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On K -Boolean Rings

W.B.Vasantha Kandasamy
Department of Mathematics,
Indian Institute of Technology,
Madras - 600 036, India,

In this note we define K-Boolean rings which are a
generalization of a Boolean ring and obtain conditions for a
ring to be K-Boolean in general and in particular for a group
ring RG to be K-Boolean, where R denotes a ring and G a group,

RG the group ring of G over R.

Definition 1., Let R be a ring with identity we say R is a

K-Boolean ring if x2k =« for every x¢€R and for some natural

nunber k.

Remark, When k = 1 we trivially get R to be a Boolean ring.

Proposition 2, Every Boolean ring is a K-Boolean ring.,

Proof, Given R is a Boolean ring hence x2 = X for every xcR;

so clearly for every xGR7 x2k = X, Hence R is K-Boolean,

Proposition 3., Every k-Boolean ring need not be a Boolean ring.

Proof, By an example. Take 2z, = (0,1) to be the field of

characteristic two and G=<g|g3 = 1>, Clearly Z.G =%_O,l,g,gz,

l+q, l+g2, g+g2, l+g+g2} is 2-Boolean which is clearly not

Boolean as l+g is in 226 but (l+g)2 $ 1+g., Hence the result,

Example, Let Z, = (0,1) be the field of characteristic two and

G = <g|g2 = 1>. Clearly Z,G is not n - Boolean for any n; as
l+ge_%§3 but (l+g)2 = 0, In view of the above example we have the

following.
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Proposition 4., Let Z, = (0,1) be a field of characteristic

2 .
two and G = <g]g P-1> be a cyclic group of even order. Then

the group ring L2G is not a n-Boolean ring for any n.

Proof, Clearly l+gn€ 226 with (l+gn)2 = O; hence 22G is not
n-Boolean for any n,

The above result can be generalized to any commutative

ring of characteristic two as follows,

Theorem 5, Let R be a commutative ring of characteristic two

and G = <glg2n=l> be a cyclic group of even order. Then the
group ring RG is not a n-Boolean ring for any n,

Proof. As in the case of proposition 4 we have l+gn€:R3 with

(l+gn)2 = 0, hence the group ring RG is not a n-Boolean ring

for any n.

Proposition 6., If R is a n-Boolean ring then R has no non zero

nilpotent elements.

Proof. Obvious,.

Theorem 7. Let Z, = (O,1) be the field of characteristic two

2n+1_

and G = <glg 1>, Then the group ring Z,G is y=Boolean

with Y = n+l and 2(n+l) = 2%(s>1).

Proof. Take any a(szG, since we have for every g(CG j
2n+1 2(n+l)

g =1,a =a for every aCZ,G, Thus Z,G is (n+l1)-Boolean.
s 2(n+l)
Remark. If 2(n+l) # 2 for some s We Will not have a = a.

. 5 6
By an example take G = <g|g”=1> , (1+g)  F l+g.
The above theorem can be true only if we put some conditions on

the ring R as follows:
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Theorem 8. Let R be a commutative ring of characteristic

two with no nontrivial nilpotents and in which every element
| 2(n+1) 2n+1

¥ in R is of the form v =< and G = <g|g = 1>. Then the

group ring RG is y-Boolean with y = n+l and 2(n+l) = 2°(s>1).

Proof, Obvious.

Theorem 9. Let R be a n-Boolean ring then characteristic of

R is two.

Proof, Four possibilities arise (i) characteristic of R is odd
(i1) characteristic of R is even not-equal to 2. (iii)

characteristic of R is 2" and (iv) characteristic of R is zero.

Case (i). Let characteristic of R be odd; say 2n+l. Since
1 R we have an integer m¢ R with m <2n+l with m2 = 1, Thus

R is not n-Boolean for any integer n.

Case (ii). Let characteristic of R be even say 2n, since 1€ R
clearly 2n-1¢ R but (2n—l)2 = 1 hence R is not n-Boolean for
any integer n.

Case (iii). Characteristic of R is 2" (m1);

n
Let m = —%— + 1 then m2 =1 so R is not n-Boolean,

Case (iv). Let characteristic of R be zero; since 1CGR
we have Z+UZ-Uin} C R. Clearly for no natural integer
+ n(¢Z+UZ_U {O} we have nT = n. Hence R is n-Boolean. Hence

the_characteristic of R is two.

Theorem 10. Let RG be the group ring of a group G over the

ring R and G a group in which every element is of tinite order.
RG is n=Boolean if and only if R is a n-Boolean ring of

characteristic two and G is a commutative group in which every

element is of odd order m with m+1 = 23 tor some s>l.
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Proof. Since 1€ G we have R.1 = RCRG, Let us asame RG

to be n-Boolean this implies by Theorem 9 and definition

of a n-Boolean ring characteristic of RG is two and R is
commutative since RCRG and R is n~Boolean ring. G is a
commutative group since RG is commutative further every
element in G is of odd order for if an element g is of even

2r-l)2

order we have g2r=l so (l+g+...+g = O hence RG is not

n-Boolean., Hence the claim.

Conversely if R is n=-Boolean ring and G is a commutative group
in which every element is of odd order with m+l = 25, clearly
RG is n-Boolean as RG is commutative with characteristic of RG
to be two and every element o« &RG is such that a2k = a for

some k, as every element in G is of odd order. Hence the

Tresult.

In the above theorem we must have m+l = 23 for if

2(m+l)=

m+l # 2° for any s we will not have « a. By an example

take G = <g|g9=1>, (l+g)lo = (l+g)2(l+g)2(l+g)6 = (1+92)(1+92)(1+g)

2 4 2
= (1+9%) (149)® = (140" (1+0) *(149)% = (1+aM)(14¢") (14¢°) =
(l+g8)(l+gz) 4+ 1+g. Hence we must have m+l = 2% ; then only
when we expand we will always héve the power of that element to

be exactly divided in twos till the end.

Theorem 11, Let R be a finite commutative ring of characteristic
two with no non zero nilpotent elements, Then R is a K-Boolean

ring if and only if every element in R is of odd order m with

m+l = 25.
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Proof, One way is obvious, for if every element is of odd

order m with (m+l) = 2° then cléarly R is a K-Boolean ring.

Conversely if R is a K-Boolean ring then we have

x2k = x for every x¢ R § if K is not a odd number such that

k+1 3 2° then we have (l+x)2k + 1+x,

Hence the theorem.
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