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fondation des mathématiques devrait poser, cet article présente premiérement
une critique des fondements basés sur la théorie des ensembles, puis propose
I'idée que plusieurs fondements catégoriques, reliés les uns aux autres, seraient
plus avantageux, et finalement indique une méthode pour retrouver la théorie
des ensembles & travers une approche catégorique.

Abstract: Starting with a review of the kinds of questions a foundation for
mathematics should address, this paper provides a critique of set theoretical
foundations, a proposal that multiple interconnected categorical foundations
would be an improvement, and a way of recovering set theory within a cate-
gorical approach.
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1 Introduction

Expressing all of mathematics in set theoretical terms is like writing love
poetry in assembly language. A lot of the nuance is lost: even if it can
be done it is not clear we should want to.

Mathematical objects like numbers, patterns, symmetries, and collec-
tions arise as abstractions from human interaction with physical objects
and from human actions like drawing and construction. They are com-
municated culturally so they become social constructs and not just in
the mind of the mathematician. Operations on natural numbers arise
from understanding of the potential consequences of physical actions on
a counting board, not from consideration of what the stones were made
of. The rules for reasoning about mathematical objects come from the
contexts in which we use them and the purposes we propose for the ac-
tions we model with our operations. The most problematic aspect of
set theory as a foundation from this point of view is its insistence on
extensionality.

Categorical approaches to foundations can reflect the importance of
context. By considering mathematical structures in several different cat-
egories we can focus on different aspects. Relating different founda-
tional frames of reference helps us understand how mathematical inno-
vation comes about. Internal logical constructs in categories can provide
the logical foundation justifying our reasoning. Knowledge of how com-
pletely the logical constructs are preserved by change of base functors
will help us understand the level of necessity of our mathematical state-
ments.

2 What are foundations for?

In order to investigate the efficacy of differing approaches to foundations
of mathematics we need first to understand what we want foundations
for and what we might mean by foundations. As has been pointed out by
Marquis [Marquis 1995] category theory and set theory address different
foundational issues.

Foundations can deal with several philosophical questions:

1. Ontological questions:

(a) To what extent are mathematical objects real?

(b) Do we discover or invent new structures?
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(¢) Are mathematical objects immutable?
2. Epistemological questions:

(a) How do we come to know about mathematical truths?

(b) How do we account for mathematical intuition?

(¢) How do we accept something as part of mathematics?
)

(d) How do we distinguish mathematics from other disciplines?
3. Logical questions:

(a) What constitutes valid reasoning about mathematical objects?

(b) What connectives, what quantifiers, and what forms of induc-
tion are allowed and what are their properties?

(¢) What are the limitations on mathematical reasoning?

(d) What are the unintended consequences of our forms of rea-
soning?

(e) What modalities apply? How necessary are mathematical
truths?

4. Cognitive and methodological questions

(a) What are the fundamental mathematical objects of study?
(b) What are derived concepts?

(¢) What are the fundamental patterns of thought in mathemat-
ics? Lakov and Nufiez [Lakov and Nunez 2000]call these basic
metaphors.

(d) What mathematical concepts are self-evident?

We want to understand foundational questions so that we know how
firm the ground under our mathematical reasoning is. We also want to
know so that we can teach fundamental notions early and so we can
avoid confusion in our students. A form of Ockham’s razor is suggested
by Mayberry in [Mayberry 1994, 18]

Above all, in the foundations of mathematics we must shun
sophistication and strive for simplicity. ...Highly developed
and refined mathematical concepts are therefore out of place
in foundations, and philosophical ‘depth’ is to be avoided
there in the interests of perspicuity and logical simplicity.
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This puts a constraint on a foundational approach which may rule
out categorical foundations like the ones proposed by Makkai [Makkai
1998]because the development of higher dimensional analogs of categories
requires so much machinery. It also puts into question the usefulness of
many set theoretic foundations. For most of mathematics what we use
is a utilitarian naive set theory which does not use full comprehension,
regularity, or any large cardinal axioms and which does not insist that
all entities we discuss be sets. Perhaps a categorical foundation would
also have a similar utilitarian naive form.

Those favoring set theoretic foundations (like [Simpson 1996]and
[Friedman 2002])prefer a hierarchy of concepts reflected in the bottom
up approach of modern set theory: all concepts in mathematics are to be
built from the simplest available material, often the empty set. This puts
the ontological commitments at a minimum, but it makes connections
between the mathematics so founded and the real world more mysteri-
ous. Categorical foundations tend to have a more gestalt character: by
looking at a category of all groups, for instance, we are assuming that we
can organize part of our understanding of an external world by focusing
on one part of it (groups and group homomorphisms). If that makes
an ontological commitment it is to something much larger than just the
empty set and the sets which we can construct from it.

Set theoretic foundations are also claimed by their proponents to be
coherent and extremely natural. It is precisely the complete naturality
of founding mathematics in set theory that this paper questions.

Categorical foundations is a subject with about 40 years of develop-
ment. It has not yet reached a fully mature form, but has a substantial
start. Categories provide a rich and varied logical foundation for math-
ematics which includes the set theoretic semantics of first order logic as
one of its examples but also addresses semantics of non-classical logics
(intuitionistic, fuzzy, linear, computational, modal). Connections be-
tween proof theory and higher order categorical logic have been known
since early work of Lambek.

For many parts of mathematics, but not all, category theoretic ap-
proaches have provided a methodological foundation and a guide to
practice. Fundamental categorical constructions (product, sum, func-
tion space formation, pull back, quotient, adjoint functors, algebras and
coalgebras) find utility in most parts of mathematics. A focus on the
question of what the correct maps are between structures is also a cate-
gorical influence. The ubiquity of adjoint functors may well provide an
underlying cognitive metaphor.

Providing a categorical foundation is like painting a picture of a re-
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ality: it provides a viewpoint with particular emphasis from the artist,
specifying some aspects of the reality, but not attempting to be exhaus-
tive. What we expect to find is a glimpse of the truth, not a definitive
answer. We invent new ways to look at and organize the mathematical
landscape; this leads us to discover new aspects of mathematical truth.

3 Why elements don’t suffice

For many reasons taking elementhood as the one basic relationship and
making all mathematical objects of the same kind misses the essence of
the enterprise.

Context matters. Mathematical innovation often comes from look-
ing at familiar mathematical objects in novel ways giving rise to new
questions to ask. The questions may have different answers depending
on the context in which they are asked. What is true about the number
2, for instance, depends on which number system you are considering 2
to be in and what aspect of “twoness” you wish to concentrate on.

Similarly, considering R as a field is different from considering it as
a vector space, group, topological space, or as a geometric continuum.
Choosing what other mathematical items to relate a structure to changes
the focus in our gaze on the structure.

Intentionality (how an object relates to others) is at least as impor-
tant as extentionality (what is the object made up of) for determining
what mathematical objects are. Focus is a pragmatic consideration not
captured in set theoretic foundations. Progress in mathematics often
comes from seeing old friends in new contexts, so the ability to change
focus in our foundations is important, particularly if we want to account
for innovation as well as for truth.

Mathematical objects have types. Mathematical statements have
a context and a universe of discourse; statements in mathematics are
about something, not just free floating. The choice of context and uni-
verse of discourse often has the effect of imposing a type theory. Mathe-
matical objects and statements about them tend to have types associated
with them.

Sometimes the statements depend only on how the objects are re-
lated to each other, not on the specific types of the objects. Thus these
types may be polymorphic: the membership relation, for instance, has
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a type — X P(—) where — can be any type you wish and P(—) is the
powerobject of that type: form matters more than content here, but for
something which doesn’t match the form the question of membership
becomes essentially meaningless.

Still, even with polymorphic types, predicates are about objects of
specified types. Similarly functions must have specified domains and
codomains. This is a change from how functions are usually specified in
axiomatic set theory, where the focus is on the assignment of a unique
image for each element in the domain, often not specifying the codomain.
A function can be defined by with an untyped variable y and an untyped
predicate ® satisfying

VxGDE”y(I)(xa y)

Insisting on specified types and codomains has the consequence that the
usual axiom of Replacement in axiomatic set theory ends up having the
same effect as the axiom of Separation.

As Cohen points out in [Cohen 1966, 53-55|, both of these axioms in
Zermalo-Frankel Set theory allow the predicates involved to vary over
all possible sets, not just those which have been seen before, making
them a powerful means of constructing new sets, but making them very
nonconstructive. A similar nonconstructivity occurs in categorical logic
since we do not constrain how the predicates of a given type are derived,
only that they must have the given type.

Distinct things exist in the world not distinguished by their
elements. People exist as individuals, not as collections of molecules.
Biological species are determined by how their representatives interact
with those of other species rather than by the listing of their members.
Kinship structures in anthropology describe which relationships are con-
sidered significant enough to name, not sets of ordered pairs of individ-
uals with those relationships. To the extent that mathematics describes
things in the real world it needs to make the same kind of distinctions
that the real world does.

Even within mathematics there are many constructs not determined
by their elements: Collections of random variables are known through
their joint distributions, not through their exact description as sets of
measurable functions on a sample space. Vector bundles are described
through both elements and how they are bound together. Locales give a
pointless approach to topology. Classifications of problems in technique
of integration and differential equations use pattern recognition based on
how different tools relate to them, not on lists of examples. Constructions
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in Fuclidean geometry specify actions relating points, lines, and planes
rather than specifying sets determined by their elements.

Even for a mathematical object as basic as the system of rational
numbers we gain most of our understanding not through knowing what
the members are exactly, but rather with knowing some ways to repre-
sent them symbolically (say as fractions, repeating decimals, terminating
continued fractions, etc.), ways to tell if two different representations are
of the same number, ways to relate the sizes of rationals, and ways to
add, subtract, multiply and divide them. If we insisted on knowing what
the elements of Q were we would have to think of large equivalence classes
rather than simple, but not unique, symbolic representations. The sit-
uation with Cauchy R is even worse: knowing any one real number r
would require knowing all of the uncountable number of distinct Cauchy
sequences of rationals converging to r. The Dedekind reals are just as
unfathomable.

Abstraction can be based on interaction with the world. Foun-
dations must allow for abstraction in different ways: Natural Numbers
arise as an abstraction from finite sets. A natural number is what re-
mains when you decide that all that matters about a finite set is the
number of elements it has, not what those elements are. At the start
we only consider rather small finite sets, ones we can relate to as small
collections of physical objects we can move around, copy, and arrange
into suggestive shapes. Once we understand such small collections we
abstract to what the similar properties ought to be for finite collections
too large to physically handle. We develop the system of natural num-
bers when we start thinking about how natural numbers relate to each
other and how we can prove things about natural numbers and natu-
ral number operations. Induction gets recognized as the key rather late
in the game. Using finite Von Neuman ordinals to represent natural
numbers is primarily useful as a way to make a set theoretic exemplar
concrete.

Our concept of real number is an abstraction from measurement and
approximation: actions involving comparing and relating different real
numbers. When I teach calculus I tell my students that what we ac-
tually know about a real number is how to approximate it arbitrarily
well. If I want them to understand why calculus works so well I do not
start by specifying a set theoretic construction of the real numbers. If
I want to know how much of the calculus I teach might carry over to
real numbers objects in another topos I may care a lot more about the
specific constructions used (particularly since the Cauchy and Dedekind
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reals are distinct in many contexts).

Other mathematical objects have been defined by form or function:
triangles, random variables, infinitesimals (from those in Leibniz to those
in synthetic differential geometry [Kock 1981] and nonstandard analysis
[Robinson 1996]),complex numbers, ultrapowers. Mathematical notions
often start out life as convenient fictions and then become objects of
study in themselves. Mac Lane develops some of these ideas in [Mac
Lane 1990].

4 How a categorical foundation might help

When we decide to consider a mathematical object as being an object
in a category we are defining a context and a point of view. It is the
nature of category theory to determine what is known about a structure
in a category by considering how it relates to other structures in that
same category. Further information is obtained by giving functors con-
necting that category to others. The success of algebraic topology starts
with its connection of topological spaces with groups in various ways
through functors which accurately reflect some of the truths about both
the spaces and the groups involved. Galois theory shows how a pair of
adjoint functors between categories derived from the category of fields
and the category of groups can provide insight into long standing prob-
lems and not just structural questions. This is evidence of the utility of
categorical viewpoints in mathematics, but not necessarily of utility as
a foundation for mathematics.

In part to provide such a foundation, since the early 1970’s a vari-
ety of categorical structures have been studied which allow for mathe-
matics to be done internally: elementary topoi (see [Kock and Wraith
1972, Lawvere 1972, Freyd 1972, Johnstone 1977, Goldblatt 1979, Bell
1988]). quasitopoi ([Penon 1977, Wyler 1991] ), various approaches us-
ing monoidal structures ( [Stout 1992, Hohle 1991, Monro 1986] ) and
fibered categories [Jacobs 1999].

Much of this work focuses on how to do higher order categorical
logic. It uses internal representation of various kinds of subobjects and
various logical connectives arising from the structures in the category.
All examples I can think of use objects in a category as types and have
all statements typed according to which objects are under consideration.

The logic arises from the structure of the category and the kind of
subobjects taken for predicates. The internal predicate logic may be in-
tuitionistic, may be non-commutative, may have higher order constructs
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or not. It is not imposed by the mathematician based on traditional
philosophical positions, though the particular examples may be chosen
to illustrate how certain non-classical logics can arise. The intuitionism
in topos based mathematics does not come from a constructivist posi-
tion about what mathematical objects are, what truth means, and how
we know about mathematics, but rather from the behavior of the truth
functional connectives in typical examples.

Viewing logic from within a category gives clear mechanisms for rec-
ognizing inference rules from adjointness situations. Those rules of infer-
ence give rise to a notion of proof which can be systematically analyzed.
The types in the theory arise from the objects in the category and inter-
pretation of expressions in the typed language of the category as specific
subobjects gives a notion of validity. Model theory can be done in-
ternally without reference to set based interpretations and structures.
Categorical logic does not depend on set theory for either its syntax or
its semantics.

One problem with categorical constructions is that they typically
only specify objects up to isomorphism. We do not talk about the nat-
ural numbers, for instance, but rather about a natural numbers object.
Thus categorical foundations can be seen as having a descriptive func-
tion rather than an ontological one. We are not building the natural
numbers but rather describing how to recognize objects which behave
like the natural numbers in many different settings. This is not build-
ing a foundational object on which we can base our mathematics, but
rather providing a prototype of the situation in which induction can be
done successfully. If we want the kind of categoricity which specifies
unique objects we will need additional structure beyond that given by
categories.

5 Why no single category can suffice

If, as I am, we are looking at foundations for mathematics as giving
viewpoints in which we can see aspects of mathematical reality, we should
not be looking for one foundation for mathematics but rather looking for
what mathematics can be in a variety of related foundational contexts.
Since we expect that there is one mathematical reality, we should also
be looking for how those different foundations relate to each other.

Why any single foundation is insufficient Any one abstraction
from reality limits our vision. In some ways this is good because it
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provides focus. Focus leads to a certain simplicity in our work in math-
ematics and allows for a depth of understanding, but any focus requires
blocking out some aspects of the situation. In other ways it limits our
creativity.

At any one point in history we cannot predict all of the contexts
in which a mathematical object can be studied: we need to allow for
progress through novel settings. Golden ages in the history of mathe-
matics in the past have arisen from the use of novel viewpoints: discovery
of the axiomatic method in ancient Greece, the arithmetization of anal-
ysis, founding of non-Euclidean geometry, axiomatization of set theory,
foundation of Non-standard analysis, use of modular forms in number
theory. If we come to the conclusion that we have found the final answer
on foundations of mathematics, the subject will progress ignoring that
answer and prove us wrong. (Kant’s failure to recognize the possibility
of a non-Euclidean geometry provides one of history’s prominent exam-
ples.) It is hubris for any approach to foundations to assume that it has
completely determined the bounds of mathematical imagination.

Intuition comes from looking at familiar objects from many view-
points. The admonition to think deeply of simple things (which I heard
often from Arnold Ross in the SSTP program at Ohio State in the 1960’s)
can be joined with a suggestion to consider simple things broadly as well.

Why foundations need to be connected to each other Necessary
truths are those which hold when the foundations shift— we need to look
at what is preserved to add a modality. If we are to allow a multitude
of possible foundations, each giving a different viewpoint on the subject,
we will need some discipline and organization to prevent mathematics
from becoming chaotic. A means for tying different foundations together
is needed in order to integrate what we learn of the truth from different
viewpoints.

Our means of connecting different foundations together must be ca-
pable of solving the problem of transworld identity— we need to be able
to recognize that we are looking at the same object in different contexts.
In the semantics of modal logic this problem is solved by requiring con-
sistency in the definition of frames.

How categorical foundations can provide such connections Cat-
egorical foundations allow for context to be made explicit, but they need
to be expanded to allow for transworld identity so that objects can have
different context, i.e. be objects in different categories.
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Different categories allow us to see how varied the possibilities of
foundation for mathematics are. Functors between those categories are
needed to relate what we learn about mathematical reality form one
viewpoint to what we lear from another.

Early on in topos theory the examination of the properties of change
of base functors led to consideration of classifying topoi. This introduced
a modality into foundations: properties of the generic object which were
preserved under change of base can be thought of as those properties
which are necessarily true. Specific examples can then be thought of as
illustrating what is possible.

6 Recovering a theory of sets using
categories with inclusions

Because set theory is part of mathematics, however, any competing foun-
dation needs to be able to provide a foundation for set theory. Early
attempts by Lawvere were not completely successful (though they were
part of the inspiration for elementary topos theory). Several categorical
constructions have been suggested for capturing finite sets.

Mac Lane suggested an approach at the Association for Symbolic
Logic meeting in Urbana in May 2000: a foundation based on categories
with specified inclusions. Such a setting allows for the specification of
certain kinds of objects completely (not just up to isomorphism). We
can define what it means to be a set in such a category with inclusions
and with sufficient properties imposed on the setting recover much of
axiomatic set theory.

Awodey presented a paper [Awodey 2002| at the 2002 summer ASL
meeting at which he used Joyal and Moerdijk’s approach to set theory
based on the subset relation (rather than elementhood) from [Joyal and
Moerdijk 1995|together with Mac Lane’s idea to produce a model of
Zermalo Set theory.

My approach sketched here is somewhat different from his and, for
that matter, from the proposal made by Mac Lane in 2000.

Definition 6.1. An inclusion structure on a category is a designation of
some of the monomorphisms in the category as inclusions. These must
satisfy the following axioms:

1. An isomorphism is an inclusion if and only if it is an identity.
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2. Compositions of inclusions are inclusions.

3. IfA 8 A and A S5 A are inclusions then mi = mo. (This says
that there are given objects as domain and codomain there is at
most one inclusion between them).

4. If B" < B is an inclusion and A J Bis any morphism then
there is a unique inclusion A" — A making the square

A — A
{ Lf
B — B

a pullback. (Inclusions lift uniquely along any morphism.) Fur-
thermore, if f is an inclusion, so is the morphism induced from A’
to B'.

5 If A S B s any morphism then there is a unique B’ — B
which is the smallest inclusion through which [ factors. (This is
a weak form of factorization—no assumptions are made about the
first map in the factorization). The resulting B is called the image
of A under f.

Axioms 1 and 2 can be taken to say that there are enough inclusions;
axioms 1 and 3 say there aren’t too many. The last two axioms let us
transport inclusions along morphisms in such a way that we get a pair
of adjoint functors.

Inclusions behave a lot like subsets and provide us with a ready notion
of predicate:

Proposition 6.1. If A & B and B A are inclusions, then A and B
are the same and the inclusion is the identity.

PROOF:

Since the composition of inclusions is an inclusion we can
conclude that mm’ : A < A is an inclusion and thus is equal
to the inclusion id 4 by axioms 1 and 3. Similarly m’m = idp,
so m is an isomorphism, hence an identity by axiom 1. |

Definition 6.2. If C is a category with specified inclusions and A is an
object of C then the category of propositions about A, called P(A), is the
category of inclusions into A with inclusions over A as maps.
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The axioms giving unique pullbacks and best images of inclusions
give rise to adjoint functors which give change of type and existential
quantification:

Proposition 6.2. If A L Bis any morphism then the functors f* :
P(B) — P(A) obtained by pulling back and 35 : P(A) — P(B) obtained
by taking image have 35 — f*.

When the category C has further structure we can ask for the inclu-
sion structure to respect it:

Definition 6.3. An inclusion structure has a unique empty object if C

!
has an initial object () such that the unique map ) — A is an inclusion
for every object A in the category.

Asking for the unique map from an initial object to be an inclusion
and for isomorphic inclusions to be identities forces the initial object to
be unique. Nothing similar restricts the terminal object. This fits with
the intuition that there is only one empty set, but there are a multitude
of one element sets, each of which is a terminal object in Sets.

Definition 6.4. A singleton inclusion into an object A in a category C
with inclusions and a terminal object is an inclusion whose domain is a
terminal object.

Note that we cannot say the terminal object here since terminals are
only defined up to isomorphism. Singletons will play the role of elements
in set theory where {z} C A if and only if z € A. We do not get an
element relation between objects from singleton inclusions. In general
singleton inclusions are not sufficient to specify an object.

Definition 6.5. A set in a category with inclusions C is an object which
is the colimit of its singleton inclusions.

What this definition captures is the essential role that extensionality
plays for sets. What distinguishes sets from other mathematical struc-
tures is that they are completely determined by the singletons which
are subsets, since those singleton inclusions correspond exactly to the
elements.

Given a category C with specified inclusions, the sets and functions
in C form a category, Setc.

To get the other properties usually associated with sets we need to
insist on more from our category. Since we know that the category Sets
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forms a topos we can start there. We will ask that the inclusion structure
respect limits. In addition we will ask that the generic subobject ¢ : 1 —
Q in the subobject classification axiom be a singleton inclusion. Notice
that if a topos has an inclusion for the generic subobject ¢ : 1 < Q then
the topos has canonical subobjects in the sense of [Lambek and Scott
1986] . The canonical subobjects induced by the monomorphisms from
A® — BY and P(A) — P(B) then give the inclusions needed for the
structure to respect function space and powerobject formation.

Theorem 6.3. Let £ be a topos with an inclusion structure which re-
spects coproducts and products and has a generic inclusion t : {t} — Q
as subobject representor. Then &£ satisfies the following axioms of Set
theory:

1. emptyset

2. singleton

co

bounded comprehension with type specification

*~

powerset

5. properly typed union

If we posit the existence of a natural numbers object in which™07: 1 — N
s given as a singleton inclusion, then we get the axiom of infinity.

To get the axiom of choice we will need to ask for choice functions
or splitting of epimorphisms.

The axiom of regularity has no obvious analog in this setting. It
would appear to require a chain condition on types.

If we require that all objects in our topos be sets (as defined in a
category with inclusions) we will gain extensionality and force the logic
to be two valued (since a terminal can have only one nonempty singleton
inclusion, namely the identity, and thus has only two subsets).
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