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Abstract. Until today, conventionalism is mainly regarded from the point
of view of geometry, both in historical as in philosophical perspective. This
paper, which corresponds in a certain way with earlier studies of J. Giedymin,
aims at a broader interpretation. The importance of the so-called ‘physics
of principles’, rooted in the tradition of analytical mechanics, for Poincaré’s
conventionalism is emphasized. It is argued that important elements of phys-
ical conventionalism can already be found in this tradition that underwent a
fundamental change in the course of the 19th century.
Résumé. Jusqu’à présent, le conventionnalisme a toujours été considéré à
point de vue de la géométrie, que ce soit dans une perspective historique ou
philosophique. Cet article, qui reprend dans une certaine mesure les travaux
antérieurs de J. Giedymin, vise une interprétation plus large. L’importance de
la ‘physique des principes’, qui s’inscrit dans une tradition de la mécanique an-
alytique est mise en valeur par le conventionnalisme de Poincaré. J’y défends
la thèse selon laquelle d’importants éléments du conventionnalisme physique
peuvent déjà être trouvés dans cette tradition qui a subi un changement fon-
damental au cours du 19ème siècle.
Zusammenfassung. Der Konventionalismus wird auch heute noch in aller
Regel — sowohl in philosophischer als auch historischer Perspektive — vom
Standpunkt der Geometrie aus betrachtet. Dieser Beitrag, der in mancher Hin-
sicht an frühere Untersuchungen J. Giedymins anknüpft, zielt auf eine breitere
Interpretation ab. Die Bedeutung der sogenannten ‘Physik der Prinzipien’, die
ihre Wurzeln in der Tradition der analytischen Mechanik hat, für Poincaré’s
Konventionalismus wird unterstrichen. Dabei wird die These vertreten, daß
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wichtige Elemente eines physikalischen Konventionalismus bereits in dieser
Tradition, die im Verlaufe des 19.Jahrhunderts einem grundlegenden Wandel
unterlag, aufzuweisen sind.

1. Introduction

The assessment of conventionalism within the history of philosophy of
science is still dominated by two dogmas: firstly, that Poincaré is its
founder and most outstanding representative; secondly, that conven-
tionalism is a mere philosophical by-product of the discovery of non-
Euclidean geometries. Both dogmas are supported by the historical fact
that Poincaré first developed his philosophical framework, especially his
concept of ‘convention’, in the field of geometry (1887) and later ‘applied’
it to physics (1897); the second dogma seems to gain further evidence
from the philosophical argument that geometrical conventionalism forms
the ‘basis’ of physical conventionalism or, even stronger, that physical
conventionalism is a necessary consequence of geometrical conventional-
ism and nothing more.

To my mind, however, both dogmas should be rejected on histori-
cal and philosophical grounds. Firstly, Poincaré is rightly considered as
the most important representative of conventionalism, but the assump-
tion of a single founder makes no sense: Conventionalism, as far as it
is a reaction to traditional empiricism, rationalism and Kant’s critical
idealism, emerges from mathematical and scientific practice and has no
unique ‘starting point’. In order to support this thesis, I will discuss
the main philosophical features of Poincaré’s physical conventionalism
and bring forward new historical evidence for elements of this type of
conventionalism in earlier 19th century mathematical physics: C. G. J.
Jacobi’s views on the foundations of mechanics, unknown until his Vor-
lesungen über analytische Mechanik (1847/48) were published recently,
show some striking similarities to Poincaré’s position. Jacobi even makes
use of the term ‘convention’ for the principles of mechanics half a cen-
tury earlier than Poincaré. This example (among others) seems to me
appropriate to make clear, secondly, that important features of phys-
ical conventionalism could and did indeed emerge independently from
geometrical conventionalism.

I will start with a ‘minimal description’ of Poincaré’s physical con-
ventionalism (Part 2) and continue with an outline of ‘Euclideanism’ as
historical predecessor and counterpart of conventionalism. This position
was most prominently represented by Lagrange (Part 3). Then I will
present Jacobi’s attitude to the foundations of mathematical physics,
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which emerged from his rejection of Lagrange’s approach (Part 4). Fi-
nally, I will compare his views, especially the meaning of ‘convention’ in
his lectures, with Poincaré’s physical conventionalism (Part 5) and draw
some historiographical conclusions (Part 6).

2. A Minimal Description of Poincaré’s Physical Convention-
alism

Poincaré’s conventionalism is, first and foremost, a theoretical one: Con-
ventional elements are not already located in singular statements about
phenomena, but in the ‘higher level propositions’ of a physical theory.
There is a reality outside, which lends ’factual’ content to physical theo-
ries, but there are different possibilities of building theories with the same
content. Consequently, we cannot bind ourselves to a theory without
making a decision. As physical theories are defined by their mathemati-
cal ‘cores’, this decision or choice is between different (sets of) principles
of mathematical physics.

At this point mechanics, as the mathematically most advanced em-
pirical science at the end of the 19th century, becomes important. What
is the relation of mechanics and physics in general according to Poin-
caré’s philosophy of science? Though Poincaré tentatively seperates me-
chanics and physics 1, he does nowhere draw a clear line of demarcation

1. Cf. Ch. X.4 of La valeur de la science [Poincaré 1906, p.182-184]. Here, Poin-
caré argues that principles are more important in geometry than in mechanics and
more important in mechanics than in physics: Their ‘deductive power’, so to speak,
decreases from geometry to mechanics to physics. This is a gradual, but no principal
difference. In his introduction to La science et l’hypothèse [Poincaré 1914, XVI-
XVII], he seems in need for a sharp demarcation when he explicates the differences
of "hypothesis" in the different areas [ibid., XIV]. But after discussing geometry, he
continues: "In mechanics, we are led to analogous conclusions and we see that the
principles of this science, though founded on experiments, take part in the conven-
tional character of geometrical postulates" [ibid., XVI]. We have both ‘analogy’ of
mechanical and geometrical conventions and ‘participation’ of mechanical principles
in the conventionality of geometry. ‘Participation’, however, can be understood by
no means as a kind of ‘logical inclusion’. The fixation of time, for example, is an
element of mechanical (and thereby physical) conventionality, but does not affect ge-
ometrical considerations. "Time has to be defined in such a way that the equations of
mechanics are made as simple as possible" [Poincaré 1906, 33]. This holds for other
nongeometrical concepts of mechanics (like force and energy), too; cf. (P5) below.

We can add a similar (though, with respect to Poincaré’s hierarchy of sciences,
inverse) point to Poincaré’s attempt to demarcate mechanics from physics: In the
introduction of La science et l’hypothèse (see above) he continues: "Up to here [to
mechanics] nominalism triumphs, but we now arrive at the physical sciences properly
speaking. Here the scene changes: we meet with hypothesis of another kind, and
we recognize their great fertility. No doubt at first sight our theories appear fragile,
and the history of science shows us how ephemeral they are; but they do not entirely
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between both areas. On the contrary: his own programme of physics
can be characterized as a traditional mechanical one, trying to base the
whole of physics on a few mechanical principles. When he explains the
so-called "physics of principles", most of the physical principles brought
forward are rooted in classical mechanics [Poincaré 1906, 133]; they were
extended and generalized in order to make mechanics the unique foun-
dation of physics. Poincaré’s talking about ‘physics of principles’ essen-
tially means mechanical principles 2. He also argues for mechanics as an
experimental science and against mechanics as a deductively organized
and merely mathematical science 3. For him, the principles of mechan-
ics are based on experiments as any other principles of physics [Poincaré
1914, 107, 138-139], though they are not determined by experiments and
therefore in need of conventional fixations. As any ‘complete’ mechani-
cal explanation of physical phenomena can be modified to a number of
empirically equivalent alternatives, such an explanation needs additional
conventional fixations 4. From mechanical principles as conventions and
conventional elements inherent in any scientific explanation arises a the-
oretical flexibility that makes unifying explanation possible 5. This line

perish, and from each of them something remains. It is this something that it is
necessary to try to discover, because it is this, and this alone, that is the true reality"
[Poincaré 1914, XVI-XVII; translation from Friedman 1996, 335]. Though Friedman
is right in his description that Poincaré considers genuinely physical disciplines like
optics and electrodynamics "to be non-conventional" [ibid., 335], it has to be kept in
mind that any theoretical explanation of physics that strives for unity must be con-
ventional, because, according to Poincaré, it has to be based on mechanical concepts
and is therefore in need of mechanical conventions.

2. Poincaré’s dictum ". . . not mechanism is our true and only aim, but unity"
[Poincaré 1914, 177] does not contradict this thesis for two reasons: Firstly, he sticks
to mechanism as the best available means to arrive at unity, underlining the possibility
of mechanical explanations for all phenomena [ibid., 177-178]. Secondly, according
to Poincaré’s ‘argument of embedding’, which demands new theories to preserve the
structural elements of the old ones. No new unifying theory of physics is thinkable
that does not grant the principles of classical mechanics a central place.

3. See his ‘Duhemian’ characterization of British mechanics as an experimental
science and French mechanics as a deductive science at the beginning of Ch. VI of
Science et l’Hypothese [Poincaré 1914, 91]. Poincaré supports the British point of
view [ibid., 139-140].

4. Though on different grounds: "If a phenomenon permits a complete mechanical
explanation, it permits an infinite number of different mechanical explanations, which
accounts as well for all the details revealed by experience" [ibid., 222].

5. The proper answer to Poincaré’s question, whether nature is flexible enough
for unique mechanical explanation is, according to my interpretation, that mechan-
ical explanation is flexible enough for nature. I think Psillos’ analysis is (at least)
misleading in respect to the relation of mechanism and unification [Psillos 1996, 183-
184]. He argues that according to Poincaré "unity rather than mechanism is what
science must aim for" [ibid., 184; cf. 188 and footnote 2, above]. This interpretation
seems to me correct only in so far as Poincaré is prepared to renounce ‘mechanism’
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of argument against a philosophically relevant distinction of mechanics
and physics in Poincaré’s work could be prolonged. To put it in a nut-
shell: Clear and general criteria of demarcation between mechanics and
physics (whether of ontological, epistemological or methodological kind)
cannot be found in Poincaré’s œuvre. Due to his ‘mechanical conser-
vatism’ 6, physically relevant principles are primarily the principles of
classical mechanics and his physical conventionalism deals first and fore-
most with these principles. For this reason a description of Poincaré’s
physical conventionalism can and should focus on his understanding of
mechanical principles, including Newton’s laws, the principle of conser-
vation of energy and the principle of least action 7. In La valeur de
la science, Poincaré describes these "general principles of mechanics"
as "the results of strongly generalised experiences; it seems that they
owe an extraordinary high degree of certainty exactly to this generalisa-
tion" [Poincaré 1906, 133]. They are historical endpoints of the process
of theory-building that always has to start with empirical facts [ibid.,
134-135]. Their ‘conventional’ status is best explicated in La science
et l’hypothèse, where Poincaré mainly discusses Newton’s three laws of
motion. A characterization of his physical conventionalism has chiefly
to answer the question what it means to grant physical principles such
a status. I think that the following five criteria, meant as a minimal
description, do justice to Poincaré’s ideas: 8

(P1) ‘Third way-epistemology’ : Principles as conventions are neither
mere inductive generalisations nor are they synthetic a priori pro-
positions imposed by reason. In epistemological respect, they form

as the explanation of physical phenomena by concrete ‘matter and motion–models’.
‘Mechanism’, however, as the theoretical attitude that all physical phenomena are
determined by a few mathematical principles, which make use only of the ‘mechan-
ical’ concepts of space, time, mass and energy, is at the core of his programme (cf.
fn. 2).

6. [Gillies 1994] shows that Poincaré’s ‘conservatism’ contrasts remarkably with
his later scientific investigations, especially in Sur la dynamique de l’électron (1905).

7. I do not discuss the role of geometrical conventions in the formulation of me-
chanical principles, because this point does not affect my argument, nor is it necessary
to deal with other types of conventions (like mere linguistic or metric ones). Central
for Poincaré’s physical conventionalism are the different mechanical principles, they
are the "really interesting conventions" [Diederich 1974, S. 52].

8. See esp. [Poincaré 1914, 91-141] and [Poincaré 1906, 155-158 and 170-180]. An
excellent analysis of Poincaré’s understanding of mechanical principles as définitions
deguisées (cf. (P5) above) can be found in [Diederich 1974, 50-61]. In this context,
Diederich also elaborates on Poincaré’s distinction of faits brut and faits scientifique
that cannot be discussed here.
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a third kind of propositions: their validity and certainty can nei-
ther be shown by experience nor by reason, but is a matter of
convention.

(P2) Pragmatic dimension: As conventions, these principles are deter-
mined by a pragmatic decision. This decision or choice, however,
is not arbitrary, but has to observe certain empirical and theo-
retical demands: it is guided by experience and considerations of
simplicity and convenience.

(P3) Empirical relevance: As principles, these conventions are neces-
sary for a unifying (i.e. mechanical) explanation of physical phe-
nomena. Their deductive consequences should cover all the known
physical facts and (possibly) predict new phenomena.

(P4) Immunity : Conventions are immune against empirical falsifica-
tion. It is always possible to adhere to a convention which is in
conflict with observation or experiment by changing other elements
of the theory. The possibility of adherence in case of empirical
anomalies is what distinguishes conventional principles and ‘lower
level’ laws with empirical content.

(P5) Semantic relevance: Conventions, as hidden definitions, determine
the basic concepts of the theory in question. Therefore, the choice
between different possible conventions means a choice between dif-
ferent sets of ‘basic’ concepts for the description of phenomena.

It is important to note that Poincaré’s physical conventionalism, as has
been characterised above, does not depend on his geometrical conven-
tionalism: (P1) – (P5) remain important if we dwell on a fixed theory of
geometry (say Euclid’s), and talk about different principles and theories
on the ‘basis’ of this one theory (say Hertz’s three pictures of mechanics;
cf.[Poincaré 1897]). We therefore need not exceed classical mechanics in
order to understand the main point of Poincaré’s physical conventional-
ism: even if geometry is fixed (by convention), mathematics remains rich
enough to allow different conceptual and formal representations of nature
(and consequently needs further conventions). Physical conventionalism
necessarily transcends geometrical conventionalism. This becomes clear
if we have a closer look at criterion (P5), which especially demands fur-
ther explanation:

Different conventional principles define different theories with dif-
ferent sets of concepts. As any empirical law can be divided into a
principle, which implicitly defines the concepts in use and is therefore
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‘isolated’ from empirical verification or falsification, and in a remaining
lawlike part, which can take its concepts for granted and is empirically
testable [Poincaré 1906, 179-182], the principles of a theory fix its con-
ceptual frame. As endpoints of the process of theory building they are,
so to speak, ‘petrifications’ of those concepts that turned out to be most
useful for understanding phenomena.

But what about empirically equivalent and conceptual different the-
ories, i.e. theories with different principles but the same sets of deduc-
tive consequences, which can be confronted with observation and exper-
iment? Poincaré is far from interpreting their basic concepts as incom-
mensurable (in Thomas Kuhn’s or Paul Feyerabend’s sense, for example).
He rather regards these theories as different linguistic expressions of the
same content, though he does not claim that the meaning of a single
concept can be conserved in a simple ‘one to one translation’. What
he does defend is that the ‘essential’ parts of reality are reflected by
the relations of (crude) facts, relations which must be mirrored by the
abstract mathematical structure of the different theories and which are
recognizable, metaphorically speaking, by the ‘isomorphisms’ that map
one theory to another [Poincaré 1914, 161-163]: A "deeper reality" is ex-
pressed in the structure of the most general principles of mathematical
physics, and the very fact that the single phenomena of nature follow
from these principles is "a truth that will remain the same in eternity"
[ibid., 163]. This is the most important difference between Poincaré’s
conventionalism and mere instrumentalism and the best reason to use
the label "structural realism" in order to characterize the epistemology
underlying his philosophy of science [Zahar 1996]. To illustrate this by an
analogy: structural realism holds the view that the essential features of
outside reality may be hidden in a plurality of its perspective representa-
tions (conceptual schemes and corresponding laws), but become obvious
if their relations are uncovered, thereby synthesizing an adequate picture
of reality. Conventions can determine perspective representations, but,
in the end, not the ‘real’ picture.

If Poincaré’s articulation of physical conventionalism, especially his
third-way epistemology (P1), is regarded as an important contribution to
philosophy of science, its historical roots are of considerable philosoph-
ical interest: their investigation can show why traditional empiricism
as well as Kantian apriorism lost their evidence for many philosophers
and scientists, especially why there was a growing conviction that the
problem of the ‘mathematical nature of nature’ had to be tackled in a
new way. Without going into the details of the historiography of con-
ventionalism, it seems to me appropriate to distinguish three different
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views concerning the rise of physical conventionalism.
According to the first view, Poincaré’s physical conventionalism is a
mere appendix to his geometrical conventionalism, both in historical and
in philosophical respect 9. The second view stresses the importance of
philosophical changes for the scientific image of mathematical physics,
especially the rise of positivism and phenomenalism 10. Jerzy Giedymin
has extended and, in a way, deepened both views, but he has also added
a third one. Though it focusses on mathematical physics, as the second
one (from which it cannot be sharply demarcated), it should be regarded
as a separate one, because it deals more with philosophical implications
of the practice of mathematical physics than with explicit philosophi-
cal reflections about it. This third view stresses the importance of the
‘physics of principles’, to use Poincaré’s phrase.

The physics of principles was worked out mainly in the analytical
tradition of mechanics, above all by Euler, Lagrange, Poisson, Hamil-
ton and Jacobi. Armed with the calculus of variations, potential theory
and the theory of differential equations, they created different types of
mechanical theories which are based on different basic concepts, intro-
duced by different mathematical principles as, for example, Maupertuis’
principle of least action or Hamilton’s extremal principle. Giedymin in-
terprets them as prototypes of physical conventions in Poincaré’s sense
[Giedymin 1982, 42-89]. He argues that especially Hamilton’s dynamics
was of utmost importance both for Poincaré’s own investigations into
mathematical physics as for his philosophy of science, though he has to
admit that it is not possible to demonstrate a direct influence 11.

Giedymin’s reference to the analytical tradition is important and
should be pursued — as I would like to do now, though I deviate from
his approach in at least three different respects: Firstly, I will concen-

9. According to this view, Poincaré was brought to geometrical conventionalism
by the development of non-Euclidean geometries, and conventionalism in (physical)
geometry is regarded as the only substantial part of empirically relevant convention-
alism. This seems to be Adolf Grünbaum’s view [Grünbaum 1973], though he does
not discuss Poincaré’s philosophy of science in general; cf. [Giedymin 1982, 9-10].
10. SusanWright, for example, has underlined the importance not only of Maxwell’s

theory of mechanical model-building, but also of the philosophical influences of Mach,
Kirchhoff and Hertz on Poincaré’s thought [Wright 1975, 251-260].
11. Cf. [Giedymin 1982, 65, 72]. As far as Hamilton’s philosophy is concerned, how-

ever, this lack of evidence is hardly astonishing, because Hamilton was influenced by
Kant not only in his philosophy of arithmetic, but also in his philosophy of mechanics
[Hankins 1980, 172-180], and his synthetic a priori view of mechanical principles is
not compatible with Poincaré’s physical conventionalism. If we nevertheless focus
not on this philosophical background, but on Hamilton’s mathematical physics itself,
there are good reasons for interpreting it as a possible ‘point of departure’ for later
physical conventionalism.
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trate not on Hamilton, but on Hamilton’s ‘German twin’ 12 Carl Gustav
Jacobi. Secondly, I do not share the opinion that all inquiries of early
physical conventionalism should end with Poincaré (or Duhem, perhaps).
In other words: It is an unnecessary restriction to use Poincaré’s œuvre,
so to speak, as a ‘point of intersection’ of earlier developments which
might be important in this context. A critical and genetic historiography
has to assess these developments in their own rights, thereby avoiding
‘teleological’ constructions which end in Poincaré’s philosophy of science.
Thirdly, it seems to me necessary to take into account the changing role
of mathematics in the analytical tradition of mechanics — an aspect
of utmost importance for its image of science, but widely neglected in
the history of science and philosophy of science. The latter aspect leads
to Lagrange as the major representative of analytical mechanics before
Hamilton and Jacobi.

3. Lagrange’s Méchanique Analitique (1788) and its Basic
Dilemma

Lagrange’s Mechanique Analitique can be described as an outstanding
example of Euclideanism in the sense of Lakatos [Pulte 1998, 155-158].
According to Lakatos, the ideal of Euclideanism "is a deductive system
with an indubitable truth-injection at the top. . .— so that truth, flowing
down from the top. . . inundates the whole system”. Therefore the main
aim of Euclideanism is “to search for self-evident axioms — Euclidean
methodology is puritanical, antispeculative" [Lakatos 1978, 28]. Eu-
clideanism first and foremost strives for axioms in the traditional sense,
i.e. they are expected to be evident, certain, infallible and, of course,
true.

Lagrange’s analytical mechanics fulfills this definition very well. It is
a great attempt to build up the whole of mechanics on one "fundamental
principle", i.e. the principle of virtual velocities [Lagrange 1788, 10]. As
he claimed that statics and dynamics can be based on this principle
alone, and as he elaborated this mono-nomism more successfully than
any of his predecessors, we can characterize theMéchanique analitique as
the most articulated form of ‘mechanical Euclideanism’ in 18th-century’s
rational mechanics.

Euclideanism, as Lakatos and I use the term, is an epistemologically

12. Their personalities, attitudes of mind and scientific interests show striking sim-
ilarities — a ‘parallelism’ that I can’t examine in this paper. See the excellent biog-
raphy [Hankins 1980] for Hamilton; [Koenigsberger 1904], though unsatisfactory in
different aspects, for Jacobi; cf. also [Pulte 1996, XXIII] for the impact of Hamilton’s
early works on Jacobi’s mechanics.
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neutral label: it includes both rationalistic and empiristic foundations
of the science in question. Whether its principles are revealed by ‘the
light of reason’ (Descartes) or ‘deduced from phenomena’ (Newton) does
not matter. Both justifications can be found in 18th century mechanics,
and in many textbooks they are inseparably interwoven. Lagrange’s
immediate predecessors in the analytical tradition — Euler, d’Alembert
and Maupertuis — were mechanical Euclideanists. They all believed in
a mathematically structured reality and in the capability of the human
mind to condense this reality into a deductively symbolical structure
with only a few first axioms at the top.

But there is also an entirely new ["entiérement neuf"] element in the
Méchanique Analitique: Lagrange’s famous claim "to reduce the theory
of this science, and the art of resolving the problems which are related
to it, to general formulas", thereby making mechanics "a new branch of
analysis" [Lagrange 1788, v-vi], should not only be understood as a re-
jection of all geometrical means: restricting mechanics exclusively to the
methods of analysis implies dispensing not only with other mathematical
methods, but also with extra-mathematical methods. The Méchanique
analitique is the first major textbook in the history of mechanics that
I know of which abandons explicit philosophical reflections and justifi-
cations. It says nothing about how space, time, mass, force are to be
established as basic concepts of mechanics, nor about how a deductive
mathematical theory on that basis is possible. Neither are the metaphys-
ical premisses of his mechanics made explicit, nor is there any epistemo-
logical justification given for the presumed certainty of the basic prin-
ciples of mechanics. This is in striking contrast not only to Descartes’,
Leibniz’, and Newton’s foundations of mechanics in the 17th century,
but also to 18th century rational mechanics [Pulte 1989]. In short, a
century after Newton’s Principia, Lagrange’s textbook can be seen as
an attempt to ‘update’ the mathematical principles of natural philoso-
phy while abandoning the traditional subjects of philosophia naturalis.
In this special sense, the Méchanique analitique is not only a hallmark
of (traditional) mathematical Euclideanism, but also a striking example
of (new) mathematical instrumentalism.

The combination of new instrumentalism (with respect to philosophy
of nature) and old Euclideanism (with respect to philosophy of science)
bears a significant tension of which Lagrange was only partly aware:
it suggests that the ‘deductive chain’ can be started by first principles
without recourse to any kind of geometrical and physical intuiton or
metaphysical arguments. This leads inevitably to a conflict with the
traditional meaning of axiom as a self-evident first proposition, which is
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neither provable nor in need of a proof. To be more concrete: Lagrange
wanted to start with one principle, the principle of virtual velocities. In
order to achieve this aim, he had to formulate it in a fairly general and
abstract manner. In the first edition of his Méchanique analitique, he
introduced this "very simple and very general" principle in statics as "a
kind of axiom" ("une espèce d’axiome de Méchanique") [Lagrange 1788,
12]. In the second edition, he adhered to the title axiom, but had to
admit that his principle lacked one decisive characteristic of an axiom in
the traditional meaning, because it was "not sufficiently evident to be
established as a primordial principle" [Lagrange 1853/55 I, 23, 27].

Euclideanism demands evidence; instrumentalism tends to dissolve
evidence. This is the basic dilemma of Lagrange’s mechanics. In two
different so-called demonstrations (from 1798 and 1813), he tried to prove
his primordial principle by referring to simple mechanical processes or
machines [Pulte 1998, 163-166, 169-172] — symptom of an obvious "crisis
of principles" [Bailhache 1975, 7] caused by the Méchanique analitique
and important for a number of attempts in the early nineteenth century
to regain lost evidence and certainty of the foundations of mechanics. All
these attempts aimed at better demonstrations, giving the principle of
virtual velocities a more secure foundation and making it more evident.
Lakatos, in a different context, aptly described such a position as "a
sort of ‘rubber-Euclideanism’" because it "stretches the boundaries of
self-evidence" [Lakatos 1978, 7]. Euclideanism in general, including this
‘degenerated’ form, had to be called in question before new images of
the science of mechanics, like conventionalism and phenomenalism, could
arise.

4. Jacobi’s Vorlesungen über analytische Mechanik and Its
Way Out of Lagrange’s Dilemma

It is not necessary to repeat, in this context, how important French
mathematical physics was for the German scene in the early nineteenth
century: Gauß, Bessel, Dirichlet, Franz E. Neumann and Jacobi are only
the most prominent examples for the recovering of German mathematics
and science by this intellectual ‘blood transfusion’. Instead, I would like
to point out that mathematics in Germany played a very different role
in the context of science and philosophy, and Jacobi is perhaps the very
best figure to illustrate this difference.

He was born in 1804 and started his university career around 1825.
His early attitude to mathematics can be seen as a result of the then
dominating neo-humanism. According to this ‘Weltanschauung’, science
and scientific education have ends in themselves. Especially mathematics
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should be regarded as an expression of pure intellectual creativity and as
a means to develop it further, needing no other justification whatsoever.
Application of mathematics in the natural sciences or other areas was
often less than tolerated, it was seen as a degradation of mathematics.

Young Jacobi was quite absorbed by this ideal of pure mathematics
(“reine Mathematik”). Proper mathematics, as he understood it, had
nothing to do with sensational experience. On the contrary, it was "a
self movement of the human spirit" ("Eigenbewegung des menschlichen
Geistes"), as he said in his Koenigsberg inaugural lecture from 1832
[Jacobi 1902, 112]. Jacobi was therefore explicitly hostile to contempo-
rary French mathematical physics. Being himself criticized by Fourier,
who couldn’t see any practical use in Abel’s and Jacobi’s theory of el-
liptic functions, he gave the famous reply: "Le but unique de la science,
c’est l’honneur de l’esprit humain" [Borchardt 1875, 276].

Jacobi’s attitude to the role of mathematics in natural philosophy in
this time can be described as basically platonistic. Mathematization of
nature demands, as a necessary prerequisite, that "the concepts of our
spirit are expressed in nature. If mathematics was not created by our
spirit’s own accord [and] in accordance with the laws [incorporated] in
nature, those mathematical ideas implanted in nature could not have
been perceived” [Jacobi 1902, 112-113]. To put it in terms of a paradox,
according to young Jacobi, applied mathematics at its best is pure math-
ematics. Jacobi saw this a priori conception of mathematical physics
realized at its best in Lagrange’s analytical mechanics. There is not the
slightest trace of criticism of Lagrange to be found in his work before
1845.

Later, in the last six or seven years of his life, Jacobi was more con-
fronted with ‘real-world’-problems of mechanics, astronomy and physics
in general. He learned moreover that different formulations of mechanics
(Lagrange’s and Hamilton’s were the most prominent) were possible and
investigated their relations, and he became increasingly engaged in prob-
lems of the history of mechanics [Pulte 1994, 502-505]. These experiences
revealed to him that quite different forms of mathematical representa-
tions of nature exist. While he adhered to his ideal of pure mathematics,
he became more aware of the problem, why mathematics as a product of
our mind should be applicable to natural reality. He gave up the quite
naive platonism, which he had propagated in his earlier career, and came
to a more modern and modest point of view.

Jacobi’s ‘new’ criticism of Lagrange’s mechanics is the most distinct
expression of this change, and the most important one with regard to
the foundations of mechanics. This criticism is totally ignored in the
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histories of mathematics and physics, where Jacobi is still to be found
among the adherents of Lagrange’s approach. Jacobi’s new attitude to
his old ideal is most lively expressed in this warning to his students:

[Lagrange’s] Analytical Mechanics is actually a book you have
to be rather cautious about, as some of its content is of a more
supernatural character than based on strict demonstration. You
therefore have to be prudent about it, if you don’t want to be
deceived or come to the delusive belief that something is proved,
which is [actually] not. There are only a few points, which do
not imply major difficulties; I had students, who understood the
mecanique analytique better than I did, but sometimes it is not a
good sign, if you understand something [Jacobi 1996, 29].

These words aim mainly at Lagrange’s ‘Rubber Euclideanism’, especially
his attempts to ‘demonstrate’ his principle of virtual velocities. I cannot
go into the mathematical and physical details of this discussion [Pulte
1998], but just want to sketch Jacobi’s train of thought.

Lagrange’s ‘proofs’ are based on certain physical concepts like sta-
ble and unstable equilibrium, the replacement of mechanical systems by
pulleys and rods, the replacement of quasi-geometrical constraints by
physical forces, and so on.

Now, Jacobi makes extensive use of his analytical and algebraic tal-
ents in order to show that all these presuppositions exceed Lagrange’s
conception of analytical mechanics, i.e. of a theory that is based on the
calculus and thereby, according to Lagrange’s approach, on algebra.

Take, for example, Lagrange’s transition from statics to dynamics.
Lagrange makes use of d’Alemberts principle in order to subsume stat-
ics and dynamics under his extended version of the principle of virtual
velocities. Jacobi shows, however, that this transition is not supported
by Lagrange’s proofs of the principle of virtual velocities [Jacobi 1996,
59-93; cf. Pulte 1998, 172-178]. He summarizes:

The transition from statics to dynamics generally means a sim-
plification of matters and indeed — reading the mécanique analy-
tique makes you believe that the equations of motion follow from
those of equilibrium. This, however, is not possible, if the laws are
known only in respect to bodies at rest. It is a matter of certain
probable principles, leading from the one to the other, and it is
essential to know, that these things have not been demonstrated
in a mathematical sense, but are merely assumed [Jacobi 1996,
59].

According to Jacobi, Lagrange mixes up two kinds of mechanical condi-
tions, which are in reality "quite heterogeneous", as he says: on the one
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hand, a mass can underly certain physical forces (as gravity, for exam-
ple), on the other hand, a mass point is fixed on idealized, rigid curves or
surfaces. Conditions of the second kind, that is, forces of constraint, can
be replaced according to Lagrange’s proofs in the case of rest, but not in
the case of motion. Jacobi therefore asks for a new principle "according
to which both disgruent conditions of movement can be compared and
determined in their mutual interactions" [ibid., 87 ]. But such a princi-
ple would certainly transcend Lagrange’s very conception of analytical
mechanics, as Jacobi sharply points out in a more general discussion of
Lagrange’s approach:

Everything is reduced to mathematical operation. . . . This means
the greatest possible simplification which can be achieved for a
problem. . . , and it is in fact the most important idea stated in
Lagrange’s analytical mechanics. This perfection, however, has
also the disadvantage that you don’t study the effects of the forces
any longer. . . . Nature is totally ignored and the constitution of
bodies. . . is replaced merely by the defined equation of constraint.
Analytical mechanics here clearly lacks any justification; it even
abandons the idea of justification in order to remain a pure math-
ematical science [ibid., 193-194].

Jacobi’s reproach has two different aspects. First, he rejected Lagrange’s
purely analytical mechanics for its inability to describe the behavior of
real physical bodies. In this respect, he shared the view of those French
mathematicians in the tradition of Laplace who called for a ‘mécanique
physique’ instead of a ‘mécanique analytique’, though he had criticized
exactly this school fifteen years earlier. However remarkable this shift
is, it only concerns low-level adoptions of mathematical techniques to
certain physical demands. It does not affect the foundations of mechanics
itself.

The second aspect, however, does, because it concerns the status of
first principles of mechanics. For Lagrange, the principle of virtual veloc-
ities was vital to gain an axiomatic-deductive organization of mechanics,
and his two proofs were meant to save this Euclideanistic ideal. In so
far as this ideal lacks (as Jacobi says) ‘any justification’ and even ‘aban-
dons the idea of justification’, it can rightly be described as "dogmatic"
[Grabiner 1990, 4]. Jacobi, on the other hand, applies his analytical and
algebraical tools critically in order to show that mathematical demon-
strations of first principles cannot be achieved. At best they can make
mechanical principles "intuitive" ("anschaulich") [Jacobi 1996, 93-96].
But in mechanics, intuitive knowledge is no inferential knowledge; it is
not based on unquestionable axioms and strict logical and mathemati-
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cal deduction. Jacobi, the representative of pure mathematics, dismisses
Euclideanism as an ideal of any science that transcends the limits of
pure mathematics: The formal similarity between the mathematical-
deductive system of analytical mechanics and a system of pure mathe-
matics (as number theory, for example) must not lead to the erroneous
belief that both theories meet the same epistemological standards, espe-
cially that the first principles or axioms of mechanics are as certain and
evident as those of pure mathematics. Mathematical instrumentalism,
practiced by Lagrange and propagated by the later tradition of analytical
mechanics, inevitably leads to a dismissal of mechanical Euclideanism.
To my knowledge, Jacobi was the first representative of the analytical
tradition who saw this consequence. His philosophy of mechanics lies
‘beyond the edge of certainty’ 13.

5. ‘Conventional’ and ‘Conventionalistic’ Principles: A Short
Comparison of Jacobi’s and Poincaré’s Views

Having described the origin and general features of Jacobi’s destructive
criticism of Lagrange’s Euclidanism, his constructive view of mechanical
principles and the role of mathematics should be dealt with. According
to Jacobi, mathematics offers a rich supply of possible first principles,
and neither empirical evidence nor mathematical or other reasoning can
determine any of them as true. Empirical confirmation is necessary, but
can never provide certainty. First principles of mechanics, whether ana-
lytical or Newtonian, are not certain, but only probably true. Certainty
of such principles, a feature of mechanical Euclideanism, is replaced by
fallibility. Moreover, the search for proper mechanical principles always
leaves space for a choice. Jacobi, well educated in classical philology and
very conscious of linguistic subtleties, consequently called first principles
of mechanics "conventions", exactly 50 years before Poincaré did:

From the point of view of pure mathematics, these laws cannot be
demonstrated; [they are] mere conventions, yet they are assumed
to correspond to nature. . . . Wherever mathematics is mixed up
with anything, which is outside its field, you will however find
attempts to demonstrate these merely conventional propositions
a priori, and it will be your task to find out the false deduction in
each case. . . .
There are, properly speaking, no demonstrations of these propo-
sitions, they can only be made plausible; all existing demonstra-
tions always presume more or less because mathematics cannot

13. I borrowed this title from [Colodny 1965] — a book where, strange enough,
‘certainty’ is only a topic of minor importance; cf. also part 5 of this paper.
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invent how the relations of systems of points depend on each other
[Jacobi 1996, 3, 5].

It is important to take note of Jacobi’s ‘point of view of pure mathemat-
ics’: He draws a line between mathematics itself and ’anything, which
is outside its field’: Mathematical notions and propositions on the one
hand and physical concepts and laws on the other hand must be sharply
separated.

This marks a striking contrast to Lagrange’s ‘physico-mathematici-
an’s’ point of view and explains Jacobi’s ‘conventional turn’. Firstly,
his idealistic background prevents him from believing that mechanical
principles are grounded in experience. Secondly, he shares Lagrange’s
opinion that no metaphysical demonstration of such principles is pos-
sible. Thirdly, he rejects Lagrange’s view that mathematics itself can
prove these principles as certain and evident. Mathematics, however,
can offer different principles of describing physical reality in an economi-
cal way. The creativity and autonomy of mathematics are substantial in
order to understand, why a decision between different mechanical prin-
ciples is possible and necessary. It is here, in mathematics, where these
principles as conventions have to be located.

To avoid misunderstandings it must be emphasized that Jacobi did
not give an extensive discussion of his understanding of conventions,
comparable with Poincaré’s introduction to La science et l’hypothése,
for example 14. The fact, however, that he uses this notion repeatedly
and that his view had an impact on other mathematicians like Riemann
and Carl Neumann, whose philosophies of science contain ‘conventional
elements’ 15, seems to justify a short comparison with Poincaré’s view.
For this purpose, I go back to the ‘minimal description’ of Poincaré’s

14. As already mentioned, Poincaré did not coin the term ‘conventionalism’. But
in so far as he elaborated a philosophical framework that centres around the concept
of convention, it is appropriate to attribute this label to him. Jacobi, however, did
not work out his views in detail. That is why I call Poincaré’s view of mechanical
principles ’conventionalistic’ and Jacobi’s view ‘conventional’; cf. also [Pulte 1994].
15. Bernhard Riemann attended Jacobi’s Analytische Mechanik from 1847/48 and

rejected mechanical principles as axioms (in the traditional meaning) soon afterwards
(and before he discussed the ‘Hypothesis which lie at the basis of geometry’ in 1854).
Carl Neumann studied the Analytische Mechanik in great detail. He shared Jacobi’s
criticism of mechanical principles and made it popular in his famous and influen-
tial inaugural lecture at Leipzig On the Principles of the Galilei-Newtonian Theory
(1869). There is a line of mechanical ‘non-Euclideanism’ (cf. part 4) starting with
Jacobi, which led to serious doubts about the validity of so-called Newtonian mechan-
ics. This tradition is independent of Ernst Mach’s well-known criticism of absolute
space and the law of inertia and precedes it. It is nevertheless widely neglected in the
history of science and philosophy. Cf. [Pulte 1996] for some further details.
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physical conventionalism (P1-P5). There are some striking similarities
as well as differences to be noticed:

(J1) ‘Third way epistemology’ : The most important ‘common de-
nominator’ of Poincaré and Jacobi is the idea that mathematics opens
a space for constructive developments that is not restricted or pre-
dicted by experience or reason in semantical respects. Therefore, both
mathematicians come to a ‘third way solution’ with respect to me-
chanical principles: Its first laws are neither empirical laws, ‘deduced
from phenomena’ (Newton), nor are they synthetic a priori princi-
ples, imposed by reason (Kant). While his idealistic background
forbids Jacobi to take the ‘Newtonian’ alternative seriously, he ex-
plicitly states that it is not possible "to demonstrate these merely
conventional propositions a priori" [Jacobi 1996, 5].

(J2) Pragmatic dimension: Jacobi, as well as Poincaré, holds the
opinion that a choice between different alternatives has to be made
that is not arbitrary, but restricted by considerations of simplicity and
convenience: ". . . again a convention in form of a general principle will
take place. One can demand that the form of these principles is as
simple and plausible as possible" [ibid., 5].

(J3) Empirical relevance: Of course, mechanical conventions, as
principles, need to be empirically relevant for Jacobi, too. They are
assumed in order "to correspond to nature", in a way "that experi-
ments show their correspondence" [ibid., 3].

(J4) Immunity : Jacobi is not explicit on the question of how con-
ventions are to be handled in case of empirical anomalies. As he
sometimes remarks, however, that mechanical principles are not cer-
tain, but only "probable" [ibid., 32-33], he obviously believes that
experience is entitled to falsify principles. Where Poincaré argues
that Hertz’s dictum ‘what is derived from experience can be anni-
hilated by experience’ does not take into account the conventional
nature of principles (making these principles infallible), Jacobi antic-
ipates Hertz’s position. Mechanics cannot achieve the infallibility of
pure mathematics and becomes, even on the level of first principles, a
fallible science. This is the most important difference with Lagrange’s
Euclideanism, but also with Poincaré’s conventionalism.

(J5) Semantic relevance: In Jacobi’s mechanics we find at least one
example that points in the direction of Poincaré’s ’hidden definition-
interpretation’ of conventions, i.e. Newton’s first law or the law of
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inertia. Poincaré argues rightly that this principle is neither derivable
from experiments nor an a priori proposition. He regards it obviously
as a fixation of the meaning of ‘force-free movement’. Other défini-
tions déguisées are possible and permissible, for example motions
with changing amount of velocity or circular motions. They would
lead to other differential equations of motions and different laws for
the forces which are exerted in case of a disturbance [Poincaré 1914,
93-99]. Jacobi’s interpretation is very similar:

From the point of view of pure mathematics it is a circular ar-
gument to say that rectilinear motion is the proper one, [and
that] consequently all others require external action: because
you could define [“setzen”] as justly any other movement as law
of inertia of a body, if you only add that external action is re-
sponsible if it does not move accordingly. If we can physically
demonstrate external action in any case where the body devi-
ates, we are entitled to call the law of inertia, which is now at
the basis [of our argument], a law of nature [Jacobi 1996, 3-4].

Jacobi’s circular argument implies that the law of inertia is, indeed,
a convenient definition: it determines the meaning of ’being free of
external forces’. We are entitled to choose other movements, for ex-
ample circular movement, if we can trace back any deviation from
circular movement to an external action. Newton’s first law is mean-
ingful only if it is combined with different laws expressing these ex-
ternal actions — with the law of gravitation, for example. This is
what Poincaré tries to make clear in La science et l’hypothèse and
what is in perfect agreement with Jacobi’s point of view.

I would like to finish my comparison with a note on ‘structural realism’,
the central epistemological characteristic of Poincaré’s position. Jacobi
uses the term ‘convention’ several times in the context of the general
laws of motion. He does not use it, however, in the context of conserva-
tion laws and invariance considerations of mechanics: Poisson’s famous
theorem about the generation of canonical invariants, for example, a
theorem extended by Jacobi himself, is called “fundamental theorem of
dynamics” [ibid., 132-141, 283-296] — by no means a sign of a ‘conven-
tional’ interpretation of this theorem. His reduction of conservation laws
to symmetry properties, later successfully pursued by Emmy Noether,
does not operate on the level of ‘conventional’ mechanical principles, but
expresses ‘higher order-relations’ of mechanical principles. Jacobi seems
to interpret these relations, being "without analogy" and expressed in a
theorem that "was set up thirty years ago, but nevertheless unknown"
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[ibid., 289], as basic mathematical insights into physical reality. Struc-
tural realism is a mark of his position, too. In other words: If the "theory
of invariants as foundation of conventionalism" [Mette 1986] is an im-
portant feature of Poincaré’s philosophy of science, we may find Jacobi
at Poincaré’s side. As Jacobi, however, gives no explicit comments on
the epistemological status of these ‘higher’ principles, this conjecture is
open to further investigations.

6. Conclusion

Modern understanding of mechanics as a genuinly physical science should
not blind us to the fact that in the 18th and first half of the nineteenth
century it was credited with the evidence and certainty of a ‘pure’ math-
ematical science, being de facto regarded as epistemologically equivalent
to geometry by most scientists and many philosophers of science. Both
sciences were generally regarded as axiomatic-deductively organized bod-
ies of knowledge, infallible in their applications to physical phenomena.
Euclideanism was the dominant image of rational mechanics as a sci-
ence, and this image had to be called in question before new images
(like phenomenalism and conventionalism) could take shape. Of course,
there were dramatic changes in the foundations of geometry with con-
siderable impact on the philosophy of science. But this should not lead
to a one-eyed ‘geocentrism’: We have to realize comparable changes in
mathematical physics, especially in rational mechanics, which are in no
way ‘reducible’ to the former ones. Both, geometry and mathematical
physics, deserve our attention, if we really want to understand scientific
and philosophical changes so frequently and carelessly called ‘revolution-
ary’.

In the course of nineteenth century, a ‘shrinking-process’ of math-
ematical evidence and certainty takes place, and geometry as well as
mathematical physics are affected by this process. The concept of pure
mathematics, isolating arithmetic as the remaining mathematical ‘par-
adise’ of evidence and certainty from the larger area of mathematical
sciences, plays a crucial role in this process (Gauss, Jacobi and Poin-
caré are the best figures to illustrate this). Jacobi draws the inevitable
consequence for mechanics as a mathematical and empirical science: He
rejects evidence and certainty of its principles, thereby anticipating ele-
ments of physical conventionalism in the sense of Poincaré, as I tried to
show. Poincaré’s rescue for the mathematical ‘waste lands’ of geometry
and mathematical physics is, in a way, a more conservative one: though
evidence is lost, we can make principles "certainly true" by convention
[Poincaré 1906, 180]. But this certainty ’by decision’ is entirely different
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from certainty ‘by evidence’, as it was defended by traditional mechani-
cal Euclideanism. So far, both Jacobi and Poincaré are ‘certainly beyond
the edge of certainty ’.
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