quadratic form d^f^d),
It is the minimum of the rank of those quadratic forms which added to d^f^d) give a
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8 J A M E S E E L L S AND N I C O L A A S H. K U I P E R

nonnegative quadratic form, and it is equal to the number of negative eigen-values of
n2/*

the matrix of numbers -^-j- . We say that/is differentially nondegenerate if every critical

point is nondegenerate.
There exist many nondegenerate functions on any C^-yz-manifold X. For example,

if g : X->R^ is a G^-imbedding, then the composition of g with almost any linear
function h: R^R onR^ is a nondegenerate function hog : X-^R (Theorem of Sard).

Having in mind the graph

{{xJ{x))\xeX}cXxR

as a subset of the product space ofX and a "vertical" real line R, we think of/as a height
function on X. We will accordingly refer to "higher" and "lower" points of X. This
of course is only a matter of convenience of expression. Now let a C^-Riemannian
metric be given in X. Let * be for any aeX that isomorphism * : T ->T* which
carries any ordered basis of orthogonal unit-vectors in T^ onto its ordered cobasis, or
its inverse. Then the vector field *(—df) (a crosssection in T(X)) defines an infinitesimal
generator of a one parameter group of diffeomorphisms of X, whose fixed points are
precisely the critical points. The images of any ordinary point form a trajectory, on
which lower points correspond to higher values of the group parameter.

Morse used these tools in order to prove.

Proposition {Morse [23]). — IfaeX is a V-ordinary point for the C^-function /: X->R,
then there is an a-centered coordinate system (<p, U) on X and a number \>o, such that the n-th
coordinate satisfies

?nM =\(fW-fWforxeV. (i)

If a is differentiably critical of index k, then there exists an a-centered 0°-coordinate system (9, U)
on X and a number \>o such that

-Sti9?W +S^^) =V/W-/(a))/^eU. (2)

We define polar coordinates (r^ <0i$ r^, cog) of type k associated to given coordi-
nates <pi. . .9^, by

i
r,{x) = [<p )̂ + ... +^{x)]\ ^(x) ==——(<p^), ..., <p,(^))

r^x)
i

hW =[?^iW + ... +<P^)]2, ^[x) =——(cp^(^ ..., y^)).
r^\x)

If k=o or n, we agree to use only one pair (r, co). In terms of polar coordinates of
type k, (2) is

-rl{x) +ri(x) ==X,(/M-/(a)). (3)

If the Riemannian metric is in these cases locally the Euclidean metric given by
^=2^9?

184



MANIFOLDS WHICH ARE LIKE PROJECTIVE PLANES 9

then the trajectories are the straight lines (91 (^), ..., 9n-iW) = constant in case (i), and
the hyperbolas

[co^), co^), 7-1 {x) .r^x)] == constant
in case (2).

We let (J^(X,/) == ̂ (/) denote the number of critical points of index k of/on X,
the so-called k-th Morse number. The polynomial S^o^(/)^ is the Morse polynomial.

B) The topological case (C°).
Definition. — Let X be a topological Tz-manifold, and /: X->R a continuous

function. Say that <zeX is a C°-ordinary point or a C°-critical point of index k if there is an
ff-centered C°-coordinate system (9, U) on X and a constant \>o, such that (i)
or (2)5 (3) holds, respectively. Say that/is C°-nondegenerate if every point aeX is either
C°-ordinary of G°-critical of index k for some k.

As the critical points are clearly isolated, then / has only finitely many critical
points on the closed manifold X.

From the definition we see immediately that a C^-nondegenerate function f on a
C^-n-manifold X is also C°-nondegenerate. But not every C°°-function which is C°-non-
degenerate, is also C^-nondegenerate, as we see from the function f(x) ==^^^(x).

In view of the combinatorial theory considered below, we mention another
equivalent expression of a function near a C°-critical point of index k. Let (91, .. ., 9,,;
^i? c0!; ̂  ^2) be a-centered coordinates as defined above for such a point a, covering
the set

^K={x\r^x) < i and r^(x) < i}.

In B we introduce new (^-coordinates (9^, . . ., 9^) and associated bipolar coordinates
of type k (ri, u[; rg, (Og) such that for xe^

<^W== ̂ iW. ^W = ̂ W
max{|9lW|,...,l9,W|}==^)

max{|9^^)|, ... ,19^)1}=^)-

Then (2) (3) are equivalent to

-max{|9iW, ..., |9.WI}+max{|9^iW|, ..., |9nW D-^/W-/^)) (4)

Let /^{^eX,/^)^}
f8.={x\xeXJ{x)<s}.

Then, as Morse showed, the relative homology groups (any coefficients)
H^/^ua,/^) z=o, . . . , n

vanish in case a is ordinary, and they all vanish except for i = k in case a is a nondege-
nerate C°-critical point of index k. Hence any point aeX has at most one of the
properties: to be G°-ordinary or to be nondegenerate C°-critical of index A; for k = o, ..., ̂
and that property is a topological property of the triple (X,/, a).

186
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io J A M E S E E L L S AND N I C O L A A S H. K U I P E R

Problem (M. Morse [24]). — Does there exist a topologically nondegenerate function oh
every closed n-manifold X ?

If there exists a C^-structure on X, then (as we saw above) such a function exists.
If X has dimension 7Z<3, then a C°°-structure is known to exist and so again such a
function exists. In general the answer is unknown, although the existence is assured
in case X admits a combinatorial structure, as we will see below.

C) The combinatorial case (C0^).

Definitions. — Let X be a topological ^-manifold. A triangulation (K, A, X) of X is
a finite simplicial complex K, together with a homeomorphism h of the geometric reali-
sation [ K | of K onto X. For convenience we will occasionally consider X and | K | as
identical. A combinatorial triangulation or Brouwer triangulation of X is a triangulation
such that the closed star of every vertex is isomorphic to a vertex star of a triangulation ofR".
Recall that two simplicial polyhedra are said to be combinatorially equivalent if they
have isomorphic rectilinear subdivisions.

A combinatorial structure on X is a maximal set of combinatorially equivalent
combinatorial triangulations of X. We will say that X is a combinatorial manifold, if X
is a topological manifold with a specific combinatorial structure.

Remark. — It is unknown whether every topological manifold admits a triangulation,
whether a triangulated manifold admits a combinatorial structure, or whether some
topological manifold may admit two or more different combinatorial structures. The
Hauptvermutung for manifolds says that there is at most one.

Definition. — Let X be a combinatorial w-manifold and f: X-^-R a continuous
function; f is called a combinatorial (C0^) function on X, if there exists a combinatorial
triangulation h: |K|-^X belonging to the C^-structure of X, such that the compo-
sition/oA is a linear function on every affine simplex of [K[. Say that / is CP^-non-
degenerate if a triangulation h exists such that for every aeX there is an ^-centered coor-
dinate system (y, U) whose coordinates 9^, ..., (?„ are simplexwise linear, and a real
number X^>o, such that either

y»W=WW-/(a)) (i)
for xeV; such an aeX is said to be C^^-ordinary;
or

-max{|<p,W|, • • • , |9.WI}+max[|<p^^)|, ..., |<p^)|] ==\{f{x)-f{a)) (5)

for xeVy such an <zeX is a C^^-critical point of index k. Other points are called
C^-degenerate.

From the definitions in (2), (3), (4) we see immediately that a C^^-nondegenerate
function on a C01"^-n-manifold is also CP-nondegenerate on the underlying C°-manifold.

With respect to the problem of Morse we have the

Proposition. — On every closed G01^-manifold there exists a G01311^non-degenerate function^
hence a C°-nondegenerate function.
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MANIFOLDS WHICH ARE LIKE PROJECTIVE PLANES n

Indeed, such a function f can be obtained with the help of a Brouwer triangu-
lation h: |K[->X and a barycentric subdivision h' : |K/[->X, by assigning the
y-value k to the barycentre of each ^-simplex of K, and by extending f linearly over
each simplex ofK\ We have to prove that/so obtained is a nondegenerate C^-function.
As A is a Brouwer triangulation the star St(cr) of any A-simplex of K can be imbedded
in R^xR^^ simplexwise affinely, and such that a and its barycentre are mapped
into R^ x o and o x o, whereas all barycentres ofsimplices of | K | different from cr that have a
as a face, are mapped into o xR^^ and onto the vertices of a polyhedron which is convex
with respect to oxo. /has value k on the barycentre of CT, value <k in any other point
of (T, values >k in each of the last mentioned barycentres. Then, for a suitable
subdivision A" : K"->X of K', we can obtain a simplexwise affine imbedding of St((r)
in R^ x R""^ such that in some neighborhood of the barycentre ofcr./has the expression (5).
For a suitable affine subdivision of h' : K'->-X the same applies to each of the finite
number of barycentres of simplices of h, whereas of course f is G^-ordinary in any
other point of X. Then / is a O^-nondegenerate function on X.
D) A combinatorial triangulation A : [ K | - > X on a C^-n-manifold is called a

differentiable triangulation if the restriction of h to any closed simplex of K is a
diffeomorphism.
A fundamental theorem of Gairns-Whitehead (for the latest proof compare [41])

asserts that with each differentiable structure on a topological manifold there exist differentiable
combinatorial triangulations, and any two of them are combinatorially equivalent. Thus each
differentiable structure on X determines a specific combinatorial structure, said to be
associated with the differentiable structure. We say that a differentiable structure and
a combinatorial triangulation are compatible if that triangulation is differentiable.

Proposition. — Let X be a differentiable manifold^ and f: X->R a differentiably non-
degenerate function.

Then f is combinatorially nondegenerate with respect to the associated combinatorial structure.
Outline of proof. — There can be found a differentiable triangulation h: |K|->X

of the C00-manifold X, with the following properties:
a) If aeX is a vertex of | K | == X then the level hypersurface [x \ A-eX, f{x) =f(a) }

is contained in the (n—i)-skeleton |K^_i| of [K[ =X.
b) Every critical point fleX is a vertex of |K|.
c ) For every critical point a of index k there exists a representation of f in

C^-coordinates as in (2)5 (3)5 and a ball
^=={x\xeX,r^x)^i,r^x)^i}

with boundary aB^c|K^_i[.
d ) If a is a simplex of [ K | not in the interior of any ball B ,̂ about a critical point a

off, then f is linear on this affine simplex.
e ) There exists a homeomorphism of [ K | = X which carries every simplex

of [K| onto itself. It determines a second combinatorially equivalent triangulation
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12 J A M E S E E L L S AND N I C O L A A S H. K U I P E R

ofX. This one also has the properties a), b ) , c ) , d ) , moreover, for any critical point a
and coordinates (91, . .., <pn, cpL • • • ? 9n) as i11 (2)3 (s)? (5), the functions (pi, ..., 9; are linear
with respect to the affine simplices of the new triangulation. Then/is G^-nondegenerate
with respect to this second triangulation which belongs to the C^-structure of the
C^-manifold X, although it is not a G^-triangulation.

Problem. — Which G00-functions on a G^-manifold are C^-functions ?

2. Examples of manifolds and functions.

A) Let F be one of the following division algebras and m its dimension over R:
the real number field R, with m == i; the complex number field C, with m == 2; the
skew field of quaternions, with 772=4; or the algebra of Gayley numbers (also called
octaves), with w=8. In the cases m== i, 2, 4 the projective plane P2(F) can be defined
as the totality of lines through the origin in F3. The homogeneous coordinates
(^o? ^i? ̂  + (°? °? °) wm be normalised by ^ + ̂  + ̂  = i.

A matrix M is called Hermitian if M==tM, where t denotes transposition and the
bar conjugation in F. The above projective plane can be analytically imbedded in
the space R^F3 or R3><R^=R3+3^ of all Hermitian gxs-matrices over F with
coordinates ^o, ^, ^2? ^o? a^ ^ and S^R, ̂ F, by assigning to the point (^, ̂ , ^) the
Hermitian matrix

/So ^2 ^\ (WQ Wl W2\

M== i, a^ Si ^ ] = (^o ^i ^2 .
\^ ^o ^/ \^o ^o Wz]

The image is the submanifold that consists of all Hermitian matrices M which are
projections {M2=M) and have rank i. If we define Pa(F) as this analytic submanifold,
then this definition also makes sense in the case of octaves, as Freudenthal [8] showed. The
i6-manifold so obtained has the structure of a non-Desarguesian projective plane in
which the projective lines are analytic 8-spheres. It is called the Cayley projective plane.

The analytic function on P2(F) which is defined in terms of the coordinates
(So, Si, ̂ a^a^a^ by

/=So+2Si+3^P2(F)->R

is differentiably nondegenerate and has precisely three critical points with indices o, m, 2m.
For m== i, 2, 4 this is easily calculated, whereas for m==8 it can be deduced from

FreudenthaPs paper.
Remark. — More generally, for m = i , 2 , 4 we have a nondegenerate function

f': P^(F)->-R with n-\-1 critical points of indices o, m, ..., nm defined by
/W-s^'+i)^.

In order to prepare the way for our next construction, we note the following
decomposition ofP^F): If we renove a suitable open differentiable 2m-disc from Pa(F),
and we intersect the complement by the projective lines through the centre of the 2w-disc,
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MANIFOLDS WHICH ARE LIKE PROJECTIVE PLANES 13

then we find a fibration of this complement such that it is expressible as an orthogonal
m-disc bundle over a projective line Pi(F) (which is the ^-sphere). The boundary of
this bundle is a {2m—i)-sphere, which is a S^^-bundle over S^ It is the so-called
Hopf fibration of S2^"1 corresponding to F [42, § 2o], Since the Thorn complex of
an S^" ̂ bundle is by definition the one point compactification of the corresponding
w-disc bundle, Pa(F) is homeomorphic to the Thorn complex of that Hopf fibration.

B) Let S^'0 be a topological m-sphere with some C^-structure <? and let S^0 have
the usual C°°-structure.

Consider the differentiable fibre bundles p : E-^S^10 with fibre S^1"1 and structural
group the orthogonal group 0^; these will be called (0^, Sm~l)-bundles. We are parti-
cularly interested in those bundles for which E is homeomorphic to S2m~l. Then the
Euler-class W^ of the bundle is a generator of 11 (̂8 )̂, and Milnor [22] has shown
(as an application of a theorem of Bott) that consequently m= i, 2, 4 or 8.

In cases m== i, 2, cr can only take the value o, and there is just one isomorphism
class of such bundles, given by the Hopffibrations. In cases 772=4, 8 there are infinitely
many isomorphism classes of bundles, studied in case o-=o by Milnor [19] and
Shimada [29].

All of the total spaces Yj^0 of the associated (0^, D^)-bundles, where D'71 denotes
the closed unit disc in B ,̂ can be represented as follows: Using right multiplication
in F and letting D^1 denote the unit TTi-disc in the Euclidean R^ underlying F, we define
for any integers A, j and diffeomorphism

T] : BD^-^BD^^

the diffeomorphism T] X/^, : BD^ X ̂  -> BD^ X D^,

by mapping
{u,v)-^^u,uhvui)

for all (u, v} eBD^ x D^ cF x F. (i)

The identification space D^u^D^ is a topological ̂ -sphere with a G^-structure a = a(^);
we denote it by S^0.

The C^-identification space

Y^O=(DwxDW)u^^^DwxDW)

is the total space of an (0^, D^-bundle over S^'0. For m=4,8 it is an (SO^, D^)-
bundle whose principal bundle we denote by .̂. Its boundary (SO^, Sm^l}-bundle
has total space homeomorphic to S2^"1 if and only if (Milnor [19], Shimada [29]), the Euler
number WJ^,) .8"=^= i. We write Y^°=Y^.

Furthermore, the Pontragin number is then

P^^.Sm=±2{2h-l) if m=4
±6(2/2—1) if m=8. (2)
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^ J A M E S E E L L S AND N I C O L A A S H. K U I P E R

The zero crosssection of the (SO^, D^) bundle is a C°-imbedded usual w-sphere S^0.
In view of a theorem ofHaefliger [9; see our Section 8 B] it can be replaced by a homo-
topic C00-imbedding ofS^0 in Y^'0.

Then according to Smale's theory (in particular [43], Theorem A), it follows
that Y^'0 is diffeomorphic with Y^'°. Hence the C00 total space of the bundle does
not depend on a, although the given fibration does determine a specific C00-structure a
in the base space S .̂ Hence we may write Y^ instead ofY2^0.

Choose any combinatorial triangulation compatible with the C00-structure of Y^.
It is known that the topological space S2"1"1 for w=4,8 admits only one combinatorial
structure, so that the boundary BY^ has that usual combinatorial structure given by the
induced triangulation. (As a matter of fact, the G^-structure on any topological S™
for m+4,5 is known to be unique). Attach a cone to the boundary BY^, forming a
closed sm-manifold X^; the join of the given triangulation of BY^ with the vertex of
the cone defines a triangulation of X^ which is combinatorial.

Of course, the same construction is applicable to the manifolds obtained by
attaching a cone to the above (0^, D"1)-bundle for m==i ,2 . These manifolds are
combinatorially equivalent to Pg(R) and P^C), respectively. In cases w=4 and 8
the manifolds X^ and X^6 are combinatorially equivalent to Pg(H) and the Gayley plane,
respectively.

It follows from Proposition 2D below that for every h the manifold XJ^ admits
a C^-nondegenerate function, hence a C°-nondegenerate function with three critical
points. Namely, we can always construct on the zero crosssection of the bundle Y^, S"1,
a differentiably nondegenerate function / with two critical points of indices o, m.
Proposition sD asserts that we can extend/to a G0^ nondegenerate function with three
critical points of indices o, m, 2m.

C) In case m = i in the above construction, the manifold obtained is 2-dimensional;
therefore (as is well known) it possesses a unique differentiable structure. In case
m = 2 the manifold admits (by a theorem of Cairns) a compatible differentiable structure.
We do not know whether that structure is unique. It would be unique if S4 admits
only one C°°-structure. This is unknown.

In the cases m=4 and 8, if BYj^ is diffeomorphic to S^-110 then we can attach
a 2w-disc D2"1 differentiably to obtain a closed differentiable manifold (which will depend
on the way of attaching D^). We have introduced in [7] a differential invariant which
is useful in deciding for which values of h is BY2"* diffeomorphic to S2"1-1'0. Granting that h
is such a value, we obtain a closed differentiable manifold X2^ ^ for each diffeomorphism
^ : s^-M->aY^. See Section 9.

Again, Proposition 2D below shows that there is a differentiably non degenerate
function on Xj^ with three critical points.

D) Proposition. — Let p : A->B be a differentiable (0^, D^-bundle with C^-base B.
Suppose that 8A is combinatorially equivalent to S"4'"1-1 with the usual C^-structure, and attach
an {n+m)-cone C to obtain a combinatorial manifold X==AuG. Any differentiably nondegenerate
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MANIFOLDS WHICH ARE LIKE PROJECTIVE PLANES 15

function/on B (considered as ^ero crosssection in A), admits an extension to a combinatorially non-
degenerate function g on X with Morse numbers

^C?)-^/) if k<n+m
=1 if k==n-\-m.

If X is differentiable, then we can extend f differentially to have the analogous properties. If
f: B->R is a C^-nondegenerate function on a C01^-manifold then the same conclusion (C0^) holds.

Proof. — We consider B imbedded in AcX as the zero section. We suppose
that the fibres of A are Euclidean discs of radius i. For eachj^eA let \y\ denote the
distance fromj^ to the origin of the fibre through y. Then ^(j)== H2—! defines a
function on A such that

^)==—1 if J^B,
=o if j^e^A,

and ^ is quadratic on each fibre. We extend ^ over the cone C by defining <p to be i
on its vertex and extending linearly. Choose a C°°-function 9 : R-^R such that

cp(^)==o for ^o, o<(p(—1)<-,

—^(p'^^-^o for teR.2 at

Define the function h{y) by

/(^--i+P^i).^^) for j/eB.

To construct an extension ofy there is no loss of generality in assuming that
—I<A(^)^+I for all jeB.

Let
5(j)==^00 if J^G,

=^)+^W.h{p^)) if j/eA;

then g has the required properties, as we now show.
It is clear that on C the function g is combinatorially nondegenerate, and has

just one critical point at the vertex of C with index n-{-m. Furthermore, g is continuous
on X, and every point of ^A is ordinary. Also the restriction o f ^ t o B coincides withjf.

To analyse the other critical points we use the differentiable structure on A and
recall Proposition iD. For any jyeA we compute the differential dg of g atjy:

^^)=[i+9'^h))A^(j/))]^(j/)+<p(^(^)^^(j)).

Since —i^h{p{jy))^+i and —^<9'(+(^))<o, we have i+9WjQ)^00)>-1 for
all jyeA.

The covectors d^[y} and dh{p{y)} are linearly independent if they are different
from zero, because they are in complementary subspaces due to the fibre structure
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of A. Thus dg{y)=o implies that d^{y)=Q and ^{y))dh{p{y))=o. But the only
critical points of ^ in A are in B, whence ^{y)=—i and ?(^(^))>o. It follows that
ifyeA is a critical point of g, then yeB and df(p{y))==o. Since ^==—1 on B and ^
is semi-definite nonnegative of rank m at each point of B, we conclude that the index
ofg aty is the index of/at p { y ) . Therefore, g and/have the same critical points of the
same index k {o^k^n) on B, and g has just one other critical point of index n+m.

If BA is diffeomorphic to Sn+m~lfo and we form the differentiable manifold X^
by attaching a disc by the diffeomorphism ^ : aD^^aA, then there is an extension
of/to a differentiably nondegenerate function g : X^->R with the same Morse number
relations. In the above proof we take a differentiable extension of ^ from A to X^
having one nondegenerate maximum at the centre of D^^. If BA is not diffeomorphic
to S"4^-1'0, then at any rate it still is C^-equivalent to S"4"^-1, and D"-^ can be C0^-
attached to get the O^-manifold X. The C^-function ^ given on A, can be extended
combinatorially over X in the required manner.

3. Deformations of X.

A homotopy h : XxI->Y is called a deformation in case XcY and h(x, o) =x
for A:eX. If ht :Xx^->Y is a homeomorphism for every tel then h is called an
isotopy. Let/be a topologically nondegenerate function on the topological yz-manifold X.
In this section we introduce general and isotopic deformations on X with certain attractive
properties, and modeled on differentiable constructions given by Morse [23, VI; 6, y],
We refer to Morse [24] for further properties of C°-nondegenerate functions.

A) The isotopic deformation^ (local).

We take an oper cover ofX indexed by the points ofX, as follows: In each xeX
let (9^5 UJ be an ^-centered coordinate system with coordinates (p^, • • . , 9n, such that

1) <^ maps U^ onto O^g) ={^1^ | b[<9}$

let U^)={^eUJ|9,(j)|<^}foro^^9.

2) Each (<p^, UJ satisfies (2) or (3) of Section iB for suitable numbers \>o.
3) The coordinate systems (9^3 UJ indexed by the critical points of/are mutually

disjoint.
Fix a point aeX. We now define a deformation J^:XxI-^X which is the

identity outside the coordinate neighborhood U^. For that purpose we choose a diffe-
rentiable function A:R-^R such that h(t) == i for |^[<4, h(t) ==o for \t\>8,h{t)>o

for \t\<8, and —J-<hf{t)<+I- for all teVL.

If aeX is an ordinary point, then J^ is defined by Ja{x,t)=x for A^U^S),

9z(Ja(^))==?zW (K^——l) (i)

Pna^-PnW-^M)

for all xeV^ where \x\ is the polar coordinate \x\ =r{x) = [9^) [. If aeX is a OT^W
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point of index k, then we define J^ in terms of polar coordinates of type k in (9^3 UJ by
the formulas

J^t)=x for ^U,(8),

^(WJ^ ^))) =-^(lnr2(J,(^ ^))) = (ln2)A(|J,(^ <) |) (2)

^(JaC^)) = ̂ zW f01' ̂ 1 xeV^, where ̂  means logarithm to the basis e.
Remark,—If ^satisfies r^x)<2 and r^{x)==o, we have r^J^x, t)) =2^ whence

for such x the map J^x, i) is given by doubling the ^ coordinate in 0^2).
The properties listed below are immediate consequences of the definition ofj^ :
1) For each te I the transformation x-^J^x, t) is a homeomorphism of X.
2) The point a is a fixed point forj^, if and only if a is a critical point of/.
3) The restriction of/to each trajectory ofj^, is a decreasing function; i.e. for

each xeX. and t ^ t ' we have /(J^, ^))</(Ja(^ t ) ) ' The inequality is strict for all
x^a for which xeV^(8).

B) The deformation D^ (local).

For each critical point aeX. of index k we define another deformation D^ of X as
follows: Using polar coordinates in B^ of type k, we define

D^x,t)==x for ^U,(8),
(ri, (Oi; r^ cog) [D,(^ t)]= {r^x), ̂ {x); (i—fh{\x\)r^x), ̂ W) (3)

for allA-eU^.
Again, the properties below are immediate :
1) /is decreasing on the trajectories ofD^.
2) The map x-^D^x, i) carries 1^(4) onto the A-dimensional disc in U^:

9,-l{J/eRn|r^)<4,r2(^)=o}.

C) The deformations J and D (global).

Let^.. .^ be an enumeration of the critical points of/. Let X(^)=X—U^Uo.(^).
Clearly the covering in 3A can be so chosen that for every xe'K{^) the coordinate
system (<p^ UJ satisfies U^nU^(4)==0 ( i^z^r) . Since X(y) is compact in X(5) it
follows that there are finite numbers of points ^4.15 . . . ? ^ g in X(7), with coordinate
neighbourhoods in X(5), such that

i) x==u^u^
2) [UJ^U^.(4)]n[UL,^U^=0.
Define the isotopic deformation JofXby taking the composition Ja o. .. oj^ o. .. oj^

and adjusting the time parameter / to vary in I. Similarly we define the deformation D
of X, starting with the composition D^ o. . .oD^oJ. We have the following properties
of these deformations:

i) For each t the map x->J{x^ t) is a homeomorphism; similarly ;c->D(x, t) is a
continuous surjective map.
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2) x=J{x, o)==D(;c, o) for all ;veX.3)^:;^^")for-o<'<-
4) y(J(^ i))-/^) if and only if x=a, {i= i. . .r)

/(D(^, i)=f{x) if and only if x==a^ (i== i . . .r).
5) Except for a change in parameter, the restrictions ofj and D to

U^(2)x i (i^r)

are equal to the corresponding restrictions ofja. and D^..

D) C00-deformations and G01^-deformations.

Iff is a C°°-nondegenerate function on a C^-manifold X, then J and D can be
chosen such that the map x->J(x, t) (or, x -> D (^, ^)) for any o^^i is a diffeomorphism
or a differentiable map respectively. This of course one finds in Morse [23].

Ifyis a C^-nondegenerate function on a C^-manifold X, then there exists a
triangulation of X X I, and J and D can be chosen such that the mappings of X X I
onto itself defined by

(^)-^(J(^U)
and {x,t)-^(D{x,t),t)

are simplexwise affine. Such deformations we call C^-deformations. The existence
follows from the existence of the corresponding local C^-deformations J^ and D^ for
any aeX.

We have the
Proposition. — It can be assumed that the deformations J and D defined in Section gC are G00

or C01^, in case (X,/) is C00 or C0^ respectively.

4« Cellular decomposition of X.

A) In the theorem below we obtain for a topologically nondegenerate function/
a decomposition of X, which takes the place of a decomposition obtained from gradient
lines in the differentiable case. The present construction depends on the deformations J
given in 30, and in particular on a coordinate covering of X as in 3A, which we now
suppose given.

Theorem. — Let X be a topological n-manifold, and f : X->R a topologically nondegenerate
unction with three critical points. Then X is a compactification ofJ!^ by an m-sphere.

Otherwise said, X contains a topologically imbedded m-sphere S~ such that X—S~
is homeomorphic to R". We will see in Section 5A that n is even, and in fact n=2m and
moreover (Section 6) n=o, 2, 4, 8 or 16.

Definition. — If X .̂ (i = o, . . ., n) is a sequence of closed subsets of a closed Tz-mani-
fold X^=X, and for z = i , . . . , % we have X^^cX,, and X,—X^_i is the disjoint union
of a finite number Y< of z-dimensional open cells, then the sequence X^ is called a cellular
presentation of X.
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Problem. — If the topological ^-manifold X admits a G°-nondegenerate function /
with Morse numbers (JL^ z = o, ..., n, does there exist a cellular presentation with inva-
riants Yi==^? The above theorem asserts this in case/has three critical points.

Problem. — Can X be obtained by attaching an n-disc ̂  to S" by a map
h: ̂ y-^S" ? We will see in Proposition 6A that X has the homotopy type of such a
CW-complex; compare also Section yC.

We exclude now and henceforth the case n==o, for which X consists of three
points. Thus the assumptions on f imply that X is connected.

B) Proof of the theorem.

It is clear that/has a minimum and a maximum, since X is compact; furthermore,
the corresponding critical points have indices o and n. Let a^ a^ a^ be the three critical
points of/, of indices o, m, n respectively.

Take the ^-centered coordinate system (9^, UJ described in 3A, and introduce
in U^ polar coordinates of type m.

For each t{o^t<g) set

D-(^) ={^UJ r,{x)<t, r,(o) =0}
D-^) ={^eUJ r,{x) =o, r,{x)<t}.

If we define the homeomorphism r o f X b y r(^) ==J[x, i), then r(D-(2)) ==D-(4),
for by Remark gA any ^{x) with ^eD~(2) has polar coordinates (2^(^), o)i(^)) with
y,==o. Letting T ' = T O . . . O T (i-fold iterate of r), it follows by induction that
T^(D-(2))CT^+1(D-(2)), whence we can define the injective limit space

TOO(D-(2))=1™T^(D-(2)). (I)

Observe that we do not define T°°.
We now construct a homeomorphism ^ of T^D"^)) onto R^ For any

^er^D"^)) there is an integer ^ such that xe^{D~{2)) for all z>^. Define ^(^eR™
in terms of polar coordinates by

W={2\^-i{x))^^-i{x))}. (2)

That representation is independent of the choice o f z ^ ^ , because

{2^(T-^)), (Oi(T-^))}={^), (0,(^)}

for every ^eD--(2) and integer j> o. Clearly ^ maps ^'(D^)) homeomorphically
onto Om{2j+i) CR^ for allj> o, and hence the injective limit T^D-^)) onto the injective
limit 0^(2°°) ^R^. Compare Stallings [33] for the generalisation in terms of categories
of this Mazurean argument.

We next introduce a continuous function 8 : X-^R by setting S{x) =f{x) —f(^{x)).
Thus 8 is a nonnegative function which measures the amount that x is dropped by T;
moreover, S[x) ==o when and only when X=OQ, a^, a^. Fix a number s (o<s< i), and
set inf{8W | xeX-V^) -UJe) - U^)} == 8,.
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Then 8g>o, for in this definition A: varies in a compact subset of X.
Any A;eT°°(D~(2)) —U^(e) —U^(e) is lower than a^ and T drops it at least 8g units.

Let ig be an integer such that ^e^/I^i)—/(^o)- Then r^eU^s) f o r z = = Z g ; that

also holds for i^i^y because the restriction of T to U^ (s) is multiplication by -; in
• " 0

particular, lim T\A:) ==<2o* Then for sufficiently large i we have
T-(D-(2))-T-(D-(2))cUJs).

Because s is arbitrary, it follows that T°°(D~(2))u^o is the i-point compactification of
T^D"^)); compare Kuiper [17]. Therefore, the subspace S^=T°°(D~(2))uflo is
homeomorphic to the ^-sphere, and S~ is invariant under T.

Finally we consider the injective limit set T^U^)), which is seen to be homeo-
morphic to R" by the above argument. We will show, using the function —f instead
of/, that

T°°(Uj2))=X-S-. (3)

On the one hand, if xe^(V^{a)) then A^S", for otherwise -u~\x) is in S~ for all i.
That is impossible, because r"1^) is in U^(2) for suitably large i, and yet S~nU^(2) = 0.
Thus T°°(Uj2))cX—S-.

On the other hand, if A:eX—S~, we will show that there is an integer i such that
^~\x)eV^ (2). There is a number e(o<e<i) such that

^X-S~-UJs)-UJs).

The transformation r~1 leaves invariant the critical points of/ and raises every other
point of X to a higher level. Arguing as before, we conclude that there is an i for which
either

1) T-^)eUj2); or
2) ^'=T-^)EUJs).

In case 2) we note that A:'^D~(e) cS~. Inside U^(2) the action of T 1 is
explicitly given by equations (2) of Section 3; we see that there is an integer j for which
^"^A^T"^) is higher than a^. It follows that for some k>i+j we have
T-^eU^).

Therefore, in both cases i) and 2) we have ^eT°°(U^)); i.e. X—S~CT°°(U^(2)).
This completes the proof of the theorem.

Corollary. — If m> i, then X is simply connected.

5. The homology of X.

A) Given any topologically nondegenerate function /: X->R, set
/^eXi/M^}.

For any coefficient field F we let ft//8, F) === dim Hfc(/8; F). Then using powers of the
deformation D (compare the proof of Proposition 6A), Morse theory shows that

^o{^(/8)-P^/^F)}^(I+^
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is a polynomial in t with coefficients which are nondecreasing integer-valued functions
of s.

These coefficients are nonnegative, for they are zero for s==—oo. For ,$•==+00
this concerns the space /+°°=X and we have the Morse relations, to the effect that

^o{^(/)-P.(X,F)}^(i+^)

is a polynomial with nonnegative integral coefficients.
In detail: For every integer p (o^p<n) we have

SLoC-i^-W/) ̂ ^(-i)^-^(x, F),
^o(-I)-^(/)=S^(-I)n-^,(X,F)=)c(X), (i)

the Euler characteristic of X. Consequently in particular,

PL,(/)^(X,F). (2)

Remark. — Another inequality concerning ^ is p4(/)^p(7Ti(X)), where p(7Ti(X))
is the minimal number of elements of the fundamental group ^(X) that can generate
this group. We will not need this here, however.

Lemma. — Iff is a topologically nondegenerate function on X with three critical points,
then n is even. If we set n == 2m, then the Morse numbers satisfy ^{f) == ̂ (/) == pigj/) == i.

Proof. — Since we have excluded the case n=o, we see that ( i ) implies n>i.
Taking F==Zg (the field with two elements), we have (Bo(X, Z^jB^X, Z^)== i,
because X is closed and connected. Taken with the equation S^^(/)=3, the Morse
relations now imply

^(/)=(B,(X,Z,) for all k.

The same argument applied to the function —/yields

^(-/)=^n~.(/)=^(X,Z,),

and the lemma follows.
Corollary. — If n==2, then X is homeomorphic to the real projective plane.
For in that case ^(X) == i, and we apply the topological classification of closed

2-manifolds (Seifert-Threlfall [27, Kap. 6]).
Remark. — These Morse relations also show that for 7^4 the manifold X has no

torsion and has integral homology groups H,(X)=Z for i=o, m, 2m==n; o otherwise.
However, our next result gives more precision.

B) Theorem. — Let 'K be a topological n-manifold which admits a nondegenerate function
with three critical points. Then for n+2 the integral cohomology ring of'X is a truncated poly-
nomial ring in one generator o- of height three:

H-(X)=Z[o]/(a3).

Proof. — First of all, Corollary 43 shows that X is orientable; we suppose that
a definite orientation has been chosen (but note the definition below). For a given

197



22 J A M E S E E L L S AND N I C O L A A S H. K U I P E R

/: X->R we consider the sphere S~ in X, described in Theorem 4A. By choosing an
orientation of S", that imbedding determines an isomorphism

9 : H^S-) -> H^^X, X—S-)

for all i, by combining Poincare duality D ofS~ with the Alexander-Pontrjagin duality a
of S- in X:

H^S-^IP-^X.X-S--)

<p == a»D

H^S-)

Furthermore, if we set cp( i )=(T then for any ueH\S~) we have ^{u)=uua. For
this description of 9 compare Thorn [35, Introduction].

Now Theorem 4A implies that there is a canonical isomorphism
H^X.X—S-^H^^X,^),

from which we conclude that we have a canonical isomorphism (also called 9)
of EP(S-) onto H^+^X) for all i. Interpreting oeH^X) shows that a^aua
generates H^X); the theorem follows.

Definitions. — Say that the orientations in X and S~ are compatible, if a2 is the orientation
generator of X. Mote that for n =)= 2 there is a natural orientation ^ on X, given by

^ == OTUCT ==(—cr)u(—o).

In his work on the Hopf invariant Adams [i] proved a fundamental theorem
on the vanishing of Steenrod squares, a special case of which is the following; Let X be
a space, and m an integer/or which H'(X, Z^)=o for m<i<2m. Then the operation

Sqm:Bm(X',Z,)^H2m{XS,Z,)

which is just the cup product square, is ^ero, except perhaps/or m= i, 2, 4, 8. Applying
that to our theorem, we obtain the

Corollary. — If X is a topological n-manifold which admits a nondegenerate function with
three critical points, then X has the cohomology ring (for any coefficient ring) of a projective plane
over the real, complex, quaternion, or Cayley numbers.

Remark. — It follows from this corollary that the Lusternik-Schnirelmann category
of X is 3.

C) The Stiefel-Whitney classes ^(X)eIP(X; Zg) have been defined by Thorn
and Wu (See Thorn [35, Gh. Ill] ; they write W,,) for any closed topological ^-manifold.

Namely, for each j(o^j^n) let V^eH^X; Zg) be Wu's cohomology realisation
of Sq defined by

S^M^uV^ for all xeV-^X; Z^)

then w^X.) is defined by the formula
^(X)= s S^(VQ.

i+j=k
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For our manifolds X the only significant value of j is j== m, in which case
S^^) ==xux. Thus V^ is the modulo 2 reduction of a, and ^^(X)=S^OVm=VW, so
that w^(X) is the modulo two reduction of a, whence z^(X) =^(X)u^(X). Thus we
obtain the

Proposition. — All manifolds as in Theorem ^B have the same Stiefel-Whitney numbers,
which include the Euler characteristic ^(X) == i or 3.

Restricting to C^-manifolds, the application of the fundamental theorem [36,
Th. IV, 10] of Thorn that nonoriented cobordism classes are characterised by their
sets of Stiefel-Whitney numbers leads to the

Corollary. — All differentiable 2m-manifolds m= i, 2, 4, or 8, which admit a nondegenerate
function with three critical points, belong to the same nontrivial 0^-cobordism class o/P^F).

We will see in Chapter 2 below that for 7^=4, 8 such G^-manifolds belong to
many different SO^-cobordism classes, for their Pontrjagin numbers differ.

Problem. — Are all C°-2m-manifolds which admit a C°-nondegenerate function
with three critical points cobordant with P2(F) ?

6. The homotopy type of X.

A) Recall that a (continuous) map 9 : A->B between any spaces is a homotopy
equivalence il there exists a map ^ : B-^A for which ^09 (resp. 90^) is homotopic to the
identity map of A (resp. ofB). If A and B are oriented ^-manifolds, we say that 9 is
an oriented homotopy equivalence if the induced cohomology isomorphism <p* preserves
orientation generators.

Lemma. — (See Hilton [10, Theorem 6.6]). Let A and B be spaces, and 9 : A->B
a homotopy equivalence. If a : ̂ D^A and (B : ̂ D^B are maps such that (B is homotopic
to 900, then there is an extension of 9 to a homotopy equivalence of the identification spaces.

AuJY-^BUpD'.

We will sketch the proof. It suffices to prove two special cases:
i) A=B, 9 is the identity, and 00^== a is homotopic to ai=(B by the homotopy a^,

tel. Expressing ^={(^,1) \yeW and o^^i}, we define the map

^Au^D^Au,^ by

^x)=x for all xeA,

r^^t)=(^^) for o^^,

=a2-2<(^) for -<^I.

Then 9 is a homotopy equivalence, with homotopy inverse ^ given by
/̂ ^>
^(^x)=x for all xeA,
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TOst) == C^2^ for o ̂ < ^-,

=a2<-l(J) f01' -^^1.

This case reduces the lemma to the next case:
2) 9 : A->B is arbitrary, but p==<poa.
We define ^Au^D'-^Bu^D" by

^(^)===(p(^) for A:eA
^(j^ ^) = [j^ ^) for interior points t< i of D^

If ^ : B-^A is a homotopy inverse of 9, then we define ^ : B^p^D^ Au^^D"
analogously. Now take a homotopy equivalence 6 : Au^q^o^ -> Au^^ as in Case i).
The composition 60^ is a homotopy inverse of^.

Proposition. — If the topological 2m-manifold X admits a nondegenerate function with
three critical points^ then there is a map g : (MD^-^S^ such that X has the homotopy type of the
space S^D2^

Proof. — We resume the notation of Section 3, and choose a deformation D as
in 30. Then D carries every ^eX—U^(2)—U^(s)—U^(2) into a lower point, and
deforms S" into itself. It carries U^(2) into D~(2) and U^(2) into OQ. Some power D^
of D will deform X—UJ2) onto S-.

Now X is obtained from X—U^(2) by attaching the 2w-disc D==U^(2) by a
homeomorphism a of its boundary. If we define the homotopy equivalence

<p:X-Uj2)->S- by <pM=D^i),

then the proposition follows from Lemma 6A with ^=cpoa.
B) For any map g : ^D^-^S™ the space X^) =Swu^D2w has integral cohomology

groups given by I:P(X(^))=Z for i==o, m, 2m; otherwise o.
Namely, the imbedding i: S^^-^X^) induces a cohomology isomorphism in

dimension m, and g : (D2^ ^D2^) -> (X(^), S"1) induces the isomorphism

g : HP^X^), S™) -> H^D2^ BD^);

but H2W(X(5),SW) is canonically isomorphic to HP^X^)).
Since D2^ and S^ have orientation induced from that of the ambient spaces R27"

and R^1, we have distinguished generators (T^H^X^)) and ^eH2w(X(^)).
Definition. — The ^/oj)/' invariant of the map .? : 8D2m->Sm is the integer y(^) such

that Gg\j(5g=^{g)^g. Actually, y(^) is the negative of the invariant originally defined
by Hopf. It follows from Case i) of Lemma 6A that y(^) depends only on the
homotopy class of g, because the cohomology ring (of D^u^S™) is an invariant of
homotopy type.
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With the notation of Proposition 6A we have the
Proposition. — IfX. and S~ are compatibly oriented, then there is a map g : ̂ D-^S~ and

an oriented homotopy equivalence 6 : X-^X(^) mapping S~ into itself. The Hopf invariant
yQ?) = I, and it can be interpreted as the sol/intersection ofS~ in X.

Proof. — Proposition 6A shows that a homotopy equivalence 6 exists which on S~
is a deformation of the identity. Let ^ and cr denote the orientation generators of X
and S~, and use the subscript g to refer to X(^) =S~u^D. Since D=U^(2) has
orientation induced from X, we have 6*(^)==$, i.e., 6 preserves orientations.

Now 6oz is homotopic to ^(^:S -->-X is again the inclusion map), whence
f{ff)=^<g^g)==:^<toy{og), we conclude that c=Q*(dg). Therefore,

T^^e^y^y^e^u^^ou^s,
and thus ^{g)== i. The self intersection property of S~ is a translation into homology
of these multiplicative relations. Geometrically it follows (but for a sign) from the
fact that S~ and S4', analogously defined with (X, —f) instead of (X,y), meet in one
point a^.

Corollary. — If X is a topological ^-manifold admitting a nondegenerate function with
three critical points, then X has the oriented homotopy type of the complex protective plane.

For the Hopf invariant defines an isomorphism y : 7^3 (S2) ->Z, whence there is
only one homotopy class of maps g with y(^) = i. Furthermore, that class is represented
by the Hopffibration p : S3-^2, whose Thorn complex is Pa(C).

Remark. — This corollary can also be obtained from Corollary 4B and Theorem 3
of Milnor [21], which states that the oriented homotopy types of simply connected
4-manifolds are classified by their quadratic forms.

C) Henceforth we restrict attention to the dimensions n==2w==8, 16. From
Proposition 6B we see that to determine the homotopy types of our manifolds it suffices
to consider the spaces X(^) === S^u^D2^ for maps g with y(^) = i. We use the following
knowledge of the structure of T^wi-i^^)? as interpreted by Shimada [29]:

The sequence
o -> ̂ -.(S-1) -^ T^^S") -^ Z ̂  o (i)

is exact, where E denotes the Freudenthal suspension. The homomorphism
X : Z-^^^^S"*) which assigns to i the map of the Hopf fibration, determines a
splitting of (i).

The corresponding projection
^^^(S-)^^..^-1)

is defined by
a^E-^]-^)}.

Then the direct sum decomposition
YCa : 71:̂ (8") -^ Z©7^_,(S-1) (2)

carries [g] onto T(^)©a(^).
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We recall that
^m-z^'1) =zl2 tor 772 ==4

Z.^Q for m=8.

For any integer h let ^ : ̂ ^-^S^ be the fibre map of Section sB associated with the
bundle ^j with h-}-j== i. We orient its Thorn complex X^ by taking as orientation
generator ^KP^X;^) the element £=(TU(T, where a is either generator of H^Xj^).
Then y(&) = I- (I11 general the Euler class, i.e. the self intersection of the zero section
in the associated (SO^, D^-bundle is WJ^.) =^h+j.)

Shimada [29, § 4] has remarked that if the bundle ^ • is represented by
RJ^-i(SOJ and J : ̂ ^(SOJ-^T^.^S-) is the J-homomorphism ofG. W. Whi-
tehead, then the corresponding homotopy type of mapping cylinder is characterised by

[&,,] =JRJ =^+j)-jE{^_,)
for a suitable generator ^m-^^vn-^"1'1)-

In particular in our case j' = i — h we may write
a(&)= r l2(A— I) it ^==4

W^—1) if ^=8 (3)
where ^ : Z->Z^ denotes reduction modulo k. We now recall the effect on Y^ of
reversing the orientation of S"1 :

Lemma (compare Shimada [29]). — Fix an integer A. The effect of reversing the
orientation of S"1 in the construction of Y^ and X^ is to obtain Y^ and X^.

Proof. — We use the notation of Section i .2 (see equation ( i ) ) and in the C^-case
we only consider the case that Y] = identity. Now we introduce new coordinates v ' == {v)~1

in each fibre of the sphere bundle space ^Y^\ and then use them as polar coordinates
in each fibre of the 4-disc bundle space Y^. This means a reversing of the orientation
of Y^1 but keeping the orientation of the zero crosssection S™ fixed. We next reverse
the roles of the two parts from which Yj^ was constructed by an identification. With
that the orientation of Y^ is again reversed, and also that of S .̂

Thus we have kept the orientation of Y^ fixed and we have reversed the orien-
tation of S"1. Instead of ( i) of Section 1.2 we now have (taking T]= identity) the
relations in (u, v ' ) :

(^ (,r1) ̂  (^ ̂ rv)
or {u, ̂ -v)-^-o <- {u, (,r1)

{u, v-) -> (u, ̂ W). (4)

But h +j== i, j= i —h, and this defines Y^; the lemma is proved.
D) For our next step we need the
Lemma.—Let g,: ̂ D^-^^o, i : 772=4 or 8) be maps. Form X(&) = S .̂D2^

and let 6 : (X{go), S^-^X^), S^) be an oriented homotopy equivalence. Suppose 6^ is
homotopic to the identity on S"1. Then g^ and g^ are homotopic.

In particular, y(^) == y(^i) •
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Remark. — The same conclusions and the same proof apply if we only assume
that 6 : XQ^—^XQ^) is a continuous map such that its dual carries the natural orien-
tation cohomology classes in dimensions m and 2m of X(^) onto those of X(^) and
Y(X(^o)) =y(XQ^)) == i. So ^j^ conditions already imply that 6 ^ ^ oriented homotopy
equivalence.

Proof. — For any map g : BD^^S^ we have

^,{'K{g),Sm)=o{ori<2m,
== Z for z = 2w,

and the relative homotopy class {g) of g is a generator. This follows from Hurewicz'
theorem, because H^(X(^), S^^o for i<2m by 6B, whence the Hurewicz5 map h is
an isomorphism in dimension 2m:

T^(XQ?), 8"') 4- H^(X(^), S») 4*. H^(X^)) =Z
6. : 7T.(X(&,), S"1) -> 7T.(X(^), S"1)

(5)

is an isomorphism for all i, and 6 {go) == Q^). This is a consequence of the 5-lemma, a
segment of which is

^JX(^), S-) ^> 7^(8-) -> T^_,(X(^)) -> o

^(X(^), S-) ^-1(8") -> ^_,(X(^))

we use here the fact that 6 preserves orientations. Since 6 induces the identity map
on TT^.^S"), we have [g,] = ̂ ) = Wg,) == W = [̂ ].

Proposition. — Let m=^ or 8, ayzrf consider the elements [g^^m-i^"1) wlt^ Y(^) = I*
TA^ homotopy classes of spaces X(^) correspond one to one to the unordered pairs of elements
{a(<?), a(—^)} in T^m^^"1) where — g is the composition of the map g : S2^""1-^ ^rf fl
reflection ^-^^ with respect to an equator S^^cS"*.

Each homotopy type is represented by some C^^-manifold which is the Thorn complex of a
fibre bundle ^,(A+j==i).

Proof. — Each ge[g] defines both X(^) and a(^) $ if go and g^ are two such (homo-
topic) maps, then XQ^) and X(^i) have the same homotopy type by Lemma 6A (take
A=B=SW and 9 the identity map). If we take two spaces in the homotopy type
of X(^), then there is a homotopy equivalence 6 between them which maps S™ into
itself and is homotopic to the identity on S^ or to a reflection with respect to an S^^^cS^.
In this last case we take instead of the second manifold (say X^) the manifold X^^.
In the first case the above lemma implies that the two spaces X(^) of the same homotopy
type determine the same a(^).
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Finally, from (3) above we see that every element of ^.^(S^"1) corresponds to
some (in fact, infinitely many) X(^) = X^.

When considering the oriented homotopy types of X^ we permit either orientation
of S^*. Thus taking into account (3) and (4) and Lemma 6C we obtain the

Corollary. — Two C01^-manifolds X^(^=o, i) with the natural orientation a2, have the
same oriented homotopy type if and only if

AO—AI=O or (6)
Ao+Ai=Ei

modulo 12 (w==4) or modulo 120 (w==8).
We summarize the results of this section in the
Theorem. — The following is a classification by homotopy types of the topological

n-manifolds X which admit a nondegenerate function with three critical points:
If n == 2 or 4, then X has the homotopy type of the real or complex projective plane.
If n=2m==6 (resp. 16), then X belongs to one of six (resp. sixty) homotopy types, each

of which can be represented by a combinatorial manifold X^. These are numerically classified
according to the congruences (6).

Remark 1. — From the remark following Lemma 6D it can be deduced that if
the continuous map

e:x^x^
induces an isomorphism

6* : H^X^) <- H^Xj^)

then 6 is a homotopy equivalence.
Remark 2. — The invariants of the above classification coincide with those of

James9 classification of the Hopf space structures on S"1""1, which are (roughly speaking)
given by the elements of the group ^-^(S^""1); see James [14]. There is also a close
relationship to the classification of (SO^, S^"1)-bundles over 8'" by fibre homotopy type;
see Dold [4, Staz 4, 6].
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II

CONSEQUENCES OF ADDITIONAL STRUCTURE ON X

7. Transverse foliations.

We are not able to obtain more specific information about our manifold without
imposing further structure. In the case of a G^-manifold X and a C°°-nondegenerate
function / one can introduce a Riemannian metric, and then the gradient lines provide
a convenient tool. They give an example of a i-dimensional leaved structure on
X—(^u .. .u^) in the sense of Ehresmann and Reeb [25, p. 101], transverse to the
levels of/, and with special regularity properties in the neighbourhood of the critical
points ^ ( i^z^ r ) of/. We will see that the existence of such a transverse foliation
(even in the G°-case), permits us to draw conclusions that reach further than those
of Chapter I.

A) Definition. — Let X be a closed topological n-manifold and /: X->R a
nondegenerate function. Given a point aeX, a continuous map

a : U-^R71"1 of a neighbourhood U o f f l i s a local filiation transverse relative f if the
product map

ocX^U-^R^xR, defined by [a xf)x==^x) xf{x) for all xeU, is a coordinate
system on U. For any xeV we define the trajectory in U through x as the connected
component of oT1^^)) in U containing x.

Two local transverse foliations 04, ocg : U-^R^1 are compatible if there is a homeo-
morphism r : o^(V)->o^(V) such that r 004 ==003. Two local transverse foliations 04, ocg,
with different domains U^, Ug are compatible if every xeV^V^ has a neighbourhood
UcU^nUg such that the restrictions 04 [U and oc^U are compatible.

If aeX is an ordinary point of/ and (9, U) is an ^-centered coordinate system
as in Section i, then a(;v) = ((piM, . . . . ̂ n-iW defines a local transverse foliation in U.
We denote by ^'(9, U) the topology in U for which the open sets are the (i-dimensional)
ordinary open sets on the trajectories in U.

If on the other hand a is a critical point of index A, then no local transverse foliation
exists. Let (9, U) be as in (3) of Section i. In this case we denote by ^(<p, U) the
topology in U—a, for which the open sets are the i-dimensional ordinary open sets
on the orthogonal trajectories of the level manifolds of/ with respect to the Euclidean
metric in U—a.

Finally we give for the global case (see Reeb [25, p. 100]) the
Definition.—Let /:X->R be a nondegenerate function and A={^, ...,^} the

set of critical points of/. A transverse foliation o/X relative tofis a topology^" on X—A
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such that for any aeX there is an a-centered coordinate system (y, U) satisfying
either ( i) or (2) of Section i, with a topology ^"(9, U) which is equal to the restriction to the
point set U or U—a respectively of the topology y.

Clearly any two local transverse foliations obtained by restriction from y are
compatible.

Problem. — We do not know whether there exists a transverse foliation for every
C°-nondegenerate function on every C°-manifold; however, we will see below that
such can be constructed in the differentiable and combinatorial cases.

Proposition. — Let X he a C°° n-manifold, and f: X-^R a C^-nondegenerate function.
Then X admits a transverse foliation relative to f.

Proof. — By means of a differentiable partition of unity we introduce a differen-
tiable Riemannian metric on X which has the representation

A2 =2^^

in some neighbourhood of each critical point a (recall that A is a finite set), in terms
of some ^-centered differentiable coordinate system as in ( i ) of Section i. In terms
of that metric the differential of/ determines a differentiable contravariant vector
field *(—df) on X which in turn defines a one parameter group of diffeomorphisms.
The trajectories of that group (i.e., the gradient lines of/) define the required topology
on X—A.

B) Proposition. — Let X be a closed C^-n-manif old and f: X-^R a G^-nondegenerate
function. Then X admits a transverse foliation relative to f.

Proof. — For any set WcX let L(W, e) be the set of all xeX for which there
exists weW such that

\fW-f{w)\<e.

We take a combinatorial triangulation (K, h, X) relative to /, as in Section i C. Let
K^cX be the zero skeleton of K. Of course AcK^ where A is the set of critical
points. We first define for any e>o (to be fixed later) a transverse foliation on
a) X—HK^e).

Any point x of this set lies in the interior of a unique affine r-simplex dy of dimension
r^ i of K. The restriction of/ to ^ is a linear function (height). Gy has p+ i > i
vertices higher and the remaining q+ i =r—p^ i vertices lower then x. These sets
of vertices are the vertices of two simplices <jp and o^ of which <jy is the join. The point x
then is contained in a unique straight line segment which connects a and a . The
connected part of x in X— [.(K^, e) is the one dimensional leaf which contains x.
Applying the same for all points we find the transverse foliation in part a).

Next we define a transverse foliation in
b) L(K(°),£)-L(A,£).

We introduce a new triangulation (K^, h^ X), for which/is also combinatorial;
for example, by a small change of (K, h, X), but such that no vertex of K^ lies in b).
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As K^ and A are finite sets, this is certainly possible for all e sufficiently small, say s<£o.
But then we can use (K^, h^ X), as in the former paragraph, to construct a transverse
foliation in part b). There remains the construction in L(A, e).

For each critical point ae A we use coordinates (9^, . . ., 9^3 9^, . . ., 9^) as in (2)3 (3)
and (5) of Section i. The coordinate neighbourhoods in X so obtained are assumed
disjoint. U^) will have the same meaning as in Section 3A, and

U(A,^)=aeAU^).

We choose a preliminary transverse foliation in U(A, ^3) for some ^>o, by taking
as leaves the orthogonal trajectories of the level sets of/with respect to the Euclidean
metric S^fcpj in U^(^) for each aeA (Cf. Section lA).

We leave this foliation unaltered, for some o<^<^<^, O<£<£Q, in the set

c ) L(A,c)nU(A,^) ,

but we change it outside, such that in

d ) L(A,£)n[U(A,^)-U(A,^)]

it can be obtained from some subdivision (K^, h^, X) of (K, h, X) for which/is also
combinatorial, with the methods described for the sets a). Here it will be assumed,
but this is no restriction of the argument, that no vertex of KQ (hence no vertex of K),
lies in

L(A,£)-U(A,^).

Observe that the construction of the foliation in c ) and d ) is a local affair !
The same method used for a), but with the complex K(), applies to the remaining

part of X (with part d ) included):

e ) L(A,c)-U(A,^).

The transverse foliation obtained in this way has the properties required in the
definition of Section 7A.

C) Proposition. — Let f : X->R be a topologically nondegenerate function with three
critical points of index o, m and 2m. If X admits a transverse foliation relative to /, then there
is a map g : ^D^-^S^ such that X is homeomorphic to the C\Vr-complex

S^D^m^i^,^).

Proof. — In Section gC we defined a deformation J as a composition of defor-
mations J^, each of which is the identity outside a coordinate system (9^, UJ; furthermore,
in U^(4) the deformation J takes place along the ^-coordinate line of 9^ =(9^5 ..., 9a )•
In view of the definitions of transverse foliation we can and will assume that J is so chosen
that points are dropped along trajectories.

Now let a^ be the critical point of index m, and introduce polar coordinates of
type m in U^(4). Consider W=={^eU^(4) | r^x)^^ r^)^, r^{x) .^(^^i}; then the
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segments ol the trajectories in W are represented by r^a, (co^, Og, r^ r^)== constant.
We define the homeomorphism T by x ->r(^) =]{x^ i), and form the compositions
T1, t === i, 2. . . , following the notation and constructions of Section 43. Recall that T°° (W)
is coordinated by {r^ c^; fg, (Oal^2? ^i7^1? ̂ co}, and that T°°(D"-(2)) =S~—^ is
then represented by ^==0.

In order to define g the trajectories will be altered such that S"~ consists of end
points of trajectories, as follows:

i) We leave the trajectories unchanged in the set of points
Q

r^r^ - arctg (r^) and
TC

fo^ - for y. = o.~ -K ~
(i)

2) For the set

TI^- arctg (/i) and r^o (2)

we introduce new trajectories represented by (0)1, cjg 3 r^)= constant: (see next page).
Recall from Section 48 that X—S'^T^U^)) is homeomorphic to R2^ The

trajectories emanating from a^ either i) end at OQ, or 2) traverse the set

{xeX\ r^x)==2,r^x).r^x)<i};

in that case the trajectory enters the set defined by 2) at a lower point, after which it
follows the new trajectory to its end in S".

In order to define the map g : BD^-^S" we first consider T^U^^^ntD2"*,
together with the (new) trajectories emanating from a^ which cover this open 2m-disc.
The closed disc D^u^D2"* is defined by closing D2^ with one point for each trajectory.
Finally g is defined by assigning to the endpoint in D^uSD2"* of each trajectory the end
point in S~" of the same trajectory in D^cX. Clearly g is continuous and provides the
desired attachment.

D) Proposition. — Let X be the manifold of Proposition jC with given function f and
transversal filiation.

There is a homeomorphic imbedding g: 8!^ X D^^D2"* such that if Y = D^u^D^ x D ,̂
then X is homeomorphic to the identification space Y/3Y.

Proof. — Without loss of generality we can suppose that f is represented in polar
coordinates in U^ (4) by

/M=-^)+riW.

This implies /(flo)<—i6. Let Yo=={^eX |/(^—4}.
The trajectories in Y() which end at OQ form a transverse foliation of Y^—OQ. The

direction of the ray at a^ together with the values of f along the ray, determine polar
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coordinates (r*, (x/), by which Yo can be mapped homeomorphically onto a closed 2m-disc\

fW-M
^-^{(^ ̂ ) | y*^1}) where r*{x)==

—4—/(flo)

Consider now the sw-disc Yi given by Yi=={A:eU^(4) \f[x)^—^r^x)^} for
some sufficiently small p>o; see the figure in G). The (old) trajectories define an
attaching map g of Y^ to Y() along

Yot=YonY,=={^Uj4) l/W——4, r,{x)^}.
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Y^ is clearly homeomorphic to 81^ x D^. All trajectories of the transverse foliation
meet the boundary BY of Y=YoU^Yi transversally. That is in particular true along
the part 8Y^n8Yy where the trajectories are represented by (<0i, cog, r^.r^)== constant.

Let Yg=X—Y. Since each trajectory emanating from a^ meets 8Y transversally
in exactly one point, we see that these rays together with the values of/ define polar
coordinates in Yg. Thus YgCX is also a closed 2w-disc, and X=YuYg is homeo-
morphic to X/Y^X—IntY^Y^—IntY^Y/aY.

Remark. — It is clear that Int Y is a neighbourhood of S"" in X. Is it a tubular
neighbourhood ? In connection with this problem it is natural to ask how the
(m— i)-sphere gW" x o) lies in the (2m— i)-sphere 3Yo; in particular, is it unknotted ?
We cannot answer that question in general, but in out next sections we conclude
"unknotted" in some special cases. This leads to interesting consequences.

8. The differentiable case.

A) Introduction to the knot problem.

In this section we suppose X and/are C00 and f: X->R is a G°°-nondegenerate
function with three critical points (IQ, a^ a^. We fix a C°°-Riemannian metric on X,
which in some neighbourhood of each critical point, equals the Euclidean metric
ds2=^d(^ in preferred coordinates as in Section lA. As in Proposition 7D we
construct

1) the disc Y(), which is diffeomorphic to D^;
2) the space Y^, which is diffeomorphic to D^^xD^;
3) the space Yg, which is homeomorphic to D2^, and is diffeomorphic except

along the (sm—2)-manifold Y^ == Yg n Y^ n Yg ("edge95) in the boundary ^Yg.
The boundary of the differentiable manifold Y=YoUYi is not smooth along

this same edge. This however is not the main difficulty for the analysis of X, as it is
not hard to "round off" these edges. We would like to deduce that Y4', obtained from Y
after suitably rounding off, is an m-ball bundle over S ,̂ in which case X would have
to be diffeomorphic to one of the examples of Section 2.

As all depends on how Y^D^xD^ is attached to Y^^D^ along Yo^BD^xD^
our first main problem is the analysis of imbeddings such as

9 : aD^xD^-^S^-^cD2"1

Yo, BYo Yo

Any such imbedding determines by restriction a unique imbedding
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9° : S^-^aD^xo -^ s^^cD2^

Y(°)^oi
In the next paragraph we define several kinds of equivalence concerning imbeddings.

B) Four kinds of knot-classes.

All maps are assumed C00. — For the cases C° and G01^ analogous definitions hold,
however. An imbedding 9 of a nested sequence

Z=(Z,DZ,...DZJ

of manifolds (spaces or sets) into a second sequence W = (W^D Wg. . . D WJ, is a sequence
of imbeddings 9^ : Z,->W, such that 9^ is the restriction of 9^ to Z, :

^^(DiZz-

An imbedding 9 : Z-^W which has an inverse (also an imbedding)
9-1 : W->Z

is called a diffeomorphism of nested sequences. Several kinds of equivalence can be introduced
in the class of all imbeddings of Z into W.

I) The isotopic knot class K(9; Z; W).
Two imbeddings 90 : Z->W and 9^ : Z->W are isotopic if there exists a C^-map

AI : WxI->W, such that
1) each ht is a diffeomorphism of W,
2) A( is the identity for all t in some neighbourhood in I of the point o,
3) ^090=9^
This defines an equivalence on differentiable imbeddings of nested sequences,

and the equivalence class of 9 : Z-^W is called the isotopic knot class of the imbedding
9 :K(9 ;Z ;W) .

II) The knot class A(9;Z;W).
Two imbeddings 9^ and 9^ are diffeomorphic if there exists a diffeomorphism

y:W-^W

such that
4)./o(Po==<Pl•
This defines an equivalence. The equivalence class of 9 : Z->W is called the

knot class of the imbedding 9 : ̂ (9; Z; W).
Ill) If we replace condition 3) in I) by

^^(Zt) == piCZz) fo1' 2=1 , . . . ^
a new weaker equivalence is obtained. The equivalence class is the isotopic knot class
of the imbedded nested sequence'. K(9(Z); W).
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IV) Analogously, if we replace 4) in II) by

/oq^(Z,) ==9i(Z,) for i= i, ..., n

a new weakest equivalence is obtained, with class: the knot class of the imbedded nested
sequence: A:(<p(Z); W).

Lemma. — In the following scheme the knot class at the initial point of each arrow
determines uniquely the knot class at the end of the arrow. In other words: the value of the knot
class at the end of the arrow gives at most as much information about 9 as the value at the initial
point.

A(9;Z;W)

/ \/ \
K(<p;Z;W) ————————————> ^(cp(Z);W)

\
K(9(Z);W)

Proof. — This follows immediately from the definitions.
Lemma. — Let W be a G^-manifold with a smooth boundary 8W and ^ : A-^WcW two

imbeddings for i=o,i.
Then

K(9o$A;aW)=K(y,;A;BW) (i)
if and only if

K(9o;A;W)=K(9,;A;W) (2)

Hence K(<p; A; BW) and K((p; A; W) determine each other in case (p(A)caW. Both
are also equivalent to K(<p; ADA; WD BW) which we will denote by K(<p; A; WD ̂ W).

Proof. — Any diffeomorphism of W onto W preserves the boundary and from
this fact follows the if part of the lemma.

Next assume (i). Let V=BW, and let A i : V x i - > V be the diffeotopy
connecting y^ and 9i=^o<po, as in the definition above. Choose a neighbourhood
of V in W which is diffeomorphic to V X I, with V X o corresponding to BW. Define
ht{x) ==x for t<o. The diffeotopy 1^ is then restriction to cW of the following diffeotopy
ofW:

Hi :WxI^W
H^xxs)==ht_,[x)xs for xXseVxIcVf
Ht{w)=w for weW—Vxl.

Consequently Hj is a diffeotopy which connects the imbeddings

<p, :ADA-^WD^W for i==o and i,

and the lemma is proved.
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We now recall the following generalisation of a theorem of Whitney and Wu:
Theorem of Haefliger [9]. — Let A^ and V3 be G00-manifolds which are

(k—i)-connected and ^-connected respectively.
Then
a) Any continuous map of A^ in V^ is homotopic to a differentiable imbedding

if q^ 2p—k-\- i and 2k<p (and to a differentiable immersion if q^- 2p—k and 2k<p,
A and V ^-connected).

b) Two differentiable imbeddings of A in V which are homotopic as continuous
maps, are different! ably isotopic if q^2p—k-{-2 and 2k<p-{-i.

Remark. — In Section sB we used part a) of this theorem for the case q == 2p == 2m,
with the choice k = i.

From the theorem we deduce in particular: for m>2, any two G00-imbeddings
cp^ z'==o,i, of S^"1 in S^"1 are differentiably isotopic. We apply this to obtain the
first part of the

Proposition. — For m^2 there is exactly one knot class K(y$ Y^; YoD^Y^), hence3
in view of the lemmas, exactly one knot-class A;(Y^; Y^D^Yo). If w=2, the knot class
K(<p; Y^ ; Y()D BYJ depends only on the function f. The same then holds/or k{Y^; Y^D BY^,
which we denote by k{'K,f).

To prove the second statement, we first note that any of the knot classes mentioned
is independent of the choice of level between f^o) andy^), because the i-parameter
group determined by the gradient lines ofy define suitable diffeomorphisms of the triples
(Y^; YQ 5 8Yo) associated with any two such levels. Secondly, the knot class is independent
of the choice of differentiable Riemannian metrics, for if ds[ and ds^ are any two, then
the metric ( i— t )ds^+tds^ for tel determines a diffeotopy of Y^ in ^Y^.

Problem. — It can be established that not every knot class A;(S1; S3) can arise as
above from a function. On the other hand, we know no nontrivial example of a knot
which does so arise.

G) Lemma. — Let D^p) ={(r, co) | r< p}, and let g,: aD^xD^po^aD2^^ 1,2)
be two differentiable imbeddings for some po>o.

If these determine the same differentiable knot class ^(BD^Xo); D^D^D2^) then for
any positive p<po there is a diffeomorphism g o/'D2^ such that

I) g2=g°gl

2) for every xeB^^ the restriction of g^logog^ to ^xD^p) is an orthogonal map
onto ^xD^p).

Proof. — By hypothesis there is a diffeomorphism h of D2^ such that

Ao^iaD^xo^^jaD^xo.
Now hog^ and g^ define the structure of an orthogonal disc bundle in the tubular
neighbourhoods Ao^BD^xD^po)) and ^(BD^D^po)).

Then there exists a diffeotopy h^ ofD2771, which keeps ^(^M^xo) pointwise fixed,
for which h^ is the identity map, whereas for some o <p<po, g^loh^ohog^ is an orthogonal
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bundle map of BD^D^p) (for a proof see Milnor, Theorem (5.2), Differentiable
structures. Mimeogr. notes Princeton University, Spring 1961). Finally, g=h^h is
the diffeomorphism of D^ required in the lemma.

Theorem. — Let f: X->R be a C^-nondegenerate function with three critical points.
If the knot class ^(X,/) is trivial, then there is a differentiable (0^, Wbundle Y-1- over ^m and
a diffeomorphism T : aY^aD^ such that X is diffeomorphic to Y+u^D^. We emphasise
that A(X,/) is trivial except possibly for m== 2.

Proof. — We introduce polar coordinates (r^, co^; r^ o^) of type m on the 2w-disc
YQ , with (ry + (r^)2 ̂  i. By Lemma 8C we can assume that Yo, = { {^; ̂ , Og) | ̂  ̂  p }
is represented in Y, by the set {(r^ , c^; r^, 6);) | (^^(r^i and r^p}, and that
these coordinates, as far as Y(^ is concerned, are related as follows:

(^> ̂ ; ̂  ^)== (v/1—7'!? ^i; ^5 ̂ i)0^).
where T((0i) is an orthogonal transformation operating in the (m— i)-sphere in which cjg
varies, and depends only on cor

YI can be coordinatized by {( r^ , coi; rg; co^) \r^ i, rg^p}.
We recall that the transversal foliation on Y() consists of the halfrays, which end

in the origin OQ and which are orthogonal to the concentric spherical level manifolds of/.
Now we glue Y^ along Y^ to a part YgcY^, which consists roughly of the points

{(r^ (0^ ̂  ̂ 2)\^+r^^i, r^p}

but which more precisely has the following properties:
a) YgDY^ is diffeomorphic to

D^xD^D^xD^p)

with product space coordinates (co^; r^, co^) for Yo^.
b) The boundary of YguY^ is smooth. In Y^ it has an equation of the kind

* / *\r2=Krw.
c ) This boundary is transversal to the transversal foliation of/. Then Y4" = YguY^

is differentiably an (0^, D™)-bundle over S"1, which is defined by the gluing trans-
formation T(coi) as function of c^ (See Steenrod [42, p. 98]). The manifold X—Y4-
is foliated by the trajectories which start at a^. Each of these meets BY'1" transversally
in one point.

Then X—Y'1' is diffeomorphic to D^ and the theorem follows.

9. The various dimensions (C°°).

A) The case m=2. We have seen in Theorem 6D that in this dimension X
(with the standard orientation) has the oriented homotopy type of Pa(C). In the
differentiable case we can obtain further precision as follows. In view of the rest of
this Section 9A we note that we have no example of any G00 manifold X which is
C^-different from P^C).
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Definition. — If V and V are differentiable ^-manifolds, then a differentiable
map 9 : V->V is said to be a tangential homotopy equivalence if 9 can be covered by a
bundle map ^ of the principal L^-bundles of their tangent bundles:

P(V) 4. P(V')

v—^v
This defines an equivalence relation, and the equivalence class of V is called its tangential
homotopy type.

With this terminology we can formulate a theorem of Pontrjagin (see Reeb-
Wu [25, p. 71]) as follows: Two oriented differentiable /^-manifolds have the same oriented
homotopy type if and only if they have the same oriented tangential homotopy type.

Proof. — The sufficiency is trivial. To prove the necessity, let 9 : V-^V be
such an oriented homotopy equivalence.

Then if 9-1P(V') denotes the L^-bundle over V induced from P(V') by 9, then
we have the following relations between characteristic classes:

^-^PCV')) = 9^2 (V) = Wa(V) (Whitney class)

W^-^V^^W^V^W^V), (Euler class)

ACy-'PC^WAC^) =A(V) (Pontrjagin class)

(The first two lines are consequences of the formulas in Section 50; the third is a
consequence of Hirzebruch's Signature (index) Theorem: T(V)==j^(V)[V]/3).

Since H4(V)=H4(V /)=Z3 we can apply [25, p. 71] to obtain a bundle iso-
morphism L : P(V) —> 9~1P(V'). The required covering bundle map is then

<^=90L :P(V)->P(V).

Thus we have the
Proposition. — Let X be a differentiable ^-manifold admitting a differentiably nondegenerate

function with three critical points. Then X with its standard orientation has the oriented tangential
homotopy type ofP^(C).

Remark. — In Section 98 below we give examples of differentiable manifolds
with the same oriented homotopy type and different oriented tangential homotopy types
(having different Pontrjagin classes) in dimension 8 and 16.

Corollary. — X admits an almost complex structure^ and with it X belongs to the complex
cobordism class ofP^(C).

Proof. — Let ^ : P(X) -> P(P2(C)) be any L^-bundle map covering an oriented
homotopy equivalence 9 : X-^P^C). Each reduction of P(P2(C)) to the unitary
group Ug (i.e., each almost complex structure on Pa(C)) determines through ^ a definite
Ug-reduction of P(X).

Suppose we fix any almost complex structure on X, and let ^.(X) denote
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its Chern classes. Then ^(X)[X]=^(X)=3, and using the general relation
^(^^(^—s^X), we have

c,{WX] =A(X) [X] + 2^(X) [X] = 3T(X)+ 2x(X) = 9.

Therefore the Chern numbers depend only on the oriented homotopy type of X.
But according to Milnor, the Ghern numbers characterize the complex cobordism class
of an almost complex manifold.

Remark. — If it were known that X admits an integrable almost complex structure,
then X would admit a complex projective-algebraic structure (Kodaira) and with it X
is biholomorphic with Pg^) (Hirzebruch-Kodaira [13], Van der Ven-Remmert [26]).

Theorem. — Let X be a C00-^-manifold admitting a C^-nondegenerate function f with
three critical points, for which the knot class A(X,/) is trivial. Then X is combinatorially
equivalent to Pg^). Furthermore X is diffeomorphic to 'P^{C) # S4'0 where S4'0 is a topological
^-sphere with some differentiable structure CT, and # denotes the connected sum of dijferentiable
manifolds.

Proof. — By Theorem 8C we know that X has the form Y'^u^D4, where Y4' is
a (Og, D2)-bundle over S2, whose boundary ^Y4' is diffeomorphic to S3. By Steenrod
[42, p. 99] we know that Y4' is the associated disc bundle of the Hopf bundle (with
Chern class ^ given by ^i[S2] == + i). Thus from the combinatorial point of view X is
the unique O^-manifold obtained from Y4" by attaching a cone to its boundary.

From the C^-point of view Y'1" is diffeomorphic to a tubular neighbourhood o
a Pi(C) in P2(C). Then Y4' is also diffeomorphic to the closed complement in Pa(C)
of a C^-disc D4 with smooth boundary BD4 in P2(C). Pa(C) then can be obtained
from Y4' by attaching D4 by some specific diffeomorphism ^ : OD^-x^f^. X on the
other hand is obtained from Y4' by attaching D4 by some diffeomorphism ^ : ()T)^->8Y+.
If the diffeomorphism C^o : ̂ D4-^^)4 can be extended over D4 then X is diffeomorphic
to Pa(C). If not, then the attachment ^-1^ '' ^D^BD4 defines an unusual G^-struc-
ture S4'0 on the 4-sphere D^-x^D4. In that case X^Y'^u^D4 is diffeomorphir
with P2(C)^S410.

Problem. — It is not known whether there exists any unusual C°°-structure on S4.
Even if S410 is G00-unusual, it is not known whether P^C) #S4'0 and P^C) are then
necessarily non-diffeomorphic.

B) The case w==4.
Theorem. — Let X be a C^-Q-mamfold admitting a C00-nondegenerate function with three

critical points. Then X is diffeomorphic to one of the manifolds X^ of Section 2C, with

h(h—i)/56=o mod i. ( i)

Thus h =0,1, 8 or 49 plus an integral multiple of 56. Conversely, each such h and diffeo-
morphism ̂  defines a manifold X satisfying our hypothesis.

Finally if X^' ^° is such a manifold then any other manifold with the same h is diffeomorphic
with:

x^=x^°^s8'0
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where S8' ° is a topological ̂ -sphere with differentiable structure a. According to Kervaire-Milnor [ 16]
there are only two cases, say a == o (usual) or a == i (unusual).

Proof. — In the construction of Section 8C we found that Y4' is the G00-total
space of an (8043 D4)-bundle with base space a topological 4-sphere with the usual
C°°-structure, represented by the zero crosssection of the bundle. That bundle is asso-,
dated with some principal bundle ,̂1-71 in the notation of Section sB. Thus Y'1" is
diffeomorphic to the C°°-manifold Y^.

But 8Y4' is diffeomorphic to S^^BD8 the smooth boundary of a G^-S-disd,
that is a 7-sphere with the usual G°°-structure. According to our classification of
G^-structures on S7 [7, § 6] we conclude that h must satisfy the congruence (i).

Conversely, we have shown [7, Theorem 6] that each value of A satisfying (i)
determines a bundle Y^-^-S4 with 8Y8 diffeomorphic to S7. If we take any diffeo-
morphism ^ : c^y-^Y8 we can form X^==Y^u^D8. By Proposition sD we know
that there is a nondegenerate differentiable function with three critical points. The
last part of the theorem follows from an argument as at the end of the previous Section gA.

Problem. — Are X8'^0 and X^^S8'1 diffeomorphic for some values h?
Proposition. — If X is diffeomorphic to X8' ^3 then its Pontrjagin numbers are

pW\X\=2\2h-lY

A(X)[X]=[45+22(2A-I)2]/7 (2)

Here we have assumed that X has the orientation described in Section 5B.
Proof. — It follows from the construction in § 2G that ,̂1-^ is the normal bundle

ofS4 in X8*^.
Therefore, if i: S4->X8'!: denotes the inclusion map, then

r^(x8^)=A(s4)+A(^l-.)
by Whitney duality (using the fact that X8' ^ has no 2-torsion; see Hirzebruch [i i, p. 68]),
But ^(S4)=o, and i* is an isomorphism by Theorem 5B. Relation (2) of Section 2
states that A(^,l-J[S4]=±2(2A—i), which proves the first relation in (2). Thesecond
follows from Hirzebruch's Signature Theorem [n, p. 85]:

T(X)=i==[7A(X)-A(X)2]/45.

The classification of homotopy types in Theorem 6D together with the above propo-
sition and relation (2)5 yields the.

Corollary. — The Pontrjagin numbers of a closed ^-connected differentiable ^-manifold are
not homotopy type invariants.

We have been informed by Milnor that he also has an example of a homotopy
type in which closed manifolds with different Pontrjagin numbers occur. That the
Pontrjagin classes are not homotopy type invariants has been known for some time;
see Dold [4].
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In contrast to Corollary 50 dealing with (non-oriented) cobordism classes we
cite the

Corollary. — The differentiable ^-manifolds which admit a differentially nondegenerate
function with three critical points, with the natural orientation of Section 58, lie in infinitely many
oriented cobordism classes, characterised by h{h— i).

Proof. — From Theorem 8E we see that for any integer h satisfying (i), there is
associated a manifold X^ of described sort, with Pontrjagin numbers (2). But from
Thorn [36, Th. IV. 2] we see that these manifolds belong to infinitely many distinct
oriented cobordism classes. In fact, since all the X^ have the same Stiefel-Whitney
numbers by Proposition 50, we infer from the work of Milnor and Wall [38, p. 293],
that two such manifolds are cobordant if and only if they have the same Pontrjagin
numbers.

Remark. — The A—genus of the differentiable model X^ ^ (see Borel-Hirzebruch [3])
is known to be an integer, and is

2-8A(X^)=A(X^)=(-4A+7^/27.32.5-A(^. (3)

In particular X^' ^ is a differentiable manifold with A(X|' ^) = i. Thus in problem 7
ofHirzebruch [12] the greatest integer b(k) such that for all manifolds M4^ with vanishing
second Stiefel-Whitney class the A-genus A(M4fc) is divisible by 26(A;), is for k ==2 equal
to 6(2) ==8.

Remark. — Let X denote any manifold as in Theorem gB. If £2X denotes the
loop space ofX based at any point, then its Pontrjagin ring H*(QX; Z) and its cohomology
ring H^QX; Z) are both those of ^Pg(K). For any such differentiable X we have
seen in Theorem 4A that (S~, a^) are homotopy complements of type (m, n) in the
terminology of Eells [5]; our remark then follows from Theorem 70 of that work. In
particular, the cohomology rings H*(X) and I-T(QX) together with H (QX) are not enough to
determine the homotopy type of a closed ^-connected ^-manifold.

G) The case m=8. The following results are proved analogously to those of § gB.
Theorem. — Let X be a differentiable i6-manifold admitting a differentiably nondegenerate

function with three critical points. Then X is diffeomorphic to one to the manifolds X^ of
Section 2G, with

h(h—i)
—„—— == o mod. i. (A)16256 V A /

Thus h=o, i, 1283 16129 plus an integral multiple of 16256.
If X^6' ^° is such a manifold, then the other such manifolds with the same h are the manifolds

which are diffeomorphic with X^6' ^ = X^ ̂  # S16' °, where S16'0 is a topological iQ-sphere with
some G00-structure a. The possible G°°-structures on S16 are not known.

Remark. — We do not know whether for m=6 and each h satisfying 4) there
is a manifold satisfying our hypotheses. The trouble is as follows: Given a differentiable
(SOg, D^-bundle Y^S8 with 8Y^6 homeomorphic to S15, the condition
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.w^ '̂-om.d.,
on our invariant [L [7, § 9] is a necessary condition that 8V^ be diffeomorphic to S15.
It is not known to be sufficient. The extent to which we can obtain a converse to
Theorem gC depends on the solution of the

Problem. — For what value of h is 8Y^ the boundary of a paralleli^able differentiable
manifold? See [7] and Kervaire-Milnor [16] for further details.

Proposition. — If X is diffeomorphic to X^6' ̂ , then its Pontrjagin numbers are ^ero except
for

A(X)^[X]=62(2A-i)2
. ̂  ry-, S^^+IQ^^-I)2 , ,A(X) [X]=—————^—————. (5)

Remark. — According to Corollary 4 of Atiyah-Hirzebruch [2], the modulo 48
reduction of the Pontrjagin class ^(X^)= =i: 2 (2^—i) is a homotopy type invariant.
Because of Theorem 6D we can use that reduction to distinguish the oriented homotopy types of
our differentiable 8-manifolds.

It is remarkable that this yields exactly the restriction to G00-manifolds of the
classification of homotopy types of the G^-manifolds X^, as given in Theorem 6D.
For our manifolds X^ the Atiyah-Hirzebruch invariant therefore gives the complete
homotopy type classification. For C^-iG-manifolds a corresponding statement is not
known.

10. Combinatorial manifolds without differentiable structure.

A) Proposition. — Let X^ be the combinatorial manifold of Section 2G; w=4 or 8.
If X^ admits a differentiable structure compatible with its combinatorial structure^ then

h(h—i) 156=0 mod. i ifm=^
h(h—i)/i6256so mod. i ifm==8.

By Theorem gB the converse is true for m == 4, and is unknown for m === 8.
Proof. — Any such X^ has second Stiefel-Whitney class W2(X^)=o, whence

by a theorem of Hirzebruch-Borel [3] its A-genus is an integer. But A(X^) = h(h— i) /56
as in (3) of Section 9, and A(Xi6) =(—192^4+208^)/215.34.52.7= A ( A — i ) / i 6256.

The proposition follows.
Remark, — Thom [37] used the example X^ to show the existence of a combinatorial

manifold with no compatible differentiable structure. His proof was based on the fact
that the combinatorial Pontrjagin number ^a(^) [̂ ] ls not an integer for certain
values of h (e.g., h ==2). Note by (2) of § 9 that X^ has integral Pontrjagin numbers
^==676 and ^3 =103 and yet no G^^compatible differentiable structure.

Remark. — Since Thorn's rational Pontrjagin classes of combinatorial manifolds
are combinatorial invariants, we see that there are infinitely many combinatorially inequiualent
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manifolds among the Xj"* in each homotopy type', m=4 or 8. We have the following
alternatives:

Either. — i) Certain two G^-different manifolds X^ and X^ are homeomorphic,
whence we can conclude that

a) The combinatorial Pontrjagin classes are not topological invariants; and
b) The Hauptvermutung for manifolds, saying that homeomorphic O^-mani-

folds are CP^-equivalent, is false; or
2) No two such manifolds are homeomorphic, whence our combinatorial classifi-

cation and the homeomorphism classification coincide. In that case we have new
examples of non-homeomorphic manifolds of the same homotopy type.

B) Theorem. — Let X^ be the combinatorial manifold of Section 2B. If X^ admits
any differentiable structure compatible with its topology, then

A=4j or 4j+i mod. 12 forjeL(m=^)
h=8j or 8j+ i mod. 120 forjeL (m==8).

For example, Xj does not admit any differentiable structure.
Proof. — Given a differentiable structure on XJ^, we apply a theorem of Smale [31,

Theorem D] to show that there is a differentiably nondegenerate function with precisely
three critical points. By Theorems gB and gC we find that X^ is diffeomorphic to
some X^'^ with h'{h'—i)==o(56) i fm=4, andsso (16256) if 777=8.

Thus for m= 4 we have h'-^o, i, 8, 49 mod. 56, whence h'=^j ov ^j-\-i mod. 12
for every jeL.

But by Corollary 6D we have h—A'ESO mod. 12 or h+h'^i mod. 12, and the
theorem follows for m == 4. The case m = 8 is similar.

. Example. — X| does not admit a O^-compatible G00-structure. We do not know
whether it admits a C°-compatible G^-structure.

Corollary. — Three of the six homotopy types of combinatorial manifolds X^ contain diffe-
rentiable representatives; the other three do not. Forty five of the sixty homotopy types of combinatorial
manifolds X^6 do not contain a differentiable representative.

Remark. — The first examples of closed combinatorial manifolds having the
homotopy type of no differentiable manifold were given by Kervaire [15] for dimension 10
and by Smale [31] for dimension 12. See also Wall [39]. In view of recent work on
the structure of the group 1̂  (see Smale [32] and Kervaire-Milnor [16]), it seems quite
possible that every combinatorial yz-manifold with n<8 does admit a differentiable
structure. In that case our 8-manifolds would be non-smoothable examples of the
lowest possible dimension.

G) Theorem. — The following statements concerning any two of our C013^-manifolds X^,
A==^o and h=h^ (w=4 or 8) are equivalent:

1) They are G01111^equivalent.
2) They have the same Pontrjagin classes.
3) h^=ho orh^==i—ho.
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Proof. — We represent X^ as Y^uC(aY^) where G(aY^) is the cone over the
boundary of the. G^-total space Y^ of an (SO^, D^-bundle over S^0. See Section 2.
This representation includes a unique combinatorial structure on X.

It is known (Milnor [19] and Shimada [29]) that such bundles ^ are classified by
their Euler number WJS) [S^, which in the present case is i, and their Pontrjagin
number

An/4^) [S"]= ±2(2^-1) form=4
±6(2^—1) for 772=8.

But as in Proposition 93 we know that ̂ (S) corresponds to ̂ (X) under the imbed-
ding i : S^-^X, where ̂ (X) is in view of Thorn's theory [37] on Pontrjagin classes for
G^-manifolds, an invariant of the combinatorial structure of X.

Now if (i) holds then consequently

(2^—l)=db(2Ao—l)

which implies (2) and (3). On the other hand (2) is clearly equivalent to (3), and if (3)
holds and h^==i—h^ (the other case is trivial) then ( i) holds in view of the explicit
combinatorial homeomorphism given in Lemma 6B.
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