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INTRODUCTION

1) This work belongs to the direction initiated by K.Mackenzie in
[20; Chap.111.8§2.5.7,Ch.1V], [21] and developed by the author in [17], and concerns
the "clean" theory of Lie algebroids. [These works isolate this theory from the common
theory of Lie groupoids and Lie algebroids].

Originally, the notion of a Lie algebroid was invented by J.Pradines [28], [29]
(1967) 1in connection with the study of differential groupoids, generalizing the
construction of the Lie algebra of a Lie group. Since every principal bundle P
determines a Lie groupoid PP_1 of Ehresmann [6], therefore - in an indirect manner -
determines a Lie algebroid A(P). The construction of this object with the omission of
the indirect step of Lie groupoids (with the use of the vector bundle TP/G) was made
independently by K.Mackenzie [20] and by the author [15]. In [15] there is also a third
manner of constructing a Lie algebroid of a principal bundle P(M,G) as an associated
bundle Wl(P)xGI(Rnxg) with the first-order prolongation of P.

Since 197% another source of transitive Lie algebroids (discovered by P.Molino
[23]) has been known, namely, the theory of transversally complete foliations. On this
ground R.Almeida and P.Molino discovered in 1985 [3] (see also [24]) non-integrable
transitive Lie algebroids (i.e. ones which do not come from principal bundles),
refuting an assertion of J.Pradines concerning the non-existence of such objects [30].
More precisely, they proved that a TC-foliation ¥ has an integrable Lie algebroid if
and only if ¥ is developable. Since the fact that any TC-foliation with nonclosed
leaves on a simply connected manifold is not developable is obvious, therefore its Lie
algebroid is not integrable. A more concrete example is the foliation of left cosets of

a connected and simply connected lLie group by a nonclosed Lie subgroup. In [16] the



author gives a direct definition of the Lie algebroid of such a TC-foliation (without
using Molino’s theory) and develops the method of a Lie algebroid on this ground.

Differential geometry of the last five years has revealed new objects which
determine Lie algebroids: Poisson manifolds (A.Coste, P.Dazord, A.Weinstein [5], 1987)
and some complete closed pseudogroups (A.Silva [32], 1988). To sum up, the method of a
Lie algebroid in differential geometry has acquired weight.

2) Can the characteristic classes known on the ground of principal bundles
[Pontryagin classes, the classes of flat or of partially flat principal bundles] be
constructed on the level of Lie algebroids 7 - was the problem the author posed some
five years ago.

The first result in this direction concerns the Chern-Weil homomorphism of
principal bundles. In [15] the author observed that the Chern-Weil homomorphism of
principal bundles is an invariant of Lie algebroids of these bundles in the case of
connected structure Lie groups [the troubles refer only to the domain of this
homomorphism]. The full answer to this question is included in work [17] which is based
on

{a) the author’s observation that the Chern-Weil homomorphism of a connected
principal bundle is an invariant of the Lie algebroid of this bundle [this forced the
initiation of the notion of a representation of a principal bundle on a vector bundle
and the obtaining of some related results],

(b) the construction of an equivalent of this homomorphism for the class of
regular Lie algebroids over foliated manifolds [containing the class of transitive
ones] (in [17] the author initiated the theory of connections in nontransitive Lie
algebroids),

(c) the discovery of a class of transitive non-integrable Lie algebroids having
the nontrivial Chern-Weil homomorphism.

Due to (b) and (c), the technique of characteristic classes can be applied to the
investigation of the objects different than principal bundles but possessing Lie
algebroids, such as TC-foliations, nonclosed Lie subgroups, Poisson manifolds, some
pseudogroups, or vector bundles over foliated manifolds.

As to (c), the author calculated the Chern-Weil homomorphism of the Lie algebroid
A(G;H) of the foliation of left cosets of a Lie group G by a nonclosed Lie subgroup H.
The superposition

h NV s V) 6/
A(G; H) I dR
serves as this homomorphism, where hP:(VE*)I-———éHdR(G/ﬁ) is the Chern-Weil

homomorphism of the H-principal bundle P= (G——>G/H). Next, it was noticed that the
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case of a compact and semisimple Lie group G is a case in which hA(G 0 is not trivial
(2) ’

(more precisely, hA(G;}” ¢O). Adding the simple connectedness of G, we obtain a
non-integrable Lie algebroid.

Some version of Bott’s phenomenon on the ground of regular Lie algebroids is the
aim of work [18]. There, this Vanishing Theorem is interpreted for TC-foliations,
especially, for nonclosed Lie subgroups, and used to the proving of the nonexistence of
Lie subalgebras of some types.

3) The present work has 3 parts and concerns the construction of the
characteristic homomorphisms for flat and for partially flat regular Lie algebroids.
The first part is devoted to the investigation of some properties of regular Lie
algebroids over Euclidean spaces, needed in the sequel, such as, for example:

— Any regular Lie algebroid over the foliated manifold (R°xRY TR*0) possesses a
globally determined flat connection and is trivial in the sense that it is isomorpic to
the pullback of an entirely nontransitive Lie algebroid over R? via the projection
RORI—RY

Next, the invariant cross-sections with respect to a representation of the trivial
transitive Lie algebroid TRpxg and of a regular Lie algebroid over the foliated
manifold (RxM,TRxE) are studied. The results obtained here are used further, for
example, in the proofs of the homotopic invariance of the characteristic homomorphisms
with respect to subalgebroids. These results are elementary but with the use of a
theorem about some system of partial differential equations with parameters (given here
together with the proof). Some of them are known from works of R.Almeida and P.Molino
[3] or K.Mackenzie [20] (but with other proofs, more sketchy or less algebraic}.

The second part is devoted to the characteristic homomorphism of a flat regular
Lie algebroid. This part has 7 chapters. In Chap. 1 the author introduces the theory of
cohomology with coefficients for arbitrary Lie algebroids, defining three operators Ls,
92, d’ and proving their fundamental properties [given in K.Mackenzie [20] with the
proof "standard"]. The characteristic homomorphism of a flat regular Lie algebroid
equipped with some subalgebroid is constructed in Chap. 3. Chaps. 4 and 5 concern its
properties: the functoriality and the dependence on a subalgebroid. In S5 we introduce
the notion of a homotopy between Lie subalgebroids (Def. 5.2) and prove the equivalence
of the characteristic homomorphisms for homotopic Lie subalgebroids. We add that
[Prop. 5.5.3] two homotopic H-reductions Pt, t=0,1, of a principal bundle P(M,G)
determine homotopic subalgebroids, and that the converse thorem is not true unless Pt
and G are connected. The homomorphism constructed agrees with a suitable one for a flat

principal bundle with a given reduction if the flat regular Lie algebroid comes from

such a bundle. According to the above, these homomorphisms are equivalent not only for
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two homotopic reductions but also, more, for two reductions having homotopic Lie
subalgebroids. In Sec. 6.2 it is pointed out that the so-called folliated bundle
(P,P’ ,w) where P’ 1is a reduction of P and w is a connection in P flat over an
involutive distribution F gives a flat regular Lie algebroid (A4(P),A(P’),A|F) over the

foliated manifold (M,F) and then, the characteristic homomorphism
F ,\F
A“:H(g;A(P ) )—-9HF(M)

(having the values in the tangential cohomology algebra HF(M) of (M,F)). The
“"tangential characteristic classes" of (P,P’,w) - the cohomology classes from the image
of A: - measure the independence of w and P’, i.e. they do exactly the same as the
exotic characteristic classes.

An interpretation of the homomorphism introduced, on the ground of TC-foliations,
especially, for nonclosed Lie subgroups, is given in Chap.7. There are obtained some
examples on the ground of nonclosed Lie subgroups (in transitive and in non-transitive
cases) having nontrivial the characteristic homomorphism.

Part III concerns the characteristic homomorphism of partially flat regular Lie
algebroids, generalizing this notion from the theory of Kamber-Tondeur [10]. Here, some
idea of G.Andrzejczak (unpublished) of a change of variables in the Weil algebra
[offering facilities for the operating on it] is used in the construction of the Weil

algebra for a bundle of Lie algebras.
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PART |

LOCAL PROPERTIES OF REGULAR LIE ALGEBROIDS OVER FOLIATED MANIFOLDS

1. TRIVIAL REGULAR LIE ALGEBROIDS

We assume that in our work all the manifolds considered, are of the Cw—class and
Hausdorff, and that the manifolds M, M’',... over which we have Lie algebroids are, in
addition, connected. By Q°(M) we denote the ring of c” functions on a manifold M, by
X(M) the Lie algebra of ¢” vector fields on M, and by SecA the 0°(M)-module of all c”

global cross-sections of a given vector bundle A (over M).

We recall [17] that by a regular Lie algebroid over a foliated manifold (M,E) (E
is a constant dimensional C~ involutive distribution on M) we mean a system
A=(A,[-, 1,>) consisting of (a) a vector bundle A over M for which there is defined
an R-Lie algebra structure [-,-] in the space Sec A of global c” cross-sections, (b) a
homomorphism of vector bundles y:A—>THM (cal]ed an anchor) such that Imy=E,
Secy:Sec A——> ¥(M) is a homomorphism of Lie algebras and the following equality
&, F-nl=1-0&, 01+ (9:€)(F)-n, feQ’ (M), £, neSecA, holds.

If E=0, then A is called [20] completely intransitive. It is simply a bundle of
Lie algebras (Lie algebras A'x and A'y , X, yeM, need not be isomorphic, although the
bracket [£,7n] of C” cross-sections of A - defined point by point: (&,n],=1€,,n,] - is
c”, too).
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One of the most important constructions of the building of a new regular Lie
algebroid is the inverse-image 4 by a homomorphism of foliated manifolds

£ (M E')— (M,E) [17]:

E 3
R A=E x A={(v,w)eE’><A;f (v)=3'(w)}cE’@f A,
({#,7) *

II(X,Z[J-Eonf), (Y,Lg"m of)1=(IX,Y] ,fj~gk-l[€J,nk]]of+X(gk) m of =Y (£)) € of)
3 J
for fj,gkeff(ﬂ'), €j,nkeSecA. The projection onto the first component

pr,:f A=E"x A——E'
(fi‘,y)

serves as the anchor.

A nonstrong homomorphism H:4’ —— A of regular Lie algebroids (over

f: (M’ ,E’)——> (M,E)) [17] can be defined smartly as a superposition Y Ny RNy
of some strong homomorphism H and the canonical one K==pr2.

Here we write the basic (easy to prove) properties of the operation of the
inverse-image:

a) (gor)™a = ("),

b) if i :{x} “—>M 1is the inclusion, then ixAAééglx (g:=Kery and g is a
bundle of Lie algebras; Lie algebras g, . and g|y are isomorphic provided that x and y

lie on the same leaf of the foliation E).

Definition 1.1. By a trivial regular Lie algebroid over {M,E) we shall mean each

algebroid isomorphic to fAA for any completely intransitive Lie algebroid A.

Example 1.2. Transitive trivial Lie algebroid. Let a trivial Lie algebroid 4
(where A is a completely intransitive Lie algebroid A on a manifold N) be transitive
(this means that it is over (M,TM)) . Then f is a constant mapping, say, f(x)=y. Put

y:M——>{y}, x —>y, and let i,:{y} &N be an inclusion. Then
a=y G, ) 23N a) =THx g (s=g,,)-

Clearly, ;A(g) is a usual trivial transitive Lie algebroid [26], [17].
Example 1.3. Consider two manifolds M and N, the projection pr2:M><N————9N and a
vector bundle of Lie algebras f on N considered as a completely intransitive Lie

algebroid. Of course, prz:(M><N,TMX(U-_——9(N,O) is a homomorphism of foliated

*
manifolds. We see that the inverse-image przA(f) is equal to (TM><O)£Bpr2 (f). Each
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cross-section of prZA(f) is a sum of cross-sections of the form (X,f-ooprz) for
XeSec(TMx0), feQ (MxN), oceSecf. Therefore the structure of a Lie algebra in

Sec;néA(f) is determined uniquely by demanding that

[[(X’f'gopr?)) (Y,g'n"Prz)]]:([X,Y] ,f’g'[[gyn]]°Pl'2+X(g)’T)°PI‘2"Y(f)‘EOPFZ).

Example 1.4. Each C” constant dimensional and completely integrable distribution E

on a manifold M is a regular Lie algebroid being, of course, trivial.

The fundamental role in the proof of some structural theorems on a local shape of
regular Lie algebroids and their properties is played by some theorem concerning global

solutions of some system of differential equations, see below.

2. GLOBAL SMOOTH SOLUTION OF SOME SYSTEM OF DIFFERENTIAL EQUATIONS
WITH PARAMETERS

Denote the canonical coordinates on R xR" by (xl,...,xm,yl,...,ynL

Theorem 2.1. Let C” functions bt, akidﬁnxmn——aak, r,k<g, i«<m, be given.
r
Consider a system of partial differential equations
k
q
é)Z—(x,y)=—bk(x,y) + ¥ a~ (x,y)-zr, keq, i<m, (1)
3}(1 i 1 ri

satisfying the conditions of local integrabilitly:

k
6bl: ab ‘. :
u u
—— - ___g - z a + Z a b
8Xs axi u=1 i s u=1 us i
i,s<m, r<gq.
k k q
da da q q
ri rs k u k u
-l = ) a a - Y a a
8Xs axi u=1 us ri u=1 ui rs
00 s
Then, for an arbitrarily taken C mapping g:Rn~ﬂw9Rq, there exists exactly one

globally defined C* solution z:R"xR"--—>R" such that z(0,y) =g(y), yeR"

Remark. The simple classical theorem asserts the existence and the uniqueness of

some C” solution determined in some neighbourhood of an arbitrarily taken point of the
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form (0,y).

Proof of Th. 2.1. In this proof we use some elementary facts concerning the theory
of foliations and the global existence of a solution of some system of ordinary
differential equations without parameters.

Put ¥M=R"xR"xR7 with coordinates (xi,yj,zk) and define 1-forms w on M by
m q
W =dz" + y (bk(x,y)- y a* (x,y)-zr)dxi.
i=1 ! r=1 Tl
Consider the following system of linearly independent c® 1-forms on M:
(wl, .. ,wq,dyl, e ,dyn).
1) The distribution E generated by this system of 1-forms is integrable.

This results from the following (easy to obtain) equations:

d(dy’) =0,

-~-zr)-dx1. E has the dimension

m
in which o=} a -ax', - ¥ o(-—t+ ¥

equal to m.

2) A ¢ mapping z:R"xR"— >R is a solution of (1) if and only if, for each

point yoE[Rn, the manifold Ly, (z):={(x,y, . 2z(x,y )); xeR"} is an integral of E.
o

Indeed, L, (z) is an m-dimensional C~ manifold with the global trivialization
o

EyO:[Rm———a!Rmx[Rnx[Rq, x — (x,y, ,z(x,y,)). Therefore the tangent space to Lyo(z)
- - _ 1 = a a az" a
at x:=z, (x) 1is spanned by the vectors v :=d(z, )J(—  }=— +y—— The
o Yo 1] i - o oor|=
ox 'x 8x 'x rdx 'x 8z 'x
equalities
3, 1
dy' (v )=0 and
kK, 1, azf k d k r
wv)=—o(x,y)*+b (x,y,)- ¥ a (x,y )z (x,y )=0
i [+ i o] ri [e] [»]
ax r=1
demonstrate our assertion.
3) The space EI ( ) lies on the plane 0XZ. Besides, for
x’y’z
q
v=Zal°——a—+):cr- 9 , we have: wk(v)=ck+2(bk— ) ak_-zr)-ai, which implies
1 axl r azr 1 i r—1 ri

16




that

k _ k_ k_ 3 ok ry ot
w(v)=0 & c = ¥(b1 r§1arl z )-a. (2)

As a simple corollary we obtain: if a'=0 for all Jj, then v=0.

4) Let L be the leaf of the distribution E, passing through a point (x,,¥,,2,) and

take the projection prI:L-——9Rm. Since prl.(fjal'—£=~+2cr-—fl)==Zai-—§;, 3) above

ax 8z" ax
gives that pr,. is an isomorphism, therefore pr; is a local diffeomorphism. According

to the simple connectedness of R", to see that pr, is a diffeomorphism, we only need
notice the surjectivity of this projection. For the purpose, take arbitrarily a peoint

Xy eR" and choose A:=x; —x_ . Define the embedding

@:RxRI—SR"™R"™xR? (t,z) > (x +t-A,y,,2)

»* * ~ 9 .
and calculate: o (dx')=a'dt, o wk=dzk+2(bl:— ¥ akl-zr)~7\ldt, k<q, where
~ ~ i l"=1 r ~
bT,ati:R————am are def ined by the formulae b:(t)==bf(xo-+t-k,yo),

~ X
a:l(t)=a:l(xo+t-h,yo). The 1-forms ¢ W correspond to the system of ordinary
differential equations of the first order, being linear nonhomogeneous

k
z

. €~ .
T=—);b‘i‘(t)->\‘+ zl(};al:i(t)'hl)-z :
r=

Q

Consider the initial condition zk(0)=z:. The well-known classical theorem [27] states
that there exists exactly one globally determined (on the whole space R) solution
z==(zl,...,zq) of this system, satisfying the initial condition. As previously,
L={(t,z(t)); teR} is a maximal integral of the one dimensional distribution
determined by the system of 1-forms (w*wa...,w*wq). kKiR——L, t—>(t,z(t)), is a
global trivialization of L. Now, we prove that w[Z] is an integral manifold of the
distribution E. To this end, we notice that the tangent space to the manifold L at a

point (t,z(t)) is spanned by the vector 3?4- Ek-—§; where Ek=-25t(t)-ll+
k az i
q . ~
+ ¥ (pa* (t)-a')-z7(t). 1t is easy to obtain that w*(£+§:ck'—a—)=27\l-i+
r=1 i ri k azk i axi
-+§Ek°g§; and Ek=-§(bt(xo+t-x,yo)-Za:itxo+t-A,yo)-zr(t))-Al. Therefore,
Z r

according to step 3) above, the vector ZAiul%~+ZEk-~§; lies in the space
i

ox k 0z

, which is the reason why ¢[Z] is contained in the maximal integral of
l(xo+th,yo,z(t))

E passing through (x,,y,.2,)- Then x, =pry(x,,y,,z(1)) =pr, (p(1,2(1))) =
=prlo¢ox(1)epr1IZI.

17



5) Take into consideration a function g:an~—-—>qu and a submanifold

N=((O,y,g(y));yean) of M. It is a transverse manifold of the foliation E. Indeed,

let veT(0 ( ))NnEl(o (o)) Then V=}:bj-—a——+2ck‘~%=):ai-—ai—+2t.:k--6—k
yY»8\Y yY,g\y j 6}"‘ K 3z i ax K oz
for some reals ai, bj, ck, Ek, therefore ali = bJ =0 and, by step 3) above, v=0.

Denote by L, the leaf of the foliation E, passing through (0,y,g(y)}), and define

L= |J Ly.
yERD

L is, of course, an embedding submanifold of M. We prove that
pr:=pr L:L—>R"R"

(_being clearly a smooth bijection, see the previous step of the proof) is a

diffeomorphism. Take a point (x_,y, ,z )JeL and a vector veT, L such that
X2 Y01 %5

pr*(v)=0. The equality v=0 1is what we need to assert. v 1is of the form

v=ch'——§;. Consider two complete transversals TO and T of E determined by the
k 8z XO
equations x=0 and x=x_, respectively, and a diffeomorphism ¢:T ———)'I‘o such that
X

o
the points (x_,y,z) and ¢(x,,y,z) lie on one of the leaves of E. ¢ 1is, clearly,

uniquely determined. The vector v 1is tangent to T . Since ¢ 1is of the form
X
~ ~ [e]
p(x,,y,2)=(0,y,9(y,z)) for some function ¢, therefore w:=¢ (v) 1is of the form
w=ZEl-(———f—, i.e. its coordinates with respect to the vectors — are zero. On the
k 3z B B é)yJ N
other hand, veT LnT T =T (LAT_ ) (LnT is equal
(xo,yo,zo) (xo,yo,zo) X, (xo,yo,zo) x, X,
to ¢_1 {N] and is a submanifold) and p(x,,y,,2,)=(0,y,,8(y,)); then
weT N. However, N 1is the 1image of the mapping \ll:an-———élRmx[Rnx[Rq,
(O)Y‘))g(yo))
v—>(0,y,g(y)), s0, W=V/*y (W) for some WeTy R". Therefore
o

o
()=pr*(w)=pr*(l/l%y (w))=w, which implies w=0 and, next, v=0,
o
6) Let pr3:lRm><an><[Rq~—~——9qu denote the projection onto the last factor. The

mapping z:R xR"—— R equal to z:=pr3°(pr)—1 is, according to step 2) of our

proof, the sought-for solution of system of differential equations (1). m

18



3. A REGULAR LIE ALGEBROID OVER (R"xR™, TRPx0) POSSESSES A FLAT CONNECTION

The following theorem generalizes the result of K.Mackenzie [20] concerning

transitive Lie algebroids (see also [3]).

Theorem 3.1. Every regular Lie algebroid over (RpqujﬂRpr) possesses a flat

connection.

We recall [17] that by a connection in a regular Lie algebroid A= (4,[-,-1,7)
over a foliated manifold (M,E) we mean a splitting of the following Atiyah sequence of
A: 0-———99‘;—~—9A-J[9E-—~90, i.e. a homomorphism of vector bundles AX:E——A4
such that yoA=id£. A connection A is flat if SecA:SecE——>Sec A, X +——AX, 1is a

homomorphism of Lie algebras.

Proof of Theorem 3.1. Consider any regular Lie algebroid B over (Rpqu,TRPXO)

and its Atiyah sequence

0-—>g > B—2L5 TRPx 0 —— 0 .

l

R® xRY
Assume that on R’ xR? we have the canonical coordinates (yl,...,yp,yp+{. ,yp+%.
We prove, by induction with respect to n=1,2,...,p, that
(*¥) there exist linearly independent cross-sections Y&,...,Yn of B such that
(a) 70)’i = _gf’ i <n,
% (3)
(b) EYi,YJB =0, i, j <n.
Of course, the cross-sections Y1""’Y fulfilling (a) and (b) for n=p give rise
n
i)
to the connection A:TR°x0-—->B defined uniquely by demanding that Ao 1=Y1’
dy

i<p. Clearly, A is flat.
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(#¥) 1is evidently valid for n=1. Let assertion (¥) be valid for some number
me{l,...,p-1}. We prove that it is true for m+l. For the purpose, take linearly
independent cross-sections Xl,...,X ”Y1""’Y of B such that Xl,...,Xq, form a basis

q m

of g and Yl,...,Ym fulfil (a) and (b) from (¥) for n=m. Let Y be an arbitrary

cross-section of B for which 7oi7= 9 . We shall find c” functions

’ q _
z',...,z% e?®®xRY such that [Y,y 1=0, i«<m, where Y := Yy z X +Y. To
R i m+1 q’ m+1 o1 i

_ q
this end, put [Y ,YI= § bk-X, i<«m, and [X X]— Z a* - , i, j<q’. Then the
1 k=1 ' Kk k=1 1J %

equations [Y ,Y J1=0, i<m, are all equivalent to the following system of

differential equations with parameters ymﬂ,...,yp
az" 1 +1 + k 1 1 + a’ k i +1 +
+ r
Z oy oy Y Y=y Y ,...,ypq)+2a .y ...y, ., y" Yz
ayi r=1 T
k<qg’, ic<m.

The system like this is always uniquely integrable and is locally integrable if

and only if the following conditions of local integrability are satisfied:

b  ab at QL
- ~T~ Z a i-bu + 3y a ~b‘:
ayS ay u= u s - us
i,s<m r<q’.
aak 6ak q’ q
ri rs k u k u
- = Yy a -a . Y a 2
ays (9y u=1 us r = u rs

However, these conditions hold by the Jacobi identities [ly ,)7]],Y1]l+cycl=0
s
and l[lIX Y 1, Y I+ cch—O According to Theorem 2.1, the system has a global solution

(zl, q )eQ (IRpxIRq C[) fulfilling an arbitrarily taken initial condition. To prove
our theorem, take the system (Yl, R 2 ¢ +1) of vector fields where
’ m m
a’ _
Ym+1=1§12 'X1+Y. ]

4. A REGULAR LIE ALGEBROID OVER (R°xR®, TR"x0) IS TRIVIAL

Theorem 4.1. Every regular Lie algebroid B over (R' xR TRPx0) is trivial; more

precisely, it is of the form prz/\(f) for the projection pr2:lRp><[Rq—“—>qu and some
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vector bundle f over RY of Lie algebras.
We begin with two lemmas.

Lemma 4.2. (cf. [3]) Let Yl,...,Yp be cross-sections of B satisfying conditions
(3) (for n=p). Then there exists a basis (Xl,...,X ,) of g such that
q

[[YI,X’]]=O, i<p, j<q’. (4)

Proof. g being over R°xRY is trivial, therefore it possesses a global basis

x,...,X ,) of cross-sections. We find c” functions f;, Jj,» r<q’, such that
q

(1°) det[f'j‘(x)]aeo for all xeR"xRY,
(2°) the cross-sections Xj=Zf;-5'( satisfy (4) above.
r

(2°) is equivalent to the following condition:

0=0Y ,X T=0Y T -X 0=Y¢ -0y ,% 1+-2-(7)-% .
i j ir i r r i i r i 3} r

dy
~ ~ ~ a’ k <
Since 70[Y1,Xr]]=0, therefore l[Yi,X IeSecg, thus l[Yi,X 1= 3 ari-)(k for some
r r k=1
function akleCm(lRpleq). Therefore (2%) is further equivalent to
r
r k a k
0=Y(Lf -a +—(I)X ,
kK r j r ay j
. e 8 ki o r Kk . o,
i.e. to the conditions ——i(fj) +¥ fj-a i=0, i<p, k, j<gq’. Consider the
ay r r
following system of partial differential equations (with parameters (yp+1,...,yp+q))
azk 1 +1 + a’ k 1 +1 + r
——‘("Y"ryp ,---»qu)=' Za (--Y--,Yp ,---,qu)'z, k‘QI, 1<p’ (5)
6yl r=1 ri
The following equations
Bak aak q’ q’
ri rs k u k u , P
- =Y)Ya a -)Yya +a_, i,s<p, r<q
6ys 6yi u=1 uai rs ,-1 Uus ri

are conditions of its local integrability. They are equivalent to the true equality:

X ,I[Yl,Y I11=0. Take into consideration g’ initial conditions of the form:
r s
z“(o,y)=5‘; , k=1,...,q", yeR%, (%))

’

indexed by j=1,...,q". Let fjfj be the solution of (5) defined on R°xR? and
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satisfying condition (xj) (the existence is obtained by Th.2.1). It remains to show
condition (1°) above. Assume to the contrary that, at some point ‘[xo,yo)elRpleq,
det[f;(xo,yo)]=0. This means that the vectors [f;(xo,yo),...,fj (x,,y,)1, j<q', are

linearly dependent. Changing, if necessary, the numeration of the initial conditions,

’ q ’
we may assume that [f (x,,y,),....f7 (x,,y,)]= zcj-[fj(xo,yo),...,f‘)I (x,,y,)], Fix

J=2
in equations (5) the parameters (yp+1,...,yp+q) by putting y, instead of them. In the

equations just obtained (without parameters) consider the initial condition:

’

q
zk(xo) =¥ Cj~f];(xo,yo), k<q'.

j=2

It is clearly fulfillled by the solution (fl(',yo),...,f;‘,(-,yo)) and, simultaneously,

by the family gk=JqZ Cj-flj((-,yo), k«q’, which is also a solution of the system of
=2

differential equations obtained . By the uniqueness of solutions of this systen,

f;((',yo)=gk for k<q’. In particular, we have f‘:(O,yo)=gk(0), which means that the

vector [f:(O,yo),...,fT (0,y,)] is a linear combination of [fj(O,yo),...,fjI 0,y )1,
2<j<q’, which is not possible. o

Lemma 4.3. Lel cross-sections (x1,...,x ,,Yl,...,Y) of B satisfy conditions (3)
p

and (4) above. Then the structure functions (r]fj such that [[Xi,Xj]]=):cl:j*Xk are
1

constant on plaques of the foliation TR"x 0, i.e. on the submanifolds Rx {x}.

Proof. Since (Y ,!IXi,Xj]I'ﬂ+cy0] =0, we have

0=y ,IX .X ID+0x ,0x ¥ DD+OX 0y ,x B0=0y ,0x X 1=0y ,Fc* -x ]
s 177y i i’ s j s’ 1 s 177 s 1 Tk

=y ey x 3 O yx =Ltk
Kk s ay® Y ays M
which asserts our lemma. o
Proof of Theorem 4.1. Assume that the c¢ross-sections (Xl,...,X ,,Yl,...,Y )
q P
satisfy conditions (3) and (4). The mapping A:TRP>0——>B given by Ao =Yi is a
dy
flat connection. Take the embedding i:R*-—>R'~R? y+--5(0,y), and put
x
f=ig.
The system ()—(1....,)_( ,) of cross-sections given by )—(‘(y)=X‘(0,)’) serves as a basis of
q i
f. Consider the projection pr?:{Rp,v[Rq»-—r—raqu and an isomorphism of vector bundles

Ed
g:pr_ (f) —>g,



such that o ) (Za1~)?l(0,y))=}:al~Xl(x,y). Next, we shall treat f as a completely

nontransitive Lie algebroid over (qu,O). Our aim is to prove‘ that the mapping
»
F:przA(f) = (TR" x 0) ®pr, (f) —— B, (v,w) —>A(v) +p(w),

is an isomorphism of regular Lie algebroids. Of course, F is an isomorphism of vector

bundles. It is sufficient to check that
poll&, vl =10Mgo&,pov] (5)

for £, veSecprzA(f) of the form €=(X,f-o~opr2) and v=(Y,g-nopr2) for
X, YeSec(TR°x0), o,neSecf and f,geC”(R°xRY). From the definition (see also
Ex.1.3) we have

lI&,v]l=l[(X,f~0‘°pr2),(Y,g'n°pr2)]]= (D(,Y],f-g-[[o*,n]]opr2 + )((g)-mpr2 - Y(f)-ooprz).

Therefore

Fol€,vl=2a-[X,Y] +w°(f'g'l[¢,n]l°pr2 + X(g)-mpr2 - Y(f)'rroprz)
=l[7\oX,7\oY]l+f-gwpo(l[o~,nllopr2) + X(g)-tpo(noprz) - Y(f)-goo(troprz).

On the other hand,

[Fe&,Fov]= IIFO(X,f-croprz) ,Fo(Y,g-noprz)]l

=[AoX + f-wO(moprz) ,AoY+g-goo(nopr2)]]

=[AoX,A0Y] + IIf-qpo(ooprz) ,AoY] + l[AoX,g-goo(noprz)]] + l[f'wo(aoprz) ,g'q)o(noprz)]l
=[AoX,A0Y] + f'g'[[‘p°(6‘°pl‘2) ,wO(noprZ)]l + I[AoX,g'qu(nOprz)]] - I[AoY,f'goo(o‘oprz)ll.

In order to get (5), it will be necessary to observe that

(a) q>°(I[0',n]lopr2) = I[q)o(ooprz) ,qpo(noprz)]],

(b) X(g)'qw(mprz)=[[AoX,g-qu(n°pr2)]].
To see (a), write o and n in the form 0=Zo-i-)_(i, n=znj-- 1

and calculate

=@o 1-— j~— o =(@o it: . Jo . X X -3
wo([[o,nlloprz)—go ([Yo Xi,):n Xj] pr,) =¢o( L o epr-miepr, [Xi,Xj] prz)

i,j

i K
Lo oprz-njoprz-a X

= 1o . jo . P X o =
=go (Yo pr,-miepr, (atij Xk) prz) Z vy %

— 1 . J . - ]o . J .
_l;f °pr_-m epr, [Xi,Xj] (yo pr, Xi’zﬂ opr, xj]]
=|[¢70(0‘0pr2),q)o('nopr2)]|.

p
To see (b), write additionally X= } ak-—%, akeQO(Rp+q). Then
k=1 g

[AoX,g-polneopr )]=EA°(Zak-i),g'w°((En X Jopr )]
2 ayk ] 2
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=l[}:ak-Yk,g'EnJ°pr2-X I=% ak-—a-(g-njopr )X
IR gyt 2 )

a .
=¥ a—(g)nlepr_-X =X(g) nlopr_-X
ks J ayk 2 -) 2 .j

=X(g)'{p°((2nj-)—(J)°pr2)=X(g)'q>°(nopr2). .

Corollary 4.4. Any lransitive Lie algebroid over R" is isomorphic to the trivial

algebroid TIRnxg for some Lie algebra gq. =

Because of the trivial fact that each point of a given n-dimensional manifold M
possesses a neighbourhood U diffeomorphic to R® (R'-£-U (—i—>M), any transitive Lie
algebroid A over M is locally isomorphic to the trivial algebroid Tanxg (EgoA(iA(A)))

for some Lie algebra g.

5. REPRESENTATIONS OF THE TRIVIAL LIE ALGEBROID TR'*6 ON A VECTOR BUNDLE

With a real vector bundle f over M there is associated a transitive Lie algebroid
A(f) (over M) [17; Sec.1.2] whose fibre over xeM consists of all f-vectors at x, i.e.

linear homomorphisms 1:SecfA——9f' for which there exists a vector ueT,M such that

X
1(fv)=Ff(x)-1(v) +ul(f)-vix), feQ’(M) and veSecf. The vector u is determined by
1 uniquely and serves as its anchor. A local trivialization of A(f) gives the mapping
@:TUxEnd(V)——-)A(f)'U (v is the typical fibre of f) defined for a given local

trivialization w:UxV—>f'U of f by the formula:
g—ll(v,a)(v)=llllx(v(vw)+a(vw(x)))

where, for veSecf, v,:U——R is a function x I»——)!/l'_i(l)x) [17; Lemma 5.4.4].

A cross-section €£eSec A(f) determines a covariant differential operator
$€:Sec(f)———->Sec(f) by the formula ﬁeg(v)(x)=§x(v). The correspondence & r——).‘Bg
is 1-1. The bracket [-,-} is defined classically (from the point of view of
differential operators). The Lie algebra bundle adjoint of A(f) can be identified with
the vector bundle End(f). Lem.5.4.4 from [17] mentioned above asserts also that y is an
isomorphism of Lie algebroids. In particular, taking w=idknxv, we assert that the

Lie algebroid A(R"xV) of the trivial vector bundle f=R"xV is isomorphic to the
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trivial algebroid TR"x End(V) via the canonical isomorphism
L:TR”x End (V) —— A(R"x V)

defined by the formula: le(v,a)(v)=v(v)+a(vx). Denote by 2(}(,0‘) the differential
operator determined by the cross-section £¢(X,0) of A(R"xV), where XeZX(R™ and
ceQ’(R",End(V)). Clearly,
Z(X,o):Q"(lR",V)—)QO(R",V), v X(v) +o(v). (6)
By a representation of a regular Lie algebroid 4 on f (both over M) we mean a
strong homomorphism T:A—— A(f) of Il.ie algebroids. T induces a linear homomorphism
T :g— > End(f) of vector bundles of Lie algebras [17].
Let T:A——A(f) be any representation of a regular Lie algebroid A on f. A
cross-section veSec(f) is called T-invariant [17] if T(v)(v)=0 for all veA. The
space of all T-invariant cross-sections is denoted by (Sec(f))l ) (or, briefly, by

(Sec(f)) ,).
I

°(T

Theorem 5.1. (cf. [20]) Let T:TR"xgq——>A(f) be any representation of the

trivial Lie algebroid Tanxg on f. Then, for each 7—": -invariant vector veflx, there
X

exists exactly one T-invariant cross-section veSec(f) (determined globally !) such

that v, =v.

Proof. A vector bundle f over R" is trivial, therefore we may assume that

f=R"xV. T determines a homomorphism
T:TR"x g — TR " x End (V)

such that £oT=T. A mapping v:R"——V (understood as a cross-section of IRnxV) is

T-invariant if and only if

(v)=0 for XeX(R"), ve’(R%q).
To(X,o)

T can be written in the form

To(X.0) =To(X,0) +T(0,0) = (X,0(X)) + (0,T o¢) = (X,w(X) + T oc)

for a 1-form weQ (RSEnd(V)). © and T' satisfy the following (easy to verify)
identities (cf. [20; p.102}):



~dw(X,Y) = [w(X),w(Y)] (7)
X(T o0) =T o (X(0)) + [w(X),T o] =0. (8)

v is T-invariant if and only if

(@) £ o W) =0,

(b) 21‘0(0 o) (v) =0.

(a) is equivalent to the condition of the invariance of v with respect to the "reduced

representation”

TR" > TR"x End (V) —— A(R"x V),

whereas (b) says that, for each xeR”, the vector v, is T: -invariant. Condition (a)
p.¢
yields that

O==$To(x’0)(v)==$(x,w(x)(v)==X(v)-+2w(x)(v),

i.e. that the following differential equation

Xv)=-2% (v), (9)
w( X)

called the differential equation of an invariant cross-section, is satisfied.
(7) is the condition of the local integrability of this equation. Indeed, taking a
basis w;,...,wg of V and writing v==zzs-ws, we can equivalently exchange equation (9)

for the following system of partial differential equations of the first order:

82" g k
—=- Y a”"-z", i<n, k«q, (10)
8x1 r=1 1
r,k d I r,k .
where a’ are functions such that w(—)= a’ -u , u being the following
i i e i rr> k r»k

ax r
> *
basis of End(V) (=V eV): u_, ,=wew,. Here are the conditions of the local

ro
integrability of (10):

r,k ,k

da
- +
s i

ox ax u

da

r
s k

g u, r,u g u, k r,u .
Y a al - Y a a’', 1i,s<n, r, k«q.
-1 S =

They are equivalent to the equalities:

0=Te1(-=,0), (L 01 (=t7e (201,70 (-2 0)7)

ax ax ax ax

which say the same as (7) above.

According to Th.2.1, the initial conditions
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z'(0) =zl, ..., 2z10) =29,
o [+3

(uniquely) determine a solution (zl,...,zq) of (10) defined on whole R". It remains to

solve the following problem: if the vector v(0) =ZZZ'W1 is

(T:o:g————)End(V))-invariant, then, for each xeR", the vector v(x)=22‘(x)'w1 is

T:x-—invariant. The invariance of v(x) means that $T+ (m (v,)=0 for all heg.
I x

Therefore it is sufficient to show that the function Z'r*oh(V) is identically zero for
all heg, where h denotes the constant function IR"———;g always equalling h. Put
B=.‘£T+°h(v) and assume that B(0)=0. All we need to prove is X(B)=0 for XeX(R").
Using (8) and (9), we have

XB)=X(L, w)=g£ .  w+L (X0

X(T* o

=£T*°X(Tz)-{wX,T* om W) L, (X))

=¥ +£
—w(X)O(T+°T:)+(T"’°h)°w(X)(V) T*oh(X(V))

=& (v)+2
T

—w(X)o{T*oRh) h(fw(x)(V)+X(v))

+o

- z—w(x) (B).

The 1linear first order differential equation Jjust obtained X(B)=¢ () (B) is,
- W
clearly, fulfilled by the function identically equal to zero. On account of the

uniqueness of solutions, we have the conclusion: B8=0, which ends the proof. =

As a corollary we obtain

5.2. For an arbitrary representation T:A-—> A(f)} of a transitive Lie algebroid A
on f, each invariant cross-section of f (defined locally on a connected subset) is
uniquely determined by the value at one point. Particularly, if such a cross-section is

zero at one point, then it is zero globally. m

Remark 5.3. The above theorem can also be checked in a different way, somewhat
exceeding the clean theory of Lie algebroids, by proving firstly the following
auxiliary theorem 5.3.1 and, secondly, by using Propositions 5.5.2-3 from [20]. These
propositions assert that, in the case when a homomorphism T of Lie algebroids is the
differential of a p-homomorphism  F:P—— L(f) of principal bundles (1.e.
H:G——>GL(V) is a homomorphism of Lie groups, L(f) is the GL(V)-principal bundle of

repers V—-—)fI and F(z-a)=F(z)-u(a)), P is assumed to be connected, a
nmz
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cross-section v of f is T-invariant if and only if there exists a p-invariant vector
welV such that v =F(z)(w) for all zeP. (Since F(z) is an isomorphism, we have
Tz

v=0 provided v is zero at at least one point).

Theorem 5.3.1. A homomorphism T:TRnxg-~»TRannd(V) of Lie algebroids is the
differential of some homomorphism F:R"xG——>R"xGL(V) of principal bundles, where

G is the connected and simply connected Lie group having q as its Lie algebra.

To prove this, we can give some proposition (auxiliary in this place, but

essential in itself).

Proposition 5.3.2. If A’ cA(P) is a transitive Lie subalgebroid of the Lie
algebroid A(P) of a principal bundle P (=(P,n,M,G,-)), then there exists a reduction
P’ of P having A’ as ils Lie algebroid.

Proof. Via the canonical projection ' TP — A(P) [15], we pullback A’ to some

a4’ 1, zeP]. Let P’
inz

be a connected maximal integral manifold of A. Analogously to part (a) of the proof of

Cc” right-invariant involutive distribution A on TP [Az:=(nf )
z

Th.1.1 in [12], we assert that u|P':P’ ——>M is a coregular surjection. Take the

subgroup G’ ={a€G; R [P']cP’}, R, being the right translation by a. By the
a

equalities

1.

G’={aeG;R[P’ JcP’ }={a€G;Z{aEP' }=A_%P’
a lxo Ixo Ixo z Ixo

o

where Az :G >P, a >z, a, (xoePl and zoeiﬁ are arbitrarily taken elements),
x

[e]
we assert that G’ is an immersed submanifold of G. According to the fact that P’ is a
weak submanifold of P, we easily notice that G’ is an immersed Lie subgroup of G with a
countable base, and that the induced action P xG' —— P’ is c”. Consequently,

(P’,n|P’,M,G’,-) is a reduction of P to G’ whose Lie algebroid equals A’. 0o

Proof of Th.5.3.1. Let A= (TR"xg)x (TR"xEnd(V)) be the Whitney product of
the Lie algebroids TR'xg and TR xEnd(V) [11] (see also [20;p.108]). A is the Lie
algebroid of the Whitney product (R"xG)e (R"xGL(V)) (=R"x(GxGL(V))) of
principal bundles (R"x G) and (R"xGL(V)). The subbundle
c={(v,T(v))eA; veTR xg)} fornms, of  course, a Lie subalgebroid and, by
Prop.5.5.2, determines a reduction QcR"x (GxGL(V)). There is no problem in seeing

that the superposition
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pry
K:Q R "x (GXGL(V)) —S3R"x G

is a local diffeomorphism onto a simply connected manifold R"xG; in consequence, Kk is

a diffeomorphism. The mapping

-1
FiR" G- 50 R (GxGL (1)) —PE R GL(V)

is the required homomorphism of principal bundles. =

6. INVARIANT CROSS-SECTIONS OVER RxM

Using the previous theorems, we prove that the space of global cross-sections of a

vector bundle f over RxM, invariant with respect to the representation of a regular

l.Lie algebroid B over (RxM,TRxFE), 1is canonically isomorphic to the space of
cross-sections of the vector bundle f‘“o)xn, invariant with respect to the suitable
"restricted" representation.

First, we recall the expression: "restricting" - and more precisely, the
"inverse-image" - of a representation [17]. Let A be any regular Lie algebroid over
(M,E) and f any vector bundle over M, whereas f:(M',E’)—— (M,E) - any morphism of

foliated manifolds. By the inverse-image of a representation T:A——>A(f) over f we
¥ *
mean the representation f T:fA(A)———>A(f f) defined as the superposition

A
k4
M L ) o ac’n
where (a) f'T is a homomorphism of Lie algebroids defined by: fAT(u,v)=(u,T(v)),
uek’, ved (f*(u)=7(v)),
(b) ¢; is the canonical strong isomorphism of Lie algebroids such that, for

(u,l)efA(A(f))' , w:=¢;(u,1) has u as 1its anchor and satisfies the relation:
¢

w(vef)=1(v) for veSec(f). Obviously, c; appears as the canonical isomorphism of
+

*
vector bundles f*(End(f))%End(f*f), and, furthermore, we can write (f T):x= LX)

for xeM’'.
A A A x x . *
Identifying g (f A) with (feg)'A and g (f f) with (fog) f we can write

* x »*
g (f TY=(fog) T.

In [17;2.4.4] the following property of the inverse-image of a representation is
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given:

* Ed
- the linear mapping f :Sec(f)-——>sSec(f f), v +——>vef, can be restricted to the
»
space of cross-sections invariant under T and f T, respectively:

£ (Sec(f)) ,  ——(Sec(£€)) o .
I 1°(T) 1°(r T)

We shall use this notion to the representation T of a regular Lie algebroid B over

(RxM,TRxE) and the mapping ft :M—>RxM, x+—(t, ,x). In this situation, the
> ]

mapping (ft )I° turns out to be an isomorphism, however, its monomorphy has a more

[+
general nature:

x
Lemma 6.1. If the saturating of f[M’'] equals M, then f1° is a monomorphism. [The

saturating is taken with respect to the foliation of M determined by E].

Proof. Assume that fto(v)=0 for an invariant cross-section v. This means that,
for an arbitrary point xeM’', we have v(f{(x))=0. Let L be the leaf of the foliation
of M passing through f(x), and let i:L¢“—->5M be the inclusion. According to Th.2.4.4
from [17] mentioned above, we have that V|L(=1’*v) is invariant with respect to the
"restricted" representation i*T:iAA~w—aA(1‘*f). Since A is transitive, v|L‘=‘0 on
account of 5.2 above. Our assumption concerning the saturation of f[M’] implies now the

equality v=0. =
Here is the aim of this section:

Theorem 6.2. Let B be any regular Lie algebroid over (RxM,TRxE) and

T:B—— A(f) any representation of B on a vector bundle f (over IR><M). Take an
*

[ is

arbitrary point t_€R and the mapping ft :M——RxM, x+——(t_,x). Then (ft )
[e} o
an isomorphism of vector spaces.

Proof. On account of Lemma 6.1, it is sufficient to show the surjectivity of

» .2
(ft )1°' Let creSec(ft f) be an invariant cross-section. Then, for each xeM, the

[o]

vector ol(x) e t'l e ) is invariant with respect to the representation
0¥

* :g —— End(f ). Consider the embedding f :R——>RxHM,
bt ,x) bt ,x) 1ee ,x) x

t ——(t,x). Since Im(f )=Rx{x} is contained in some leaf of TRxE, therefore
fo(B) is a transitive and, by Cor.4.4, trivial Lie algebroid. Th.5.1 yields that the

vector ¢(x) can be uniquely extended to some C” cross-section o, of the vector bundle
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¥ *
f, f, invariant with respect to the representation fx*T:fo(B)~———>A(fx f) (G(X) is
¥ *
invariant under (f, T)" because (f. T) =T ). The family {c_; xeM} determines
le X I x 1£(x) ) X
a global cross-section ¢ :RxM-—>f by the formula: o (t,x)=0c (t). It is evident

*
that ft (01)=on To end the proof, all we need is to show
[e]

(a) the smoothness of 01,

(b) the T-invariance of o .

First, we check (a}. For the purpose, take arbitrarily a point x,€M and a simple
distinguished open neighbourhood UcM of x [ the domain of some distinguished chart of
the foliation ¥ having E as its tangent bundle]. The foliation ¥, has a global
connected transversal manifold, say N, and its leaves are diffeomorphic to a Euclidean
space. Then N’:={t_ }xN 1is a transversal manifold of the distribution TRxE, see

Figure 1 below.

the leaf of
TRxE through

RU (t,.x, )

Figure 1.

The cross—-section
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o N ——f ., (t,,x) —>0ol(x),

¥
is c” and invariant with respect to the representation Jj T,

J:N' —SM :=RxUcRxHM being the inclusion, moreover, 0’:=01|M’ is some
extension of o.

Let B’:=B|M’. B’ is a regular Lie algebroid over ([RxU,TIRx(E.U)). Leaves of
the foliation having TRx (Em) as its tangent bundle are of the form RxL where L is
a leaf of ¥,. They are diffeomorphic to a Euclidean space and proper; N’ is a global
transversal manifold of TRx (EIU) which cuts each leaf at exactly one point.

It is obvious that, without loss of generality, we may assume that

(1°) M =RPxRY,
(2°) B’ is over (R°xR? TRPx0).

(In the context considered above, p is equal to the dimension of the foliation TRx E).
By the proof of Th.3.1, we assert the existence of global cross-sections

Y1’ R ,YpeSec(B’ ) such that oni =»é?~i and [Yi,Yj] =0, 1, j<p. Moreover, in the
sequel of the proof of our theoren, ywe can assume that N’ =0xR%, f= (R%RY xV and
AE) =T(RPxRY) x End(V). In our context, a C% cross-section c,:0 xR >f Lok’
such that o, (0,y) is invariant with respect to the representation
T:(O,y) :gl(o’y) —>End(V), is given, and we know that there exists a cross-section
o’ RPRT— f (whose smoothness we are proving) extending o, and such that o’ l[Rpx{yo}

is, for each yoe[Rq, of the class " and invariant with respect to the representation

of the transitive Lie algebroid B’ (the cutting

T on f
1R Px(y°) IR Px(y°) IRPx{y©o)

...|[Rp><(y°) is understood as the inverse-—image by the suitable inclusion).

Let T0Y1= (—ii,ci) for some (:i:[Rpx[Rq-—r————»End(V), i<p. The fact that T 1is a
ay
representation means, particularly, that
. a i a j
Oo=TLY ,Y 1=07Y ,TY 1=-0(—,c ), ( —,c)1]
i j i j a i a j
ac  ac. y y
= (O,w»%—_l-+ [Ci,(f,‘ 1),
ay Byj ]
i.e that
dc Ao,
[(‘*i,c.]:r 2 d jep. (11)
j (’Jy‘ ('?yl
. . . noox P ~qd
let w,...,w be a basis of V; write c(x)lw)= % ¢ (x)w, xeRxR. It
1 n i s k=1 si k

follows immediately that (11) is equivalent to the following conditions:
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s i

ay u

n qu k n g k .
Yec ¢ - Yec ¢, i,s<p, k,rc<n. (12)
=1 ri us -y TS ui

The invariance of a cross-section TeSec(f) (=Q°(1Rp><qu,V)) with respect to the
representation T:B’ — 3 T(R°xRY) x End(V) means that £ . [t)=0 for all XeSec(B'),

in particular, that ZToy {(t) =0, i<p. According to (6) above, the last condition
i
says that

_61:_-4-0 (1:):0’ i<p,
i i
ay

or, equivalently,

v f: -~ T, i<p. (13)

System (13) of differential equations is of the first order with the parameters
(yp+l,...,yp+q). It is easy to notice that (12) forms conditions of the local
integrability of (13). From Th.2.1 it follows that there exists exactly one (globally
defined) C” cross-section o:RPRI—>f being a solution of (13} and satisfying the
given initial condition &(O,y)=0‘o(0,y), ye[Rq. Of course, o=0¢’, which confirms the
smoothness of o’.

(b) follows now trivially. m



PART I

THE CHARACTERISTIC CLASSES OF FLAT REGULAR LIE ALGEBROIDS

1. COHOMOLOGY WITH COEFFICIENTS

Let A and f be a Lie algebroid and a vector bundle, both over the same manifold,

say M. Each element of
Q, (M;£) ="8%% (m; 0),

where Q:(M;f)=Sec(/\qA*®f), will be called a (C°) form on the Lie algebroid A, with
values in f; while, for the trivial vector bundle f=MxR, briefly: a (Cm) form on
the Lie algebroid A. A O-form on A is simply a cross-section of f. In the case A=THM,
the space of forms with values in f (analogously, of the space of real forms) will be
denoted traditionally by Q(M;f) (Q(M), respectively). For an involutive C” constant
dimensional distribution E on M, QE(M;f) consists of the so-called tangential
differential forms on (M,E) [17], [25].

QA(M;f) is a graded module over Q°(M) and a module over the algebra QA(M)
(:=QA(M;M><IR)) of forms on A. The structure of the QA(M)—module in Q‘(M;f) is

conventionally given under the skew-product yA¥ of forms, weQA(M), \IIQQA(M;f),
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defined (for the degrees p and q, respectively) by

AV(E ..., ) = sgno -y e, ) ( ey ), (1)
v El Ep+q 0_(1)<.‘Z‘<o(p) g v g0*(1) gO(p) E0‘(p+1) €o~(p'rq)
oc{p+1)<...<o (p+q)
gleSecA.
Let fi,...,fk,f be vector bundles over M. An arbitrary k-linear homomorphism of
vector bundles go:l’1 x...xf* —5f determines the mapping
1 k
q)*.QA(M,f )x...xQA(M,f )————«)QA(M,f)
defined by the standard formula
1
(p*(\lll,...,‘l’k)(gl,...,gm)—m ESgn(T ¢(\P1(€0(1),...),...,‘I’k(...,go(m))) (2)

in which m=Zqi, qi=the degree of \I'ieQA(M;fi).

Definition 1.1. For a given representation T:4A——> A(f) of a Lie algebroid A4 on a

vector bundle f, we define three operators

¢, 8", da (M) —0 (M;f), £eSec4,
£ 3 A A
called the substitution operator, the Lie derivative (with respect to £), and the

exterior derivative, respectively, by the formulae

(17) (W, & _)=VEE, £ ),

o T _ _ I
(2 )(@s\ll)(il,...,ﬁq)—fTog(W(El,...,gq)) j§1\IJ(61,...,I[E,&j]],...,Eq),

° q
(3°) W@W(E,....£)=7 (-1)¢
° a  5Zo T

W(E,.... 5 ... €)) +
j ° q

o
d A A
+ v -0"Mere e e, 000008
. . i _, o q
1<

where ‘I’EQ:(M;f) and EieSecA.
If T(:=§):A—>A(M><IR) is the trivial representation, i.e. the one for which
Zrog(f)=(7o€)(f) for feQ’(M) and €£eSecA (under the canonical identification
A(MxR)=2TMx End(R) this means that T(v)=(7(v),0)), then the operators of the Lie

derivative and the exterior derivative, denoted by 6_ and d‘, are given by

A
£
q

LUE, . TEE D6 ),

j=

[} A _ o _
(47) (9€|ﬂ)(€1,...,§q)— (¥ E)(W(El,...,ﬁq))
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o q
(5°) (d‘.p)(go,...,gq)= y (—1)j(?/ogj)(w(§o,...,?

j=0

s E ) )+
q

AN e,
q

gy

- '['1)1”‘1’([[’51'5,]]'50“--

1<j

Remark 1.2. Definitions (1°), (4°) and (5°) were first given by L.Maxim-Raileanu
in 1976 [22]. Formulae (1°)+(3°) were obtained by the author [13] in some natural
manner for Lie algebroids of Pradines-type groupoids. Independently, they were given

(as axioms) by K.Mackenzie [20].

The fundamental properties of the operators LE, Gg, and d’ are given underneath.
We first recall that a single representation T determines a number of new ones, for
example, Hom'(T) of A on the space of k-linear homomorphisms Hom“(£;R) [17;2.2.2].

This representation can be generalized as follows:

Let Tl,...,Tk,T denote fixed representations of A4 on vector bundles fl,...,fk,f,
respectively. They define a representation Hom™(T", ..., T%;T) (briefly, Hom) of A on

Homk(f1 x...xfk;f) as the one for which

i k

"
s,V ),

@Y= el Y STl

|V
Homo& T Tlog

for any k-linear homomorphism (p:t'1 ... xf* ——5f and for vieSec(fi), £eSecA.

T T
Th 1.3. (cf. [20]) (i =8 ot —t o0,
eorem (ef. [20]) (i) Coe oy =00t 7,00

(i1) o7 =070  -0".0",
[€,nl £ m n £
T T T

(1ii) B8_=1t¢ _od +d ot _,
g ‘g’ £

(iv) d"ed" =0 ,

T T_ T T
(v) d o08_=0_od .
£ £
For arbitrarily taken vector bundles fl,,..,fk,f over M and a k-linear

homomorphism go:f1 x...xf——5f and forms \I/jerJ(M;fj), we have

1 9t q
(- W)*(‘I/l,...,c ] ,...,\I/k).

k
(vi) Ls(q)*(\lfl,...,‘llk))=g1 £y,

Let now Tl,...,Tk,T denote fixed representations of A on f1,...,fk,f,

respectively, and assume that ¢ is Hom-invariant. Then

(vii) 8T(p (¥ ... )= ¥ o (¥ v
vii €¢* NEEE A —JElw* 1""’9g R RY
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T

L T _ K Ay dpteeetay g
(viii) d ((p*(\lll,...,\l/k))—JZ: (-1) tp*(\Ill,...,d ,...,\I'k).

1

In particular, (taking p=-:(MxR) xf-——>Ff, the multiplication of vectors by
reals, being Hom(};T)-invariant), we have, for wer(M) and \IleQA(M;f), the following

formulae:

(vi’) ¢ _(yA¥) =1 wAW+(—1ﬂwAL€m
(vii’) o

(YAY) =8 wAw+¢Aezm

I R
b M My

(viii’) d (WA =dyav+ (-1)%ad v,

Remark 1.4. These properties were proved by the author [13] for Lie algebroids of
Pradines-type groupoids (not all Lie algebroids being taken into account, of course).
In all generality, properties (ii)+ (iv) can be found in K.Mackenzie [20, p.200] with

the proof "Standard". Now, we give a full proof of this important theorem.

1.5. Proof of Theorem 1.3. For arbitrary R-vector spaces & and J§, by QY(&;3%) we
denote here the R-vector space of g-linear (over R) skew-symmetric mappings

Ax...x A—>3F.
;._v__.__J
q times
Take a sequence ﬂ,ﬁl,...,?gk,{% of vector spaces and a k-linear mapping

-:51 x...x{‘;k-——aﬁ. By the formula analogous to (2), we define the skew-symmetric

product \I/1 A...A\I/keQ(H;E) of mappings \I/iqu*(H;Si)

1

WlA"'AWk(gl’”"gm) .—_Wgsgn0‘~\lll(€0“),...)-,.. .‘I/k(...,go(m))).

Let 6:# x...x A—># be a fixed m-linear mapping, m» 0. For an arbitrary vector
m times

space ¥ and ¥eQ'(A;%¥), g>1, we define the g+m-1-linear mapping 6-¥:@x...xH—>3F
by the formula

6-\1/(61,...,5 )=w(6(E ,...,€ ),€ ,....E
q+m-1 1 m

m+1 q+m-1
and next, 6*veQ? ™ ' (&;¥) as its "skewing"

6*‘1’(51».--.5 )= Y sgno"-(G-‘I/)(Eo_(“,...,E

).
~ ~1
q+m-1 c(1)<...<o(m) 7 (qsm-1)

o (m+1)<... <o (q+m-1)

Of course, for m=0 and 6=£€d, £*(-) is the substitution operator Lg. By
arduous, but classical, combinatorial calculations we prove the following lemma (cf.

R.Sikorski [31]).
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Lemma 1.5.1. (1) If m» 1, then 6x (6xV¥) =(6*6) ¥V,
(2) If m»0, then, for \I/jquj(ﬂ;{’sj),

k
L

Gx (¥ A...AY )=
1 k52

(—l)ql+"'qj‘1\lf1 A A (G*Wj) A AT
1

(3) If m=2, then, for £cH9,

q
(> (Ex¥) +€x (G*W))(El,...,gq)= Y \1/(51,...,G(g,gj),...,gq). o
i=1

Fix now m=2 and assume that

(A1) 6G:AxA——>HA is skew-symmetric.

Take two vector spaces 3§, §’, a 2-linear mapping -:3' x3J——3 and '{)GQI(H;{}’).

For £€€d, we define three operators
Lg,eg,d:Q(ﬁ;ﬁ)-——eQ(ﬂ;ﬁ)
by the formulae
. V=€ %V,
() Lg £
(-+) 9€\P=z~)(€) AV - (6% (Ex¥) +Ex (6xV¥)),

(--+) d¥=3JAV-6x7¥.

Lemma 1.5.2. (1) Bt T % T tee

2) 6_=do + od.
()€ Lgl,g

Proof. (1) follows immediately from the definitions.

(2): By 1.5.1(2) [for k=2, 6=¢, ¥ =3 and w2=\1/], we have

(docg + LEOd)(‘P) d(cg\I/) +L€(d\P)
DA (E*¥Y) - 6% (Ex V) + & * (JA V)~ € * (6 *V¥)
-6 x (Ex ¥) +(€ *¥) A¥) - € * (6 *V¥) =e€~1/. o

i

1]

Assume additionally that a 2-linear mapping -:3’ x3§ ——3’ such that

(A2) (v/-w')-u=v'-(w -u), v ,w ey, uej,

is given. Then it is easy to see that

IAR[IAY)=(FAJ) AT, (3)
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Lemma 1.5.3. If
(A3) 6x¥6=0,

(A4) IAD=6*3,
then

2
(1) d°=0, (2) 6_od=d-0_, 3) 8. 08 -0 «8_=86 .
) £ g (3) £ m m g O(g,m

Proof. (1): By 1.5.1(2), (2) and 1.5.1(1), we have
AP =d(FAV-6*¥U) =FA (JAV-E*¥¥) -6 X (JAV-6*V)

= (JAZIAT - (6*xJ)AT+ (6%6) ¥ =0,

(2): Simple by (1) above and 1.5.2(2).
{(3): Trivial calculations after wusing 1.5.1(3), (3) and the fact that the
condition 6*¥6=0 is equivalent to the fulfilling of the Jacobi identity for 6. b

In the end, we assume additionally that k systems of vector spaces and mappings
‘ ! ] . ’ ..'I PR+ e . ’ 7 ’ 4
519 51) ;:SiEQ (E’Si)’ '7}1 Xgi >;31v ~5i><81‘—951, 1<k’

are given, and that, for each i<k, the mapping §;><§i~—~9§i fulfils (A2), and, for
a given mapping -:51x..»<§k—-95, (v],“.,vk)k—~9v1-”.-vk, the following axiom
is satisfied:

(A5) 8(€)~(V1-...-vk)=J

i =

vl-...-(81(6)-vj)-‘..-vk, £ecd, Vje{sj.

1

Then we have

K
BE) A (Wl Ao A Wk) =j:1W1 A A (Bj(i) A Wj) A LA Wk,

(4)
k
- _ q1+.‘.+q-.__1
3 A (Wl AN Wk) j§1( 1) 1Y ALA (5) A Wj) AAY

Denote by eé, d’ the operators in Q(#A;J ) built via 51. Then, thanks to (4) and
j
1.5.1(2), we notice the following

k
Lemma 1.5.4. (1) 0 (¥ A...A¥ )= Y ¥ A...ABY A..AV,
€ 1 k il j

3 £ k

k
(2) d(¥ A..A¥ )= ) (DT A.../\dj‘I/jA...A‘I/k. o

j=1
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To prove Theorem 1.3, we must put HA=SecA, 6(&,n)=0&,n] for &, neSecA,
¥ =Sec(f), §'=Homk(5;5), 5 x§—>3%, {u,0) —>ulec) - the natural substitute
operator, 5(5)(0‘)=$T0€(¢r) for ce%. Then definitions (-)+(---) agree with (1°)+(3°)
from 1.1. Next, put 5j=Sec(fj), Jj<k, 3’)=Homk(§;j;5j), ;}’jx?jj——aﬁj as above,
and take the mappings . 51 X. .. % 5k — and BJ defined by
1
are satisfied. Assertions (i) =+ (viii) of our theorem follow successively from
1.5.2(1), 1.5.3(3), 1.5.2(2), 1.5.3(1), 1.5.3(2), 1.5.1(2) for m=0, 1.5.4(1) and
1.5.4(2). .

o ~...-o'k:=wo(o~1><...><0‘k) and 5)(5)(a)=$rjog(o*), o~e§j. Then all assumptions A1+AS

1.6. According to 1.3(iv), (QA(M;f),dT) is a complex; its cohomology spaces will
be denoted by H:(M,T,f), n» 0. They generalize the Chevalley-Eilenberg cohomology
spaces of a finite-dimensional real Lie algebra g (for A=g) [also those with
coefficients, see, for example, [9]] and the de Rham cohomology spaces of a manifold

(for A=THM).

1.7. Hi(M,T,f)=KerdT’O=(oeSec(f);dT0=O)

={o~e$ec(f); v [jE . (o‘)=0]} =(Secf)1<>
geSecAt T°%

and, by 1.5.2, this space, in the case of a transitive Lie algebroid, is

finite-dimensional [see also Mackenzie [ 20, pp.195 and 210]].

For the trivial vector bundle f=MxR, the cohomology spaces of the complex
(QA(M),dA) will be briefly denoted by H:(M), n=0,1, ... It is a standard calculation
to obtain that HA(M,T,f) is a module over the algebra HA(M) under the multiplication
(Wl A[¥T=[yA¥].

Definition 1.8. A form \I'EQA(M;f) will be called a horizontal form if LV\I/=0 for
all veSecg. The space of horizontal forms will be denoted by QA (M;f). Each c”
, 1

cross-section ce€Sec(f) is a horizontal O-form on A. By Q“l .(M) we denote the space of
1

’

horizontal forms on the Lie algebroid A, with real values. According to Th.1.3(vi‘),

QA (M;f) is a module over the algebra QA (M).

s 1 s 1

Lemma 1.9. (1) 87¥=0 for veq, (M), veSecg.
v

y 1

(2) Q"l (M) is stable under a’. "
1

’

40




1.10. For an arbitrary vector bundle f, we set

—— - . T —_—
QA’i’e(M,f)—(\IJGQA",(M,f), 8 ¥=0 for veSecg}.

By 1.7, we see that QA . 9(M)=QA (M),

sy 1y s 1

2. HOMOMORPHISMS «" , 2", AND (dw)”,

Let A=(A,[-,-3,>) be an arbitrary regular Lie algebroid over a foliated manifold
(M,E), and A:E——>A any connection in A, i.e. any splitting of its Atiyah sequence

[17; 3.1.1]}:

0—>g——A—2L5E— 0.

A
Since y|g=0, the linear homomorphism of graded vector spaces

yxzﬂf(ﬂ;f)*—éQA(M;f)

defined by the formula y*(e)(x;...vi...)=9(x;...7vl...), ViEAlx’ maps
isomorphically QE(M;f) onto the space of horizontal forms QA ; (M;f). The inverse
mapping is

A*:Q (M) —— 0 (M 1)
A, E

defined by A*(\P)(x;...,wi,...)=\I/(x;...,7\wi,...), wieElx.
For the trivial vector bundle f=MxR, one can easily obtain the equality

dE=7\*0dAo;y* which is equivalent to the commutativity of the diagram:

am —3 5 a
E E

~ x ~ *
=J7f ’i” (5)
A

Q i(M) — Q (M)

’ y 1

Let w:A——>g be the connection form of A (i.e. w|g=id and wlImA=0). w is

also treated as a 1-form on the Lie algebroid A4, with values at g, weQ;(M;g). The
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mapping H=idA-w:A————-—>A is to be the horizontal projection of vectors from A. It

determines the horizontal projection of forms
H,:Q (M;f) —>Q (M;f)
A A

by H*(‘I')(x;...,vi,...)=‘Il(x;...,Hvi,...), VieAlx

In [17;3.1.1] there 1is defined the curvature tensor Qbeﬂi (M;g) of A by
Qb(Xl,XZ) =—w(|[7\oX1,A°X2]]), X1 €SecE. Now, we define - needed in the sequel - the
so-called curvature form of A as a horizontal 2-form on the Lie algebroid A, with

values in g, Qeﬂi i(M;g), by the formula
Q€ € ) =-w(lHg HED), £ eSecA.

Below, the exterior derivative of forms on the Lie algebroid A, with values in g,
[also in the associated vector bundles /\kg*, .. ] with respect to the adjoint
representation ad :4——Alg), (fadAos(v)=[§,v]) [17;2.1.2] [or induced ones] will
be shortly denoted by a2,

Proposition 2.1 (The Maurer-Cartan equation).
Q=d%-1[w,0)].

(The form [w,w] is defined wvia formula (2) for the 2-linear homomorphism

[-,-l:gxg—>g).

(Remark: The difference here, in comparison with the classical formula for
principal bundles- see, for example, [8] - [the sign " - " before the second
component ], has its roots in the fact that the Lie algebra of the structure Lie group

in the principal bundle considered there is taken left, not right).

Proof. Without difficulties we can easily prove (in analogy to [8]) that two forms
\I/ieQi(M;f), i=1,2, are equal to each other if and only if (a) igll=1'gé veSecgy,
(b) H*(W1)=H*(\I/2).

(a) in=0 for veSecg by the horizontality of Q; on the other hand, for

veSecg and meSecA4,
iv(dgw-%[w,w])(n) =d3w(v,n) - [w,w](v,n)
=fv,wI-In,0@)]-w(lv,nl) -lwlw),w(n)l=0.

(b) For Ei € Sec A,
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H*(dgw-%[w,w])(gl,ﬁz)=(dgw)(Hogl,HO€2)*%[w,w](HOEI,Hogz)

= lIHoil,w(Hoﬁzlll - lIl’fogz,w(Hog1 )1 —w(IIHo&jl,Hogzll) ~lw(Hog ), wlHE )]

=-—w(EH°€l,Ho€2B)==Q(H051,H052)==(H*Q)(il,ﬁz). ]

A) Homomorphism o

For each point xeM, the mapping

is linear and keeps the property
* E * *
plw )ap(w )=0 for w €g, -
X

>
/\Al is an associative algebra with unit element, therefore, by the universal property
X
>
of the exterior algebra A4 , see [7;p.103], we obtain the existence and the
X

uniqueness of a homomorphism of algebras of degree O
A * »*
w AA —>NAA
x I x I x

extending p and such that W (1)=1. Using the canonical duality between the exterior
X

algebra over a vector space and over its dual 1[7; p.104] we have that
<wA(np),w Ao Aaw>=<Polxw YA Ae(x;w )>
x 1 Kk 1 k

¥ »*
for lllE/\kgl and wleA . We notice that if ‘PeSecAkg , then
X

I x
wA(W):M<*v49AkA¥, X F——awj(W(x)),

.2
is a ¢ cross-section of AkA , i.e. wA(W)ezQ:(M).

Of course,

k?»0
W' e (Sech'g ) ——0 (1), ¥i—u"(9),
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k>0 '
is a homomorphism of algebras where the space @ (SecAkg ) is equipped with the
structure (\Ill,\lfz) |~———)\I/1A\I/2 for which \I/l/\\I/Z is defined point by point.

Define a C” 2-linear homomorphism of vector bundles
*
<, ->:/\kg x/\kg——%»lR

(being, in fact, a duality) via the family of the canonical dualities
K _* "

Ko o>

L->:AN'g xA'g, —R.

Looking at definition (2) above and treating ¥ as a O-form on A, with values in

k_* .
AN'g , we can easily assert:

E
2.2. wA(\I/)=3--<\I/,w AL A W if \IIESec/\kg where wWA...Aw is defined by formula
k! k times

(2) for the k-linear homomorphism /\:gx...xg-——)/\kg, whereas <(¥,wA...Aw)> - for the

duality <-,->. =
A A .
Lemma 2.3. Lv(w ¥V)=w (¢ ¥) Iif veSecg.
v

Proof. In view of the obvious equality ¢ w=v, of Th.1.3(vi) and of 2.2 above, we
v

¥
have, for \I/eSec/\kg ,

MNy=c (L. =1 \
Lv(w \I’)—Lv(k! Y, wA. .. AL) - <\I/,Lv(w/\.../\w),>

K -
=1—-<\Il, Y 1) oA A w/\...Aw)=L-(\I/,k-L WAWA. .. AW
k! j=1 v k! v

=1 SORZ w/\....Aw>=wA(l, ). .
v g v

(k-1)!
k-1 times

B) Homomorphism Q"

Let QeQi(M;g) be the curvature form of the connection A under consideration. For

each point xeM, the mapping

x 2 % ev ¥
u.g|x~»—--~~>/\ Alx cA Alx
k. E
W W of]

1 x

is linear and keeps the property
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Ed »* X * E3 ki *
plu daplw )=plw )aplu ) foru , w €g, -
X

*
/\evAlx is an associative algebra with unit element, therefore, by the universal
k2
symmetric algebra property of Vglx [7; p.192], there exists a unique homomorphism of

algebras of degree O

extending p and such that Q’(1)=1.
X

Lemma 2.4. Via the canonical dualities [7; pp. 104, 193], the homomorphism QV is
x
defined by the formula
Y% 11
<Q (I‘),wlA.../\w >=—-" Y sgnoe-<I,Q(x;w Jv.o..vQx;w
X

AW AW
2k k! 2k - o (1) o (2) o (2k-1) o (2k)

»
for l"erg and w_€A
I x i I x

Proof. In view of the linearity with respect to ' of both sides of the above

* > x* %
equality, it is sufficient to check it on the simple tensors F=w1v...vwk, w.Eg .
X

v, ¥ *
<Q (W V...VW ), W A...AW_>
x 1 k 1 2k

v % v, *
=<Q (w IA...AQ (w ), w A...AW_>
x 1 x k 1 2k

1 * »
=;;-§sgno--w1(9(x;w0(l)/\wo(z)))-...-wk(Q(x;wo(Zk_l)/\wo(ZR)

1 1 X %
=§?.2T‘~§sgnm§w1(Q(X;Wo(z-r(l)—nAwo(z-r(1))))""'wk(Q(x;Wa(z-r(k)—uAwo(z-r(k))))
1.1, . <*Q( . A Yoo i k]
= ;; §sgn0‘ perm| L x,wo(zj_l) w@(zj) s 1, <
=—1—-L-Esgn0‘~<w*v...vw*,Q(x;w AW Yv. .. vQ(x;w AW N

kt K 1 x (1) o (2) o (2k-1) o (2k)

E
Applying the above lemma, we see that, for I"ESechg , the cross-section
Q'(M):M——A*A", x 0 (T(x),
is C°, i.e. (M e’ .

k30
The space o (Sechg*) forms an algebra in a standard way, and the mapping
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k>0 >
Q': e (secVg) — 2% (M)

r—s ()
is a homomorphism of algebras.

By standard calculations, we obtain

2.5, a'm=L.rav.. v for TeSecV*g  (the forms Qv...vQ and

rL,Qv...v) are defined by (2) for suitable multilinear homomorphisms). ]

2.6. It is well knowﬁ that, in the’ vector space Ang, the classical
Chevalley-Eilenberg differential works, see, for example, [9; p.107]. For our purpose,
we must slightly modify it by multiplying it by -1 (cf. Remark next to Prop.2.1), i.e.
we adopt the following differential:

* *
S :Aglx Aglx

x
i+])

A A
< = — —
8 (), w A . .Aw> r (-1) <W,[W1,WJ]/\...1...j. AW >
1<
k ¥ . _ o * . . . .
for yeA g, (k>1), woeg and 6){!/1—0 for YeA g, - BX is an antiderivation

of degree +1 and, for an arbitrary k> 0, the induced homomorphism of vector bundles
k L,k _* k ¥
d:ANg —>Ag

is, obviously, of the Coo class.

L. v, ¥ * g A * * *
Proposition 2.7. Q (v )=¢w ,d°w>-w (8(w )) for w €Secg .

Proof. Applying the Maurer-Cartan equation, we get
v, % * X g 1 x
Q(w )=¢w ,D=¢ ,d w)—;-(w [w,w]).
On the other hand, for El,EzeSecA,
< A(a *) >=<3 * >
w (8w ,ElAEZ-— w mﬁlAwEZ
=< * 1 ]]>—1 < >
=<w , wgl’wgz —2 <w )[wyw]>,€1/\€2 . n
Definition 2.8. Define the mapping

k>0 K ¥
K: @ (Sech'g )«———aQA(M)

by the formula
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K(¥) == ¥,d% (@ A. .. A 0)> -0 (89)
k! e
K ¥ k times
for VYeSecA'g .

Of course, by Prop.2.7,

K(w*)=QV(w*) - (8)

* *
if w €Secg .

Proposition 2.9. The fundamental formulae for K:

k -
(1) KW A coaw) =3 DKW AN A S AW
1 k =1 s 1 k

* *
for w e€Secg ,
s

(2) KW =d? (™ (¥)) -0 (89) -1 ¢d%, 0 A. . A 0)>
ket k times

k
for VYeSecA'g .

Proof. (1): Applying Th.1.3(viii), we get

1

%* ¥ g A * *
—dw. A AW A (A A - (8w AL AW )
k! 1 k 1 k

» *
Klw A...AW )=
1 K

A Kk -1 ¥ * *
wA AN VA A0 (Y (DT W ALLLASW AL AW )
a s=1 1 s k

s~1 times

1 * * k -1
=W A AW, Y (1)F
k! 1 k.o

1 * * k -1 A * * A *
=W A...AW ,k~(dgw)/\w/\.../\w>— Y (-1)° 0" (8w AW A...S5...AW )

k! 1 Kk s=1 s 1 k

1 * * k -1 A * A, ¥ A *
= cw AAaw L (dB0)AwA . Ad- Y (DT (B AW (W AL AS. AW ).
(k-1) ! 1 Kk < s 1 K

On the other hand,

- Kk - *
(-1)° 1K(W*)/\w/\(w*l\.../s\.../\W*)= Y (-1)° 1((w*,dgw)—w’\(éw%))/\w/\(w*/\.../s\.../\w ).
1 s 1 k s=1 s s 1 k

=

s

Therefore, it is sufficient to prove the equality

1 * * g k s-1, ¥ g A, % A %
. = - w o, AW (W A...5...AW ).
o <W1A Awk,(d W)AWA. . . AW 21 (-1)" < ) d w) { ) s k)

S=

For this purpose, take xeM and wi eA' , I <k+1. We have
X
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1 * * g
AW A AW ATW)AWA. . . AW AL AW
< 1 k’( ) > (x5 1 k+1)

(k=1) !
1 * * d
= <{w A...AW )(x), ((@W)ABA.. . AL)(X;Ww_ A AW )>
(k=-1) ! 1 K 1 Kk+1
E 3 »* - .
=<(w,_ A...AW )(x), ¥ (-1 1(d9w)(x;w Aw JAw(x;w )A.../i\.../j\.../\w (x;w )>
1 k V< 1 3 1 k+1
N X
W (x;(dgw)(x;wi/\wj)) wl(x;w(x;wl)) b /j\
SN ETL | | o
1<} . N :
w (x;(dgw)(x;w Aw)) w (x;w(x;w )) ... ? ?
k i j 1 1

- k s+
=7 DM Y DT G (d%0) (g w, Aw ) -
1<) s=1 s i j

* A * A A
<w Aus.oAaw ) (X)), w(xsw )AL T LT L Ap(xgw )
1 k 1 k+1

k +1 * A, X% A *
= ¥ (-1 -qw ,d%p A (v A s AW YW Al aAw ).
- s 1 k 1 k+1

s=1

(2): By Th.1.3(viii) (treating ¥ as a O-form on the Lie algebroid A4, with values

in /\kg*), we have

Al oA A=AV, oA, AW+, AP (WAL . AW)D.

Therefore, by 2.2,
1 g A
K(¥) =F-(\I/,d (WA. . . AW -w (8Y)

=i—,‘[k9dA(wA5\I/) —¢d%,0A. . Aw>] -0 (8Y)

=d? (" 8¥) - " (5¥) —%-<d9\p,w/\. CAG>. m

ELd
Because of the fact that each cross-section \I/ESec/\kg is locally a sum of

* * * *
cross-sections of the form WA AW for w eSecg , we get
s

Corollary 2.10. If the connection A considered is flat (i.e. Q=0), then,

according to (6) and Prop.2.9(1), we see that K=0, which means, by definition 2.8

and Prop.2.9(2), that
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W (89) =11(—.-<\I/,d9 (WA. .. Aw)>=d" (W) —i—|~<d9w,w/\. ALY, m

Remarks 2.11. Keep the assumption Q=0.
*
(1). If WesSecAkg is invariant with respect to the representation ad of A on g
* 9 ’
[i.e. if W(E(SecAkg )1°’ or, equivalently, if d3¥=0, see 1.7], then
a* () =o.

Indeed, by Cor.2.10, we have d”(v"¥)=0"(8¥); but, for each point xeM, the

k¥ . . ;
tensor V(x) eA g,. is invariant under the canonical representation of the Lie

*
algebra g = on Akglx (induced by the adjoint one) and such a tensor is a cycle

[9; p.186], so (6W)(x)==5x(wx)==0. Therefore, there exists a homomorphism of algebras

A k20 k * A
w @ (SecA g )1° ~ﬁ“92A(M)c:QA(M), Vi—sw (¥),

and, next,

4 k20 k X
w: @ (SecA'g )1° —y ZA(M) — HA(M)

v N [w:\(\ll)]

(2). If A is a transitive Lie algebroid, then, in view of Th.I.5.2, each invariant
cross-section Wez(SecAkg*)Io is determined by the value at an arbitrarily taken point
XOEPL Thus, the domain of w' s isomorphic to some subalgebra Bc:Ang . If,
additionally, A=A(P) for some connected principal bundle (P,n,M,G,-),o then,
according to 5.5.2 from [17], B is isomorphic to the vector space (Ag*)l of invariant
[with respect to the adjoint representation] vectors. Let wpesf(P;g) be the form of
the connection on P corresponding to A. Then, the real-valued form on A{(P) ®:=wA(0v)
for \/E(Ag*)l (for o, see [17;5.5.2]) 1is precisely the one for which the
corresponding right-invariant form ® on P is equal to <V,wPA...AwP>. Recall that 7
@(z;le...Avk)=®(nz;nfz(v1)A...Anfz(vk)L zeP, v eTP (nA:TP———eA(P) is the

classical projection [15]).

(2’). In particular, for an arbitrary lie algebra g (treated as a trivial Lie

algebroid over a point) and for the only connection A=0,

¥
0 —>g P R 0 ——0

w=id A=0

A % x . .
we have w :(Ag )1 C——>Ag 1is an inclusion and
o
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# *
w : (Ag )Iw—waH(g)n

Vi—> [V]

We realize that, for a reductive l.ie algebra g, w' is an isomorphism [9; p.189].

(3). Consider the case of the foliation (G,{aH; a€eH}) of left cosets of a
connected Lie group G by a connected nonclosed Lie subgroup HcG and let A be the Lie
algebroid A(G;H) of this foliation, see [17], [16]. The homomorphism. »' has the

following form: there exist isomorphisms of algebras o« and B such that

k>0 W X B
“jg Blg
x - *
AGB/B)Y s H_(G/H)eA(B/b)
v > 1o ¥

(h is the Lie algebra of the closure H of H).

The isomorphism o« 1is built in the following way: via the global trivialization
w:G/ﬁ><F/h—fi—>g, see [17;8.2.4] and [16;3.2], any cross-section ¥ of Akg*
determines some h/h-valued function @:G/HAmweAk(F/h)x. Analogously as in the proof of
Prop.8.4.1 from [17], we assert that ¥ is invariant if and only if ¥ is constant. The
isomorphism a is defined as follows: V¥ F4w>$(x), x being an arbitrary point of G/ﬁ.

The isomorphism B looks as follows: according to [16; Th.3.3], the Lie algebroid 4
is trivial and an isomorphism of Lie algebroids p:T(G/H)xh/h——A is given by the

formula p(v,[w])=A(v)+¢(nv,iw]). Therefore, the superposition
B:H (G/T) -~ H(T(G/H) xb/§) =—H _(G/H) < A(B/B)™

is an isomorphism of algebras. The commutativity of our diagram follows now in a simple

way.
. Y
C) Homomorphism (dw)
This section will not be needed till Part III.

d%w at a point xeM is a 2-linear skew-symmetric tensor (dgw)I :A' xAl -~9g|
X X X X

*
understood sometimes equivalently as an element of A2A|t89| . (dgw)I defines a linear
X X X

mapping
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2 * *
(dw)x.g'x—ww~9A Alx C AA'X

k.2 F.d g
w  ——>w ol(d w)l
X

having the property

¥

X .3 » » >
(dw) (w )Aa(dw) (w )=(dw) (w )A(dw) (w ), w
x 1 x 2 X 2 x 1 I x

iEg

Therefore, by the universal property of the symmetric algebra VgT , see {7;p. ], we
X

obtain the existence and the uniqueness of a homomorphism of algebras
\Y; * >
(dw) :Vg ——>AA
b'¢ I x | x

extending (dw) and such that (dw)v(l):l.
X X

>
Lemma 2.12. Let I'eVlg , then for w ,...,w_€A
1 x 1 21 I x

<(dw) (T),w_ A...AW >=—1 .Y sgno-<T, (d%)  (w AW v
x 1 2 g o tx o) o)

oovide)  (w AW }>
tx o (21-1) o (21)

* *
Proof. It is sufficient to prove this for a simple tensor F==w1A...Aw1:

v, % *
<(dw) (W A...AW ), W A...AW_>
x 1 1 1 21

» *
=<(dw) (w JA... Aldw) (W ), w A...AW_>
X 1 X 1 1 21

1 * *
=-—Y sgno- (dw w 1 AW oo (dw w w AW
2l E g ( )x( 1)( o (1) 0‘(2)) ( )x( l)( o (21-1) 0(21))
1 X (9 X .9
=—-Y sgno-<w_,(d w) (w AW 1> . <w L (dPw)  (w AW
21 P 1 tx  o(1) o (2) 1 Ix  o{(21-1) s (21)

*
g9
= sgno+) <w ,(d7w w AW >
Z g Z 1 ( )Ix( o (2°T(1)-1) G(Z'T(l)))
cel T

¥
g9
L <w d w W AW >
1’( )Ix( o (2°T(1)-1) 0(2-1:(1)))

(where I is the set of all permutations of the sequence (1,2,...,21), such that

c(1)<e(2),...,0(21-1)<c(21}, 0(1)<0(3)<...<0(21—1))

1 * *
=ty Sgno-<w_V...Vw L (d%w)  (w
) 1 1 I x
o

AW Yv...vi(d®w) (w A
I ?1 o (1) o {(2) I x

w )>
c(21-1) e (21)

* ¥
According to this lemma and the fact that the canonical duality Vlg leg —R

* Ed Ed
[defined point by point by: ((wlv...vwl),(wlv...vwl))k~—+perm[<w&,wj>] ] is a C”

2-linear homomorphism of vector bundles, we assert the following
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2.13. For'I‘eSecvlg*, the cross-section
*
() (T):M——A2'A, x;_»(dw):(rx),

is a C* real 21-fOrm on A, i.e. (dw)v(r)enj‘(n), as well as it is defined by

(dw) " (T) =L dfov. vd®ey.  w

3. A CONSTRUCTION OF THE CHARACTERISTIC CLASSES OF FLAT REGULAR
LIE ALGEBROIDS

Here we construct characteristic classes having the following property:

— the existence of nontrivial classes among them is a measure of the
incompatibility of the flat structure of a given regular Lie algebroid A (over (M,E))
with a given subalgebroid B of A (also over (M,E)).

In the case of an integrable transitive lLie algebroid A=A(P), P being any
principal bundle, these classes agree with the so-called characteristic classes of the
flat principal bundle P [10].

Consider in a given regular Lie algebroid (A,E','B,WA) over (M,E) two geometric
structures:

(1) a flat connection A:E——4,

(2) a subalgebroid Bc A over (M,E), see the following diagram

¥
0 —>g >4 -—25EFE 50
W A (7)
j id
L LR
0 sh (> B Sy E —50

Notice that h=gnB (h:=Ker3rB).
The system (A4,A,B) will then be called an FS-regular Lie algebroid (over (M,E)).

Examples 3.1. (1) A triad (P,P’,w) consisting of a principal bundle P, of an
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H-reduction P’ and a flat connection in P with a connection form w determines an
FS-transitive Lie algebroid (A(P),A,A(P’)) (A corresponds to w). For the theory of flat
principal bundles with given reductions, see [10].

{2) We recall that both a transitive Lie algebroid A=(4,[:,:1,y¥) on M and an
involutive distribution FcTM give rise to the regular Lie algebroid over (M,F) of the
form AF=371[F]cA, see [17;s.1.1.3]. Consider now a triple (A,B,A) consisting of a
transitive Lie algebroid 4 on M, a transitive Lie subalgebroid B of A and a partially
flat connection A in A, namely, flat over a given involutive distribution FcTM. The

triple
4,8 A F)

is an FS-regular Lie algebroid.

(3) Let now the system (P,P’,w) be given as in Ex.(1) with the difference that w
is assumed to be partially flat, say, over an involutive distribution FcTM. Such a
system (named a foliated bundle) is investigated, for example, in [10]. It determines
the (nontransitive) FS-regular Lie algebroid (A(P)F,A(P’)F,A|F) written above.

Examples on the ground of the theory of nonclosed Lie subgroups will be given in

Ch.7 below.

We construct some characteristic classes of an FS-regular Lie algebroid (A4,A,B),
measuring the independence of A and B, i.e. how far ImA is not contained in B. The

construction has a number of steps.

»*
3.2. Let s:g——>g/h be the canonical projection. The form w(W):==wA(Aks o¥),
where WeESecAk(g/h)*, is h-horizontal, i.e., equivalently, its restriction to the
X
subalgebroid B - j*(wA(Aks o¥)) - is horizontal. Indeed, for veSech, applying Lemma

2.3, we get
¢ (" (A\*s"ow)) =0" (0 (As™ow)) =0

because the fact that [v]:=sov=0 yields

k * k ¥
<t (AN's oV}, v A...AV >=<A's oV, VAV A...AV >
v 1 k-1 1 k-1

=<y, [v] A [v1] A A [vkp1]>=0.

for VjESecg.

Therefore (see the previous section) there exists a form AWeEQ:(M) such that
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¥ Ak ¥
Jj W (A's o\I’))=(73)*(A\I/).

Notice that if A is a connection in B (i.e. ImAcB), then A¥=0. In fact, for

XieSecE,

KON, k¥
<A\I/,X1/\...AXk>—<(3rB)*(A'I/),AoX1A...AAoXk>—<J (v (A's o\I/)),?\oXlA.../\AoXk>

>
= <A¥s o¥,woeX, A. .. AwASX >=0.

3.3. Put

k2?0 k *
A: ® (SecA (g/h) ) ——Q (M),
¥ > AY

A being a superposition of homomorphisms of algebras, see the following diagram

Sec/\k(g/h)¥ A, Q (M)
=y ),
4 QB, ; (M)
*
J
k% wA )
Sech'g —————— QA’h(M

(where Q h(M) denotes the space of h-horizontal forms on A), is itself such a

1]

homomorphism.

Directly, A is defined by the formula

(AY) (3w A .. AW ) =<V ;[ulx;w )] A Alulx;w )]> (8)
1 Kk x 1 Kk

for w €B such that ¥ (w)=w , w €E , xeM.
1 1 x B i i 1 I x

3.4. Define a representation

ad B AN (g/h)")

’

by the formula

ad

14
<g . og(\I/),[vl]/\.../\[l)k]>
.9

= (7805)01/, [V1] AA [vk]>— i <, [V1] AN [lIE,.vj]]] Ao A [vk]>

J=1

for \I/eSec/\k(g/h)*, € eSecB, and vjeSecg.
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The correctness of this definition follows from the fact that if one of v ’s lies
in h, then EE,VJ] lies in h, too.
Notice that
A

& =Aad )
a Byg-— a B’g .

where (a)

b

ad_ g:B—~~~—>A(g/h)

is a representation given by

9

(lvl) =18
adB,gog ad ,

°€(V)] (= [I&,v1])
for £ €SecB and veSecg (adA is the adjoint representation of 4, see [17;2.1.2]),
Y
(b) () 1is the contragredient representation [17; 2.1.3],
(c) AkT, for an arbitrary representation T:A—— A(f), denotes the skew-symmetric

product of T defined analogously to the symmetric product [17:2.2.1].

k>0 *
3.5. In the space @ (SecAk(g/h) )[o of cross-sections invariant with respect to

A

adB , we introduce a differential 8 of degree +1 defined as follows: for
> d

\I/E(Sec/\k(g/h)’()lO and VjéSecg; we put

<Y, [v 1A...Aly ]>=- .);.(—1)“”'@, (v v T A v ] A A5 A v, 1>.
i<j

(a). The correctness of this definition. If vj € Sech for some index j,, then
o

Y (—1)“J<W,[Evi,vjﬂ]A[VO]A...?...?...A[Vk]>

i<j
i -1 A
=(-1)%° -y <¥, (v ia... 5 ... Allv ,v1IA..Alv]>
0 0 3 j K
i3, °
=0

by the invariance of ¥ and the equality zBovJ =0.
(o}

(b). &% is invariant. Indeed, for £eSecB and vjeSecg, we have, by the

invariance of V¥,

(7Bo§)<8\l/, [vO] A A [Vk]>

i+ AA
(WBOE)(~1§J(—1) <W,[Evi,Vj]]A[VO]A...l...j...A[Vk]>)

LD (6, Ty v IT A ) T RN VR B
i<j
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+ ¥ <\I/,[l[l)i,vj]]]/\[vo]/\.../\[[[g,vl]]]A.../i\.../j\.../\[Vk]>)

1#1, j

iy, [[[vi,vj]]] A [vO] AL A [[[E,v]l]]] AR /j\ A [vk]> +

=-I( T D
1 1#i<j*1

+ ¥ DN, I LLE v T A v AR T A Ty Do

i<l
) (-1)1”(@,[[[ag,[[vl,ujlml Av Ia T
1<j

=§j<§\l/, v 1A ALIE, v T A A L0 1>

A
.. A [vk]>)

(c). It remains to notice that

(i) 8°=0,

(ii) 8 is an antiderivation of degree +1.

For this purpose, firstly, for an arbitrary point xeM, we can define a space of

»*
tensors (Ak(g' /h ) )1° invariant with respect to the representation of the Lie
X
I x
*

X I x

. k X R . Ed
algebra hlx , induced on A (glx/h' ) by the representation ad of h on (glx/hl )
X X

defined as follows:
<ad:(v) W), [ul>=-<g, [[v,pnll>

)" and
and peg .

P4

for vehlx, pe (glx/hI

Secondly, we define an antiderivation
- * *
SX:(/\(glx/h' ) )1° — (A(glx/hl ) ]1°
X P4
of degree +1 as the one which on elements 1] of degree +1 equals
<& (P), [vlalul> =<y, [[v,ull>, v.,peg, - It can easily be seen that if
p.¢ X

Ve (Sech(g/h)™) .. then

’

*
1) \I/Xe(/\(g'x/h ) )[o
I x
(2) (&%) =8 (V).
X X x
In consequence, 8 fulfils (i) and (ii) in an evident manner. Of course, these

properties of 8 can also be checked directly.

Definition 3.6. The relative cohomology algebra of g with respect to B is defined

k>0 X -
as the cohomology algebra of the complex ( @ (SecAk(g/h) )10,6):




> -
H(g;B):=H*(k$0(SecAk(g/h)*)[°,3)-

Proposition 3.7. The mapping A restricted to the invariant cross-sections

k>0 k >
A, (= A(A,A’B)): @ (SecA (g/h) )1° —_— QE(M), ¥ —> AV,

commutes with the differentials & and dE.

Proof. We need to prove the equality

A(8%) =dF (Aw) (9)

for invariant cross-sections V.

The fact that (yB)* is a monomorphism implies that this equality is equivalent to
(r,),(8(89)) = () (d"(A¥)).  But, by definition, see 3.2,  (y,),(A(5¥))
=j*(wA(Ak”s*o(§W))). On the other hand, applying (5) and the obvious fact
d? (v = (@), we get

Ed E * »
(r), (" (89)) =a” (3 ), (a9)) =" (" (" (\'s"o9))) = j” (" (" (A"s" o)),

» -
Therefore, to prove (9), it remains to check that the forms wA(Ak”s o(8¥)) and
»*
d? (W (A¥s" o9)) agree on the cross-sections of B.

Let 50,...,€kesSecB; then (see 2.6 and 3.5)

<N A s o (51)) JE A AE > NS0 (51) E A ABE,)>

= <84, [0(€ )T A. . Alw(E)I>=~ [ (-1)' <y, (T(€),w(€ )] PV T S
i<
=- Y (—1)‘”</\“s*ow,mw(«£i),w(Ej)uA...?...9...>=<5o/\“s*ow,w(€0)/\...Aw(&'k»
1<)

A k¥
=<w (SeA's oW),EOA...Agk>.
On the other hand, by Prop.2.9(2) and the flatness of A, we have
A, A,k ¥ A esonkeX, 1,09 ak ¥
d(w (As o¥))=0 (8°A's W)-+k! A7 (AN's W),ka;;.:sw>.
me

So, it remains to show that

M g k¥
J (A (A's o¥),wA...Aw>=0.

For EJ as above, by the invariance of ¥, we get
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g ak ¥
<Kd” (A's oW),wA...Aw>,§0A...A§k>

= i (—1)j<dg(Aks*oW)(€ . {wa. . Aw) (& A.‘.?...AE )>
Jj=0 J 0] k
= k- ¥ (-1))<s b (As 0wy, wie YA N Aw(E)>
s N(AkadA) Ogj ’ >0 .o PRI X
= k!- i (—1)j((7°€ )<A*s™ o, 0 (£ YA Aw(E > -
j-0 3 0 k
- T <A's"ev,0(E) A .Amgj,w(gl)]l/\...’} >)
1%}
L j A
= kt- ) (=1)( (3o )<¥, [w(€ )T A...5.. . Alw(E)]>~
j=0 J 0 k
- L < EDT A ATIE 0(E )] A )

1#j

The above Proposition yields as a corollary

Theorem 3.8. The mapping
A :H(g,B) —— H (M)
# E
vl — [A*W]

is a correctly defined homomorphism of algebras. ]

A# is called the characteristic homomorphism of the FS-regular Lie algebroid
(A,A,B). Its image ImA#cHE(M) is a subalgebra of HE(M), called the characteristic
algebra of the FS-regular Lie algebroid (A,A,B), whereas 1its elements - the
characteristic classes of that algebroid.

According to 3.2, the compatibility of A with B implies the vanishing of A# [of
course, already on the level of forms]. A# is then a measure of the incompatibility of

A with B.

4. FUNCTORIALITY

Definition 4.1. Let (A4’,A’,B’) and (A,A,B) be two FS-regular Lie algebroids over
(M’ ,E’) and (M,E), respectively. By a homomorphism



H: (A" , A" ,B") —> (A,A,B)

between them we mean a homomorphism H:4’ —— A of regular Lie algebroids, say, over
f: (M ,E')——> (M,E), such that

(1) Hod” =xof ,

{(2) HIB'] cB.

Notice that H’ =H|B’:B’ ——B is then a homomorphism of regular Lie algebroids,

too, see the diagram:

hl

1S

> 7

\ | N
B’ - H_, B
w’ ®
/ Vg / p (10)
Al u > A
f*
E’ - > E
0 f* 0
E’ > E
0 0

By the pullback of an FS-regular Lie algebroid (A4,A,B) over (M,E) via a mapping
f:(M',E’)——> (M,E) we mean the FS-regular Lie algebroid (fAA,X,fAB) where A is the
pullback of the connection A, see definition 3.2.1 from [17].

Notice that przzfAA=:E’x(f*,v)ﬁa———aA is a homomorphism of FS-regular Lie
algebroids, called canonical. In view of the equality HeA’ =A, any homomorphism
H: (A" A’ ,B’) — > (A,A,B) of FS-regular Lie algebroids can be represented in the form
of a superposition of a strong homomorphism with the canonical one:

a8 ) — (MR, £°8) —25 (4, B).
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4.2 Let H: (A’ , X' ,B’) ——> (A,A,B) be a homomorphism of FS-regular Lie algebroids,
see diagram (10). We define the pullback

H+*:SecAk(g/h)*————>SecAk(g’/h’]*
by the formula
+* 7 7 — + / + 7
<H (\P)x,[wll/\.../\[wk]>-<\I/f(x),[H (Wl)]/\...A[H (wk)]>

¥
where ¥eSecA*(g/h)", xeM, wioeg' .

x
Proposition 4.2.1. (1). H'" maps the invariant cross-sections into the invariant

ones.

>
(2). H+ restricted to the invariant cross-sections commutes with the

differentials & and 3.

Proof. It is enough to prove the proposition in two cases of H: of a strong
homomorphism and of the canonical one.

(a). Assume that H is a strong homomorphism of FS-regular Lie algebroids over
(M,E).
(1). Let & eSecB’ and v}eSecg’. Seeing diagram (10), we have

+ % , ,
(78,°€ )<H W,[vl]A...A[vk]>

(ol °€" )<, [H+ov1] A A [H+ovl’(]>

k
3 <w,[H*ov']A...A[Eyvog',y*ovﬁﬂ]A...A[H*ov'i>
J=1 1 ]

J

e

<H, W T A ALIE v T A . .A [V 15,
1 1 j x

(2) A very easy proof of the equality S’oH+*(W)=if*og(W) for an invariant ¥ will
be omitted.

(b). Consider now the canonical homomorphism pr2:(fAA,X,fAB)———a(A,A,B) of

FS-regular Lie algebroids over f:(M ,E')—>(M,E). Identify the vector bundles
»* * X »

f (g/h)zf‘gyf*h. Then, of course, " ¥=f ¥, and, by the standard calculations, we

assert the following equality (cf. [17;2.3.2]):

f*(adB )=ad . (11)

»* .
, g f B,f g

60



* *
(11) and the fact that f (A*T)=A"(f T) for any representation T (cf. [17;2.3.3])
yield

&

g)")=/\“(ad - ) =ad.

X A X Kk
f (ad )=fr (A (ad * .
B,g B f B,f g r B,f g

s ’

Proposition (1) follows now from [17; 2.4.4].

To prove proposition (2), it is sufficient to show that
— ¥ o o~
<S8(f W),[Voof]A,..A[kaf]>==<f (BW),[voof]A...A[VkOf]>

for an invariant cross-section ¥ and vjeSecg.

<S(f*W),[v of JA...A [V of]>
0 k

== ¥ (D" Iy of v of I ATy of 1AL 0L 0 >
1<) ! } 0
= ¥ DM v v IIA v DAY ) er
1<j ) 0
=<8U, [V 1A .. ALv 1>0f =<f (80), [V ofIA.. ALV of]>. =
(o] k 0 k

*
4.2.2. As a corollary we obtain that H'" determines a homomorphism of algebras

+

H *:H(g,B)<—~—9H(g’,B’).

Proposition 4.3 (The functoriality of A ).
Let (A’,A',B’) and (A,A,B) be two FS-regular Lie algebroids over (M’,E’) and

(M,E), respectively, and let H:{A" ,A',B") —— (A,A,B) be a homomorphism between them

over f: (M’ ,E’')——> (M,E). Then the following diagram

A
H(g,B) —1> H_()

llf-# J(f*
By
Hig B~ H_, (M)

commutes.

Proof. It is sufficient to show the commutativity of the diagram on the level of
forms; this means - the equality:

* .Ix S A k ,9( + ¥
(7,0, (£ (B ¥)) =" (0 " (A's" "ol ¥))

for an invariant V.
Let xeM’ and wje[ﬁ . By (7) and seeing diagram (10), we have:
X
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(rp ), (£ ) Gew A ) = (F (A0 06,0, (W) AL Ay, (W)
= (A*\I/)(f(x);f*(arB, (wl)) Al ./\fx(’()‘B, (wk))) = (8, ¥) (f(x); (73‘[H’ (W1))A' LA (7B(H’ (wk)))

=<y Jw(F(x);H (w ))I A . Alw(f(x):H (w))]>
f(x) 1 k

=<\11f(x); (H (v’ (x;wl))] A ALH (0 (x;wk))]>

<(H+*\Il) (x); [0 (x;wl)] Ao (x;wk)]> =</\ks’*0H+*\I/(X);w’ (x;wl) Ao AW (x;wk)>

LAk

w’A(/\ks'*oH+*\I/) (x;w1 A ./\Wk) =j'*(w (A

* +%
s’ oH \I/))(x;wl/\.../\wk). »

5. THE DEPENDENCE OF &, ON A SUBALGEBROID

Let (A,[-,-3,) be a given regular Lie algebroid with the Atiyah sequence
0—->g¢ sA—I5E 50 and consider the algebroid(TRxA,[L-,-1’',idxy) - the

product of the trivial Lie algebroid TR with A4 [21]. Its Atiyah sequence is

1AXY IRy E — 5 0.

0 —> 0xg “—> TRx A -

For the mapping ft:Mw——%[RxM, x +—> (t,x), take the pullback f/:(TlR’xA).
Notice that f:(T[Rx A)={{y(w),0,w) €eEx (TRxA); we A}, and that the homomorphism

Ft:A — TRx A, W —> (et,w),

(Gt being the null tangent vector at teR) of regular Lie algebroids (see the proof of

Th.4.3.1 in [17]) is represented in the form of the canonical superposition

F pr

Ft:Aﬁiaf/t\(TRx a) —2

>TRx A (12)

(see [17;s.1.1]). It is not difficult to see that

5.1. P:t:A———»~9f/t\(T[R><A), wir—> (y(w),0,w), is an isomorphism of regular Lie

algebroids. =

Definition 5.2. Two Lie algebroids Bo’B1CA (both over (M,E)) are said to be
homotopic if there exists a Lie subalgebroid B<TRxA over (RxM,TRxE) such that

62



the isomorphism F_t maps Bt onto f/t\(B) for t=0,1 (equivalently, if, for veA, we
have: veB e (8 ,v)eB).
t t

B is called joining B0 to B1'

Remarks 5.3. (1). The Lie algebra bundles adjoint of homotopic Lie subalgebroids
need not be identical, see the example below.

(2). Let a Lie subalgebroid BcTRxA join B to B and let Bt:=ft"1[f:‘(3)]cA
for teR. It turns out that B is not uniquely determined by the family (Bt;te[R}, see

the following example.

Example 5.4. Consider a trivial principal bundle P=MxG, a c® curve a:M——G
and a closed nontrivial Lie subgroup H of G, H#G. Let h and g be the Lie algebras of
H and G, respectively. Then, for each teR, Pt:=Mx(at-H)chG is an H-reduction
of P whose Lie algebroid - which is easy to obtain - equals Bt=TM><Adat[l‘)]«C TMx qg.
Consequently, At [and also its Lie algebra bundle 9t=MXAdat[b]] depends on t in
general. Define a vector subbundle BcTRx (TMx g) as follows:

,(t,x,=((U,V,Ra;1(a*t(u))+Adat(w)); ueTtrR, veTxM, webh).

B is a transitive Lie subalgebroid (of the product of Lie algebroids TRx (TMxg))
joining the family (Bt;te[R).
If, additionally, G is abelian, then BtEconst, but B depends on the curve a;

therefore B is not uniquely determined by the family (Bt;telR).

5.5. We compare the relation of homotopic subbundles of a principal bundle P with
the relation of homotopic subalgebroids of A(P).

Let P=(P,n,M,G,+) be a G-principal bundle over a manifold M. It determines a new
G-principal bundle RxP=(RxP,idxn,RxM,G, ') with the action
(t,z):-"a=(t,z+a). For an arbitrary t e€R, the mapping

*
FtP — f (R x P) (=M(ft’idx”)(leP))
z —> (nz,(t,z))
is an isomorphism of G-principal bundles.
Take a Lie subgroup HcG (nonclosed and disconnected in general). Two

H-reductions P cP, t=0,1, are said to be homotopic [10] if there exists an
- - -—

H-reduction PcRxP such that }-”t maps Pt onto ft(P) for t=0,1. P is called joining

P to P..

0 1
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5.5.1. Notice that P is determined uniquely by the family of H-reductions
- ¥ - -
Pt=Ft1[ft(P)], t €eR [which follows from the observation: zePta(t,z)eP].

5.5.2. If H is closed and Pt are defined by c” cross-sections o*t:M————aP/H for
t=0,1, of the associated bundle P/H————)M, then, P0 and P1 are homotopic if and
only if o, and o, are homotopic in the usual sense (via cross-sections, of course).

Proposition 5.5.3. If Ptf——l—t»P, t=0,1, are homotopic H-reductions of P, then
the Lie subalgebroids Bo:=di0[A(Po)] and Blr=d1'l[A(P1)] of A(P) are homotopic. The

converse theorem is not true unless Pt and G are connected.

Proof. Let PO,P1CP be two H-reductions of P. Assume that they are homotopic,
and that PcRxP is a joining H-reduction. Then B:=¢[A(P)] cTRx A(P),

¢: A(RxP)=T(RxP)/G>[(v,w)] —> (v, [w]) e TRxTP/G =TRx A(P)

being the canonical isomorphism, is a Lie algebroid joining B0 to Bl. Indeed, one can
easily see that ft:A(P)—afi\(Tle A(P)) equals the superposition

dFt * A oA
AP) —"5 AUfL (R P)) 2 £ (ARx P)) = £ (TR x A(P))

and then maps Bt onto f/t\(B) for t=0, 1.

Conversely, assume that the Lie subalgebroids BO and B1 are homotopic, say, via a
joining Lie subalgebroid B of TRx A(P). This means that I-:t maps Bt onto f:(B) for
t=0,1. Let PcRxP be the arbitrarily taken connected H-reduction corresponding to
the Lie subalgebroid ¢ [BlcA(RxP), see 1.5.3.2. Put ﬁt:=f';1[f:(f)], teR. By its
construction, (Pt,te[R) is a family of homotopic H-reductions. Of course, Pt and Pt
are, for t=0, 1, two H-reductions corresponding to the same Lie subalgebroid Bt.

If Pt is connected, then, according to the fact that Pt and Pt are integral
manifolds of the same G-right invariant distribution on P (see 1.5.3.2), we notice that
}N’t=Rg[Pt] for a point gweG. If, additionally, G is conerected, g can be joined to the
unit eeG, say, by a C family gs, se€R. The family Pt :=Rg [Pt], se€R, determines

b

a homotopy between ?’t and Pt, t=0,1. Therefore P0 and P1 are homotopic. ]
5.6. For the further investigations, we fix

@ a regular Lie algebroid A= (A,[-, 1,y) over (M,E),

e a flat connection A:F——>A in it,
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® two Lie subalgebroids Bo’ Bch, both over (M,E), homotopic to each other via a

joining Lie algebroid Bc TRx A.

A determines a flat connection in TRxA of the form idxA:TRxE—>TRxA.

This implies that the triad
(TRx A, id x A, B) (13)
is an FS-regular Lie algebroid. Besides, we have that
Ft: (A,?\,Bt)—-—> (TRx A, idx A, B)

is a homomorphism of FS-regular Lie algebroids.

Proposition 5.7. The characteristic homomorphisms At#, t=0,1, of FS-regular Lie
algebroids (A,A,Bt) are related to each other by the commtativity of the following

diagram:

H(g,BO)

# Bow
F+
H(Oxg,B) HE(M)
F+“l

1

Al#

H(g,Bl)

Proof. By the functoriality of the characteristic homomorphisms of FS-regular Lie

algebroids, we get the commutative diagram

o#

H(g,BO) — HE(M)
~
#
F+# fO
(6]
A#
H(Oxg,B) ——> Hn E(RXM)
F+# f#
1 1
AI#
H(g,Bl) ) HE(M)

where A# is the characteristic homomorphism of (13).

Since f:==ff (see the proof of Th.4.3.1 from [17]) and fg is an isomorphism
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(because fo and 1’1 are homotopic in the category of foliated manifolds and each of them
is a homotopic equivalence in this category) therefore so fY=(fg)-1, which implies

our proposition. ]

Notice that if F:#, t=0,1, are isomorphisms, then AO# and A” can be

interpreted as equivalence homomorphisms in the sense of the following definition.

Definition 5.8. Let Bo’31CA be two Lie subalgebroids of a flat regular Lie
algebroid A4 (all the three over (M,E)). We say that the characteristic homomorphisms
At#:H(g,Bt)—————)H(E), t=0,1, corresponding to Bo and Bl, respectively, are

2
equivalent if there exists an isomorphism of algebras (x:H(g,Bo)—————)H(g,Bl) such that
Aoa=A1#°°L'

Theorem 5.9. If Bo and B1 are homotopic, then Ao# and Al# are equivalent.

Proof. Recall that Ft=pr201-:t, see (12). ft is an isomorphism of FS-regular Lie

algebroids, therefore
—+# * A =3
F, .H(ft(Oxg),ftB)———eH(g,Bt)

is an isomorphism of algebras. It remains to consider the homomorphism

*
pr;#:H(Oxg,B)-—)H(ft(Oxg),fAB). Identifying (via the canonical isomorphism) the

*
vector bundles ft(Oxg)/f*tht(Oxg/h), we get (cf. the proof of Prop.5.2.1)
t
v A, A _ A
(1) ft(adB,on)_adf;B,f’;(OXg) ’

) +# k» 0O K p¥ k>0 K ¥ 3¢ .
(11) pr: @ (SecA (0xg/h) ) o — @ (SecA ft(Oxg/h) ) o is the usual

pullback ‘I!r———)f:\ll.
Theorem 5.9 follows now from Th.I.6.2. "

6. COMPARISON WITH THE CHARACTERISTIC CLASSES
OF A FLAT PRINCIPAL FIBRE BUNDLE

Given:

(a) a G-principal fibre bundle P=(P,n,M,G," ),
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(b) a flat connection in P with a connection form w,

(c) a closed Lie subgroup HcG and an H-reduction P'cP,
let g and h denote the Lie algebras of G and H, respectively. Of course, i:P’ (— 5P
is an (H“—> G)-homomorphism of principal bundles and its differential
di:A(P") —— A(P), see [14], [15], [20; p.289], is a monomorphism of the corresponding

transitive Lie algebroids, see the diagram:

0 —>g & AP) —L5 ™M — 50

e b

0 —s h — A(P") L5 TM —5 0

Identify A(P’) with Im(di) and h with Im(di)*. Then, for each ze}ﬂ , the
X
isomorphism é:g—-~>g|x, v F~»9[AZ*V] (AZ:G~———9P, a+—>za), see [17;s.5.1],
maps b onto hlx and determines an isomorphism [%]:g/l‘)——%——ﬂg/h)I . It 1is worth
X

recalling that

(%) 9 is an isomorphism of Lie algebras provided that g is the right Lie algebra

of G,

see [15], [17].

According to 3.4 above, we have a representation ad :A(P") —— A(g/h) such

AP’y ,q

that fadA(P,) g([v])‘-‘[l[E,v]]], £eSecA(P'), veSecg, and a representation induced
’go
»*
by it adg(P,) :A(P’)-~9A(Ak(g/h) ). Consider auxiliarily the representation Adp,
,g ’g
of the principal ©bundle P’ on the g/h-vector bundle g/h, defined by
3
Ad_, :P" ——>L(g/h), =z +—>[2], and the representation Adﬁ, :P'~———9L(Ak(g/h) )
,9 ’g

induced by it (cf. [17;5.3.2]). By the same argument as in the proof of Th.5.4.3 in

[17], to see that ad is the differential of Adp, , we must only notice an

ACP')Y ,q
analogous fact concerning the representations of Lie algebras and of Lie groups:
h—-—>End(g/h), v F~‘>[adq(v)], and H-—>GL(g/h), h———a[AdG(h)]. By this,

A

ad , .
A(P ) ,q »9
Therefore, according to [17; Props 5.5.2-3], we have a monomorphism

is the differential of Adg,

o 2 k>0
< (Aa/) ) —5 "0 (sech (g/m)™) < ‘@ (sech(g/m)™)

defined by the formula K(W)(X)=Ad2, (z)(y), zeF*x , and being an isomorphism when
g

»

P’ is connected.

67



It is needful to verify that k commutes with the differentials d” and & acting on

* k>0
the spaces (A(g/h) )1 and o (SecAk(g/h)*)Io, respectively (notice that the spaces of

cohomology of these are domains of the characteristic homomorphisms). The differential

k>0 x*
8 in e (SecAk(g/h) )1° is defined in 3.5 above, whereas, the differential d" in

*
(Ala/b) ), must be defined by the formula

<a”(P), w In . alw 1> = T (=10 ey, [lw,,w TIAlw JA. A

i<}

wr...,wkeg; here [wi,wJ] is the bracket in the left Lie algebra of G [we get it
following the fact that this differential must be the one for which the canonical
isomorphism GQ*(G/H)Q((A(g/b)*)I (also (Ag*)Hz(A(g/b)*)l) should be an isomorphism
of DG-algebras, see [10]].

Taking account of remark (*x) above, the equality Sok® =k eg” may now be

obtained immediately.

Theorem 6.1. The characteristic homomorphisms A#:H(Q,H)~—*%I%R(M) of the triad
(P,P",w) (see [10]) and A#:H(g,A(P'))——w_aHdR(M) of the FS-transitive Lie algebroid

(A(P),A,A(P")) (A corresponds to w) are related by the following commutative diagram:

H(g,H)

H(g,A(P")

Proof. We prove the commutativity of this diagram on the level of forms. For the

purpose, consider the diagram

A

X
’

QM) 5 Q(P")

A///] =y, Tp
Q
Al

(A(g/h)*), ‘
K

/

K (Sech* (g/h)™) )
@ (SecA (g/h [0 P,),i(M > QA(P,)(M)
H
(di)
'
Q M)
A(P) ,h
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in which

(a) w(W)==(wA)A(AksxoW) (=i7-<Aks*oW,wAA...Aaﬂ)), wA:A(P)——-—ag being the

connection form corresponding to A,

(b) QA(P) h(M) denotes the space of h-horizontal forms on A(P),

(c) p maps real forms on A(P’) into right-invariant forms on P/, @r-e@, see

remark 2.11(2) above.

L4
We recall that, for ye (A“(g/h) ), . the form Ay) €eQ“(M) is defined uniquely in
X ¥ ¥ X
such a way that n’ (AW)=i7'i <Aks (Y),wA.. Aw> where i:P'——>P, whereas
s:q—>a/h and n':P’ ——>M are the canonical projections. On the other hand, A(Y¥)

for Wes(SecAk(g/h)*)Io is given as one for which 7;(A(W))==(di)*(¢(W)).

Therefore, to end the proof, we need to assert the equality
X k¥ ¥ *
I <A's (Y),wA...Aw>=pol(di) ((Aks (Kw),wAA...AwA>) only. Thanks to the relation

w' om =%owlz [15; Ch.4], [15], we get, for w €T P’ cT P,
1 z z

I x Iz
po(di) (<A"s™ (ky) 0™ A. . A ™) (ziw A AW )
= s ey 0t A AWz A an? ()
=kJ-(Aks*(KW))(nz;wA(nz;nfz(wl))A...Auﬂ(nz;nfz(wk))
=kt (A% (k) (nz; 2 (0(z5w 1) A AR (0(z5w )
=k <A 1217 W), B e(ziw DT AL A (Blo(ziw )]
=k!-<w,[w(z;wl)]A...A[w(z;wk)]>
=<AksX(w),wA...Aw>(z;w1A...Awk)

¥ k ¥
=i <A's (W),wA...Aw>[z;w1A...Aka ]

6.2. The tangential characteristic classes of a partially flat principal bundle.

Consider now Ex.3.1(2), i.e. a triple (A,B,A) consisting of a transitive Lie
algebroid A on M, a transitive Lie subalgebroid B of A and a partially flat connection
A in A, namely, flat over a given involutive distribution FcTM. The characteristic
homomorphism A::H(g,BF)»~m~>HF(M) of the FS-regular lie algebroid (AF,BF,A|F) will
also be called the tangential characteristic homomorphism of the system (A,B,A) and the

cohomology classes from its image - the tangential characteristic classes of the system

69



(A,B,A).

Let now the system (P,P’,w) be given as in Ex.3.1(3). It determines the FS-regular
LLie algebroid (A(P)F,A(P’)F,A}F), and via this a characteristic homomorphism
)F

A H(g, AP )T —H (M),
# F

called the characteristic homomorphism of the system (P,P’,w). The cohomology classes
from the image of Az should be called the tangential characteristic classes of the
system (P,P’,w). By construction, they measure the independence of w and P’ - exactly
the same as the exotic characteristic classes of a partially flat principal bundle

[10]. To investigate this more precisely, we shall devote a separate work.

7. THE CASE OF A TC-FOLIATION

This chapter is devoted to giving a class of the FS-regular Lie algebroids coming
from TC-foliations (exactly on the ground of the theory of nonclosed Lie subgroups)

whose characteristic homomorphisms are not trivial.

Fix an arbitrary TC-foliation (M,%) with the Dbasic fibration nb:M*—-9W and
denote by A(M,F)=(A(M,F),[-,-01,y) its lLie algebroid; see [17; Ch.7] for notations and

terminology. A(M,¥) is a transitive l.ie algebroid on the basic manifold W.

A) Interpretations of various objects

In [18] there are given interpretations of a foliation of the basic manifold W and
a partial connection in A(M,%). Namely, any distribution F on the basic manifold W
determines a subbundle F:==a—1[BNIIA(M,$)F]] (=:nb;l[F]) of TM where A(M,?)f‘=371[F]

and

7.1 [18;2.1.1] The correspondence Fi->F establishes a bijection between
involutive ¢~ distribution on W and distributions F on M such that (1) Ebc:f, (2) the
space Sec(F)nL(M,¥)) generates at each point xeM the entire tangent space fl , (3)

X

F is involutive. n
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Each distribution F on M satisfying conditions (1) + (3) above is called an
involutive ¥~distribution.

By a partial connection over F in a transitive Lie algebroid A= (A4,0L-,-1,%) over
M, F being an involutive distribution on M, we mean [18; 1.2.1] any linear homomorphism
A:F——> A such that yoA=idF, i.e. any connection in the regular Lie algebroid AF.
Assume further that A=A(M,¥) as above. let FcTW be any involutive distribution and

A:F——)A(M,S‘)F - any partial connection in A(M,¥%) over F. Put E’\:=oc-1[l3_1[1m?t]].

7.2 [18;2.1.2] The correspondence Al T establishes a bijection between
partial connections in A(M,¥) over F and distributions CcTM such that (1) Ebn5=E,
(2) Eb+5=f (I—Vr-nb;l[F], see [18;2.1.1]), (3) L(M,¥)nSecC generates at each
point xe€M the entire vector space Clx

In particular, such a distribution C exists and is c®. A partial connection A is

flat if and only if the corresponding distribution (3)\ is Involutive. [ ]

Each distribution C on M satisfying (1)+(3) above is called a partial
F-connection over involutive F-distribution F.

Now, we give interpretations of Lie subalgebroids, of the Lie algebroid
TRx A(M,¥) and of the relation of homotopy between Lie subalgebroids.

Consider a transitive Lie subalgebroid Bc A(M,¥). Via the family of canonical
isomorphisms BX:Q -r——w—faAli, and epimorphisms ocX:TXM~—~>Q|X, xelM, §=nb(x), we

I x
can define a family of vector subspaces

c=a '[B[B _]]cT M, xeM,
X X 73 X

I x

which constitutes a vector subbundle B of TM.

Lemma 7.3 (An interpretation of Lie subalgebroids of A(M,??)). The correspondence
B+ 3B establishes a bijection between transitive Lie subalgebroids B of A(M,¥) and
vector subbundles B of TM such that

(1) EcB,

(2) E,+B=TH,

(3) the Lie algebra Sec(BYnlL(M,7) generates, at each point xeM, the entire

space B
I x

The very easy proof will be omitted. =

Each vector subbundle B of TM satisfying (1)+(3) above will be called an

F-subalgebroid.
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We now assert that the Lie algebroid TRxA(M,¥) is isomorphic to the Lie
algebroid A(RxM,¥) of the foliation ([Rxn,ﬁf):=(m,s¢d)><(m,?) being the product of
the discrete foliation S‘d of IR with the given foliation (M,¥). First of all, we notice
that the tangent bundle E of % equals E=0xEcTRxTM (=T(RxM)) and the basic
fibration ib of ¥ equals ﬁbzidxnb:[RxMﬁ—é[RxW. Of course, the leaves of ¥ and
?b through (t,x)eRxM are equal to L ={t}><Lx and L =(t}bex,

(t,x) b(t,x)

respectively. Finally, we see that @=T(IR><M)/ = TRx Q.

E
Theorem 7.4 (An interpretation of the Lie algebroid TRx AM,¥)). If ARxM,F)
(:b/z) is the space of the Lie algebroid of the foliation (RxM,%), then the mapping

Y:ARXM, &) —>TRx AM,F), [(v,W)] — (v, [W]),

veTR, weQ, is an isomorphism of Lie algebroids (for a definition of the equivalence
relation =, see [17;s.7.2]).
We start with the following

Lemma 7.5. The canonical equivalence relation ~ in Q is given by

!

(v,w)=w' ,w') e v=v’' and waw’

for v, v  €eTR and w, w €Q.

Proof of the Lemma. A real number a€R and a transverse field Zel(M,¥%)

determine a cross-section of b of the form

~

RxM> (t,x) —> (a- t,c(x))eT[Rxon. (14)

9
at |
Clearly, to prove this lemma, it is sufficient to show that (14) is a transverse

field for ¥. Let =X for a foliate vector field XeL(M,¥). We perceive that the
a
5?’
arbitrarily a field YeX¥(¥). Obviously, Y is tangent to the submanifold {t}xM for

each teR, and Y|{t} xM is tangent to the foliation ({t} xM,{{t}txL; Le¥F}). Write

vector field (a- X) on RxM is an %¥-foliate vector field. For the purpose, take

a 3

[(a57,X),Y1 =1(0,X,),Y] + [(a-57,0),Y].

The field [(0,X,),Y1|{t}xM=[(0,X)][{t}xM Y|{t}xM] is tangent to % because X is

foliate. To investigate the second component, take any simply distinguished open set

UcM equipped with distinguished local coordinates (xl, . ,xp,yl, .yl for F. It is

evident that (xl, ce ,xp, t,yl, e ,yq) are distinguished local coordinates for ¥ on

RxU. Therefore Y|IR><U=):ali(x,t,y)‘—(?i and, by this equality, the field
i ax
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[(a- 0),Y]|RxU equals 37 Za (x,t,y)- ——m]-a (X t,y)- —1, thus it is
ax ox

t t to 9 . i i — g
angen o ?qu This gives that [(a- ETS X) Y] is tangent to ¥, and that (a- at’

F-foliate. The fact that (14) is a transverse field is implied now immediately. n

6t’

X) is

The lemma above sets up that ¢ is an isomorphism of vector bundles.

Proof of Th.7.4. Since the anchor ¥:A(RxM,%)— 5S5TRxTW is defined by
y(lv,w)]) =(v,y(IW])), veTR, weQ, we see that the diagram

ARXM, ) v TRx A

AX}Y

TRx W

a2l

commutes. To prove that Secy:Sec A(RxM,¥)-——>Sec(TRx A(M,¥)) is a homomorphism of

[.Lie algebras, it 1is sufficient to show that the following mapping

K:LIRxM, %) —>Sec(TRx A(M,F)), X r—ypoc(X),

is such a homomorphism (c:l([RxM,‘i)~--v~>SecA([R><M,f§f) is an isomorphism described in
[17; Prop.7.2.2]). First of all we observe that a vector field XeX(RxM) is

§-foliate if and only if X=f- -+X for an ¥-basic function f and X,€X(RxM) such
a

that X (t, - JeX(M) is F-foliate. [et X=f- 574»)( be an F-foliate vector field. Then
= — - _ 13]
l/}oc(X)(t,x)=f(t,x)'ﬁlt+c(x X (t,))(X)

(where feQ’(RxW) is a function such that f=fo1~tb). Since, for x=f-£+xo and
Y=g-é—?-+)’o belonging to L(RxM,¥), we have,

[X,Y]=[f-——a+X %,y

o837 1o
+x (g)-Y, ()"

o3}

a

_ ag
(r-3 3t

+g- X, ]—f[Y ——]+[X Y, ]

- 6t o’ 5F 't

after taking account of the equalities

- 6]
[Xp0 50 (£,%) == 20 (X, (t,x)),

X, (g) = (yoypoc(X ))(E),

oc (TX,, Y, 1) (t,%) =Mc(X,(F,)),c(¥, (T, NI,

we get
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}QJ
o

k([X,Y1) =goc(IX, Y1) = (f 35~ 8 55 + (yoyoc(X ) (g) ~ (yoypoc(Y ) (F))-

Q:lo:
o~
»
~

B Wee (X)) + F 0 (Yoc (V) + Ioc(X,)  poc(T,)]

= [goc(X) , goc(Y)I=10k(X),x(¥Y)],

according to the definition of the bracket in the Lie algebra Sec(TRxA(M,¥))
[21]. »

Let BO,Bch(M,?) be two Lie subalgebroids of A(M,¥). Denote by Eb’ §1CTM the
vector subbundles of TM for ¥ corresponding to Bo’ B1’ respectively (see Lemma 7.3). We
recall (Def.S.Z) that B0 is homotopic to B1 if and only if there exists a transitive
Lie subalgebroid BcTRxM(M,¥) such  that VEBt & (Ot,v)eB for t=0, 1. The

following proposition is a simple consequence of the definitions.

Proposition 7.6 (An interpretation of the relation of homotopy between Lie
subalgebroids). B0 and 81 are homotopic if and only if there exists an involutive

subbundle Bc TRxTM such that
(1) OxEcB,

(2) B+ (OxE, )=TRxTH,
(3) the Lie algebra SecBnL(RxM,¥) generates at each point (t,x)eRxM the

entire space B

1

1 (t,x)

(4) v«sEt ® (et,v)e‘é for t=0, 1. ™

B) The characteristic homomorphism of a partially flat Lie algebroid of a
TC-foliation

In this section we describe in the language of a TC-foliation (M,¥) the
characteristic homomorphism of a flat regular [ in particular, transitive] Lie algebroid
of the form (A(M,?)F,BF,AIF), where, Bc A(M,¥) is a transitive Lie subalgebroid of A,
F is an involutive distribution on the basic manifold W, and A is a connection in
A(M,¥F) whose part lying over the distribution F is flat. Denote by 7F and 7: the
anchors in A(M,?)F and in BF, respectively, whereas by wr the connection form of
AlF:F————;A(M,?)F, being de facto the restriction of the connection form
w:AM,F) ——g of A.

By (Sec/\k(g/h)*)lo we denote the space of cross-sections of Ak(g/h)* invariant

F
with respect to a suitable representation of the regular Lie algebroid BF, see Ch.3;

74



this means that I'e(SecAk(g/h)*)Io if and only if’I'eSecAk(g/h)* and
F

K
(7:€)<T, [v_IA. . ALY I>= ) <T, v 1A, AlLE,v TIA. .. Alv 1>
1 k i 1 ] k
for EeSec(Br), vJeSecg.
Now, recall that the characteristic homomorphism of the flat regular Lie algebroid

(A(M,?)F,BF,AIF) is - on the level of forms - given by the formula

F k20 k X
A,: @ (Sech (g/h) ) . ——Q (W)
I3 F
Fooy - — Fo_ ~ A
<(A*F)(x;w AccAaw 1>=<IN(Xx),[lw (X;Ww)IA. .. Al G;w))]>
1 k 1 k

where xeW and w1€F|:7 , while Wieri are vectors such that 7:(Wl)=wi. Next, we
recall that A: commutes with differentials and gives rise to a homomorphism of algebras
A;:H(g,BF)———eHF(W). The homomorphism A; vanishes if the Lie subalgebroid BY can be

homotopically changed to one which contains Im(A|F).

C) The case of a TC-foliation of left cosets of a Lie group

Here we give a more detailed description of the examined homomorphism A# of the
ILie algebroid A(G;H) of the TC-foliation (G,¥) of a connected Lie group G by left
cosets of a connected nonclosed Lie subgroup HcG. The Lie algebroid A(G;H) was
precisely examined in the works by the author [17], [16]. In [18] there are given

interpretations of conditions (3) from 7.1.and 7.2 above to that F and C are

H-right-invariant.

Proposition 7.7 (An interpretation of transitive Lie subalgebroids of AG;H)). A
necessary and sufficient condition for an involutive ¢” distribution B on G to be an
F-subalgebroid is the realization of the conditions: (1) EcB, (2) Eb+§=TG, (3) B
is H-right-invariant [i.e. §|gt==Rt[§|g], geG, teH]. =

The proof of this Proposition, being analogous to that for Prop.7.3.1 from [17],
will be omitted.

Example 7.8. Let b, b, q denote, as usual, the Lie algebras of 4H, H and G,
respectively. Let bcg be a Lie subalgebra such that (1) hcb, (2) h+b=g, then,
by the same argument as in example 7.4.7 from [17], we assert that the G-left-invariant
distribution B, <TG determined by b (i.e. the one tangent to the foliation

b
{gF; g€G), F being the connected Lie subgroup with the Lie algebra equalling b) is a
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transitive F-subalgebroid.

It seems to be interesting that b can be interpreted as a "connection", but in
another Lie algebroid. Namely, let H1 be the connected Lie subgroup of G whose Lie
algebra equals bnh. Of course, hcbnhch, therefore HCH1CH, thereby ﬁl=ﬁ.
Then, it is clear (see [17;Ex.8.4.7]) that B, is an ¥ -connection where ?71 is the

foliation of left cosets of G by Hl.

7.9 (An interpretation of the Lie algebroid TRxA(G;H)). Seeing that the foliation
([RxG,f?):=(lR,?d)><(G,f¥) is equal to the foliation of the Lie group RxG (being the
product of the additive Lie group of reals, with G) by left cosets of a Lie subgroup
OxH, 8 being the null Lie subgroup 6={0} of R, we assert that the Lie algebroid
TRx A(G;H) is isomorphic - according to Th.7.4 - to the Lie algebroid A(RxG;0xH).

7.10 (An interpretation of the relation of homotopy between transitive Lie
subalgebroids of A(G;H)). Assume that Eo’ ElcTG are two transitive %-subalgebroids
and let BcTRxTG (=T(RxG)) be a transitive #%-subalgebroid joining §o to 51.
Thanks to Prop. 7.7, we may equivalently change condition (3) from 7.6 above - assuming
that B is a C* subbundle - to

(3) B is @ xH-right-invariant.

Definition 7.11. Two Lie subalgebras bfcg, t=0,1, fulfilling
I‘)cbf and E+bt=9 (15)

for t=0,1 will be called homotopic if the corresponding transitive Lie subalgebroids

B

b and B

b are homotopic.

0 1

Exercise 7.12. We present some sufficient conditions for two Lie subalgebras to be
homotopic. Consider TRx g as a trivial Lie algebroid on R.

(1) Assume that two Lie subalgebras btcg, t=0,1, fulfilling (15) for t=0,1
are given. If there exists a transitive Lie subalgebroid BochFrxg such that

(i) its isotropy Lie algebras bt fulfil (15) for each te€R,

(ii) (idxAd(h))[Bolt]=Bolt for teR and heH,

then bo and b1 are homotopic.

(2) Let two Lie subalgebras bo and b1 of g fulfilling (15) for t=0,1 be given.
Then they are homotopic if there exists a ¢ vector subbundle b of the trivial vector

bundle Rx g over R, such that
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(i) the fibre blt is a Lie subalgebra of g fulfilling (15) for each teR,
(ii) b =b for t=0,1,
re ot

(iii) there exists a C" mapping v:R-—- >Q realizing the conditions:
1% - g%+ fn,v]l €eSecb for each peSech,

(2°) Ad(h)ev-veSech for each heH.

In spite of these two propositions, the problem of the finding of two different

but homotopic Lie subalgebras is open. This is, however, a side problem.

7.13 (The characteristic homomorphism for a transitive case). In this section we
calculate the characteristic homomorphism of the FS-transitive Lie algebroid
{A(G;H),B,A) in which

(i) B=Bb
fulfilling (1) hcb, (2) h+b=g, see Ex.7.8 above,

is the Lie subalgebroid of A(G;H) determined by a Lie subalgebra bcg

(ii) A is the flat connection determined by a Lie subalgebra c¢cg fulfilling (1)
c+h=g, (2) ecnh=h, see Example 7.4.7 from [17].
(According to [16] for such a Lie subalgebra ¢ to exist, nl(G) must be infinite).
Denote by WA and WB the anchors in A(G;H) and in B, respectively.

7.13.A (The domain of the characteristic homomorphism A Recall that [17;8.2.4]

#)-
¢0:G/Hxbh/h—>g , (g, [wl]) k—wé[Yw(g)], gesn;l(g), is a global trivialization of
the Lie algebra bundle g of A(G;H), and that the typical fibre h/h of this bundle is
an abelian Lie algebra [Xw stands for the left-invariant vector field on G generated by
a vector w], [17:8.1.3]. The equalities h=gnB and dim(hnb/h) =rankh yield that
¢ induces a global trivialization ¢ :G/Hxh/h——>h of the bundle h. Next, ¢ and o'
give a global trivialization wZ:G/ﬁ><B/(Er\b)ﬂ~—~>g/h of the bundle g/h. Using 0>,
we can modify

(a) any cross-section veSecg/h to the h/(hnb)-valued function
v:G/H-—>8H/(hnb),

(b) analogously, via the canonically induced global isomorphism
k * = K, v/ ¢ * . k * .
A (g/h) =2G/HAxA (h/(hnb)) ~ any cross-section VeSecA (g/h) to the function
~ — — — £
b:G/H—>A B/ (Hnb)) .

One can easily see that

<O, [e(X IIA. . afe(X )]>(§)=<@(g),[w1]A...A[wk]>
*1 Yk
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for geG/H and w_eh; here [c(X )] denotes the cross-section of g/h determined by
1 W .
— — 1
c(X )eSecg, i.e. [c(X )]l=soc(X ), see 3.1 above.
w . w w

i i i
Analogously to the proof of Prop.7.4.1 from [17] we assert that:

Ed ~
— Let WesSecAk(g/h) . Then ¥ is invariant [see 3.3-4 above] if and only if V¥ is

constant.

As a corollary we obtain that

k> =3 U
x: o (Sech(g/m™) . 5 A/ (B b)), (16)
Y — v (=the value of ¥)

is an isomorphism of algebras.

Notice also that
<W,[w1]A...A[wkk>=<W(§),[w§([w1])]A...A[wg([wk])] (17)

for an arbitrary geG/H.

k>0 X —
In the space o (SecAk(g/h) )l°’ the differential 8 defined in 3.4 above works.

— o — > =
Via y we can carry & over to the space A(h/(hnb)) and obtain a differential 8§.

We can easily obtain that &=0 [hence &8=0]. For the purpose, take
~ — * ~ * —
\I/e/\k(h/(Fnb)) and let ¥=x(¥) for \I/E(Sec/\k(g/h) )1°" For wo,...,wkeh, we
have, by (17),

<30, [w JA. .. Alw ]>=<(§\I/)A,[w TA.  Alw 1>=<80, [c(X )IA...Alc(X )]1>(8)
0 k 0 k Yo Yk

=- T (-1, [[e (R ),eX I AleX Ta... 0 0. 5@
1<) Yi v Yo
=- ¥ (-1)" <y, [e(X DIV P B -3
i< (wi,vw;)
=-Z(—l)“jﬂ}/,[[wi,w.]]A...?...ﬁ\...>
1<} )
=0

because [wi,w’]e[)cbr\ﬁ' [h/h is abelian!]. As a corollary we obtain an isomorphism

of algebras
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H(g,B) = HA(B/(Hn)) ,0) =A(/(Fnab))~

and the fact that the forms from ImA% are closed.

7.13.B (The characteristic homomorphism). Take into account the connection A
determined by the G-left-invariant distribution Bc TG generated by ¢, see 7.13. Let w
be its connection form. The conditions <c¢+h=g and c¢nh=h determine a
decomposition g/h=bh/hec/h. Define wozgﬂ~Vﬁ>F/h as the linear mapping being the

superposition
_ pr,
w:a- >a/b=h/hec/b——>h/h.

Take also the canonical linear homomorphism p:H/h——>h/(hnb) and put
W = pow Q- b/ (hnb).

Let L :TG--—>TG denote [as usual] the differential of the left translation by
the elemenf g€G. Since the left transiation by g is an automorphism of the foliation
?b==(aﬁ;a<EG), therefore Lb determines an automorphism Zg of the vector bundle
T(G/H). 1dentify canonically Té(G/ﬁ) with g/h. In particular, we have a linear
isomorphism Zg:g/h—m——éTé(G/ﬁ). Without any substantial difficulties one can obtain

the commutativity of the following diagram

“ 2 (78)1“ —
g . «——E£ . AGH) _ « > B &5 T_(G/H)
4 4 4 4
A
(Boat) [ (Booc)I I e
// b¥g
@ TG «—> B 4 L
I g g lg g
S
o w ¢ 4
B/ (hnb) ¢ B/H T Q ——> b < g ——> a/h
I . T
o ,A_W_.W],,,ﬁ_v_____»_.,__v, L epimorphism_m'J

for an arbitrary element gegG.
— *
Recall that A (¥)=AVeQ(G/H) is, for Ve (SecA“(g/h) ),o, defined by formula

(8) (see 3.2 above).

Lemma 7.13.B.1. A (V) is, for ¥ as above, a G-left-invariant form on G/H (i.e.

_ K =
A¥O¥)EQI(G/H) under the notation of [8]) such that its value B, (¥)_ €A (g/h) at e is
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equal to
<A*(\It)é,[w1]/\.../\[wk]>=<\ll,w1(w1)/\...Awl(wk)> : (18)

where Wieb are vectors such that [Wi]=[wi] (eg/b).

Proof. We prove the equality
<A*(\I')§,Lg([w1])/\. X ./\Lg([wk])>=<\ll,w1(w1) Ane (),

g€a@q, which, in particular, implies (18) as well as the equality
((Zg)*(A*(\I/)))E =A*(W)§. This last implies, of course, the G-left-invariance of
A, (%) eQ(G/H).

At first, we notice (see the diagram above) that if IF=Zg([W]) ( ETg(GVE)) for

weg, then, for ﬁefﬂg fulfilling (yB)(§)=v, we can put §:=[Lg(W)], i.e.
§:=Boa(Lg(W)) where web is a vector such that [w]=[w] (eg/H). Therefore,

according to the diagram above and equality (17), we have

<A*(W)§,Lg([w1])A...ALg([wk])>

=<W§,[w(§;[Lg(W1)]]A...A[w(E;[Lg(Wk)]]>

= <W,w1(W1)A...AuH(Wk)>. n

-~

Corollary 7.13.B.2. There exists a homomorphism of algebras A* making the

following diagram commutative:

I}

|

k>0 k »* — —
H(g,B) = @ (SecA (g/h) Yo — QI(G/H) ¢ Q(G/H)

= N E]L
A

A(B/ (Frb) X5 (Ag/B)) 1

*
(Aa/B) )[ denotes here the DG-algebra of vectors invariant with respect to the adjoint
— — X ~
representation Ad*:H——GL(A(ga/h) ), see [8; PropXl]. The forms from ImA, are closed
and A is defined by the equality

B (¥), v I A ATy 1> =<V,0 (@) A A (7 )> (19)
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-~ X
for ‘PeAk(H/(Enb)) and w g, where Wieb are vectors such that [Wi]=[wﬂ

(ea/b). =
Put 3# as the superposition
8,:AB/ (b)) —Z (/) ) ——H(A/F)) ) (28 (/D).

From the above we obtain the fundamental (for the situation considered) diagram

A
H(g,B) LN " (G/T)

AR/ (b)) —* H(A(Q/E)*)[)

R

HI(G/ﬁ)

If G is compact, then the right arrow is an isomorphism [8].

PS

Theorem 7.13.B.3. A# is trivial if and only if cch.

Proof. (a) If cchb, then 8# is trivial. We prove the triviality of 3* provided
that c¢cb. The epimorphy of b<t—>g-—->q/h, as well as (19), imply that it is
sufficient to show the equality wlhv)=0 for web. For this purpose, take an
arbitrary point web and  write WEW ot for wleﬁ and W, Ec (cb). Then
w1=w~wzeb,so<%(w)=phq)=&

(b) If c¢cg¢b, then 3# is not trivial. Assume c¢b. Take wec\b and let web be
a vector such that [w] = [w] in a/b. of course, w-webh\(hnb) and
w=(w-w)+webh+c. Take a covector \i!e(E/(Hnb))* such  that  W([W-wl)#0.
Then

A, (1) (Iw]) =<¥,0 (#)>=<¥, [ -w]>#0. (20)

Since Z((g/5)¥)l———eHl((A(g/E)*)l) is a monomorphism, (20) implies that
A#(\I/)ato. u

Then, for «compact G, each case c¢¢b is the source of the nontrivial
characteristic homomorphism of a flat transitive Lie algebroid on the ground of

TC-foliations.

Problem 7.13.B.4. The nontriviality of A, means the impossibility of the homotopic

#
changing of a Lie subalgebroid to contain the connection. Does the homomorphism A#
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possess this property ?

7.14. The characteristic homomorphism for some nontransitive case

If fcg 1is a Lie subalgebra such that bhcf, then, [18;2.3.1] the
G-left-invariant distribution F(f)cTG determined by f is an involutive
F-distribution, 1i.e. corresponds to some involutive distribution F(f) on the
homogeneous space G/H and then to some foliation ¥ of G/H. The leaves of ¥ are of the
form {a‘H; ael} where L is a leaf of ¥. F(f) is G-left-invariant and generated by
f/h, besides, codimF(f)=codimf.

If ccg is a Lie subalgebra such that hnc=h and h+c=f (f as above), then
[18; 2.3.2] the G-left-invariant distribution C(¢) on G is a partial F-connection over
F(f) and, then, determines some partial flat connection AC in A(G;H) over F(f).

In this section we calculate the characteristic homomorphism of the FS-regular Lie
algebroid (A(G;H)F(f ) ,Bg(”

(1) F(f) is the involutive distribution on G/H determined by a Lie subalgebra

fcg such that hcf, described in [18;2.3.1],

,?\C) in which

(2) Bb is the Lie subalgebroid of A(G;H) determined by a Lie subalgebra bcg such
that hcb, h+b=g, see Example 7.8,

(3) Ac is a flat partial connection in A(G;H) over F{f), determined by a Lie
subalgebra c¢cg such that hnc=h and h+c=f, see [18;2.3.2].

It is simpler to give such examples in comparison with the transitive case. For
example, f may be the Lie algebra of a maximal torus in G.

Consider the following diagram:

0 —5g s acn X r6) —5 o0

| | ||

Y
0 — h —— Bg”) ——l—aF(f) — 0 .

The FS-regular Lie algebroid considered has the characteristic homomorphism

F(f) F(t) T
A# .H(g,Bb )—~—>HN“(G/H).
7.14.A). The domain of A#. We are interested in the representation
*
adgr(“ g:Bg(f)———aA(/\(g/h) ) defined in 2.3. Of course, this representation is the
b ’
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restriction of ad) g to the Lie subalgebroid B’ and will be denoted here (for
b)
X
brevity) by ad/F\. Let (SecA(g/h) )I°(F) be the space of ad;\—-invariant cross-sections. By
the definition, we have:
¥
Ve (SecAlg/h) ) , if and only if

I°(F)

(3,°€)<¥, v 1 A.. Ay 1>= j);@, v, A A TEEw TV A A [y, 1>

) F
for any EeSecBb(” and vl,...,vkESecg.

Consider analogously to 7.13A) the canonical isomorphism of vector bundles
* - - X ~ —_
A¥ (g/h) ——>G/Hx Ak(b/Bnb) and denote by ¥ the function on G/H with values in

kK., i k x*
A (h/Bnb) corresponding to a cross-section ¥eSecA (g/h) .

B
Proposition 7.14.A. \I/e(Sec/\k(g/h))[o(” if and only if \Il=Zfi\I!l for

. »* ~
[ieQZ(M,S‘), and \I/ieSec/\k(g/h) such that \I/i are constant.

* ~
Proof. A cross-section \IteSec/\k(g/h) for which ¥ is constant is invariant with

respect to adg (by the same argument as in [17; 7.4.1]) so, thereby, with respect to
b!g
ad/; A cross-section \I/=Zfi\ll , where f and ¥ are as in the text of our proposition,
1

. A, . F(E)
is adp—lnvarlant because, for veBb| , we have
X

ad (V) (E£'¥ ) =L 1 (x)-ad (V) (¥ ) + (y (V) (£)-¥ (x)=0.

Let \I/l,.A..,\I/keASec/\(g/h)* be cross-sections such that \'Iv/l,...,lflk are constant and their
values l/ll,...,lﬂk form a basis of /\(F)/Bnb)*. It is evident that each cross-section
kl/eSec/\(g/h)* is of the form \P=Zfi\lfi for some f eQ°(G/H) and ¥ as above. For
£e SPCBgf ,

i i i _ A i
,%ad;\og(Zf v =F(r zad’;og(‘yi) ¢y, o) (£)Y ) =F (3, =) (£)Y,

Therefore, when ¥ 1is invariant, we have (71°€)(f1)\111=0 for each 1i; equivalently,

X(fi)=0 for each X€X¥(¥), this means that fieQZ(M,?). n

The mapping

k: (SecA(g/n)") o 22,5 AR )

I1°(F)
'y s £y
1

~

i

is a correctly defined isomorphism of vector spaces (identifying these spaces).
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In the space (SecAk(g/h)*)Io(F) the differential & defined in 3.4 works. Via k we

can carry out S to the space QZ(M’g)‘A(B/Bnb)* obtaining a differential 3. An

analogous reasoning as in 7.13A) vyields that 5=0 [ hence S==O]. As a corollary we
obtain the equality

Fe

H(g,Bb

_0,,‘!_*
)-Qb(M,?) A(h/bnb)

7.14.B). The characteristic homomorphism. Let w be the connection form of the
connection Ac under consideration. The conditions Hhnb=h and Hh+b=f determine a
decomposition f/h=h/hec/h.

Define w :f ——h/h as the superposition
[s]

_ pr.
f——sf/b=h/hec/h—3h/h

and put  =pow  where p:h/b——h/hnb is the canonical linear homomorphism.
(o]

Analogously to 7.13B we obtain

Proposition 7.14.B.1. The homomorphism A:(f), on the level of forms, is defined by

the formila

~

i -7 - e pl=y ] ~ ~
A*(Zf‘wi)(g,Lg[w1]A...ALg[wk])~—Zf‘(g)<wi,w1(w1)A...Awl(wk)>

. i o o k, + * ~ ~
for f eQb(M,?), wieA UﬂBnb) , wf...,wkef, where wf...,wkebr\f are vectors

such that [w1]=[§1] (ef/B). The form A*(i) for @e/HB/Bnb)* is G-left-invariant. m

Define auxiliarily the homomorphism of algebras

1 - * = - -
A#:A(b/Bnb) —_— HF({)’I(G/H), ¥ A, ),

where H (G/H) is the cohomology algebra of the complex Q (G/H) of the

F(t),I
G-left-invariant tangential forms.

F(t),1

Between A# and A; there is a relation shown in the following diagram

A
#

idxal l

# o) — —_
— Qb(M,?)-HF( ’I(G/H) — H ;c/y)

° - X
Qb(M,?)'A(h/Bnb) - £ F(f

If G is compact, then the canonical inclusion @ (G/H) c————~)QF(”(G/§)

F(t), 1
induces a monomorphism on cohomologies H_ I(G/E)>——9HF f,’(G/ﬁ) [19], therefore the

tfy, (
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nontriviality of A; implies the same for A#. One can also formulate the problem

analogous to 7.13.B.4.
Proposition 7.14.B.2. A; is trivial if and only if ccb.

Proof. (a) If ccb, then A; is trivial. The epimorphy of bnf——f/h implies
that it is sufficient to show the equality aalbr\f=0. We do it in the same way as in
7.13.B.3.

A(b) If c¢¢b, then A; is notAtrjvial. Analogously to 7.13.B.3 we prove the existence
of wee(B/Bnb)* such that A;(¢)¢(L Since the action of G on G/H is transitive,

1
F(E),1

!(G/ﬁ). Therefore A;(W):(L n

o
F(ft),1

z(Q!
Fo(

Q (G/H) =R and B(Q (G/H) =0, which yields the monomorphism

f)

- 1
LG
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PART 1l

Hl. THE CHARACTERISTIC CLASSES OF PARTIALLY FLAT REGULAR LIE ALGEBROIDS

1. THE WEIL ALGEBRA OF g

A) Preliminary definitions and properties

We return to the general consideialion of a regular Lie algebroid A over M with

the Atiyah sequence O—-o>g &4 —?>E'~—>0, equipped with a connection A

having w as its connection form. We have:

g is a vector bundle of Lie algebras,
» . . B é k Kk %
A9|x is an anticommutative graded algebra; (Ag| ) :=A g, - xeM,
X

¥ ¥
Vglx is an (anti)commutative graded algebra over the graded vector space g,, with
21+1
elements of degree two only, i.e. (Vg* )2‘rvlg* and (Vg, ) ' =0
' ix I x I x '
¥ *
Wg|x:= Ag Vg is the anticommutative (bi)graded tensor product of the

1 x 1 x K. 21
)"

* *
anticommutative graded algebras. The bidegree (WQ‘X :Akgtxevlg'x leads one, as

usual, to the total degree (w9l )'= e (Wg )LZl.

T2l Wg ~ as an algebra is generated

I x

E 3 E * E.d
by 1, w @1 and 1ew , for w eg'.
b4
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Put

r k, 21
(Wg)" = .o _(Wg)"™,
(Wg)k,Zl _ Sec(w )k,21’
r k, 21
(Wg) := sec(Wg) (=, .o _(Wg)""),

Wg is a bigraded algebra with the multiplication defined point by point. It is
called the Weil algebra of the bundle g of Lie algebras. Each element of Wg is locally
[even globally, which can be proved by using the paracompactness of M] a sum of
cross-sections of the form wlA...Awerlv...vFI, wi, FjeSecg*, k, 150.

In the above, k, I, r are nonnegative integers.

* *
Remark 1.1. Under the gradation considered, the homomorphism (dw)V:VgI ~——9AAI
X X .4
defined in Chapter 2C is of degree 0. Analogously, introducing the "point by point"

i
structure of an algebra in 1§OSechg and the gradation as above, we see that
Ed
(dw)¥: '&°SecV'g ——a ()

is a homomorphism of algebras of degree 0.

Three fundamental operators i,d, 8 in Wg, as well as the mapping k;lVg————aQA(M),
will be introduced in two steps passing through some isomorphisms wx:Wg|x-~9Wg|x,
xeM [i.e. some change of variables]. This method, due to G.Andrzejczak [2], enables
us to define and prove the property of these objects in the clear and technically lucid
manner. The main value is that the differential d is then defined by one simple
formula.

We begin with defining some auxiliary objects E,f,ct 0.

1.2. Without any difficulties we can show that, for each point xeM, there exists

exactly one homomorphism

- ¥
k :Wg —— A4

X

- - £ 3 X
of algebras of degree 0 such that Kk (1)=1, Kk (v ®1)=w¢(w) and

- »#
K (1ew)=(dw) (w) when w*eg' . k is directly defined by the formula
x X X X

k (b of ) =w’x\(wx) A (dw)\:(l"x)
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k3 -
for ¢ e/\g* and ' €eVg . The homomorphisms k , xeM, thanks to this formula, give
x 1 x x | x x

rise to the homomorphism
IE:Wg————)QA(M)

of algebras of degree 0 defined ©point by point: k(Ve I')x = Ex (‘I/X ® I"x ),
»* X
Ve k390$ec/\kg , Te 1Q%OSechg . It has the property

K(¥oT)=w" (¥) A (dw)¥ (T) (1)

for ¥ and I' as above.

Lemma 1.3. For each point xe€eM and for v egl , there exists exactly one
X X

antiderivation i :Wg’ ~~———;~Wg| of degree -1 such that
x,v x x

- x *

(1) i (w ®1)=<w ,v >, X
xX,v, x
- * * * »#

(2) i (1ew )=-(w cad )e®l, w €g .
X,V v I x

It has the properties

. re 070_
(1) 1X,Vx|(WQ'x) =0,
say T * * * * A *
(ii) i (lew v...vw )=-Y w cad @w_vVv...1T...vw_, 11,
X,V 1 1 i i v 1 1
- - X*
(iii) i (¥ o V=i (¥ )el +(-1D*v ®1-1 (1el ) when ] e/\kg
xX,v, «x x v, x x x X,V x X 1 x
>
and I‘erglx,
. < k,21 k-1,21 k+1,2(1-1)
(iv) 1X’VX[(W9'X) lc(wg, ) o (Wg, ) .
Proof. Uniqueness. The uniqueness of i is evident because every antiderivation
X,V

.4
is uniquely determined by the values on generators. Properties (i) + (iv) of each

antiderivation i fulfilling (1) and (2) above are evident.
X,v,
Existence. First step. For l1>1, there exists exactly one linear mapping

7! v * * oyl *
v ) gIx gIx glx
1 * * »* * A *
such that 1 (w v...vw_ )=Yw cad @®w_v...1...vw . It has the property
x,v 01 1 O S | 1

" (. vr_)=i" (r )1el +1el I (I )
2 X ¥ 1x 2x 1x X,V 2x

for T. eV"g. and I eVg
or lxE 9Ix an 2xE glx'

Second step. For k>0 and 15> 1, there exists exactly one linear mapping
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)k+1,2(1—1)

I x

such that fk’ZI(\I/ oTC )=i (¥ )o@l +(-1)*v ®1-3° (r) when ¥ eAkg* and
X X v X X X

v
Vg X X,V X x I x

r eVg
xE glx'
Third step. Accept, additionally,

i° =0 anda *° : (Wg

)k,O
x,v, X,V

—>(W9 )kul’o, VvV 1 +—>1 ¥ @1, for k1.
I x I x X v X

X x

All the linear mappings fk’m, k, 150, together define the operator
X,V
ry _ tk,21
Ix,v— Z lx,v 'wglx wglx'
k,1>0 x
Of course, i satisfies (1) and (2).
XV -
It remains to show that i is an antiderivation of degree -1, 1i.e. that
- - oV x
i (8 -8 )=1 ()-8 +(-1)'® -] () for © e(Wg )", © eWg , which Iis
x 1 2 X,V 1 2 1 X,V 2 1 I x 2 | x

v
'V x y x

easy to obtain by considering elements ® homogeneous with respect to the bigradation
1

only. a

For a cross-section veSecg and for 8eWg, the formula
M>x+—> 1 (e )

defines an element i (8) of Wg and
v

i Wg——Wg, 0 »—>IV(®),
v

is an antiderivation of degree -1. The smoothness of i (@), according to properties
v
(i) + (1ii) from lLemma 1.3, follows from the smoothness in the cases @8=¥®1 where
* -
\IJeSec/\kg*, and ©=1@I" where I'eSecg , which is easy to investigate. 1'V has the

property
i (Wer)=i ¥l + (-1)ve1-1 (1eT) (2)
v v v

kK ¥ 1 ¥
for YeSecA'g and I'eSecV g .

Lemma 1.4. For each point xeM, there exists exactly one antiderivation

d :ng ——-9[4/9' of degree +1 such that
X X X

- * *
(1) d (w o1)=10w ,
X
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- * ¥  x
(2) d (1ew )=0, w eg

I x

It has the properties

. 3 0,0 _
(l) dxl(w9|x) _O:
- * * i+l ¥ ~ * *
(i1) d (w_ A...Aaw @1)=Y (-1) "w A...i...Aw ®Ww_, k>1,
X1 k : 1 ki
- - * E
(1ii) d (¥ o )=d (¥ ®1)-1eTl when ¥ eAg and r eVg ; in
x X x x x x x I x x I x
particular, d (1eT ) =0,
X X
. - k, 21 k-1,2(1+1)
(iv) cfx[(ngx) ]c(ngx) S
(v} d is a differential, i.e. d od =0.
X X X
Proof. The uniqueness of d and properties (i) + (v) are evident.
p. 4
Existence. First step. For k» 1, there exists exactly one 1linear mapping
~k ,k_¥ k-1 * *
dx./\ g|x~—~—>(/\ glx)®g'x such that
~ ¥ E ~ *
a“w A .Aw )=Z(-l)“1w*l\...i...Aw*®w .
x 1 koo 1 k i
It has the property A"y Av )=(d"Y )¥ 81+ (-1)"V e1-3d"V when
x 1x 2x x 1ix 2x 1x x 2x

v eAg and ¥ eAg
1)(e g|xan 2)(E glx'

Second step. For k»>1 and 1>1, there exists exactly one linear mapping

a?(wg )0 —5(wg )Y sueh that  d%'(w er )=(d*¢ )-1er for
x I x | x X x x X x x
Kk _* 1 ¥
\I/xeA g,. and I"er g, .
. ~0,0 = <k, 21 3
Third step. Add d’" =0 and put d =} d :ng ————>ng . Of course, d
X X X X X

k,120
satisfies (1) and (2). It remains to show that d is an antiderivation of degree +1
X

which 1is easy to obtain by considering elements homogeneous with respect to the

bigradation. =

All homomorphisms d , xe€M, define point by point a homomorphism
X
d:Wg—Wg
being an antiderivation of degree +1 and a differential. It has the property

- - ¥ *
d(¥el)=d(¥e1)-1el, ¥eSecA'g , TeSecV'g . (3)
Lemma 1.5. For each point xe€M and for v €g, > there exists exactly one
X X
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derivation 6 :WgI »-——)Wg' of degree 0 such that
X X X

v
[ ¢

- E £
(1) o (w ®1)=-w cad o1,
X,V v

'V x X

(2) 6_ (1®w*)=l®(—w*oadv )

*Tx x

It has the property
. = A \% * *
(i) o (Y o' )=(8'V )ol + ¥ e(0T) when V¥ eAg and T eVg ,
X ,v X X x X X X X X x I x x I x

L 4
A * E 3
where Bx and ev denote the only derivations in the algebras /\gI and T eVgI ,
X v * X X X

X
respectively, induced by - ad g, TG, -

v X X
X

Proof. The wuniqueness and property (i) are evident. Formula (i) gives the

sought-for operator. -
For veSecg and ®€Wg, the formula M3x —>6 (® ) defines an element
X,V x
of Wg and i

o :Wg——Wg, ©+—>6 (8),
v v
is a derivation of degree O.

The adjoint representation adA:A“—wsA(g), according to 2.1.3 and 2.2.1 from
[17], determines a representation of A on each associated vector bundle such as Akg,

X *
V'g, A*g ®V'g , etc. It will be denoted - for brevity - by ad.

Lemma 1.6. (1). The linear operator

adog:Wg——-)Wg,

£eSec A, is a differentiation of the Weil algebra Wgqg.
(2). 2 =0 for veSecg.
adov v

Proof. Trivial calculations on simple tensors. [

The relationships between the operators i , d, , ¥ dog are the following:
v v a

Dy

d=dof

1.7.(1) £3d0£0 adOS’
(2) 1 od + doi =6 .
1 %4 1% v
Indeed, & :=¢ od~do¥ is an antiderivation, whereas €& :=] od+dol 1is a
1 ado§ ado§ 2 v v

derivation, of the Weil algebra Wg, therefore to prove (1) and (2) it is sufficient to
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- L3
show that 81=O and 8’2:9 on the cross-sections ¥®1 and 1®¥, V¥eSecg , which
v

is trivial.

S P
Proposition 1.8. For ®eSecA'g ¢V g ,

d'k(®) =kd(@) +

f £d%0, (wA...Aw) e (dPwv...vdlw)>.

k!-1!

Lemma 1.8.1. (1) For \I/ESec/\kg*,

kd(¥o1) =§,—-<\1:,d9(w/\. AW,

x*
(2) For \I/eSec/\kg and FeSechg*,
B ¥er),wa...rvedowv...vdlew)

=A%, 0A. . ADAKE, A%V, . vdTed+ (1)K, AL Aw> AT, %0y, .. v dow.

Proof. (1): Thanks to the linearity of both sides with respect to ¥, it is

sufficient to show this on the simple tensor ¥ of the form ‘It=¢ll/\.../\|/1k where

k.3
wieSecg .
l_(&(wl/\. Ay ®1) =R(§(“1)1+1¢1A. ..;.../\lllk®l/li)

- (—1)’*1wA(¢1A. Ay ) A (dw)v(\lli).

On the other hand, for xeM and v eAI (by I1.1.3 and II.2.2 above),
1 X

1 9 .
s <\111A. . .Alllk,d (wA...A w))(x,vl/\.../\vk+1)

i+l

=1’1(T'<‘/’1""""1’k’§(_“

WA AADID AL A WDV AL AV )
AL 1 k+1
i-1 times

1 .
(k-1)¢

9 i
<x[11/\.../\|//k,d WAW A...A w)(x,v1 Ao AV )

k+1
k-1 times
1 q
=— Yy 5gno < AL A ,dTwlx;v AV Awlx;v N 10 48 % >
2° (k-1)! E g ll’u wkx ( o(1) o~(2)) (x; 0'(3)) ( 0‘(k+1))
9 g
< ,dwlx;v AV > < d wlx;v AV >
'l'u ( o(1) o(z)) wkx’ (x; o(1) o-(z))
1
=z ) sgNno- < w{x;v > < w(ix;v >
2 (k-1)! E g wlx’ ( 0(3)) wkx’ (x; 0(3))
i |
< ,wlx;v > < wlx;v >
wu ( G‘(k+1)) l/jkx’ (x; 0‘(k+1))
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AV )-
c(1) To@)

= Y sgno- (-1 (dw) ¥« ) (x;
2+ (k-1)! § %: wi v

. A Lo A Y oA, AD(X Y A...AV
<l/l1 wk >(x; o (3) O‘(k+1))

S R | v A - ]
—}l:( 1) " (dw) (wi)/\w (1,111/\...1...Awk)(x,v1/\.../\vk+l)

- ( i+1 A

L DM@ AT A ) A ) ) G A Ay )
i

k+1

(2): For xeM and ViEA| , we have
X

d¥¥eTr),wa...Awedlov...vdlwd(x;v A...AV )
1 k+21+1

=<d®Velr+vedir,uAa...rveduv.. . vd®w(x;v A...Av
1 k+21+1

. g ]
- . . < . .
kt-(21)! Esgna d \I/(X’Vo(l))®rx+\px®d I-‘(X’Vo'(l))'

(WA...AW) (x;V A )e (dwv. . vdle) (x; .. AV )>
o (2) o (k+21+41)

1

=~—————--}:sgno~<dg\1’(x;vo ), (W A...A uo)(x;v(T A
o

Lo AV >
k! - (21! (1) (2) 0’(k+1))

<, (dwv...vdiw)(x;v A AV )>
x o (k+2) o (k+21+1)

1
Y sgnoe-<¥ ,(wA...Aw)(x;Vv A...AV
k! (21)! E g x ( ) o (2) o(k+1))

~<dT (x5 v ),<C , (dPwv...vdiw) (x:v A AV }>
o (1) X o (k+2) o (k+21+1)

=(Kd%,wA. . ADNKT,d%ov. . vdTwd +

+ (~1)k<\ll,w/\. CoAIAET, dPwv. . .vdgw)) (x;v1 A.. .Avk+2l+1). o

*
Proof of Prop.1.8. It is sufficient to consider @=¥el for ‘I/eSecAkg and

FeSechg*. According to (1), Th.II.1.3, 1I1.2.2, 11.2.13, the lemma above and (3),
Ak (Yo ¥) =d? (0 A (dw)'T)
=dA(11(—'-<\I/,w/\...Aw))A(dw)VF)+(—1)kwA\IfAdA(ll—'-(I‘,dng...vdgw>)

=[¢d%T,0A. . AW>+ T, A% (WA, . AW)D]A (dw) T+

+ (—1)k-kf_ll-<\1/,w/\. LAWY AT, d%0v. . .vdiuwy
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= kd(¥®1)Ak(1eT) + J<¢d® ¥, 0A. . AdAT,d%wv. . vdiw) +

1
!

kt-1!

+ (-D5 VoA, Aw> AT, %0y, .. vdiwd]

A2 (o), wA...Aweduv.. . vd®w>. =

=kd(Vel) +

k!-1!

Let (wg)t’ZI denote the space of cross-sections invariant with respect to the

(o]

"adjoint" representation of A on (WQ)k’z!( =Akg*69V1g*). Put

k, 21

(Wg) I° =k,?>o(wg)1°

(wg)°;° is equal to Q°(M,¥), of course.
1 b

The following follows easily from 1.6.(1).
1.9. (W‘g)l° is a subalgebra of the Weil algebra Wg. =

1.7.1 implies

1.10. d maps Iinvariant elements of Wg into Iinvariant ones, defining an

antiderivation of algebras

c-i_o:(Wg)I0 —_— (WQ),O )

Whereas 1.8 and 11.1.7 yield

1.11. k restricted to the invariant cross-sections
kO: (Wg) o T QA(M)

commutes with the differentials d and dA, giving - on cohomologies - a homomorphism
o

k ,H((Wg) o.d ) — H (1)
of algebras. m

However, k _ is unimportant because the space H((Wg)lo,& ) is trivial:
o]

0,0

H((Wg) ,.d ) = (Wg)(;o (=(wg),:" =0, (01, 9)).

o

This follows from the fact that some chain homotopy joining id to 0 is defined by the

family of invariant linear homomorphisms of vector bundles

94



and
* + -
c :Akg ® Vlg* —— /\k 19* ® Vl 19*, 1 >0,

* (-1) 1 %* A
A I I -y oW A-.Aw AT ®F v...s...vl
- S

1

B) The change of variables in Vg,
x

Proposition 1.12. There exists exactly one isomorphism

¢ :Wg

X I x wgIx

of algebras of degree 0 such that

(1) gox(l)=1,
* *
(2) (px(w ®l)=w ®1,

ki »# X x* x
(3) gox(1®w J=18w —6Xw ®1, w €g,

*
where 8 denotes the differential in the algebra /\gI , defined in 11.2.6.
x X

Proof. The uniqueness is evident. To prove the existence, take two linear mappings

~ ~ *
o , @ :VgI ——-—9ng satisfying the conditions
X X X

(1) p_,(1)=1,

*

+
(1®F1X-6X(le)®1), r eg , 1>1.

i=1 ix I x

(2) goxt(l“lxv. . .vl“l 3=

Such mappings exist and are exactly the only ones. They are homomorphisms of

*
algebras of degree O [the degree I' =2 for I €g, ] and fulfil
X X X

1 2(1-m) * m X
x] “ m;BO(A glx®v glx).

Clearly, there exist two linear mappings ¢x+,wx_:ngx————>ngx such that

¥ * T eVg
+(rx)’ XEAng’ xE glx.

x X

(4i)¢ui(wxgrx)=wx®1-¢

They are of degree 0, are homomorphisms of algebras (which can be easy to prove by

considering tensors bihomogeneous only), and fulfil the property
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(3.) (lew )=leow *5w o1, w g
oo lew)=lew t5w el, w eg .

To end the proof, put ¢ :=¢ . To see that ¢ 1s an isomorphism, we check the
X P G x

equalities ¢ °p  =id, ¢ cp =id. Both sides of these are homomorphisms of
X~ X X X-

algebras, therefore it is sufficient to notice them on the generators, which is

trivial. ]

All the isomorphisms ¢ , xe€M, establish an isomorphism of algebras
X
p:Wg—— Wgqg,

p(@)(x)=¢ (B ), xeM. By the proof above,
X X
0 (¥®1)=V¥el and ¢ (10¥)=1e¥+¥s1
hold for \IfeSecg*.

Besides, ¢ establish linear homomorphisms of vector bundles
p.4 .

o':Ag oV'g" S Ag e Vg,

k,21 ,k ¥ .1 ¥ 1 k+2(1-m) ¥ m_*
¢ 'Ag ®Vg — mG:BO(A Ix®vglx)'
The following equality holds
%o (vor) =ve1-(¢>% o (16T)), veSecA'g’, TeSecV'g . (4)
Proposition 1.13. gok’ZI is an invariant homomorphism.
Proof. It is needed (see II.Ch.1) to prove only that
k,21 _ k21
adog(q) 0)=¢ °$adog@ (5)
for £eSecA and @GSec/\kg*®Vlg*. As usual, it is sufficient to consider
Ed
®=w1A...A¢tk®F1v...v1"I, wi, FJESecg . By (4) and 1.6(1),
k, 21
waog (P77 W A A BT Vo VT
0,21
-jeados(wl/\.../\wk@l (p (1®l"1v...vr‘l)))
- (o2,
—ﬁeadog(wll\.../\wk@l) (¢ (1®I‘1v...vr‘l))+
0’2 . .
+w1/\.._,«wk®1-.€£ad°€(q) o(1el )-... 1®I‘1))
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_ . 0,210
_zl:wlA...Aﬁados(wi)/\.../\wk@l @ (1®I‘1v...vrl)+

0,2 0,2 . L0202,
Y AL A @1 §¢ (1®r1) $ad°€((p (1®ri)) Y7 (1eT ).

On the other hand,

k, 21 ‘
P °$adog(w1/\'"Awk®r1v"‘vr1)

k,21°(

"(eadog(w1/\"'Awk)®r1v"'Vr1+w1/\'"Awk®$adog(r1v"'vr1))

k, 21
=g (zijupl/\...A.@ados(wl)/\...Au/;k®r1v...vrl+

+u/;1/\.../\¢/k®}i: r1v"'V$adog(r1)V"'vr1)

- 02l
—‘ILWIA...Afados(wi)/\.../\wk®l ¢ (1®I“lv...vrl)+

0,2 . R . . 0,2
+w1A...Awk®1 Ei:go °(1®r1) ) (1®$ad°€(l“i)) R o(l@l‘l).

What lacks here to prove the veracity of (5) is the equality

0,2 - 0,2o X .
fadog(‘o (1eT)) =¢ (1®$ad°€1‘) for TeSecg . (6)

However,

0,2 _
(¢ °(1®I"))—1®.?Zad

r-2 (T e 1,
ado& adog

°§

whereas

0,2 _ _
") (1®2ad°$r)_1®£ado r 6(zad°€r)®1,

3

therefore (6) follows from the following lemma. =

Lemma 1.14. 2 (ar)y=a(2 ry for FeSecg*.
adog ad

°f

Proof. For V1’ vzeSecg and the Jacobi identity,

= o >~ >-< >
<£ad°€(ér) ’V1sz> (¥ E)<6I‘,v1/\v2 <61‘,l[€,v1]]/\v2 sr‘,leI[Ej,vzll

= (7°€)<I‘,l[v1,v2]]> - <I‘,l[|[§,v1]],v2]l> - <I‘,I[v1,l[&j,v2]]]l>

= (W°€)<F,I[V1,v2]]> - <F,|I€,([v1,v2]l = <.5£ad l",[[vl,vz]b

°g

=<5(¥ T),v Av >. =
ado 1 2

3
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Corollaries 1.15. (1). ¢3:Ag*®Vlg{——eAg*®VJg* is an invariant isomorphism of
vector bundles, therefore («pl)"1 is invariant, too.

(2). ¢(®) is an invariant element of Wg whenever ®eWg is invariant.

(3). wo:(Wg)Io — (wg)lo, the restriction of ¢ to invariant cross-sections, is

an isomorphism of algebras.

C). Operators i , d, 8 and their properties
v v

We define the fundamental operators i , d, 8 in Wg in such a way that the
v v

following three diagrams commute
Wg ——— Wg
i,d,e l i
v v
w 4
g — ¥g

Of course, one can execute this procedure on each level of xe€M to obtain the

operators i ,d, 8 on Wg , with the relations i (® )=1i (®)(x), etc.
x X,V I x X, x v

Yy x *T x x
Proposition 1.16. The fundamental properties of the operators i , d, BV are as
v
follows:
(1) 8 =96 ,
v v
(2} fead°€0d=d0.‘ead°$ R
(3) I od+doi =96
v v v

Proof. (1): GV and év are derivations, therefore it is sufficient to show the

- *
equality Gv(@) =0 (®) for the cross-sections 8=¥®1 and 8=19¥, ¥eSecg :
v

6(W®1)=¢do§0¢W®1)=5VW)®1=5(W@lL
v v v v

o (1e¥) =¢'loévo¢(1®\p)=q)'1oév(1 eV-5¥®1)
=o' (160 ¥-0"(5¥)01)=1060"v+5(0 ¥)ol-0"(s¥)o1)
v v v v v
=1®evw=é(1®W)
v v

by [9; p.175 (5.3)].

(2): Evident because £ dot commutes with ¢, ¢_1 and d.
ado
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. -1 s s -1 == -1 I
3): od+do] = i odo odoj o= ol I o oj °
(3) i ed+dei =¢ °of edop+g “edoi cp=¢ (1V d+d 1V) )

=¢_1oe— o@:Q . ]
v v

Proposition 1.17. (1). i is an antiderivation of degree -1 defined uniquely by

v
the conditions

(1°) i (Wel)=i V¥,
v v

(2°) i (18¥)=0, ¥eSecy .
v

It has the property

(i) iv(\Il®F)=1'v(\I/)®I' for \I/eSec/\kg*, I‘eSechg*.

(2). d is an antiderivation of degree +1 defined uniquely by the conditions

(1°) d(¥e1)=10V+5¥e1,

(2°) d(1eV¥) is an element of (Wg)1’2 (=Secg*®g) such that

i od(l@\I/)=9v\I/ for veSecgy.
v
Proof. {1) and (2) follow from 1.16(3). The rest is trivial. n

The families of operators i , d, @ , indexed by xeM, give rise,
X,V X X,V

k, 1> 0, the linear homomorphisms of vector bundles

j:,ZI:Akg* ®Vlg* Ak—lg* ®Vlg*,
¥ * * »
e:,zlekg Qg’\/19 N Akg ®Vlg ,
dll:,ZI:Akg*®Vlg* Ak+lg*®vlg* o Ak—19*®vl+1g*.

1.16(2) implies

1.18. d maps invariant elements of Wg 1into invariant ones, defining
antiderivation

do:(Wg)Io ——— (Wg)lo.

¢ :(Wg) . —(Wg)

; o commuting with d and d gives an isomorphism
(o] o (o]

0, H((Wg) o0d ) — H((Wg) .d,),
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therefore H((Wg)lo,d ) is trivial according to 1.12.
o

1.19. The cross-sections @eWg, for which 1"’@:0 for each veSecg, are called
horizontal (or more precisely, g—horizontal). Since iv is an antiderivation, all
horizontal cross-sections form a subalgebra of Wg denoted by (Wg)i. This construction
can be executed on each level of xeM to obtain the algebra (ngx) . Of course,

.
1

@E(Wg)i & @xe(ngx)i for each xeM.

_ 130 0,21 . 130 N . - *
Lemma 1.19.1. (Wg)j~ & (Wg) (2 &SecVg ); equivalently, (ngx)i ReVg
for each xeM. In consequence, each nontrivial homogeneous element of (Wg)i has an

even degree.

JSS i ¥ IRV .
Proof. Let ¢ );wx ol e (ng X) ;o Y eAg, ~ and T eVg ; the linear
independence of I’ can be assumed [7;p.7]. Since 0=i (y )=Yi (l/lJ yer?,
x X, v, X 7 ox,v, x x
therefore [7;p.7}, i (W')=0 for each v eg . But [\ Keri =R
xX,v, x x | x v eg X,V
x | x

j

[7: p.117], then we obtain ¥’ =r)eR c /\gT . m
X X

1.6.2, 1.16(1)-(3) yield

1.20. d maps invariant and (simultaneously) horizontal elements of Wg into such

elements, defining the antiderivation

).

1,

d. :(Wg

i,o 1° (ngx)i,1°'

I x

D) The mapping k

Put
k=f(oq):ng—)QA(M).

It is a homomorphism of algebras.

1.21. ko:(Wg)I° —_ QA(M), the restriction of k to the invariant cross-sections

commutes with the differentials d and dA.
L]

Proof. For @e(Wg)Io we have, by 1.15(2),
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d‘oko(e) =d‘oioo¢(@) =kedop(®) =kopod(®) =k od (8). m
Proposition 1.22. k(¥e¥)=u"(¥) AQ'(I) for \Pek§05ec/\kg*, I‘eléosecvlg*.

Proof. k(Ve¥)=k(Vel-1el) =k(¥el)Ak(lel) =w"(¥) Ak(18T). It
remains to verify that k(1) =Q"(I'). But the mappings TI'+——k(1eI') and
r k—~>QV(F). are homomorphisms of algebras such that 11, therefore it |is

sufficient to check the equality for F=ﬂ¥eSecg*. 1.6 yields

k(l1e¥)=kop(l1e¥)=k(10¥-5¥e1)
= (dw)’ (1) -0 (69) =¥, d%> -0 (89) =" (¥). =

1.23. ivok=koiv for veSecgq.

Proof. By the horizontality of the form from ImQv [which easily follows from the
horizontality of Q], the property Th.II1.1.3(vi’) of the substitution operator
i:0 (M)——Q (M), Lemma I11.2.3 and 1.17(1)(i) above, we get, for ¥eSecA’g’ and
I“EI%OSechg*,

iok(¥o¥) =i (" (1A' (M) =i W@ A"+ -1 (W A1 @)

=™ (1 (1) AR (M) =k(i (V) eT) = k(i (¥oI)).
Our proposition now follows from the linearity of k and iV. [ ]

Remark 1.24 (The Chern-Weil homomorphism of A, revisited). A consequence of 1.22
is that k maps horizontal elements of Wg into horizontal real forms on A, giving a

homomorphism of algebras

ki:(lVg)i — QA ().

y i
This mapping is defined by the formula

k. (1er)=0"(T), Te 13%secv'g”.
Consider the further restriction of k,

k (Wg)lo’_ —Q (M

i A,

o, 1

where (W’g)lo , denotes the algebra of elements horizontal and invariant simultaneously.

We prove that

101



dl(Wg)Ic .=0. (7)

s 1

Let 0=#0e(Wg) ., .. By 1.20, dee(Wg) . .

1.19.1), whereas d is an antiderivation of degree +1, therefore d® has an odd degree.

But ©® has an even degree (see

Using 1.19.1 once again, we assert that d8=0.
According to 1.21 and (7), the forms from Imk _ are d?-closed. Take into account
o, 1

the isomorphism A*:QA i(M)———aQE(M) 1I.s.2. It maps d?-closed forms into df-closed

’

forms, see 1I.(5). By the above, there exists a homomorphism of algebras

lgao(Secvlg%)lo —  H_(M) . (8)

r — @'m]
However,

1

v 1 1
A, (Q (F))=A*(TT-(F,QV...vQ))=ETJ<F,A*QV...VA*Q)=1!

u(F,va...va>,
therefore [h*(QV(F))]=[%T'<F,va...va>]=hA(F) according to [17;Ch.4], which
means that (8) is the Chern-Weil homomorphism of the regular Lie algebroid A.

2. REGULAR LIE ALGEBROIDS AND IDEALS

Take two vector bundles F’ and F on a (paracompact, for recalling) manifold M,

such that F’ cF, and define (see [18;s.1.1]), for p=1,

c AF.

I is a vector subbundle of AF and the space of global cross-sections Sec(I )

N APF’
)=(SecIr,) , k>»1.

ket
sgt; up an ideal in the algebra Sec(AF); besides, Sec(IAkF,

Let E’ cEcTM be two C~ constant dimensional distributions on M, and suppose E
to be integrable. Denote by E’* the vector subbundle of E* consisting of all covectors
vanishing on E’. Using the above (for F=E*, F'=E'*, 1)=1), we obtain an ideal I in
the algebra QE(M) (=SecAE*) of tangential differential forms, generated by 1-forms

vanishing on E’. Standard calculations give the following
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2.1 (The Frobenius Theorem for subdistributions). E’ is involutive if and only if

the ideal I is differential, i.e. d"[I1cI. m

Consider a regular Lie algebroid (A4,[-,-1,7) over a foliated manifold (M,E) and an
involutive subdistribution E’cE. This produces a new regular Lie algebroid

(A", [-,-1,7[{4’) in which A’ =y ‘[E’].

In the sequel, the symbols A’* and E’* are understood with respect to the

* E
canonical dualities A xA——R and E xE—~—R (see [18]). Consider the ideal
- *
Sec(l y( 4r1,) €@ (M) (=SecAd™)

being the k-power of the ideal of real forms on the Lie algebroid A4, vanishing on A’.
*
Since YeSecA’t if and only if ¥=y @ for some 6e€SecE’*, we obtain that each form

‘I/ESeC(IAk(A,l)) is globally of the form

Y=

*
7 (0 A. .. A" AT
i i i i

1

H

for an integer 1, efeSec(E’*) and \I/ieQA(M). This fact, 2.1, and the equalities

E

dAgr,:',r,,d (11.(5)), igzr,:zr,,i , 927*=7*6 ¢ for £eSecA’, make the following
"O

v°g§
proposition obvious

2.2. The ideal SeC(I,\k(Au)) is closed with respect to the operators dA, iE’ 65
for €e€SecA’. =

* Ed *
The monomorphy of Ay :AE ——>AA , the equality

i (7%0) =yxi a
wlA"'Awh—k+1 7w1/\.../\7wh_k+1

for 6€Q (M) and w eSecd, and theorem 1.1.1 from [18] (see also [1]) imply

2.3. eeSec(IAk(E,L))@y,eeSec(I ). ]

Ak(a’)
Recall that [18; 1.2.1] by a partial connection in A over E’we mean any connection
A .E' — 5A’ in the regular Lie algebroid A’ =y '[E'].
If A’ is flat, then the pair (4,A') is called a partially flat regular Lie

algebroid. Any foliated principal bundle [10,p.20], gives in a natural manner, a
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partially flat regular Lie algebroid.
A connection A:E——A in A is said to be adapted to A’ when A’ =A|E’ (an

adapted connection always exists).

Assume that A is equipped with a connection A and a partial connection A’ over E’.
Let Q and Q' (Qb and Q;) be the curvature forms (the curvature tensors) of these
connections [see 1II.Sec.2 and [17;3.1.1]]. According to the equality Q=7.Q, ,
Prop.1.2.3 from [ 18] and 2.3 above, we assert

2.4. If A is adapted to A’, then

P s . * (2)

< >

(a) X' is flat if and only if <v Q. EIAI(A:J_)
X

(2)

A2ca’h)
| x

for any xeM and V*eg’l‘ ,
X

(b) A is basic if and only if <V",QI >el for any x€M and V*eg’;x .
X

Pass to the Weil algebras ngx and Wg. ngx has a standard even decreasing

filtration by ideals

2p L X >p ¥
F (ngx)'_IR®VPgT (_Aglx®v glx)'

These, for all xeM, define an even decreasing filtration by ideals of the Weil

algebra Wg

FZP(Wg):={@ e Wg; V¥x € M, @XGFZP(WQIX)}

='3’sec (g o V'g).

* »*
The algebras /\Alx and /\E'x possess decreasing filtrations by ideals

p * L p *
F(AAIX)_IAP(A"L), F(AE“{)—I

APCE? )
I x I x

which determine decreasing filtrations by ideals of the algebras QA(M) and QE(M)
P P £
F{Q (M) = {\I/ € Q (M);¥xeM, ¥ e F (A )}
A A x I x

= Sec IAP(A'J')

Fp(QE(M))={9 € Q_(M); vxeH, exer(/\ETx)}

=SecIAp( L)

Proposition 2.5. Let (A,A') be a partially flat regular Lie algebroid and A an

adapted connection. Then the homomorphism k:Wg[———)QA(M) (defined for A) is
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filtration-preserving in the sense that
2p P
k[F (Wg)]cQA(M), p> 0.
Moreover, if A is basic, then
k[FZp(Wg)]cij(M), p> 0.

Proof. Of course, it is sufficient to verify that k :Wg' —————-)/\AT preserves the
X X X

filtrations. Since I =(I )P, therefore 1-'2p(lclglx)=(l“z(Wg| ))P. On the
2.4

R®g*

R®Vpg*
| x I x

other hand, kx is a homomorphism of algebras, thus we need only to check that
2 1 *
(a) kx[F (Wg'x)]cF (/\Alx),
whereas, in the case of a basic connection, that
2 2 *
(b) kX[F (WgIX)]CF (/\A'x).

; .
Fz(Wg ), F (A ) and FZ(AA*) are ideals and Fz(Wg ) equals I « , so it
I x 1 x I x I x R ®

gIx

suffices to check that

(a’) k (1ow )el'? Yeg
a (lew )e Al(A;J‘)’ woeg
¢
. . al (2) * *
(b’) for a basic connection A, that k (lew )el ,° ,, , w €g .
x A (AI ) I x

However, k (1 oz>w*)=<w*,Q| >, thereby (a’) and (b’) follow from 2.4(a)~(b). n
X 4

Corollary 2.6. Let the situation be as in the previous proposition. If
q=rankE[/E’ [i.e. q equals the codimension of ¥’ with respect to ¥; ¥’ and ¥ being
the foliations determined by E and E’, respectively], then

k[sz(Wg)]=O for p»>qg+l.
If A iIs, in addition, basic, then
kK[F’(Wg)]=0 for p>[q/2]+1.

Proof. Clearly, q=rankA/A’=dim(A;*) for each xeM, which gives AP(A;)*()=O
D4

for p»>qg+l and, in consequence, FP(Q(A))=0 for p>q+l; then 2.5 implies
k[ FZP(Wg)] =0 for such a p. Under the additional assumption concerning A,
k[FZP(Wg)]=O for 2p>q+l, i.e. for p>[g/2]+1. =

*
The filtration of Wg in the intersection with the subalgebra 1éc)S’ec(Vlg )I°'
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gives a filtration of this last:

FP('8%ec(V'g") o) += ('8%secv'gh) ) nF¥(Wg)

¥
'8Psec (Vg ) o

Notice also, see 2.3, that the isomorphism y*:QE(M)-n—9QA (M) préserves the
1

»

filtrations. As a corollary we obtain the so-called "Vanishing Bott’s Phenomenon" [18]
because, keeping the assumptions from the previous corollary, we have that the
homomorphism of algebras

A*
>0 (M) — QE(M),

A,

i,o0

3% (secv'g) . -

and further, passing to the cohomology, the Chern-Weil homomorphism [17]
¥
hA:léo(Secvlg ),o e HE(M)

of the Lie algebroid A preserve the filtrations and, then, Pont’(4)=0 for

p>2-(gq+1), whereas if A’ extends to a basic connection, then PontP(A)=0 for

p»> q+l.

3. THE TRUNCATED WEIL ALGEBRA

Definition 3.1. By the symmetric truncated algebra over a vector space g we shall
E
mean the space V‘lg with the canonical even gradation, and with the structure of an

(anti)commutative graded algebra such that

X

k4 * >
. » x . u v...vukvvlv...vvS when k+s < 1,
(u v...vu )-(v v...vv } =
1 k 1 s

0 when k+s > 1.
*
This algebra can be constructed isomorphically as a quotient algebra (Vg )/IV>13* of

Ed
the symmetric algebra Vg by the ideal generated by V“dg*. The mapping
» » k3 *
V‘lg — (Vg )/IV>13*’ w —[w |,

establishes the canonical 1isomorphism of algebras. The canonical projection

* ”
nl:Vg ————9V<lg is, of course, a homomorphism of algebras.
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Denote by
* <] *
(Wgn:=Ag oV g

the anticommutative graded tensor product of the anticommutative graded algebras. It is
called the truncated Weil algebra of the vector space g.

Return to the consideration of a regular Lie algebroid A over (M,E), with the

Atiyah sequence 0O >g ¢ A—L5E 0. Notice that for each xeM,
- 2(1+1)
(ngx)lw-(ngx)/F (ngx)
(Bx F~—%[9x] establishes the canonical isomorphism) and, by the relation
dx[(ngx)k’zs]cz(ngx)k+1’zse>(ngx)k*lﬂﬂs+1), d defines a new differential

[d ] :(Wwg ) —— g I . Writing — d_=d’ +d’’ where a'[Wwo>1cw?®  and
x 1 Ix 1 Ix 1 X x x x

d”[wk‘zs]cwk—l’2(5+1)’ we assert that
X

d (p o' ) when T’ EV<19T ,
R S
X o d’ (¢ ® ) whem I' eV'g .
X x X x I x
Put

* <1 ¥
(Wg)l:= Ag eV g and (Wg)]w=Sec(Wg)f

of course,

2(1+1)

(Wg)IE(Wg)/F (Wg)

(8 ——[8] establishes the canonical isomorphisnm).

(Wg)l will be called the truncated Weil algebra of the vector bundle g.
The family [d ]1, x€M, determines an endomorphism [d]l:(Wg)1—~~~>(Wg)l and,
x
denoted by the same letter, a differential

[d]1:(wg)1'__é(Wg)f

For s<1, the projection (Wg)l—m—-a(Wg)S is a homomorphism of algebras commuting with
the differentials [d]l and [d]s.

Take the canonical adjoint representation ad of A on (W'g)1 and denote by (Wg)l,l°
the space (de facto, the subalgebra of (wg)l) of invariant cross-sections.

(Wg)l o 1s stable under the operator [d]l. Indeed, let @ be a bihomogeneous

element of (Wg) .. Then d® is invariant, in particular, d’® is invariant; [d]le,

107



being equal to dB or d’®, is invariant, too.
Let A be any connection in A and let k:Wg——Q(A) be the homomorphism of
algebras determined by A.

2D (wg)]=0. Then

Proposition 3.2. Assume that k[F
(1) there exists a homomorphism of algebras [k]l:(Wg)l——>QA(M) such that the

following diagram

[k],

(Wg) —— > Q (M)

Tl/[ k
Wg
commutes (n being the canonical pro\jection),
(2) [k]l is equal to the restriction kl(Wg)],

(3) [k]1 restricted to the invariant cross-sections (Wg)1 o commutes with the

differentials [d]l and dA, defining a homomorphism of algebras

[k]m:H( (Wg)I’ [0 ’[d]l) —~->HA(M).

k ¥ 1 ¥

The class [k]l#[@] for Pe (Sech'g oV'g ) o s=<1, has the form
kf—;-(@,g) A..AWBQ V...V O as its representative.
8 k times s times

Proof. (1) and (2) are evident.

(3): Let ®@e(Wg) (C(Wg)lo). By 1.21,

d‘o[k]l(@)=d"ok(@)=kod():[k]lonod(@)=[|k]lo[d]lon(@)=[k]lo[d]1(@).

The last sentence is a consequence of I11.2.2, II1.2.5 and 1.22. =

Example 3.3. Assume that A is equipped with a flat partial connection A’ over

E'’cE (as in 2.5) and let g=rank(E/E'). According to Corollary 2.6,

k[Fz(qﬂ)(Wg)] =0 for an adapted connection A, and k[FZ([q/2]+1)(Wg)] =0 for a basic
connection A. Prop.3.2 produces in these situations the homomorphisms of algebras
[k]q, : (Wg)q, ——)QA(M) for q’>q and g’ > [q/2], respectively, and next, the
corresponding homomorphisms on cohomologies. The homomorphism

(k] #:H((Wg)q,[d]q)——>HA(M) generalizes the w_ described in II.2.11: in the case
q

when E' =E, i.e. when A’ is a flat connection in 4, we have g=0 and [k]0=w(’;.
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Let H:A1—-9A? be a homomorphism of regular Lie algebroids over

f:(M,E1)~—-“>(M,E?). Define the pullback

X
H :W(gz)Aw“m>W(gl)

¥
in the standard way: H (¥)(x)=H"(¥(f(x))), xeM, where H =M oVH'™. It is
X

* X I x I x
clear that H' 1is a homomorphism of algebras of the bidegree (0,0).

*
Proposition 3.4. The pullback ' has the following properties:

¥ X
(1) i 0H+ ="

i + xeM ;
X,V x x fix),H (v)

for ve
gux’ 1

s +% . + .

in consequence, H maps h?—horlzontal elements into hl—horlzontal ones.

+

(2) 8ol (@) =H
described in 11.2.6.

* *
°3(B) for EesSecAgz, where &8’s denote the differentials

* Ed
(3) on+ =[f"o¢ where ¢’ s denote the change of variables, see chapter 1.B.
b >
(4) doH" =H" od.
- X L. -
(5) [d] oH =Ho[d] for I <1,
1, ', 1 2

* * +% . )
(6) # ol =K oy for veA ; In consequence, H maps invariant
ad( v) X ad( Hv) 11 x

elements into invariant ones.

*
Proof. (1): By the homomorphy of H'" and the antiderivativity of i ’s, it is
X

X,V
sufficient to check the equality for the elements of W(92|f( )) of the forms 6®1 and
X

*#

1®6, where eeg?lf( .
4 X

2 X *
i oH (ee1)=i (Heel)=i (H e)=<x6,H (v)>=1i (8)
X X X v X

+
X,V LV X y f(x),H (v)

+¥
=H ol +
x f{x),H (v)

(0).

% g + ¥
i oH (1®8)=1] (1eH 06)=0=H -oi (120).
v X X,V X

+
X, s x fix),H (v)

*
(2): &8s are antiderivations, therefore it is sufficient to consider C)eSecgz.

For xeM and w _€g ,
1 i 11 x

(5.H70) waws=<H) L lw w 1>=<8 JH w ,w 1>=<8 JIH w ) B (w )
x 0 1 0 X 0 1 f(x) x 0 X 1

x 1 r{x)

¥
=<(80) H w A (w )5 =< (B 08(0)) ,w Aw >.
r{x) X 0 X 1 x o 1
{3): By (2) above,

ool (1) =1 op(1),
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+ 3 3 . 4+ +¥
el (Bel)=¢(H ®el)=H Ael=H p@a1),
Y 23 o X % X
poH (1e®)=¢(leH @)=isH 8-3H Glel=1eH 0-H (58)s1
E 3 M
=H' (180-80e1)=H -p(iad).
X
The general formula follows from the homomorphy of ¢ and "
- P 3 P -
(4): Thanks to the previous property, (4) follows from the equality deH' =H' od
which can be checked trivially.
¥

E
(5): (4) yields d’ e’ =H" od’ and the two imply (5) immediately.

%
(6): First, we show, for @e’Secg), that

X o
<P H (H a),v>=<H (¥ d" @),V1>

Tad °f, 1 ad °f,

where VleSecg] is a cross-section for which there exists vzeSecg2 fulfilling

H+ovl="v20f. For the purpose, we notice [17] that H*o[[&ﬁl,vl]]=[[§2,v2]]of. Thus

* ¥ *
<¢ v (g @), v >= (W]ogl)«;n’ a,v > - <H® 0.1§ v >

ad of,
. £
=(y o€ )<B,v >of - <@, [€ v >of=<f " Qv >of=<H (¢ A e),v >.
2 T2 2 2" 2 ad %, 2 ad °f, 1
Lemma 1.6(1) leads now to the equality
X X
<¥ CH W)Y, v>=<H (¥ _v),v >, (9)
adogl 1 adogz 1
\I'eWgz, where vl, &'i are as above.
b *
The equality £ dos (W ¥y =51""(¢ dog ¥) follows in an evident manner from those
a ("l a 0'2

written for a strong homomorphism and for the canonical one. In each of these cases,

this follows from {9) and the observation which says

— for arbitrarily taken xeM1 and veg“ , there exist local cross-sections v1
X

and v, such that v](x) =y and v, and v_ fulfil the required condition H+ov1=v2°f.

P

By the analogous reasoning, we assert equality (6). ]

¥
Corollary 3.5. " maps h_-horizontal and invariant elements into hl—horizontal

and invariant ones, defining, for lqz ll, a homomorphism of algebras

<

.
s (Wg) Lo o (Wg) .

1 10y 1

2)h2)

commuting with the differentials (i.e. [d] ohr”‘=h'**o[d]1 ). =
1 2



Let us assume that in Ai we are given some regular Lie subalgebroid Bl over

(M,Ei), i=1,2, and that H[BL]CBZ' In the standard way, one can define the pullback
4+
[H] .WV(gz,hz)-——~9lV(g1,h1)

([H]+*(W)(X):=A[H:]*69VH:(W(X)) where [H;]*:gl/h1—-9g2/h2 is the induced linear

homomorphism). Since the diagram

w(gl’h1)11,1° w(gﬁ)ll,h1,1°
[#]"” o>
w(gz’h2)12,1° — w(gz)lz,h2,1°

. »#
commutes, we obtain - by the above - that [H]+ commutes with the differentials, i.e.

+ % E.
B e[a], | =[a]  o[H"],
2’72 1°

h h1

giving a homomorphism on cohomologies

g
[H] ;H(ly(gz,hz)la’lo) — H(lV(gl,hl)ll’,o).

4. CHARACTERISTIC HOMOMORPHISM - ITS CONSTRUCTION

Here we construct some characteristic homomorphism of a partially flat regular Lie

algebroid, being a generalization of the one constructed in II for a flat regular Lie

algebroid.
Consider, in a given regular Lie algebroid A over (M,E), two geometric structures:

(1) a partial flat connection A’ over an involutive subdistribution E’ cE,

(2) a subalgebroid Bc A over (M,E), see the following diagram:
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0—g ¢ > A Y SE— 0
y -
AI
u ( [
¥
0 gc A 4 SE >0
[ [j I
¥
0 >g © > B E E >0.

The system (A,B,A’) will be called a PFS-regular Lie algebroid (over (M,E,E’)).
The construction of the characteristic homomorphism of a PFS-regular Lie algebroid

has, as in the case of an FS-regular Lie algebroid, a number of steps.

4.1. Let s:g-———ag/h denote, as in II1.3.1, the canonical projection. Put, for a

positive integer 1
> g1 %
Wig;h) := Alg/h) @V 'g and W(g;h) :=SecW(g;h) .

W(g;h)l with the natural structure of an algebra will be called the truncated relative
Weil algebra.

The representation acl;,g of B on A(g/h)* described in II.3.3, together with the
representation ad|B of B on V‘lg* (being the restriction to B of the adjoint
representation of 4 on V‘lg*), yields the representation of B on W(g;h)l denoted also -
for brevity - by ad.

For an arbitrary £eSecB, the differential operator ‘,‘lfaldo&_:W(g;h)l——)W(g;h)l
is a differentiation of the truncated relative Weil algebra W(g;h)l, from which we
obtain that the space W(g;h)l of invariant cross-sections is a subalgebra of
W(g;h)l.

The monomorphisms

, I°

As":A(g/h) ——Ag" and As” e id" :Alg/h) eVg —sAg oVi'g

of vector bundles are invariant with respect to the representations considered of the

Lie algebroid B, which is easy to see by the definitions. As a corollary from the above
* X

and the monomorphy of As ®id1 we obtain that As ®idlow, WeiV(g;h)l, is an

invariant cross-section if and only if ¥ is invariant, and that
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Wigih) . 3 Vi sAs ®id oV e Wig),

’ ,Io

is a homomorphism of algebras. On the other hand, a cross-section ¥’ of W(g)l is of the
image of some cross-section of the bundle W(g;h)1 if and only if ¥ is h-horizontal

(i.e. if and only if 1'V\I/=O for veSech, where i 1is the operator defined in Section
14

1.C), so
W(g;h)1 o T W(g)1 hooe \I/l——)/\s*®jdlo\ll,
is an isomorphism of algebras.

4.2. The subspace W(g)1 hog° is stable under the differential
[d]l:W(g)l————eW(g)l. Indeed, for an invariant element ¥’ of W(g)1 , we have
i od(\I")=—doiV(‘~If’) by 1.6(2), 1.16(1), 1.16(3), and, in consequence,
1 %4
I od' (W )=-d oi (¥'). Therefore, for a bihomogeneous element ' EW(g)l ,
1% v
i o[d] (¥)=1i (d¥')=-d(i ¥')=0 or i o[d] (¥)=i (@'¥)=-d'(i ¥')=0, see
v 1 v v v 1 v v
Section 3. This enables us to define the differential d h:W(g;h)l I(,~——~>W(g;h)1 [0
in such a way that the following diagram commutes:

W(g;h)1,1° — W(g)l,h,l°
dl,h [d]x (10)

W(g;h)x,w —— W(g)l,h,1°
4.3. Consider any connection A:E——>A in A and 1let the homomorphism
»
k:Wg———)QA(M) be constructed for A. The form q)(\I/):=[k]l(As ®idlo\Il), \IleW(g;h)l,
is h-horizontal, which follows in an easy way from 1.17 and 1.23. Therefore, the form
j*(go(\ll))eQB(M) is horizontal. Then (see II1.2) there exists a form A\IIEQE(M) such
that

* ¥* Ll
(38),(A\I/)=j ([k]l(/\s ® id o¥)).
4.4. Remark. One can easily check that if A is a connection in B, then, for
> >
¥ e SecA(g/h) @V]g ,

0 when k>0,
AY

f

?\*(QV\I/) when k=0.

4.5. Let g=rank(E/E’) and let A be adapted to A’. Defined in the above manner,

the mapping
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A, :W(g;h) ,———)QE(M), ¥ — AY,
q q

q’>q (and g’ > [g/2) in the case of a basic connection), is a homomorphism of

algebras, see Example 3.3, and the diagram

A,
. SR S
iv(g,h)q, - QE(M)
=y )
¢
(11)
QB,i(M)
¥
2| j
(k1.
(Wg)q, ey QA(M) > QA,h(M)

commutes.

Proposition 4.6. The mapping A , restricted to the invariant cross—-sections
q

Aq,*:W(g;h)q, [0 ~~—>QE(M)

]

commutes with the differentials d , N and dt.
'1 bl

Proof. j and ¥, are homomorphisms of regular lLie algebroids; then, according to

X
IT.(5), the commutativity of j with the differentials d" and dB, and seeing the last

diagram and the definition of d , we notice that it 1is sufficient to have the

commuting of [k] ,:W(g) , W v—veQA(M) with [d], and d?, but this follows from
q q ,h, q

3.2(3). =

Theorem 4.7. The mapping
A, :H(W(g;h) ; esd )——%H (M)
q # a I 9 ,h E

(¥ (A, V]
q

is a correctly defined homomorphism of algebras. m

4.8. If A is basic, then the following diagram commutes:
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H(WTg;h)q’Io)
q#

H (M)
E

/A
[q/214%

H(W(g;h)[q/Z] ’ ,o)
in which the vertical arrow is a homomorphism of algebras, induced by the projection.

A (also A for a basic connection) is called the characteristic
q# [q/214

homomorphism of the PFS-regular lLie algebroid (A,B,A’). Its image is a subalgebra of
HE(M) called the characteristic algebra of the PFS-regular Lie algebroid (4,B,A’),

whereas its elements - the characteristic classes of this algebroid.

5. THE FUNCTORIALITY AND OTHER PROPERTIES

Let (Al,Bl,A;) and (A2,BZ,A;) be two PFS-regular Lie algebroids over (Ml,El,E;)

and (M _,E ,E’), respectively.
2’7272

Definition 5.1. By a homomorphism
H: (A ,B A )—>(A_,B_,A")
1’7171 2’72’2
between them we mean a homomorphism H:Al—aﬂ2 of regular Lie algebroids, say over
f: (M ,E)——> (M ,E ), such that
1’71 2’72
(1) f*[E1] CEZ,
(2) HoA1=A2of*|El,

(3) HIB 1cB..

In the sequel, the notations of some objects related to Al, B1 and H will be the

same as in the following diagram:
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| / S e 2
e /
gl l > gZ
r\ N
B > B
1 2

(12)

f-X

E’ > E’
1 2

By the pullback of a PFS-regular Lie algebroid (A4,B,A’) over (M,E,E’) via a
mapping f: (MI,EI,E;)—HM,E,E’), i.e. a mapping f:Ml————)M such that f*[EI]cE and
f*[E;]CE', we mean the PFS-regular Lie algebroid (fAA,fAB,I{’) where X':E;————>fAA1
is the pullback of A’ [17;3.2.1]: X'(V)‘—'(V,?\'(f*‘i/)), veE;. Proposition [17; 3.2.2]
gives the flatness of A’. The canonical homomorphism prZ:fAA—>A is a homomorphism
of PFS-regular Lie algebroids.

Each homomorphism H:(Al,Bl,A;)M—a(Az,BZ,A’Z) of PFS-regular Lie algebroids can
be represented in the form of a superposition of a strong homomorphism with the

canonical one:

A.B A B Ay — 2 54 B ..
1 1 1 2 2 2 2 2 2

Theorem 5.2. (The functoriality of A #).
q
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Let (Al,Bl,A;) and (AZ,BZ,A’Z) be two PFS-regular Lie algebroids over (MI,EI,E;)

d 4 4 . - ’ . ’ ’
an (Mz’Ez'Ez)’ respectively; put q, rank(Ei/Ei). Let H.(Al,Bl,Al)———>(A2,Bz,7\2) be
a homomorphism between them over f:(Ml,El,E;)——MMZ,EZ,E;). Assume that the adapted

connections 7\1 and Az, such that Ho?\1=7t20f*, are given. Then the following diagram

max(ql,qz)#

——
H(W(QZ’hZ)max(ql,qz),lo) H(Ez)

(" T
A #

HOW(g, b)) > H(E)

commutes.

Proof. From the commutativity of diagrams (10) and (11) it follows that it is
sufficilent to check the same for the diagram
k

2
W(gz) ) Q‘z(m

lﬂ** 1H*
k

Wig. ) s wn
1 A

in which k2 and k1 are defined for AZ and 7\1 , respectively. Using the equalities (a)

Ed *
H;w =" w_ and (b) H.Q =HQ (w and Q  being the connection form and the
1 2 *y 2 1 i

curvature form of Ai, i=1,2), one can prove (without any difficulties) the

commutativity at each point xeM, considering the generators 1, 1®6, 681,
E 2

8eg , only. Equality (a) is evident, whereas (b) follows from [17; 3.2.2] and

21 £(x)
the horizontality of the curvature forms. =

5.3 Theorem (The independence of A ' u of an adapted connection).
q
For any PFS-regular Lie algebroid (A,B,A') over (M,E,E’), the characteristic
homomorphism A ,#:H(W(g,h) , I°)~————>HE(M), q’ »rank(E/E’), is independent of the
q a,

choice of an adapted connection.

Proof. Let us consider any two connections AO, 7\1:E——>A adapted to A’ and the

connection A:TRxE~——TRx A in TRx A defined by

A|(t )(V,w)=(v,?\o(w)-(l—t)+hl(w)-t), (v,w)eTthxElx. A is adapted to the flat
y X

partial connection IdxA :TRxE’" ——>TRx A’ . of course, the system

(TRx A,TRx B,idxA’) is a PFS-regular Lie algebroid and A is an adapted connection.

One can  prove that the connection form w:TRxA——>0xg of A equals
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w(t’x)(V,w)=(O,wo(w)-(l—t)+wl(w)-t), (v,w)eTthxﬂlx, where w, and w, ~are the
connection forms of 7\0 and 7\1, respectively. The homomorphisms Fi:A———>TIR><A,
i=0,1, of regular Lie algebroids (over fiM—>RxM, x +—>(i,x)), defined in
11.5, give homomorphisms Fl:(A,B,A’)me(TleA,TleB,idxA’) of PFS-regular Lie
algebroids such that Fioll=>\ofi*, i=0,1. The principle of functoriality (Theorem
5.2) ensures the commutativity of the diagrams

A,
H(W (0xg,0xh) ,) — L2 5 5 (R<M)
q TR XE

(F 1** *
i i

A,
H(W(g,h) ,) —25 s

i=0,1. Since f:=f4: (see the proof of Th.4.3.1 from [17]) and the superposition
F .
A—~1——>TIR>< A——E—>A, G:= pr,, of homomorphisms of regular Lie algebroids being equal

to idA, gives [F1]+#°[G]+#=id (G does not determine a PFS-homomorphism, but this is

no problem), therefore we have

A ,o=h , o F 161 =rfon , o161 =f%nr , o161
Oq # Oq # 0 O Oq # 1 Oq #

+# +#
= Alq'#O[F‘L] o [G] 'A1q’#‘ N

Definition 5.4. Let us consider two PFS-regular Lie algebroids (A,Bi,h’), i=0,1
(which differ only in subalgebroids) over (M,E,E’). By analogy with definition II.5.8,
we say that the characteristic homomorphisms Aiq,#:H(W(g,h1 )q, T ) —~——)HE(M) ,
i=0,1, g’ >rank(E/E’), are equivalent if there exists an isomorphism of algebras

wHW(g,h), )——>H(W(g,h ), ), such that A , oct.
0 q ,1I 1 q ,1 0q

=A ,
# 19 #

Theorem 5.5. If B0 and B1 are homotopic (for definition, see II.S.Z), then Ao ‘e
q

and A1 ¢ 2r€ equivalent.
q

Proof. By the same argument as in the proof of Prop.I11.5.7, we assert that AO 'y
q

and A1 g 2T€ related via the commutative diagram:
q
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H(W(g,ho)q,)

A,
(F ]+# Oq " #
0
H(W(Ooxg,h ) ,) H (M)
q E
(F 1"
A,
1q #

H(lV(g,hl)q,)

It remains to show that [FJ+# is an isomorphism of algebras, i=0,1. We do it
as in the proof of Th.II1.5.9:

For F, being equal to the superposition przofi (in which fi is an isomorphism),
the problem reduces to the consideration of the canonical projection
prz:(f’i‘(mxA),f’i‘(B),(jdxA')—)m»(mxA,B,idxA'), more exactly, to the

investigation of the homomorphism

X W(Oxg,h) W(f (0Oxg),f h)
prz . Xg) ql Io —_— i Xg ’ i ql IO'

’ >

After the canonical identification
* * 4 * 4
£ (A0 xg/m) sV I 0xg) ) A 0xg)/ 0 eV £ (0xg)”,

according to II.(11) (see Chapter 1I1.4) and the fact that £*(8"T) =" (f*T) for any
representation T (cf. [17;2.3.3] and the proof of Prop.I11.4.2.1), we obtain that
f?(ad)==ad (the ad’ s denote the canonical representations induced by the adjoint one),

and that pr;*w==frw. As in the proof of Th.I11.5.9, the rest follows from Prop.1.6.2. m

5.6. A comparison with the tangential classes of partially flat principal
bundles.

A PFS-regular Lie algebroid (A,B,A’) over (M,E,E’) determines an FS-regular Lie
algebroid (A’,B’,x’) over (M,E’) 1in which A’=z;1[E’], B'=7;1[E']. With these
objects we have associated some homomorphisms: Aq,*:WTg,h)q,’lo —Q (M) and

E
A, :W(g,h) ———995,(M’) (see 4.7 and I1I.3.7). The indices B and B’ at the letter I

0,Ig,
indicate the regular Lie algebroid with respect to which the invariant elements are

taken. A simple relation between A , and A* is described by the following diagram:
q
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x q E 3
(SecA(g/h) ) , < W(g,h) , , ——— Q (M)
IB q ’IB E
[ * A)\‘ J/
(Sech(g/h) ) > Q , (M)
13, E

The problem what the relation looks like on the level of cohomologies will not be
investigated here. We only notice that each element Ve (Sec/\(g/h)*)’o being a cycle in
W(g,h)q,,l;; (i.e with respect to [d]q,) is a cycle in W(g,h)_ (i.e. vfith respect to 8);
the converse fact is not true in general, which may be the source of the characteristic
classes (in HE, (M’)) measuring the concordance of A’ with B, which can not be obtained

by A ,.
q

6. A COMPARISON WITH THE CHARACTERISTIC CLASSES OF FOLIATED BUNDLES

Let us be given:
(a) a G-principal fibre bundle P=(P,n,M,G.-),
(b) a flat partial connection in P over an involutive distribution FcTHM,

(c) a closed Lie subgroup HcG and an H-reduction P’ ¢ P.

In other words, we are given some foliated principal bundle with a reduction,
considered, for example, in [10]. As usual, let g and h denote the Lie algebras of G
and H, respectively. In [10], to such a bundle there corresponds a characteristic
homomorphism ﬁlq,#:H(g,H)q,)wﬁHdR(M) (denoted there by A) where q’'>codim¥, ¥
being the foliation determined by F, and

R 0

(Ala/B) " oV g

H

H(Q’H)q'=(/\8*®v<qlg¥) I

H

is the truncated relative Weil algebra constructed isomorphically as the subalgebra of
the truncated algebra /\(g/f))*@V‘q,g*, consisting only of those elements which are
invariant with respect to the representation Adql of H induced by the restriction to H
of the adjoint representation AdG:G—>GL(g). The differential dq, in W(g,H)q,,

defined in the standard way, comes from the differential, denoted here by dg, in the
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L3 *
Weil algebra Wg=Ag ®Vg , defined as follows: we treat g as a left Lie algebra of G
(with the bracket denoted by [-,-]L) and d;:Wg———»Wg is the antiderivation of total

L * x * L Ed L %
degree +1 such that ds(w el)=1ew +dAw ®1 and idg(1®W)=63w for veg,
v

w*eg* (d/\ is the Chevalley-Eilenberg differential, whereas ezw*=—w*oad: where
ad;(u)=[v,u]", neg). In the sequel, as opposed to the left Lie algebra, the bracket
in the right Lie algebra of G will be denoted by [-,-]R; there is avrelati‘on
[v,u]L=—[v,u]R, and we recall once again that, for zePIx, Q:g—————-)glx is an
isomorphism of Lie algebras when g is equipped with the right structure.

The partial connection in P determines a partial connection A’ in the transitive
Lie algebroid A(P), and the system obtained (A(P),A(P’),A’) is a PFS-transitive Lie
algebroid. In 4..7 the characteristic homomorphism Aq,#:H(W(g,h)q,’Io)—~———>QdR(M) is
obtained (g and h being the Lie algebra bundles adjoint of A(P) and A(P'),

respectively). We compare ﬁ,# with A,“. For the purpose, consider the adjoint
q q :

representation AdP:P—>L(g) [17;5.3.2] and the representation
’ 1 7 h

4d%, P —LMW(g,h) L), AdY, =ad), eVT (4d_|P")  (for Ad, see Chapter
P x:} q p » 9 P » 9 P P » g

II.6), induced by it. As in Chapter 1I1.6, we notice that the differential of Adg, is

equal to the representation ad:(P,) g:A(P’)——)A(W(g,h)q,) defined by

ad® =ad" ®V<q,(ad |A(P’))~. Propositions 5.5.2-3 from [17] give a
A(P') ,a AlrP'),g A(P")

monomorphism

E:(/\(g/b)*@V‘qlg*)I ——i(Sec/\(g/h)*®V<q,g*)I L——)(Sec/\(g/h)*«zav<q 9*)1°
H

defined by the formula .Z(w)(x)=Ad‘;, g(z)(x), zeP) , i.e.

’

k(Y) (x) =(/\[Q]%—1®V‘q %*_1)(511), being an isomorphism when P’ is connected.

Theorem 6.1. kos commutes with the differentials dq, and dq, N’ giving the

commutative diagram

H(W(g,H)q,) A
\jl“
(KOS)# HdR(M)
e
q #

HW(g,h) , )

*

Proof. The evident commuting of the diagram
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(Aa"oV<Vg") |~ (A/B) eV o),
Iy H
K K

(Sec/\g*cs’V(qlg*)h [0 LN (SecA(g/h)*®V<q’g*)

' °

in which K(x/l)(x)=(Aé*—lcbV(qIé*—l)(w), zeP;x, and of diagram (10), implies that
the commutativity of Kos with the differentials follows from that for k. On the other
hand, this fact concerning k can be reduced, in an easy way, to the commutativity of
k_Wg——Wg (=/\9*‘1®V9*—1) with dg and d . There are two ways to establish this.

The first way. d; is the differential for which the following diagram

ng%w,g

sk

Wa £, Wa

commutes where ¢ is the isomorphism of algebras, defined uniquely on the generators by:
* E3 * ¥ * -
plw ®1)=w ®1 and ¢(1®w })=10w —dAw ®1, whereas d is an antiderivation
- ¥ .
def ined by diw 1) =1 ®w*, d(1 ®w*) =0. To see this, we calculate

- E 4 * - X X Ed >
wl(w ®1)=w ®1 and q>1(1®w J=1ew +dAw ®1 (=d§(w ®1)); next,

- *# * *
podtop (w ®1)=<pod:(w el)=10w ,

- k.3 ¥
‘P°d:°¢ 1(1 W )=¢°dgodg(vl ®1)=0.

Therefore it remains to show that (1) k op=¢ ok and (2) k od=dok . (2) is trivial,
b4 X z z z
whereas (1) needs the equality
X * * »*
kK (dw)=8kw), w e€g . (13)
z A z

To prove this, take v, weglx.
KZ(dAW*)(V,W)=dAw*(é_1(V),%-1(w))=“W*([é_1(V),Q_1(W)]L)
=w*([é"1(v),é”‘(w)1")=w*(9‘1([v,w]))=(sz*)([v,wl)=a(.<,zw*)(v,w).
The second way (direct).

L. % * *
(a) Kk od’ (w ®1)=k (1low +dw ®1)
z 9 z A

* >
=lek w + k (dw)el (by (37))
z z A
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> F 3 k.3
=1®k w + S8kw)el=d ok (w ®1).
z z X V4

* *
(b) To prove that « odL(1<8>w )=d ok (1®w ), take veg . Since i od =-8
z k) x z I x v X v
(Prop. 1.17), it is sufficient to verify the equality
. L > »
1vonzod3(1®uf)==~9Vonz(1®vv ). To this end, we immediately notice that
I ok =K oia_, and K oel:__1 =-8 ok . Now, we can calculate
v z z z7H(v) z z7H(v) v z
E. 3 X ¥
iok od"(lew )=k oir , ed"(1ew )=k (1865 W)
v z 8 z z (v) 8 z z (v)

¥ X
=-1®0 ok (W )=-0 ok (low ).
v z v z

At present, we pass to the second part of our theorem. We can write a diagram

analogous to the one in the proof of Th.I11.6.1. Analogously, we assert that we need the

equality

* ~
JT k(0 )(0)) =po(di) K], (R(8))
q P q
where K is the superposition

W(g,H)q, -~—eW(g;h)q,’[o ————>W(g)q,’h’lo,

while w_ is the connection form of an adapted connection. We see that the last equality

is as good as the commuting of the following simple diagram:

A % (14)
lxz 1A(nlz )
k

for any xe€M and zelﬁ . In this diagram, k is a homomorphism of algebras
.4 Z

fulfilling (k(w )(8)) =k (8); 1in other words, k_ (y®T) =0 @) aQ’ (D), velg,

I‘eVg*, where w? :Ag*—-—>AT*P and QY :Vg¥——-—>AT*P are homomorphisms of algebras
z z z z

constructed in the classical manner, £ being the connection form of wP. The
commutativity of (14) can be checked trivially on the generators when one only knows
2.4 _A

4

the relations w onA ==éow , 0 oA =Zof) (w is the connection form in A(P)
I x | z Pl z | z tz |z

corresponding to wp). n
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