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INTEGRAL POINTS ON CURVES
by SERGE LANG (1)

Siegel has shown in [14] that an affine curve f{x,jy)==o with coefficients in a
number field and of genus ^ i has only a finite number of points whose coordinates
are integers of that field. Mahler [8] has conjectured that a similar statement holds
for points having only a finite number of primes in their denominators, and proved this
for curves of genus i over the rationals by hisj^-adic analogue of the Thue-Siegel theorem.

In view of Roth's recent result, and the progress which has been made in the
theory of abelian varieties (especially the Jacobian) since Siegel and Mahler's papers
appeared, it seemed worth while to reconsider the question, and I give below a modernized
exposition of Siegel and Mahler's proof, which automatically carries with it a proof
of Mahler's conjecture. The Jacobian is used in order to take a pull-back over the
given curve of the standard covering given by u->mu-\-a where m is a large integer,
and ae] is a suitable translation.

Aside from Roth's theorem (whose statement is reproduced in § i) we use only
the classical properties of heights and the weak Mordell-Weil theorem. This paper is
thus a natural sequel of [7].

A proof of Mordell's conjecture [10] that a curve of genus ̂ 2 has only a finite
number of rational points would of course supersede the Siegel-Mahler theorem for such
curves, but I would conjecture that the latter holds in fact for abelian varieties : If A is
an abelian variety defined over a number field K, if U is an open affine subset, and R a
subring of K of finite type over Z, then there is only a finite number of points of U in R.
The difficulty in trying to extend the proof to abelian varieties lies in the fact that there
is a whole divisor at infinity, whereas for curves, there is only a finite number of points,
which are all algebraic.

It is easy to see that if the conjecture is true, then it remains true if K is replaced
by a field of finite type over Q ,̂ and R by a subring of finite type over Z. In § 7 we shall
carry this out for curves. This could be applied to strengthen in a like manner Siegel's
result on curves of genus o as on p. 47 of [14]. There is no point in carrying this out
here, but it is worth while to go deeper into one of Siegel's arguments.

We observe that if G is a group variety, and F a subgroup of finite type, then
there is a field K of finite type over the prime field over which G is defined, and over
which all points of F are rational.

Now the argument of Siegel can be used to prove the following theorem.

(1) Sloan Fellow.
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28 S E R G E L A N G

Let K be afield of characteristic o, and F a subgroup of finite type of its multiplicative group.
Then the curve ax-[-bjy==i with a,be'K and ab^-o has only a finite number of points
with x, y e F.

PROOF. If there were infinitely many, let m be an integer ^3. Then infinitely
many x (resp. y ) would lie in the same coset mod P", so that for such x and y we can
write x == a-f^ and y == a^, and we get infinitely many points in F x F on the curve

aa^+ba^^i

which has genus ̂  i. Contradiction.
The straight line just considered should in fact be regarded as a sub variety of the

product of the multiplicative group with itself. Recall that an algebraic torus (torus for
short) is a group variety which is a finite product of multiplicative groups. Infinitely
many rational points on the line give rise to integral points on a curve of genus ̂  i,
and using this same idea, we get more generally :

Let G be a torus in characteristic o. Let C be a subvariety of dimension i of G. Let F
be a subgroup of finite type of G. If C intersects F in an infinite number of points, then G is the
translation in G of a sub torus of dimension i.

PROOF. We can find a field K of finite type over Q^ over which G is written as an
72-fold product of multiplicative groups, over which all points of F are rational, and over
which G is defined. Let (^, . . ., x^) be a generic point of C over K. Then C has
genus o, and we can write x^=^(f) where <p^ is a rational function of a parameter t,
defined over K. We proceed as above. Let us take m large and relatively prime to
the orders of zeros and poles of the functions 9^). For suitable elements a^ . . ., <^eK,
the curve whose generic point is (^i, ...,i;J where ^==0^ (over possibly a finite
extension of K) must also have genus o. Consider first a covering of the Mine given
by the equation ^==0^^) with a, 9 any one of the a^ <p^. We use the classical formula
for the genus of a covering :

2 g'—2==m(2 g—2) +2(^p—l).

Then <p(^) can have at most one zero and one pole. Indeed, the degree is m, and the
ramification index above such a zero or pole is m also. We have m{2 g—2) ==—2 m,
and if there were at least 3 distinct zeros and poles, then the term S(^p—i) would
grow at least like 3(m—i), so we would get a covering of genus ̂ i, having infinitely
many points with coordinates in F, which is impossible.

After a linear transformation, we can write say for i'.== i,
x^=a^1

for some integer 7i=(=o. From the same argument, x^==a^{t) where <p^) is a power
of some linear transformation of t. In fact, <p^) = f^ because our covering has the
intermediate covering defined by the equation

^==0^X^=0^^
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INTEGRAL POINTS ON CURVES 29

which would be of genus ̂  i unless 9^) is of the prescribed type. We thus conclude
that C is the translation of a subtorus.

As Siegel already observed, the coset argument is formally the same as the one
used to carry out the proof that curves of genus ̂  i have only a finite number of integral
points, but using the Jacobian instead of the torus (cf. below Proposition i).

The analogy between toruses and abelian varieties was again observed by Chabauty,
who in two papers [2], [3] considers infinite intersections of a subvariety of a torus or
an abelian variety with particular subgroups of finite type, namely subgroups of units
and groups of rational points in a number field respectively. Thus one is led to generalize
and reformulate a conjecture of Chabauty [2] in the following manner, which includes
the Mordell conjecture.

Let G be torus (resp. an abelian variety) in characteristic o. Let V be a subvariety of G,
having an infinite intersection with a subgroup of finite type F of G. Then V contains a finite
number of translations of group subvarieties of G which contain all but a finite number of points
of VnF.

This statement has been proved above when V is of dimension i and G is a torus.
When G is an abelian variety and again V is of dimension i, this is MordelPs conjecture.
Of course, one may ask whether such a statement would not be valid also for a commutative
group extension of an abelian variety by a torus.

Returning to the question of integral points, we shall see that our theorems have
analogues in function fields K (finitely generated regular extensions) over arbitrary
constant fields k of characteristic o, and the finiteness statement can be given a relative
formulation : One proves that certain points have bounded heights (Theorems 2, 3).
In view of Theorem 3 [7], one sees that the conjecture we made above concerning integral
points on affine subsets of abelian varieties can also be formulated relatively : If A is
defined over k, if (B, r) is a K/A;-trace, then integral points of Aj^ lie in a finite number
of cosets of rB ;̂.

In this connection, the Mordell conjecture becomes a conjecture in algebraic
geometry, and it is worth while to make further comments on it here. Let k be as above,
'K==k{t) a function field over k, where t is the generic point of a variety T, and let C
be a curve of genus ^2, defined over K. Then C==C^ can be viewed as the generic
member of an algebraic family. The conjecture then asserts that if G^ has infinitely many
rational points in k{t) (cross sections of the parameter variety T in the graph of the family)^ then C^
is birationally equivalent over k(t) to a curve CQ defined over k, and all but a finite number of these
points arise from points of Co in k.

Evidence for this comes from the special case where C(=G() is already defined
over A, and then one obtains a classical theorem of de Franchis, to the effect that given a
variety V and a curve C of genus ^>2 (m characteristic o) there exists only a finite number ofgenerically
surjective rational maps of\ on C. We give a quick proof of this theorem. Taking a generic
hyperplane section U of V and inducing the rational map on it, one reduces the theorem
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30 S E R G E L A N G

to the case where V is itself a curve. Indeed, two distinct generically surjective rational
maps f, f' : V~^C induce distinct generically surjective maps on U, as one sees by
taking the induced homomorphisms on the Albanese varieties, using Theorem 4 of [5],
Chapter VIII, § 2.

Assuming now that V is a curve, we have the formula for the genus :
2^(V)—2=<2^(G)—2]+X

where ^^o. Thus the degree of V over G is bounded. Taking suitable projective
embeddings, we see that the degree of the graph of our rational maps f must be bounded.
Hence these graphs 1̂  lie on finitely many algebraic families on V X C. On the other
hand, a generic element of such families is likewise a generically surjective rational
map of V onto C (as one sees by projecting on both factors). Taking the induced
homomorphisms on the Jacobians, and using the fact that an abelian variety has no
algebraic family of abelian subvarieties, we see that all induced maps coming from
the same family differ by translations. We use now the fact that C is not equal to a
non-zero translation of itself in its Jacobian. (If it were, so would the divisor ©, and it
isn't, even up to linear equivalence by Th. 3 of Ch. VI, § 3, [5].) We conclude that a
graph Ff actually must constitute by itself a maximal algebraic family on V X G, and
thus finally that there is only a finite number of such graphs, or mapsy. This concludes
the proof. (When V is a curve, we do not need characteristic o, only the assumption
that the map / : V->-C is separable, to be able to use the genus formula above.)

The Mordell conjecture thus gives rise to diophantine criteria for lowering fields
of definition, and we can actually prove such a criterion in the context of integral points
(Proposition 2).

One remark on notation to conclude this introduction : If 0 is a set of geometric
objects, and K a field, we denote by 0^ the subset ofO consisting of those objects which
are rational over K. For example, if V is a variety defined over K, then V^ denotes the
set of its rational points in K.

§ i. Diophantine approximations.

Let K be a number field (by definition, a finite extension of the rationals Q^) and
let N = [K : QJ be its degree over Q^. For each prime p of K (finite or archimedean)
let Np=[Kp : Q^] be the local degree of the completions. I fp is archimedean, then
Q^==R is the field of real numbers. Otherwise, it is the field ofj^-adic numbers where p
is a prime number. We denote by |^ |p the absolute value on K corresponding to the
prime p, which induces on Q^ the usual absolute value if p is archimedean, and otherwise
the p-3.dic absolute value, so that \p\p=z1|p- We assume that this absolute value is
extended to the algebraic closure K of K in some way. This amounts to embedding K
in Q^p and taking the absolute value induced by that of Qp.

If p is an element of K, we can define its height
HK^risup^lEBlp)^

p
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INTEGRAL POINTS ON CURVES 31

the product being taken over all primes ofK. More generally, if P is a point in projective
Tz-space, with coordinates (^o, . . . 5 Sn) rational over K, then

HK(P)=risup,[|^].
P

The product formula [i] guarantees that this does not depend on the choice of coordinates.
Thus HK((B) is the height of the point having (i, p) as coordinates in P1, and if p 4 = o we
see that H^(p) =HK(I/P). If ^==mfn is a rational number, with m, n relatively prime
integers, then HQ((B) ==sup(|m , |7z | ) .

IfK is fixed, and the reference to a projective space is fixed throughout a discussion,
then we write H instead of H^.

We recall that one can define the absolute height

A(P)=HK(P)1/[K:Q]

which is then independent of the field in which P is rational. Thus H^ is a function on
points in projective space rational over K while h is a function on points in projective
space rational over K. Note that A(P) ̂  i and HK(P)^I.

Two positive functions X, \' on a set of points are called equivalent (we write \^V)
if there exist two numbers c^ c^> o such that

qX^X^^X.

It will also be convenient to define X, \' to be quasi-equivalent (we write \w\') if given
e>o, there exist two numbers c^ ^>o, depending on s, such that for all points P in the
set, we have

^(P)1-5^^?)^^?)^6.

These relations are obviously equivalence relations (symmetric, reflexive, transitive).
On the set of elements aeK such that K=Q/a), our function H^ is equivalent

to the height function used for instance by Roth, i.e. the maximum value of the coefficients
in the irreducible equation satisfied by p over Z, the integers. This is trivially verified.
If E is a subfield of K, then on E we have H^ = H^: E]. From this one sees immediately
that the set of elements of K of bounded height is finite (such elements can satisfy only
a finite number of equations over Z).

The Thue-Siegel-Mahler-Roth theorem (Roth's theorem for short) can be stated
as follows. Let a he algebraic over K. Let K be a number > 2, and let S be a finite set of primes
of K. Then the solutions p in K of the inequality

n.f(,, i.-?i.)̂
have bounded height.

For a proof, see for instance [12], which follows Roth closely, includes the Mahler
version, and obviously generalizes to number fields. Of course, the set of elements
of K with bounded height is finite, but we have stated the theorem in the above form
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32 S E R G E L A N G

so as to have a uniform terminology with the function field case (characteristic o). We
discuss this below. The above statement can be slightly strengthened (as in Mahler) :
If b is the ideal which is the denominator in the ideal factorization of ? in K, and if one
defines |6|p for finite primes p in the obvious manner, then one can replace |oc—p |p
by [a—(B[p b |p in the above inequality, for the finite primes appearing in S.

Actually, for the sequel, we need only the approximation for one prime : The solu-
tions p in K of

^-N^H^
have bounded height. In fact, we shall need it in the following context, as in Mahler [8].

Let G(Y) be a polynomial in K[Y], and assume that the multiplicity of its roots is at most r
for some integer r>o. Say G has leading coefficient i, so G(Y)==II(Y—a^. Let c> o
be a number, and p a prime of K. Then the solutions p in K of

l̂ l̂ r
have bounded height if x> 2.

It is a trivial matter to get this from the preceding statement. Indeed, our
absolute value comes from an embedding of K in Kp. If p stays away from all the 0^3
our statement is clear. If p comes close to one of them, then its distance from the others
is greater than some fixed lower bound. Thus in evaluating [ G(R) [p precisely one
term [o^—(B [p1 becomes small, and we get

l^——Plp^^^xr

for a suitable c'>o, and a sequence of R's such that H(P)->oo. Since e^r, we can
replace it by r, still preserving the inequality, and then take an r-th root. By making x
a little smaller, but still > 2, one can omit the constant c ' y and thus reduce our statement
to the previous one.

Note that if we put G(Y) =Y—a, we recover Roth's theorem in its original form.
We now discuss the function field case. Let K be a function field (of arbitrary

dimension) over a constant field k of characteristic o. Let W be a projective model
of K over A, non-singular in codimension i. Let w be a generic point of W over A, so
that we can write K=k{w). As in [7] we use W to compute heights. If p is a prime
rational divisor of W over A:, then deg(p) denotes its projective degree. We then have
the absolute value

| ? [ = ̂ sWo^p ^

where ordp^ is the order at the discrete valuation determined by p, and y ls a fixed
number, o<Y<^I• Thus

H^H^^I/Y)^
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INTEGRAL POINTS ON CURVES 33

where rf(i;) =deg(S;)^ is the degree of the divisor of poles of ^. More generally, if
(^o, . . ., ^J is a point in P'1 over K, then

^P^i/Y)^811^-.

Thus in function fields, it is convenient to take the log to the base y-
For each p we suppose our absolute value extended to K in some fixed way. Then

the statement we gave above ofRoth's theorem holds in the present situation. This is seen as follows.
First, one reduces the situation to the case where K is of dimension i over k, by taking
generic hyperplane sections. Let L^ be a generic hyperplane over A:, and (w^ . . ., wj
an affine generic point of W over k. Let t=u-^w-^-{- .. . -\-u^uo^ and let k'=k(u^ . . .5^, t)
(cf. [4], Ch. VIII, § 6). The generic hyperplane section W =W.L^ is defined over k ' y
assuming that dimW^2. If p is a prime rational divisor ofW over k, then p'==p.L^
is a prime rational divisor ofW over k ' ' . If ^ eK is a function on W, and ^/ the induced
function on W, then {^')^==(^)^ .L^. Thus the height remains invariant by going
over to generic hyperplane sections :

H^(P)=H^(P)

if P is a point in P71 rational over K. (Geometrically speaking, the point P gives rise
to a rational map of W into ̂  and the induced rational map of W7 into P^)

The absolute value | |p described previously extends to the field K(^, . . . ,^J
in such a way that it is trivial on k(u^ ..., u^ t), and corresponds to the prime divisor p'.
Consequently, we see that if we prove Roth's theorem for the field K7 =K(^, . . ., u^)
viewed as function field over the constant field k\ relative to the model W (which is
projective and non-singular in codimension i) then it will follow for (K, k, W). This
brings us to the function fields in one variable.

As for those, a prime p is then a conjugate set of points over A;. One sees immediately
that we may go over to the algebraic closure of A, and then, in terms of orders, to prove
the theorem in the following form :

Let K be a function field of one variable over an algebraically closed constant field k of charac-
teristic o. Let S be a finite set of primes of K over k. Let a be algebraic over K. Then the
degrees deg(^}^ of elements P in K satisfying the inequality

^ ord,(a-(B)^xdeg((B), (x> 2)
pes

are bounded.

Actually, one gets a finiteness statement, because of the following remark : Let (B^, (Bg
be solutions of the above inequality such that rf(Pi) = d{^) == d is > o. Then pi = (Bg.
Indeed, we get

ord^—^xrf.

But deg((3i—^oo^:2 ^- If Pi+^29 Aen Pi—Rg has more zeros than poles, which
is impossible.

325
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34 S E R G E L A N G

We observe that rf((B) = o if and only if (B is constant, i.e. lies in k. (In terms of
heights, this means H((B) == i.) Thus finally, we can state Roth's theorem in dimension i
in the following form, say for one prime p :

Let a be algebraic over K. There is only a finite number of elements (BeK which are not
constant (i.e. not in k) such that

ordp(a—[B)^xrf((B)
if x>2.

The proof of Roth's theorem for function fields in one variable is essentially the
same as Roth's own proof. One must use the Riemann-Roch theorem precisely in the
place where Roth does his counting to get his crucial polynomial. By the way, in number
fields at this point, it is best to use the known estimates giving the number of algebraic
integers in given parallelotopes (as in Artin-Whaples Theorem 4 [i]). For an exposition,
cf. mimeographed notes to appear in the near future.

§ 2. A geometric formulation of Roth's theorem.

In this section we give a formulation of Roth's theorem which is adapted to the
use we wish to make of it afterwards. We let K be a global field : This means a number
field, or a function field over a constant field k which we assume of characteristic zero
for this section. In the function field case, heights are taken with respect to a model as
described in § i.

THEOREM i. Let W be a complete non-singular curve defined over K. Let ,̂ y be two
non-constant functions in K(W), and let r be the largest of the orders of the j^eros of .̂ Assume
that y has no ^ero or pole among the ^eros of ̂ , and that y gives an injective mapping of this set of
^eros into K. Let y. be a number > 2, and c> o. Then the points Q^W^ such that

c
l^iyj p^:Tj/,./r^\\%r"^'^HC^Q))-

have bounded height Hy.

PROOF. Without loss of generality, we may assume that K(^,^)=K(W). If
necessary, we may consider the complete non-singular curve which is a model ofK(^,j/)
instead of W. Our assumptions will still be valid for this curve. We may also assume
that the values IJ^QJ |p are bounded. Indeed, if there is an infinite sequence of points Q^
whose height Hy(QJ ==H(^(QJ) tends to infinity, and satisfying the above inequality,
but with [j^(QJ |p unbounded, then we may consider ify instead ofj/, together with an
infinite subsequence of such points Q .̂ Let 0 be the set of zeros of ^. Since y has no
pole in <I>, it is integral over the local ring 0 of the point ^ == o in the function field K(^).
Let F(Y) be its irreducible equation over 0. Then

F(Y)=G(Y) (mod ^
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INTEGRAL POINTS ON CURVES 35

where G(Y) is a polynomial with coefficients in K, leading coefficient i, and mod ^
means modulo the maximal ideal of 0 generated by ^.

By hypothesis,^ induces an injection Q-^(QJ of 0 into K. The multiplicity
of a root ofG(Y) is thus ̂  the multiplicity of a point on W in the inverse image of ^==0,
this being the multiplicity of a zero of ^. (One can see this formally for instance as
follows : Let (V^) be an affine generic point of W over K all of whose coordinates are
integral over o. If (j^, . . .^w) is a complete set of conjugates of (j^) over K(z),
then the cycle on W which is the inverse image of ^ == o consists of a specialization
(3^ •••J^) of (j^, ....V^) over ^->o. The conjugates of y correspond to the
conjugates (j^, . . .^w), and one can then use [4], Theorem 2 of Chapter I, § 4, applied
to the polynomial F(Y).)

We can write

F(Y)=G(Y)+^,Y)

where A(z, Y) is a polynomial in Y with coefficients in 0. Since A(o, Y) is defined,
so is A(^(QJ, Y) for small values of |z(Q,) |p, which is all that we need to consider. Thus
the values

|A(^Q.),j'(QJ)lp

remain bounded since we could assume that |^(Q.) |p remains bounded. Since F(j) == o,
we get an estimate for G(}>{Q_)), namely

lGO'(QJ)lp^ik(Q.)|p

^H^Q.))-

which puts us precisely in the situation described in § i, and concludes the proof.

§ 3. Behaviour of heights under projection.

We use the same notation as in [7]. For this section, K is a global field. Property
i F of [7] is still clearly valid without the restriction dim K=i, and so are the other
Properties 2, 3, 4 and Theorem 3, where dim K == i is not assumed.

Let V be a variety defined over K. For each morphism 9 : V-^Pn (everywhere
defined rational map) defined over K, we have height functions on V^ and V^, namely

H,(P)=H(9(P)) and ^(P) =A(cp(P)).

We do not repeat here the discussion establishing the correspondence between maps
of V into Pn and linear systems on V, but to fix the notation, if V is complete, normal,
if X is a divisor on V rational over K, and oSf(X) is its complete linear system, and if
we assume that oS^(X) is without fixed point, then we denote by Hx (or h^) the height
associated with any map into projective space arising from this linear system. These
are well defined up to equivalence.

327
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36 S E R G E L A N G

Foremost among the properties of heights is Property 4 (due to Well) that the
heights associated with two linear systems without fixed points whose divisors are linearly
equivalent to each other (i.e. having the same complete linear system) are equivalent.
This property will be used constantly in what follows.

The local behaviour at a point on a variety is represented by local parameters,
and it is frequently more convenient to deal with these than with the coordinates in a
projective embedding. In the following discussion (which depends only on Property 4
of heights), we make a generic projection and compare the heights arising from the
embedding and its projection. We adjust the discussion to the immediate application
we have in mind, and thus restrict ourselves to the case of curves.

Let W be a projective non-singular curve defined over K. The height h (or H)
is taken with respect to this embedding. Let (j^, ...,^J with jyo==i be functions
in K(W) determining our given embedding. Let 0 be a finite set of points of W in K.
Then there is some polynomial equation such that if [a^ . . ., a^ b^ .. ., b^) are elements
in k not satisfying this equation, then the function

_WQ+ '- +Vn
y &^+...+^

has the following properties :

The function y is not constant, and has no ^ero or pole among the points of'0.
If hy is the height determined by the mapping ofW into P1 arising from the function y, then

hy^h,

and thus Hy^/H {as functions on Wg).
The mapping

Q-^(QJ
gives an injection of $ into K.

These properties are easily proved. Indeed, let Q^ be a point of W in K. If t is
a function of order i at Q, then each y^ has an expansion as a power series in t, say
y^ == ̂ ei + . .. with an integer ^, which may be negative. We see that there is a poly-
nomial GQ (linear) such that for any set of elements (^, . . ., a^) in k for which Gq^a) 4= o,
then ^oJ^o+ • • • "I'^nJn has order ^ at Q^, where e=in{e^ Taking Q^from a finite set 0,

we then take the product of the GQ for Q^e$, and achieve the same thing for all Q^eO.
If OQ denotes the sup of the polar divisors of our given y^ then we see that almost

all linear combinations a^y^ + .. • + ^nVn have precisely do as polar divisor. Furthermore,
applying the above remarks to zeros instead of poles, and taking into account that the
linear system determined by (1,^1, . . .^J is without fixed point, we see that we can
make a sufficiently general choice of a^ and ^ such that the function y has no zero or
pole in $, and its divisor

(-^(A-OOoo
328



INTEGRAL POINTS ON CURVES 37

is such that {y)^ lies in the above linear system. According to Property 4 of heights,
it follows that h is equivalent to h.

To insure that the map CL—^Q,) is injective, we select among thej/, (for each Q)
that function having the highest order pole at Q^and denote it byj^. All quotients y^y^
are defined at Q, and we have

W)(QJ+ ... +Wz(QJAW=WQ)+ ... +WQJ
where Wi=yjy^ (Strictly speaking, each w^ should carry Qalso as an index.) We can
choose the ^ so that the denominator does not vanish, and the condition that ^(QJ +JKQ")
when Q=[= Q^ are two distinct points of 0 is immediately seen to be implied by the non-
vanishing of a polynomial in the ^ and b^ This concludes the proof of our three
statements.

REMARK. Given a subfield E of K(W) containing K, and such that K(W) is finite
separable algebraic over E, then it is clear that in addition to the above conditions, we
can also require y to be a generator of K(W) over E.

Putting the results of § 2 together with the technique of generic projections, we get
a more useful version of Theorem i :

THEOREM i7. Let W he a protective non-singular curve defined over a global field of
characteristic o. Let ^ be a non-constant function in K(W), and let r be the largest of the orders
of the ^eros of ̂ . Let K be a number >2 and c>o. Then the points Q^W^ such that

I^Q)p^H(QJ-
have bounded height.

PROOF. We let O be the set of zeros and poles ofW, and apply Theorem i, taking
into account the properties of Hy and its relation to H, the height taken relative to the
given embedding of W in a projective space.

§ 4. Another property of heights.

Let K be a global field. As pointed out already, linear equivalence of linear
systems gives rise to equivalent height functions. We shall now prove that algebraic
equivalence gives rise to quasi-equivalent height functions. We need a lemma from
pure algebraic geometry.

LEMMA. Let V be a complete non-singular variety. Let X be a divisor on V such that
some multiple eX. is ample (e an integer >o). Then there exists an integer e'>o such that for
any divisor Z on V algebraically equivalent to o, the divisor Z+^X is ample.

PROOF. Let A be the Picard variety ofV. We can always find a Poincare divisor D
on VxA which is positive : I fVis an abelian variety, this is Theorem 10 of Chapter IV,
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§ 4? [5]? ^d otherwise, making a generic translation on D, the pull-back method ofWeil
gives a positive Poincare divisor on VxA {ibid., Theorem i of Chapter VI, § i).

By hypothesis, Z^D(a)—^(o) for some point aeA. The intersections are
defined after making a generic translation on D. It is well known that there exists an
integer ^>o such that —^(o) +^iX is ample (see for instance [9], Lemma i). Further-
more, the divisors ^{a) as a ranges over A are all algebraically equivalent to each other,
are positive divisors, and have the same projective degree. Hence there exists an integer
^2>o such that ^{a) +^X is ample, again by [9], Lemma i. From this our lemma is
immediate.

PROPERTY 5. Let V be a complete non-singular variety defined over K. Let X, Y> o
be two positive divisors on V, rational over K. Assume that a positive multiple of each is ample,
and that the linear systems JS^(X) and JSf(Y) are without fixed points. 7/^X and Y are algebraically
equivalent, then h^ and Ay are quasi-equivalent {and so are H^ and Hy).

PROOF. Using property 4, we shall reduce our assertion to a statement concerning
linear equivalence classes of divisors on V. By the lemma, there exists an integer e> o
such that for all %>o we have

n(X—Y)+^X-/Z^

where Z^ is a positive divisor on V, and oSf(ZJ is without fixed points. Since
n(X—Y)+^X is rational over K, one may take Z^ rational over K. We get
nX+^X^nY+Z^, and taking heights,

^+e-^^.

Since A^(P) ̂  i for all P, taking an n-th root, we see that given e>o, there exists a
number c>o such that

^(Pr^W

if we take n sufficiently large. The other inequality is obtained in a similar way, or by
symmetry.

When V is a curve, the statement is due to Siegel [14] whose proof we essentially
imitate here, except that of course Siegel uses the Riemann-Roch theorem where we
have used the Picard variety (see for instance [15], p. 435). In the case of curves,
algebraic equivalence is determined by the degree of the divisor, and hence if deg(X)==rf
and deg(Y)==rf /, then h^ is quasi equivalent to h^'.

In particular, we note that if a set of points on the curve V has bounded height
in some projective embedding, then it has bounded height in every projective embedding :
The notion of a set of bounded height is independent of the embedding.

§ 5. Inequalities from the theory of heights.

We come now to the proof of the diophantine theorem proper.
Let G be a non-singular curve, of genus ^ i, imbedded in some projective space over the

global field K. The height H as a function on C^ is determined by this embedding.
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Let x be a function on C, defined over K and not constant. Then (13 x) determines a
mapping of G into P1, and the corresponding linear system is of degree

r=[K(G) :KW],

a divisor in it being, for instance, the divisor of poles of A:. We assume that K(G) over K(A;)
is separable. (At the very end, and only then, do we need characteristic o, to contradict
Roth's theorem.)

Let S be a finite set of primes ofK., containing the archimedean primes, and let R be a subring
ofK all of whose elements are ^-integral for p not in S. Let 91 be the set of points ofC rational
over K, and such that x(P) lies in R. We wish to prove that the height of the points in 9t is bounded.
We assume the contrary, derive a list of inequalities which eventually contradict Roth's
theorem. We let 9li be a subsequence of 91 such that the height of the points in 9?i
tends to infinity.

By assumption, we have |S|p^i for p^S and ^eR. Hence for all Pe9?i,
we get

H(^(P))=nsup(i, |^p)|»
pes

where Np is the local degree in number fields, and i in function fields. Let N=[K : Qj
in number fields, and i in function fields. Let s be the number of primes in S. Rewriting
our product in terms of the absolute values, we see that we have at most NJ terms in it,
of type

sup(i, <P)|p).

Consequently, for each Pe9?i, there exists one p in S such that \x(P) Ip^H^P))1^.
Hence there exists an infinite subset 9^ of 9li such that for some p in S and all points P
in 9?2 we have

H^P))^^!^?)!?.
In view of Property 5, we can compare H(;v(P)) and H(P). If d is the degree

ofC in its given projective embedding, and 9 the mapping into P1 given by the function x,
we conclude that there is a number ^> o depending on s such that for P in C^ we have

^P^-^H^P)).

Combining this with the previous inequality, we see that there is a number p>o such
that for some peS and all Pe9?2 we have for suitable ^ > o :

H(P)^KP)|p.

This inequality will be improved by going over to a covering of C, derived from the
weak Mordell-Weil theorem. Furthermore, the arguments will prove the following
improvement of Theorem i', for curves of genus ̂ i.
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THEOREM 2. Let K be a global field of characteristic o. Let p, c be numbers > o.
Let C be a curve of genus ̂  i defined over K, ^d? x a non-constant function in K-(C). Let p be a
prime ofK. Then the height of points P in C^ such that

KP)lp^H(iy
is bounded.

(To apply the theorem, use the function ifx instead of x.)

§ 6. Inequalities from the MordelI-Weil theorem.

We assume that C is embedded in its Jacobian J over K, and take J embedded in
projective space. We take the induced embedding on G. For any point P^JK we
let H(P) be the height determined by our embedding, which remains fixed throughout.

In view of the definition of the height, and of | L, we may, without loss of gene-
rality, in the function field case, assume that the constant field is algebraically closed.
This insures that for an integer m> i we haveJ^/wjK finite.

PROPOSITION i. Let m be an integer > o, unequal to the characteristic of K. Let Q
be an infinite set of rational points ofC in K. Then there exists an unramified covering CD : W->C
defined over K, an infinite set of rational points G' ofV^fin K such that <o induces an injection ofQ'
into (3, and a projective embedding ofVf over K such that Hoco is quasi-equivalent to H^2. {Of
course, in Hoco the H refers to the height on C, while in H^2 it refers to the height on W.)

PROOF. Let a^ . . ., (^ be representatives of cosets of JK/^JK- Infinitely many
PeS lie in the same coset, and so there exists one point, say a^ and infinitely many
points Q in J^ such that mQ^-\-a^ lies in®. We let Q' be this infinite set of points Q.
The covering o : J—-J given by c^u = mu -\- a^ is unramified, and its restriction W to C is
non-degenerate, i.e. is an irreducible covering of the same degree [6]. The inverse
image of a point in G lies in W. Thus ©/ is actually a subset ofWg. Restricting one's
attention to a subset of Q' guarantees that o induces an injection on this subset.

To prove the relation concerning the heights, we may work on the Jacobian itself
since we take W in the projective embedding induced by that ofj. If X is a hyperplane
section ofj, then

^-\X)={mSr\X_J=m2X

where = is the equivalence of the square, known to be the same as algebraic equivalence.
But h^-i^^h^o^ by Property 3 of heights (which is trivial) and h^-i^ behaves essentially
like A^x^^x2 by Property 5. Our proposition is now clear, since for rational points
in K, these equivalences are valid for H.

We note that x(P) == A:(coQ). Let ^ be the function on W such that -^(QJ = x(^Q_).
Let x be a number >2 and let m be large enough such that m2p>xr. Then for a suitable
constant c^ our inequality becomes

|<(CD ̂ H(^
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which is precisely the case treated in Theorem i7 . The fact that W is unramified over C
guarantees us that the orders of the zeros of ^ are bounded by r. This concludes the
proof of the original statement and of Theorem 2.

It is striking that the use we made of the Jacobian is formally analogous to the
one in class field theory [6]. In that case, Artin's reciprocity law was reduced to a formal
computation in the isogeny u-^u^—u of the Jacobian. In the present case, the heart
of the proof is reduced to a formal computation of heights in the isogeny u->mu-\-a.

§ 7. Extensions of finite type.

We shall extend the Siegel finiteness statement to rings of finite type over Z, and
its analogue in function fields, including the relative case. We reduce our theorem to
the case of dimension i (number fields, or function fields of one variable). We begin
by giving a criterion which allows us to lower the field of definition of a curve.

Let K be a function field over the constant field K-o, which need not be algebraically
closed, but which we assume to be of characteristic o. If its dimension is >i, we select a
projective normal model, relative to which we take our heights.

Let G be a complete non-singular curve defined over K. If SR is a subset of C^,
and the height of the points in SR is bounded in some projective embedding ofC, then it
is bounded in any other, as mentioned above. The next proposition deals with such
sets. For the K/Ko-trace, cf. [5], Chapter VIII.

PROPOSITION 2. Let K, KQ be as above, and G a complete non-singular curve of genus^ i,
defined over K. Let 9? be an infinite subset of C^ of bounded height. Regard G as embedded in
its Jacobian J over K, and let (B, r) be a 'Kf'K.Q-trace of J. Then T is an isomorphism. The
points of y{ lie in a finite number of cosets of rB ,̂ and if infinitely many of them lie in one coset,
so are of type a-\-rb where a is some point ofj^ and b ranges over an infinite subset of Bg, then
Co=T—l(G_J is defined over K.o, and T induces an isomorphism of CQ onto C_^.

PROOF. We may assume J, B embedded in projective space. Using the auxiliary
model of K over K() as in [7], we see from Theorem 3 and Proposition 2 of [7] that the
points of 9t lie in a finite number of cosets of rB^ . Say infinitely many lie in the coset
^Z+^K,,- We know that T establishes an isomorphism between B and r(B) by Cor. 2
ofTh. 9, Ch. VIII, [5]. Since infinitely many points ofrB^ lie in C_^, it follows that
their K-closure in rB or in J is precisely C_^. Put Co==T—l(C_J. Then CQ is a curve
contained in B, and T induces an isomorphism T() of Co onto C_^. Furthermore, Co contains
infinitely many points b of B rational over KQ. It is then a trivial matter to conclude
that GQ is defined over KQ because these infinitely many points are both Kg and K-dense
in Co. Since rB contains a translation ofG, it follows that rB==J is the Jacobian, i.e. T is
an isomorphism.

REMARK. If we do not assume characteristic o in Proposition 2, then T is merely
bijective, and Co may be defined over a purely inseparable extension of Kg.
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COROLLARY. Let K, KQ 6^ <2j' above. Let C be a complete non-singular curve of genus ^> 2
defined over K, ^zrf Z^ 9t ^ tiw infinite subset of C^ consisting of points of bounded height. Then
there exists a curve Co defined over K-o awrf <2 birational transformation T : Co->C defined over K,
j^A ^A^ all but a finite number of points ofy{ are images under T of rational points of Co î  KQ.

PROOF. Since the genus is ^2, the curve cannot be equal to any translation of
itself in its Jacobian. Hence there can only be one coset having infinitely many points
of G and we apply the proposition.

Combining our corollary with the results obtained in the previous section, we get
the relative formulation of Siege? s theorem.

THEOREM 3. Let K be a function field over a constant field k of characteristic o. Let R
be a subring ofK. of finite type over k. Let C be a complete non-singular curve of genus ̂  i defined
over K, and (p a non-constant function on C also defined over K. Let 91 be the subset of C^ consisting
of those points P such that <p(P) eR. If^ is infinite, then there exists a curve Co defined over k,
and a birational transformation T : C^-^C defined over K. If the genus is ^12, then all but a
finite number of points ofy{ are images under T of points of C^. If the genus is i, then the pointy
of 9? lie in a finite number of cosets O/"T(CO/(;).

To deal with the absolutely algebraic case, we need a specialization argument.

THEOREM 4. Let K be afield of finite type over Q^, and R a subring ofK. of finite type-
over Z. Let G be a non-singular curve of genus ̂  i defined over K, and let 9 be a function in K(C)
which is not constant. Let SR be the subset ofC^ consisting of points P such that cp(P) eR. Then 9t
is finite.

PROOF. We may assume G projective non-singular. Suppose 9? infinite. Let k
be the algebraic closure of Q^ in K. Then by Theorem 3, C is birationally equivalent
over K to a curve Co defined over k. If the genus of C is i, we restrict our attention
to an infinite subset of points of9t which lie in the same coset ofT(Co^). Then, without
loss of generality, we may assume G = Co, and that we have infinitely many points of C
in K such that <p(P) eR, where 9 is a function on C defined over K. We shall now
prove our theorem by induction on the dimension of K over Q .̂

Let F be a subfield of K containing A, and such that the dimension of K over F is i»
There exists a discrete valuation ring 0 of K containing F and R whose residue clas&
field E = 0/m is finite over F, and such that the reduction (p 'ofcp mod m is a non-constant
function q/ : C->P1 (of the same degree as cp). For any point Q^ofC^, we get a specialized
point Q^ in C^, and cp^Q^^^QJ', using the compatibility of intersections and reduc-
tions, i.e. formally, using the graphs :

[^.(QxP^r-r^xP1)
the left hand side being Q,X<p(QJ and the right hand side being Q^X^^Q^). This
yields infinitely many points Q^ of C^ such that ^'(Q,') lies in the ring R', image of R in
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the homomorphism o->o/m. Since E is of finite type over Q^ of dimension one less than
that of K.5 and since R' is still of finite type over Z, this concludes the proof.

REMARK. The theorem could also be proved by using Neron's theorem which
implies that say for an affine curve f(Ky Y) ==o of genus ̂  i with coefficients in R, there
exists a homomorphism R-^R' of R into a ring R7 contained in a number field such
that if J^(X, Y)==o is the specialized curve, then its genus is also ^i and the homo-
morphism R-^-R/ induces an injection of the points of fin R into those off in R'.
(See [n],Th.6.)

Columbia University, New York.
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