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Abstract: In the paper, a detailed analysis of some new logical aspects of
Cantor’s diagonal proof of the uncountability of continuum is presented. For
the first time, strict formal, axiomatic, and algorithmic definitions of the no-
tions of potential and actual infinities are presented. It is shown that the
actualization of infinite sets and sequences used in Cantor’s proof is a nec-
essary, but hidden, condition of the proof. The explication of the necessary
condition and its factual usage within the framework of Cantor’s proof makes
Cantor’s proof invalid. It’s shown that traditional Cantor’s proof has a second
necessary, but hidden as well, condition which is teleological by its nature, i.e.,
is not mathematical. The explication of the second necessary condition makes
Cantor’s statement on the uncountability of continuum unprovable from the
point of view of classical logic.

One of the most dramatic facts in history of science is connected just with
the notion of actual infinity and consists in the following. On the one hand,
Aristotle, Berkeley, Locke, Descartes, Spinoza, Gauss, Kant, Cauchy, Kro-
necker, Hermite, Poincaré, Bair, Borel, Brouwer, Quine, Wittgenstein, Weyl,
Luzin, and a lot of other outstanding creators of classical logic and classical
mathematics, during millenniums, stated categorically and insistently warned
about that the actual infinity is a self-contradictory notion and its usage in
mathematics is inadmissible (e.g., according to Poincare, “ There is no actual
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infinity. - Cantorians forgot that and fell into contradictions. Later gener-
ations will regard Mengenlehre (set theory) as a disease from which one has
recovered’). On the other hand, a lot of outstanding scientists of the XX c.c.,
such as Hilbert, Church, Turing, Gddel, etc., and modern axiomatic set the-
ory as a whole ignored this (intuitive though) opinion of genii and accepted
Cantor’s “transfinite paradise”, based on the actual infinity. In the paper some
logical, philosophical, and psychological aspects of this historical “favorable
opposition” are analyzed, and the fact that the scientific intuition of genii has
won the historical battle against the mytho-’logic’ of Cantor’s transfinite ‘par-
adise’ is explained and logically justified.

1 Introduction

Cantor’s set theory is a Trojan Horse of the mathematics-XX: on the one
hand, it is a natural, visual, universal language to describe mathematical
objects, their properties and relations, originating from Aristotle’s syl-
logistics and the famous Euler’s “logical circles”, and just therefore this
language was accepted by all mathematicians with a natural enthusi-
asm. However, on the other hand, together with the language, Cantor’s
transfinite conceptions and constructions (like the actualization of all in-
finite sets, a distinguishing of infinite sets by a number of their elements
(by their cardinalities), the hierarchy of ordinal and cardinal transfinite
numbers, continuum hypothesis, etc.) went into the mathematics-XX.
Just the Cantor’s actualization of infinite sets generated a lot of set-
theoretical paradoxes and, ultimately, the Third Great Crisis in foun-
dations of mathematics in the beginning of the XX c. The theme itself
of the present conference shows that the problem of the actual infinity
is not closed and the Third Great Crisis in foundations of mathematics
goes on hitherto.

From the earliest times, classical mathematics is, by right, called
the “Science on Infinity”, so the understanding of a genuine nature of
mathematical infinity has a more closed relation to the foundations of
mathematics than, say, a proof of a consistency of classical arithmetic,
in general, and of the classical Pascal’s mathematical induction, in par-
ticular, by means of the meta-mathematical ‘transfinite induction’ up to
the famous Cantor’s transfinite number:

Ep = w/\w/\w/\wAwAw/\w/\wAwAw/\a/\wAwA ‘e

By the way, this notation is read in reality not aflat, i.e., “from left to
right”; as it is accepted in usual mathematics, but vertically, i.e., “from
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bottom (the very left ‘w’) to top (w” ...")” and it realizes a first footstep
on the way of the ambitious Cantor’s intention to build a transfinite
“Stairway up to Heaven” [Cantor 1914], [Cantor 1985], [Katasonov 1999].

Long before Cantor, Aristotle first explicitly distinguished and de-
scribed two opposite types of infinite — potential infinite and actual
infinite. The essence of the potential infinity was defined by Aristotle
as follows: “...the infinite exists through one thing being taken after an-
other, what is taken being always finite, but ever other and other” [Aris-
totle], [Moor 1993]. Below we shall show that the famous Peano’s axiom
system from which, according to Poincare, “almost all mathematics can
be deduced’ |Poincaré H. 1983 |, is a literal and natural formalization of
the very essence of the Aristotle’s definition of the potential infinity (see
point 4.).

As to the actual infinity, Aristotle postulated the quite well argued
Thesis which, in its later, canonized in Middle Ages, transcription, sounds
so: “Infinitum Actu Non Datur”, i.e., “there will not be an actual infinite.
— [-..] the infinite has a potential existence” [Aristotle]. So, according
to Aristotle, the actual infinity is impossible not only in Nature, but
also in Science, i.e., it means logically that the actual infinity notion is
self-contradictory.

However, in the second half of the XIX Century, Georg Cantor “re-
jected the scientific authority of Aristotle, Leibniz, Gauss, Cauchy, etc.”
and declared the contradictory Thesis: “all sets are actual’ [Cantor 1914],
[Cantor 1985]. All Cantor’s transfinite constructions and his paradig-
matic statements about existence of different infinities are based on
the actual infinity. Starting with Kronecker, a lot of outstanding lo-
gicians and mathematicians rejected Cantor’s “Study on Transfinitum”,
and Poincare was one of the most deep and subtle critics of the basis
of Cantor’s theory. In particular, Poincare flatly stated: “There is no
actual infinity. — Cantorians forgot that and fell into contradictions.
Later generations will regard Mengenlehre (set theory) as a disease from
which one has recovered’ [Poincaré H. 1983].

And today there is a lot of mathematicians who reject Cantor’s idea
on actual infinity. For example, the outstanding logician and expert
specialized in foundations of mathematics, S. Feferman writes in his
recent remarkable book “In the Light of Logic” [Feferman 1998]:

“...] there are still a number of thinkers on the subject
<on Cantor’s transfinite ideas - AZ> who in continuation of
Kronecker’s attack, object to the panoply of transfinite set
theory in mathematics [...| In particular, these opposing
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points of view reject the assumption of the actual infinite
(at least in its non-denumerable forms). Following this up,
alternative schemes for the foundations of mathematics have
been pursued |...]| in a direct and straightforward way on
philosophically acceptable non-Cantorian grounds.

Furthermore, a case can be made that higher set theory is
dispensable in scientifically applicable mathematics, i.e., in
that part of everyday mathematics which finds its applica-
tions in the other sciences. Put in other terms: the actual
infinite is not required for the mathematics of the physical
world’.

The same opinion is advanced by Ja.Peregrin (“There is not an actual
infinity” [Peregrin 1995]), V.F.Turchin (“For actual infinity we have no
place [...] in the global cybernetic theory of evolution and in the con-
structivist foundation of mathematics’ [Turchin 1991]), P.Vopenka (“the
set theory whose energies were directed to the actualization of potential
infinity turned out not to be able to eliminate the potentiality...”), and
many other modern experts in foundations of science.

Thus, as we can see, the acceptance of the Cantor’s actual infinity
conception is not unanimous in the modern mathematical community
and it demands further clarification.

However that may be, a quite non-trivial question arises: Aristo-
tle and Poincare, and also Leibniz, Berkeley, Locke, Descartes, Spinoza,
Gauss, Kant, Cauchy, Kronecker, Hermite, Bair, Borel, Brouwer, Quine,
Wittgenstein, Weyl, Luzin, and a lot of other outstanding creators of the
classical, i.e., according to Feferman [Feferman 1998]|, 'really working’
today logic and the classical, ‘really working” mathematics stated cate-
gorically and warned about that the actual infinity is a self-contradictory
notion and its usage in mathematics is inadmissible. However modern
meta-mathematics and axiomatic set theory have ignored their opinion
and accepted Cantor’s theory. Why? Because this opinion was based
only upon the intuition (of genii though), but Cantor’s set theory was
based on his famous theorem on the uncountability of real numbers (con-
tinuum) [Cantor 1985]. So, just this Cantor’s theorem is the only basis
and acupuncture point of modern meta-mathematics and axiomatic set
theory in the direct sense that if the Cantor’s famous diagonal proof of
this theorem is wrong then all the Cantor’s transfinite ‘paradise’ of these
sciences fall to pieces as a house of cards.
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2 Cantor’s Theorem on Continuum’s
Uncountability

However, this Cantor’s theorem is a next Trojan Horse. To under-
stand this, consider the traditional Cantor’s diagonal proof [Cantor 1985],
[Hodges 1998], [Alexandrov 1948], [Capinski & Kopp 1999]. Here N =
1,2,3,..., X is a set of all real numbers of the interval (0,1) and, for sim-
plicity, we shall use the binary system to represent real numbers. Remark
that as it was shown in [Zenkin 2000b, 1997b], the further conclusions
hold for any radix > 2.

Cantor’s Theorem (1890). X is uncountable.

Poof (by Reductio ad Absurdum method). Assume that X is count-
able. Then there is an enumeration of all reals from X. Let

T1,T2,T3, ... (1)

be some arbitrary enumeration of all real numbers of X, i.e., a one-to-
one correspondence between all elements of X and all elements of V.
Applying his famous diagonal method to enumeration (1), Cantor con-
structs a new (anti-)diagonal real, say, y*, which, by its construction,
differs from every real of enumeration (1), i.e., the new real y* does not
belong to enumeration (1), and, consequently, the given enumeration (1)
is mot an enumeration of all real numbers from X. The obtained contra-
diction, according to the meta-mathematical version of the Reductio ad
Absurdum (further - RAA) method, “proves” that the assumption “X is
countable” is false.

3 First Hidden Necessary Condition of
Cantor’s Proof

In the middle of the 20*" century, meta-mathematics declared Cantor’s
set theory as “naive” [Kleene 1957] and soon the very mention of the
term “actual infinity” was banished from all meta-mathematical and set
theoretical tractates. The ancient logical, philosophical, and mathemat-
ical problem, which during millenniums troubled outstanding minds of
humankind, was “solved” according to the principle: “there is no term
— there is no problem”. So, today we have a situation when Cantor’s
theorem and its famous diagonal proof are accepted and described in
every manual of axiomatic set theory, but with no word as to the “actual



150 Alexander A. Zenkin

infinity”. However, it is obvious that if the infinite sequence (1) of Can-
tor’s proof is potential then no diagonal method will allow to construct
an individual mathematical object, i.e., to complete the infinite binary
sequence y*. Thus, just the actuality of the infinite sequence (1) is a
necessary condition (a Trojan Horse) of Cantor’s proof, and therefore
the traditional, set-theoretical formulation of Cantor’s theorem (above)
is simply wrong from the standpoint of classical mathematics, and must
be re-written as follows without any contradiction with any logic.

Cantor’s Theorem (corrected-1). If X is actual, then X is un-
countable.

This corrected formulation of Cantor’s theorem leads to some very
non-trivial consequences.

3.1 Relativity of Uncountability

The notorious uncountability of the continuum is interpreted by modern
axiomatic set theory as some inner, ‘genetic’, absolute property of the
continuum. However, as the corrected formulation of Cantor’s theorem
shows, the uncountability is not an absolute property of the continuum,
but rather a conditional one, valid (if any, see below) only within the
framework of the Cantor’s paradigm of the actualization of all infinite
sets.

3.2 Uncountability as a Matter of Taste

Since so far no Cantorian (Poincaré’s term) has proved the actuality of
infinite sets, in general, and of the set X, in particular, the actuality of
X is an inauthentic statement, i.e., from the classical logic point of view,
it is a second assumption of Cantor’s RAA-proof, and we get a Reductio
ad Absurdum with ... two assumptions. But if a deduction, containing
two inauthentic premises, has led to a contradiction, it means that at
least one of the premises is false [Aristotle], [Hodges 1998], [Zenkin 2001].
According to Aristotle’s classical logic, this “at least one” means that in
such a case we have not the only Cantor’s conclusion, but the following
three, equal in logical rights, alternative conclusions:

(i) X is actual and X is NOT-countable (Cantor).
(ii) X is NOT-actual (i.e., potential) and X is countable (Aristotle).

(iii) X is NOT-actual (i.e., potential) and X is NOT-countable (anony-
mous).
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From the classical logic point of view, the Cantor’s proof itself is not
able to answer the question what an alternative of these three, including
the initial Cantor’s statement (i), is true in reality.

Thus, the famous Cantor’s “proof” of the uncountability of the set
X of all real numbers proves nothing and reduces the sacramental meta-
mathematical question as to a differentiation of infinite sets by their
cardinalities to a matter of belief: if you like the actuality, you can
choose the first alternative (i) after Cantor; if one (together with all
classical mathematics) trust in Aristotle’s Thesis, (s)he can choose the
second alternative (ii); somebody who trusts in nothing can privatize the
third (so far ownerless) alternative (iii) without any contradiction with
any logic.

3.3 The Main Theorem of Meta-Mathematics as
Disposable

As is well-known, the famous Pythagoras theorem has been proved by
every generation of school children for 2600 years now. And every good
pupil gets the same result: a? = b + ¢%. So, in real mathematics any
theorem, once proven, retains its validity independently of the number of
repetitions of its proof. Apparently, some meta-mathematical theorems
do not save such the “peculiarity” of classical mathematics.

Indeed, from the once (supposedly) proven Cantor’s theorem (correct-
ed-1), according to the contraposition law of elementary logic which holds
even in meta-mathematical logic [Kleene 1957| (remind: from a proven
“if A then B” the authentic statement “if NOT-B then NOT-A” is de-
duced immediately), we obtain the following quite interesting logically
and very deep epistemologically conclusion.

Corollary 1. If X is countable, then X is NOT-actually, i.e., poten-
tially, infinite.

Now repeat literally the traditional RAA-proof of the Cantor’s theo-
rem once again. Assume that X is a countable set. Then the sequence (1)
of all real numbers is countable too. According to Corollary 1, the se-
quence (1) will be a potentially infinite one. However, the famous Cantor
diagonal method is not applicable to potentially infinite sets. Conse-
quently, the Cantor’s theorem becomes . ..unprovable.

So, the famous Cantor’s theorem, in contrast to all mathematical the-
orems, is not provable twice and is, thus, a disposable meta-mathematical
theorem. It’s already something like ...not a meta-, but a para-“mathe-
matics”.
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Taking into account that the set N of finite natural numbers is count-
able by definition, we deduce from the Corollary 1, applied to the natural
indezes of reals in the sequence (1), the following quite unexpected reli-
able consequence.

Corollary 2. The countable set N = 1,2,3,... of finite natural
numbers is potentially infinite.

This corollary means that Cantor’s enumeration (1) is a 1-1-correspo-
ndence between the actually infinite set X of real numbers and the po-
tentially infinite set N of natural numbers. From the classical logic point
of view such the correspondence is absurd.

Thus, from the main Cantor’s theorem it follows that the Cantor’s
axiomatic statement — “all sets are actual” (above) — which is the only
basis for all his transfinite ordinal and cardinal constructions, is wrong,
i.e., according to Poincaré (and Weyl), all Cantor’s set theory as well
as all modern “non-naive” axiomatic set theories are really “built on a
sand” [Poincaré H. 1983].

4 A Strict Definition of the Concepts of
Potential and Actual Infinities

As was said above, the Cantor’s ‘naive’ set theory as well as all modern
‘non-naive’ axiomatic set theories are based on the actual infinity concept
in the sense that if, for example, a set of real numbers as well as these
numbers themselves as infinite binary sequences are potential in Aristo-
tle’s sense then the Cantor’s theorem on the uncountability of continuum
becomes unprovable and therefore any differentiation of infinite sets by
their cardinalities as well as transfinite cardinal and ordinal ‘numbers’
themselves lose any sense and attraction. Every meta-mathematician
and every set theorist knows well this obvious truth.

However hitherto there is not a strict definition of the concept of the
actual infinity. This fact generated a widespread opinion that the ideas
of potential vs. actual infinity are vague, fuzzy, pure intuitive, that
the idea of actual infinity itself makes sense only within a platonistic
conception of philosophy of mathematics, and therefore all such ideas
and discussions are at the informal, philosophical level and can’t be a
part of the axiomatic set theories [Feferman 1998|.

It is a quite strange situation, isn’t so? Indeed, as is well known, ac-
cording to Bourbaki, “logically speaking, it is possible to deduce almost
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all modern mathematics from a unified source — the axiomatic set the-
ory” [Bourbaki 1965]. It means that the axiomatic set theory pretends to
formalize almost any mathematical theory of any level of complexity and
informality. Nevertheless, the most power formal technique of modern
axiomatic set theory is hitherto not able to formalize the basic concept
of Cantor’s ‘mathematics’ — the concept of actual infinity! Why? -
Maybe it can’t? - It’s difficult to trust in such impotence as to such
simple point. Maybe it intentionally doesn’t wish to do that intuitively
bewaring of unpredictable and fatal consequences of such formalization?
— Let history solve this riddle.

However that may be, I believe that if strict mathematical definitions
of the concepts of the potential and actual infinities would be at last
formulated, then such the definitions could help to understand better a
lot of basic problems of the modern Foundations of Mathematics, Logic,
and Philosophy of Infinity.

I offer here for the first time a quite natural version of such the
definitions [Zenkin 2002a].

4.1 Definitions of the Concept of Potential Infinite

(PI)
Aristotle’s Definition of PI-Concept (AZ: the insertions in brackets
are mine): “...the infinite exists through one thing [n + 1] taken after

[>] another [n], what is taken being always finite In < infty], but ever
other and other fn — oo/”.

Axiomatic Definition of PI-Concept

A1 There exists a ‘thing’ ‘0’, since any well-ordered finite sequence of
‘things’ has a first ‘thing’ (we denote this first ‘thing’, say, as ‘0’);

A2 [if nis a ‘thing’ (a natural) then n 4 1 is a ‘thing’ (a natural) as
well] & [n <n+1].

A3 There are not ‘things’ (natural numbers) that are different from
those defined by (A1) & (A2).

As is easy to see, it is a strict, formal, axiomatic, inductive definition
of the common series of the common finite natural numbers:

1,2,3,....m, ... (%)

and the points A1-A3 are the first three, well known axioms of Peano’s
arithmetic [Kleene 1957]. From the strict, axiomatic Aristotle-Peano’s
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definition of PI, the following fundamental mathematical property of the
Pl-series (x) follows.

Main Theorem. There does not exist a last element in the series (x).
PROOF. Assume that n* is a last element of (x). Since n* is natural
then n* + 1 is natural too and n* + 1 > n*. So, n* is not a last element
of the series (x). Contradiction. Q.E.D.

So, the main theorem is a sufficient basis in order to state that the
infinity of the series (x) is potential, and vice versa.

Algorithmic Definition of PI-Concept

Finally, we can give the following algorithmic definition of the PI-
notion [Zenkin 2002a].

It is obvious that the process of the generating of the series (x) can
be presented by the following computer program (or, if you please, by
the following simplest Turing machine):

BEGIN

INTEGER i; LABEL L;
i:=0;

L: i:= i+1; (TM)
PRINT(1i);
GOTO L

END

The Turing machine (TM) is simply printing the sequence 1, 2, 3, ...
and so on ad infinitum. The process itself realized by the program pos-
sesses the following two obvious properties.

P1. The step-by-step Pl-process (TM) of the construction of series (x)
never arrives at its ‘STOP’ (‘HALTING’) state. Consequently,

P2. The Pl-process (TM) can produce no individual mathematical ob-
ject as its final result.

We have thus established the following unique historical fact: con-
trary to the deep-rooted and widespread opinion in modern set theory
that the concept of potential infinity is a vague, informal, intuitive one
which therefore can’t be used within the framework of modern axiomatic
set-theoretical systems, this concept was in reality absolutely strictly de-
fined as far back as IV B.C. by Aristotle though in a fully adequate, but
verbal form.
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4.2 Definitions of the Concept of Actual infinite (AI)

Cantor’s Definition of the AI-Concept

It might seem that since we have a strict PI-definition and since Al-
notion is contrary to PI-notion, then one might get a strict Al-definition
by means of a simple logical negation of the PI-definition. However,
Cantor’s Al-definition is not a trivial logical negation of Aristotle’s def-
inition of PI-notion. Indeed, Cantor writes [Cantor 1914] (almost ver-
batim): “it is well known that a number of finite natural numbers in
the series (x) is infinite, and therefore there is not a last number in (x),
<i.e., the series (x) is potential - AZ>; however contradictory it might
seem <it’s really contradictory very much, as Cantor himself was well
understanding! - AZ>, there is in fact no absurdity <*“The essence of
pure mathematics is its freedom” - So any fantasies are admissible! -
AZ> in that to denote the series (x) as a whole with a name (or symbol),
say, ‘w’, to call the name ‘omega’ an integer and then to go on further
a ‘count’:

‘omega’, ‘omega’+1, ‘omega’+2, ‘omega’+3, ...
and, one can add, to make that in a complete conformity with ...the
Aristotle-Peano’s axiom: “if a ‘thing’ is <called - AZ> integer then the
‘thing’+1 is integer too for any ‘thing’ entirely independently on a real
nature of the ‘thing’ and what we think of the ‘thing’ (i.e., indepen-
dently on whether the ‘thing’ is formal or informal, variable or constant,
potential or actual, etc.).

In a word, Cantor accepts Aristotle-Peano’s axioms A1-A3 and the
main Theorem-1 for Pl-objects (otherwise even axiomatic set theorists
would be forced to repudiate his Al-definition of the series (x) and all
his ‘theory’ of transfinite ordinals as having no relation to mathematics),
but rejects the properties P1 and P2 of the algorithmic definition of PI-
notion as follows.

P2*. The Pl-process (TM) produces (as its final result) a series (*) as an
individuall ‘mathematical’ object - as the famous Cantor’s minimal
transfinite ordinal type ’omega’ that is a “completed, not change-
able, but definite and invariable in all its parts” entity [Cantor
1914|. And therefore

P1*. The step-by-step PI-process (TM) of the construction of series ()
arrives at its ‘STOP’ state (but has not a last (halting) step!).
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REMARK 1. The point P1* is a necessary feature of the actual
infinity definition, since otherwise the process (TM) must continue ever,
e.g., in the time when Cantor claims the Pl-series (x) an integer ‘omega’
and constructs his known ‘transfinite stairs up to a heaven’ [KATA-
SONOV 1999]. That is if P1* does not hold then Cantor’s ‘omega’ can’t
be a “completed, not changeable, but definite and invariable in all its
parts” individual mathematical object.

However that may be, the main argument of modern axiomatic set
theorists against a formal explication of the Al-notion becomes unsound
and now there are not sensible, at least, logical objections against the
explicit inclusion of Cantor’s axiom into any modern axiomatic set the-
ory.

REMARK 2. The original Cantor’s definition of the actual infinity
of the Pl-series (*) is used above because today there is not a better def-
inition of the Al notion in all modern 'non-naive’ axiomatic set theories.
So, a true sense of Cantor’s algorithmic Al-definition above is as follows:
of course, the infinite series () is potential, but “however contradictory
it might seem, there is in fact no absurdit” in order to claim it completed
and to accept that the potentially infinite series (x) is actual. Possibly,
for somebody such Cantor’s Al-definition may seem to be inconsistent,
but, unfortunately, classical logic is powerless before such ‘argumenta-
tion” and is not able to prove strictly this inconsistency, since Cantor
‘transforms’ this evident inconsistency into an aziomatic definition of
the Al-concept.

REMARK 3. As was shown above, Cantor accepts the Aristotle-
Peano’s axioms A1-A3 and the Main Theorem, i.e., in reality he accepts
the formal definition of potential infinity, but rejects only algorithmic
consequences of the definition. Just this, according to Wittgenstein (see
[Wittgenstein 1956], [Hodges 1998]), “skilful trick” masks the contradic-
tory nature of Cantor’s definition of actual infinity.

REMARK 4. Our formalization of Al-concept above was based on
Cantor’s definition relating to the discrete series (x). However there is
another Cantor definition of Al concerning the continuum. Here is this
definition (almost verbatim). The notion of a continuous function is a
basic object of mathematical analysis. However before to speak about
mathematical properties of a continuous function given on a segment
(domain), say, X = [0, 1], the domain itself must contain all its elements
(points or real numbers), i.e., the set X must be a “completed ...and
invariable in all its parts” entity, 4.e., the infinity of the set X of reals
must be actual.

On the face of it, the definition really seems to be a clear, visual,
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and convincing one: everybody is allegedly seeing the points, 0 and 1,
drawn, say, by a chalk on a blackboard, and is intuitively sure that
every point between 0 and 1 can be “seen” in the similar way. However,
in reality the problem on whether the set X is actual is reduced to the
new/old question what the real number is [Gowers 2000, Zenkin 2003]:
in the most common case, a real number is an infinite sequence of Os
and 1s and therefore the set X may be actual iff actual is every infinite
sequence, presenting a real number from X. The last means that actual
must be a sequence of natural indezes {1, 2, 3, ...} of the digits of the
sequence. Thus the question on the actuality of the continuum X is
ultimately reduced to the initial question on whether one accepts/rejects
the actuality of the discrete series (x).

5 Second Hidden Necessary Condition of Can-
tor’s Proof

The known meta-mathematical logician W.Hodges analyzes very profes-
sionally and criticizes hard a lot of objections against “Cantor’s diagonal
argument” in his famous paper [Hodges 1998]. In particular, he writes:

“It was surprising how many of our authors failed to re-
alise that to attack an argument, you must find something
wrong in it <the italic type here and further is of mine -
AZ>. [...] The commonest manifestation <of the objec-
tions against Cantor’s proof - AZ> was to claim that Cantor
had chosen the wrong enumeration of the positive integers.
His argument only works because the positive integers are
listed in such a way that each integer has just finitely many
predecessors. If he had re-ordered them so that some of them
come after infinitely many others, then he would have been
able to use these late comers to enumerate some more reals,
for example, <the non-indexed Cantor’s anti-diagonal real y*
- AZ> [...] The existence of a different argument that fails
to reach Cantor’s conclusion tells us nothing about Cantor’s
argument.”

These Hodges’ statements contain at least three logical errors: 1) the
“different argument” does not simply “fail to reach Cantor’s conclusion”,
but it disproves the “Cantor’s conclusion”; the last, from the logic point
of view, tell us quite much about a doubtful legitimacy of ‘Cantor’s di-
agonal argument’; 2) Cantor’s diagonal rule (here: “if a diagonal digit
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is 0 then the corresponding digit of y* is 1, and vice versa”) is applied
to real numbers themselves in the sequence (1) but not to their indexes,
i.e., any re-indexing which does not change the number and order of
reals in (1) does not change the Cantor’s anti-diagonal real y*, i.e., such
the re-indexing is admissible from the point of view of Cantor’s diagonal
algorithm; and 3) if Hodges (after Cantor) likes some (“good”) enumera-
tions and does not like other (“bad”) ones he as a symbolic logician ought
to formulate a legible logical criterion to tell the difference between these
“good”, very desired (by Cantorians) indexings of reals in (1) and “bad”,
strictly forbidden ones.

Unfortunately, Hodges did not do that. But if to translate his pure
intuitive and quite doubtful meta-mathematical “veto” on the “bad” enu-
merations that “fail to reach Cantor’s conclusion” into the common math-
ematical language, we shall have the following second tacit necessary
condition of Cantor’s proof |[Zenkin 2003, 2004].

Hidden Cantor-Hodges’ Postulate. From the assumption of Can-
tor’s RAA-proof that “X is countable’, it follows that X is equivalent to
any countable set, i.e., there is a one-to-one correspondence between
X and any other countable set, e.g., any proper infinite subset of V.
However, within the framework of Cantor’s diagonal proof, only such
one-to-one correspondences, or indexings of reals in (1), are admissible
which utilize all elements of N = {1, 2, 3,...}. Any other indexings
which utilize not all elements of the set N are forbidden categorically.

I would like to underline here that the hidden Cantor-Hodges’ postu-
late is just the second necessary condition of Cantor’s diagonal argument
since only ‘good’ indexings of reals in (1) allow “to reach Cantor’s con-
clusion”, but any “bad” indexings, according to W.Hodges, “fail to reach
Cantor’s conclusion”, i.e., make Cantor’s theorem unprovable.

Thus, the finally completed and explicit formulation of the statement
which Cantor tries to prove is in reality as follows [Zenkin 2004, 2003,
2001, 2000b, 1999]:

Cantor’s Theorem (corrected-2). The set X is uncountable iff:
(a) the set X is actually infinite; (b) the hidden Cantor-Hodges’ postulate
holds.

As it was shown above, the first necessary condition (a) of Cantor’s
theorem makes it invalid. As regards the second necessary condition (b),
within the framework of the diagonal proof, the hidden Cantor-Hodges’
postulate does not follow from the Cantor’s RAA-assumption that “X is
countable’, roughly violates the transitivity law of the equivalence rela-
tion for (any) countable sets, and is simply a teleological one: only such
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indexings are admissible which allow to reach a desired result, all other
indexings which use not all elements of N and therefore “fail to reach
Cantor’s conclusion” are inadmissible. As is well known any teleological
arguments have no relations to classical logic and classical mathematics.

6 Why Kronecker, Poincaré and other
Mathematicians Could not Disprove the
Ten Strings of Cantor’s Diagonal Proof
Mathematically? |Zenkin 2001]

Now we have a unique possibility to solve, for the first time, a very
nontrivial historical (and psychological) riddle, viz. to answer the ques-
tion why the greatest mathematicians of the XIX-XX centuries, such
as Kronecker, Poincare, Brouwer, and others, who categorically rejected
Cantor’s “Study on Transfinitum”, could not prove mathematically the
logical failure of the Cantor’s basic theorem as it is usually accepted in
mathematics?

The answer consists in the following. As is known, the “dubious”
mathematical theorem can be disproved, at least, by the two ways: 1)
if it’s possible to detect an error in the proof itself (as, e.g., W.Hodges
demands that), or 2) if it’s possible to prove that even one necessary
condition of the proof is logically inconsistent (false, contradictory or
simply absurd).

In this connection, the meta-mathematical “sarcasm” of the symbolic
logician W.Hodges — as to “It was surprising how many of our authors
failed to realize that to attack an argument, you must find something
wrong in it.” — looks quite strange, since every really working mathe-
matician knows well that in mathematics any proof is absurd not only
when it contains “something wrong”, but also when even one necessary
condition of the “proof” is absurd.

However that may be, the Cantor’s diagonal procedure itself, ap-
parently, does not contain direct formal errors, — otherwise, I believe,
the really working mathematicians would detect such errors long ago,
— that is why the first, common way to disprove Cantor’s theorem
turned out not too effective. Nevertheless, the second way remains - to
prove, that “even one necessary condition of the proof is absurd”. And
here we come across the unique situation in the all millennial history
of mathematics, namely, the traditional meta-mathematical formulation
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of the famous Cantor’s theorem on the continuum uncountability con-
tained never the necessary conditions of its own proof in an explicit form.
But it is obvious, that it is impossible to refute or to prove an absur-
dity of what did not exist at alll Just therefore neither Kronecker and
Poincare, nor any other Cantor’s opponents had ever a “physical” pos-
sibility to give a common mathematical refutation of his main theorem:
no mathematician, even most ingenious one, simply could ever take into
his head a thought itself that it’s possible during hundred years, accord-
ing to W.Hodges, “to teach other people” how to formulate and prove
the, ostensibly, mathematical Cantor’s theorem [Hodges 1998|, omitting
... the necessary conditions of its proof. From the point of view of really
working mathematics and Aristotle’s logic, it is a scandalous, patholog-
ical nonsense in history of mathematics (Brouwer), and, according to
V.I.Arnold, the nonsense with “very harmful and grave scientific, peda-
gogical, and social consequences” [Arnold 1999|, [Zenkin 2000a).

7 Conclusions

1. The traditional Cantor’s proof of the uncountability of real num-
bers contains two hidden necessary conditions. The explication of
these two conditions makes Cantor’s proof invalid.

2. The great intuitive insight of Aristotle, Poincare, and other out-
standing logicians and mathematicians as to "Infinitum Actu Non
Datur" is rigorously proved.

3. It is obvious that the logical failure of Cantor’s theorem on the
uncountability of continuum changes essentially traditional logical
and methodological paradigms of mathematics-XX and philosophy
of infinity, and opens a way to solve main problems connected
with the I, II, and III Great Crises in foundations of mathematics.
[Kleene 1957], [Zenkin 2004-1999, 1997].
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