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On K -Boolean Rings 

W.B.Vasantha Kandasamy 
Department of Mathematics, 

Indian Institute of Technology, 
Madras - 600 036, India. 

In this note we define K-Boolean rings which are a 
generalization of a Boolean ring and obtain conditions for a 
ring to be K-Boolean in general and in particular for a group 
ring RG to be K-Boolean, where R denotes a ring and G a group, 
RG the group ring of G over R. 

Definition 1. Let R be a ring with identity we say R is a 
2k 

K-Boolean ring if x = x for every x£R and for some natural 

number k. 
Remarko When k = 1 we trivially get R to be a Boolean ring. 

Proposition 2. Every Boolean ring is a K-Boolean ring* 

o 
Proof. Given R is a Boolean ring hence x = x for every x£R; 

9k 

so clearly for every x £ R x = x. Hence R is K-Boolean. 

Proposition 3. Every k-Boolean ring need not be a Boolean ring. 

Proof. By an example. Take 2^ = t o b e t h e field of 
3 C 2 characteristic two and G=<g|g = 1>. Clearly'"Z2

G =|0,l,g,g , 
1+9f l+92> 9+9 2> l+9+g 2Jj i s 2-Boolean which is clearly not 
Boolean as 1+g is in 'Z2G but (1+g) + 1+g. Hence the result. 

Example. Let Z, = (0,1) be the field of characteristic two and 

G = <g|g 2 = 1>. Clearly Z 2
G i s n o t n - Boolean for any n; as 

1+gkZ^G but (1+g) 2 = 0. In view of the above example we have the 
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Proposition 4« Let Z 2 = (0,1) be a field of characteristic 
2n 

two and G = <g|g =l> be a cyclic group of even order. Then 

the group ring Z 2G is not a n-Boolean ring for any n. 
Proof. Clearly l+g n£ Z 2G with (1+g 1 1) 2 = 0; hence Z 2G is not 
n-Boolean for any n # 

The above result can be generalized to any commutative 
ring of characteristic two as follows. 

Theorem 5 # Let R be a commutative ring of characteristic two 
2n 

and G = <g|g =1> be a cyclic group of even order. Then the 
group ring RG is not a n-Boolean ring for any n. 
Proof. As in the case of proposition 4 we have l+g n£RG with 
( l + g n ) 2 = 0. hence the group ring RG is not a n-Boolean ring 
for any n* 

Proposition 6o If R is a n-Boolean ring then R has no non zero 
nilpotent elements. 

P roof. Obvious. 

Theorem 7 # Let Z 2 = (O.l) be the field of characteristic two 

and G = <g|g =1>. Then the group ring Z£> is y-Boolean 

with T = n+1 and 2(n+l) = 2 s(s>l). 

Proof. Take any a ^ ^ G , s i n c e W e have for every g£G ; 
2n+l 2(n+l) 

g = l , a = a for every a(rZ 2G. Thus Z 2G is (n+l)-Boolean. 
2(n+l) 

Remark. If 2(n+l) 4 2 f o r S o m e s w e w i l 1 n o t n a v e a = a* 
5 6 By an example take G = <g|g =1> , (1+g) 4 1+9. 

The above theorem can be true only if we put some conditions on 

the ring R as follows: 
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Theorem 8. Let R be a commutative ring of characteristic 
two with no nontxivial nilpotents and in which every element 

2(n+l) 2n+l 
T in R is of the form -y = y and G = <gjg = 1>. Then the 

group ring RG is y-Boolean with r = n+1 and 2(n+l) = 2 s(s>l). 

Proof, Obvious. 

Theorem 9« Let R be a n-Boolean ring then characteristic of 
R is two. 

Proof. Four possibilities arise (i) characteristic of R is odd 
(ii) characteristic of R is even not-equal to 2. (iii) 
characteristic of R is 2 n and (iv) characteristic of R is zero. 

Case (i)> Let characteristic of R be odd; say 2n+l. Since 
2 

lCr R we have an integer m £ R with m <2n+l with m = 1. Thus 
R is not n-Boolean for any integer n. 
Case (ii). Let characteristic of R be even say 2n, since l£ R 

2 
clearly 2n-l£- R but (2n-l) = 1 hence R is not n-Boolean for 

any integer n. 

Case (iii). Characteristic of R is 2 n (n>l); 
2 n 2 Let m s - j - + 1 then m = 1 so R is not n-Boolean. 

Case (iv). Let characteristic of R be zero; since 16 R 
w e have Z+UZ~u£o^ C R. Clearly for no natural integer 
+ n(-Z +UZ~U {0^ we have n r = n. Hence R is n-Boolean. Hence 
the characteristic of R is two. 

Theorem 10. Let RG be the group ring of a group G over the 

ring R and G a group in which every element is of finite order. 

RG is n-Boolean if and only if R is a n-Boolean ring of 

characteristic two and G is a commutative group in which every 

element is of odd order m with m+1 = 2 3 for some s>l. 
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Proof, Since 1£ G we have R.l = RCRG. Let us asame RG 
to be n-Boolean this implies by Theorem 9 and definition 
of a n-Boolean ring characteristic of RG is two and R is 
commutative since RCRG and R is n-Boolean ring. G is a 
commutative group since RG is commutative further every 
element in G is of odd order for if an element g is of even 
order we have g ^ l so (l+g+.. • + g 2 r " " 1 ) 2 * 0 hence RG is not 
n-Boolean. Hence the claim. 

Conversely if R is n-Boolean ring and G is a commutative group 
in which every element is of odd order with m+1 = 2 s , clearly 
RG is n-Boolean as RG is commutative with characteristic of RG 

2k 
to be two and every element <x£-RG is such that a = a for 
some k as every element in G is of odd order. Hence the 
result. 

In the above theorem we must have m+1 = 2 for if 

m+1 4 2 S for any s we will not have a2^*1^ a. By an example 

take G = <g|g9=l>, (l+g ) 1 0 = (l+g} 2(i+g) 2(l+g) 6 = (l+g 2)(l+g 2)(l+g) 

= (i+g 4)(i+g) 6 = U+g 4)U+g) 4U+g) 2 = U+g 4)U+g 4)U+g 2) « 
8 2 i S (l+g )(l+g ) 4 l+g* Hence we must have m+1 = 2 ; then only 

when we expand we will always have the power of that element to 

be exactly divided in twos till the end. 

Theorem 11. Let R be a finite commutative ring of characteristic 

two with no non zero nilpotent elements. Then R is a K-Boolean 

ring if and only if every element in R is of odd order m with 

m+1 = 2 s . 
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Proof* One way is obvious, for if every element is of odd 

order m with (IÎH-JL) = 2 then clearly R is a K-Boolean ring. 

Conversely if R is a K-Boolean ring then we have 
2k 

x s x for every xé R ; if K is not a odd number such that 

k+1 4 2 s then we have (l+x) 2 k 4 1+x. 
Hence the theorem. 
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