PUBLICATIONS DU DÉPARTEMENT DE MATHÉMATIQUES DE LYON

M. BOUCETTA

Chapitre VII Systèmes hamiltoniens complètement intégrables non commutatifs Étude locale

Publications du Département de Mathématiques de Lyon, 1988, fascicule 1B « Séminaire Sud-Rhodanien 1ère partie », , p. 185-195

http://www.numdam.org/item?id=PDML_1988___1B_185_0

© Université de Lyon, 1988, tous droits réservés.

L'accès aux archives de la série « Publications du Département de mathématiques de Lyon » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

CHAPITRE VII

SYSTEMES HAMILTONIENS COMPLETEMENT INTEGRABLES NON COMMUTATIFS ETUDE LOCALE

M. BOUCETTA

Résumé: Etant donné un système hamiltonien complètement intégrable non commutatif $(M,\omega,H,f^1,...,f^m)$ [M-F], on considère l'algèbre de Lie g^* engendrée par les champs de vecteurs hamiltoniens associés aux $(f^1,...,f^m)$. On considère, alors, l'application moment associée $J:M\to g^*$.

On étudie une situation dans laquelle, transversalement à une orbite de la représentation coadjointe régulière et réductive, l'isotropie infinitésimale agit à la façon du groupe \mathbb{R}^n dans les modèles d'action-angle avec singularités. On arrive alors, compte tenu du caractère presque canonique des coordonnées actions-angle, à dégager des invariants qui classifient complètement le modèle.

I. INTRODUCTION.

Dans ce travail, la différentiabilité est entendue, sauf mention expresse du contraire, au sens C^{∞} .

Soient $(M,\Omega H)$ un système hamiltonien de dimension 2n et $(f^1,...,f^m)$ une famille d'intégrales premières telle que :

pour i,j = 1,...,m $\{f^i, f^j\} = \sum_{k=1}^m C^k_{ij} f^k$ où les C^k_{ij} sont des constantes réelles et $\{\}$ désigne le crochet de Poisson usuel sur (M,Ω) .

I.1. Quelques rappels:

Pour le crochet de Poisson, la famille $(f^1,...,f^m)$ engendre une algèbre de Lie A. On notera g l'algèbre de Lie des champs de vecteurs hamiltoniens correspondants et on désignera par G le groupe de Lie connexe et simplement connexe d'algèbre de Lie g. On définit l'application $J: M \to g^*$ (dual de g) par $< J(x), X_f > = f(x)$, pour tout $x \in M$ et tout $X_f \in g$.

On a, immédiatement, pour tout X_f , $X_g \in g$ et tout $x \in M$:

(1)
$$\Omega(X_f, X_q)(x) = -\langle J(x), [X_f, X_q] \rangle$$
.

Lemme I.1. [S] . J' est une application différentiable, tout champ de vecteurs hamiltonien X_f élément de g est J-projetable et son projeté est le champ de vecteurs fondamental sur g^* , associé à X_f , pour l'action co-adjointe de G sur g^* .

Preuve. Pour tout $X_f \in g$, le champ de vecteurs fondamental sur g^* associé à X_f , pour l'action co-adjointe de G sur g^* noté X_{fg^*} est défini par :

$$X_{fg}*(\mu) = \frac{d}{dt} Ad_{exp(-lX_f)}^* \mu_{l=0}, \mu \in g^*$$

Pour tout $X_q \in g$, on a:

$$\begin{split} <\,X_{\text{fg}^{\,*}}\,(\mu)\,\,,\,X_{\text{g}}\,> &\ \, =\,<\,\frac{d}{dt}\,\,Ad_{\text{exp}(-tX_{\,f})}^{\quad \ \, *}\,\mu,\,X_{\text{g}}\,>_{\,/t=\text{o}} \\ &\ \, =\,<\,\mu,\,[X_{\text{f}}\,\,,\!X_{\text{g}}]\,>\,. \end{split}$$

En vertu de la relation (1), on a :

$$\begin{split} = \Omega \; (X_f^-, X_g^-)(x) \quad \text{pour tout} \quad x \in J^{-1}(\mu) \\ &= dg_x^-(X_f^-(n)) \\ &= \frac{d}{dt} \; g(\phi_t^-)_{/t=0} \quad \text{où} \; \phi_t^- \text{ est le flot de } X_f^- \text{ passant par } x \\ &= \frac{d}{dt} < J(\phi_t^-), \; X_g^->_{/t=0} \\ &= < T_x^-J(X_f^-(x)), \; X_g^-> \end{split}$$

d'où $T_x J(X_f(x)) = X_{fq^*}(\mu)$ pour tout $x \in J^{-1}(\mu)$ C.Q.F.D. \blacklozenge

On notera désormais JX_f le champ de vecteurs fondamental sur g^* associé à X_f pour l'action co-adjointe de G sur g^* . On a la relation :

(2) pour tous
$$X_f, X_g \in g < JX_f(\mu), X_g > = <\mu, [X_f, X_g] > .$$

Le lemme précédent nous permet de définir pour tout $\mu \in g^*$:

$$g_{\nu} = \{X_{f} \in \mathcal{G} / JX_{f}(\mu) = 0\}$$

On a alors le lemme élémentaire suivant :

Lemme I.1.2. g_{μ} est une sous-algèbre de Lie de g et si on désigne par $G.\mu$ l'orbite passant par μ pour la représentation co-adjointe, on aura :

- i) $T_{\nu}(G.\mu) = g_{\nu}^{\perp}$ (annulateur de g_{ν} dans g^{*}).
- ii) Pour tout élément $\ \mu' = Ad_g^* \ \mu \ \text{de l'orbite} \ G. \mu \ (g \in G) \ g_{\mu'} = Ad_{g^{-1}} \ g_{\mu} \ .$

Preuve. Le fait que g_{ν} est une sous-algèbre de Lie de g découle de la relation (2) et de l'identité de Jacobi.

Pour le (i) il suffit de remarquer que T_{ν} . $G.\mu = \{JX_{f}(\mu)/X_{f} \in g\}$ et la relation (2) permet de conclure. ii) évident . \blacklozenge

 $\boldsymbol{g}_{\boldsymbol{\mu}}$ est appelée l'isotropie infinitésimale au point $\boldsymbol{\mu}.$

I.2. Enoncé du problème : Soient $x_0 \in M$, $\mu = J(x_0)$, $G.\mu_0$ l'orbite passant par μ_0 pour la représentation co-adjointe, G_{μ_0} le groupe d'isotropie en μ_0 et g_{μ_0} l'isotropie infinitésimale au point μ_0 .

 $G.\mu_o$ est une sous-variété symplectique de dimension nécessairement paire 2p [S] . La dimension de $g_{_U}$ est alors m - 2p.

On suppose que:

- a) $G.\mu_0$ est une orbite régulière (de dimension maximale). Le théorème de Duflo-Vergne [D,V] affirme alors que g_{μ_0} est abélienne.
- b) μ_{n} est un point réductif en ce sens que :

$$g = g_{\nu_0} \oplus m_{\nu_0}$$
 et $Ad_g^* m_{\nu_0} = m_{\nu_0}$ pour tout $g \in G_{\nu_0}$.

D'après le ii) du lemme I.1.2, tout point μ de l'orbite $G.\mu_o$ est réductif. Il suffit de prendre $m_{\mu} = Ad_{g^{-1}} m_{\mu_o}$ si $\mu = Ad_g^* \mu_o$ ($g \in G$).

En plus m_{μ} ne dépend pas du choix de g. On dira alors que $G.\mu_0$ est réductive.

On pose $V_{\nu} = \mu + m_{\nu}^{\perp}$ pour tout $\mu \in G.\mu_{o}$. En vertu du lemme I.1.2, V_{ν} est un sousespace affine de g^{*} transverse à $G.\mu_{o}$ au point μ .

Lemme I.2.1. Il existe un voisinage ouvert \overline{U}_{ν_0} de $G.\mu_0$ tel que pour tout μ élément de $G.\mu_0$ l'isotropie infinitésimale est invariante le long de $\overline{U}_{\nu_0} \cap V_{\nu}$.

Preuve. L'orbite $G.\mu_o$ étant régulière, il existe un voisinage ouvert \overline{U}_{μ_o} de $G.\mu_o$ dans lequel toutes les orbites de la représentation co-adjointe sont régulières.

Soient $\mu \in G.\mu_n$ et $\mu + \beta \in V_u$. Pour tout $X_f \in g_u$ on a :

Or, $[X_f, X_g] \in m_{\mu}$ du fait que g_{μ} est abélienne et μ est réductif d'où $<\beta, [X_f, X_g]>=0$. On a montré alors que $g_{\mu} \subset g_{\mu+\beta}$. Sur $V_{\mu} \cap \overline{U}_{\mu_0}$ on aura l'égalité. \blacklozenge

Pour simplifier, on notera V_{μ} au lieu de $V_{\mu} \cap \overline{U}_{\mu_0}$.

Proposition I.2.1. $S_{\psi_0} = J^{-1}(V_{\psi_0})$ est une sous-variété symplectique de M. Les éléments de g_{ψ_0} sont des champs de vecteurs tangents à S_{ψ_0} et pour tout $x \in S_{\psi_0}$, l'espace tangent en x à S_{ψ_0} est l'orthogonal symplectique de $m_{\psi_0}(x) = \{X_f(x), X_f \in m_{\psi_0}\}$.

Pour montrer cette proposition on aura besoin du lemme classique suivant :

Lemme I.2.2. Pour tout $x \in M$, $T_x J(T_x M) = g_x^{\perp} o u$ $g_x = \{X_f \in g, X_f(x) = 0\}$.

Preuve. Voir Guillemin-Sternberg [G-S].

Preuve de la proposition. D'après le lemme précédent, il est facile de voir que J est transverse à V_{ν_0} , donc d'après le lemme de transversalité [G-P], S_{ν_0} est une sous-variété de M et pour tout $x \in S_{\nu_0}$

$$T_{x_0} S_{y_0} = (T_x J)^{-1} (m_{y_0}^{\perp}).$$

La relation (1) donne facilement que $(T_xJ)^{-1}(m_{\psi_0}^\perp)$ = orth $m_{\psi_0}(x)$. La même relation plus l'hypothèse de réductivité entraı̂ne que m_{ψ_0} \cap orth $m_{\psi_0}(x)$ = $\{0\}$ sur S_{ψ_0} . S_{ψ_0} est donc symplectique les éléments de g_{ψ_0} étant verticaux, ils sont tangents aux fibres de J donc tangents à S_{ψ_0} . \blacklozenge

On note A_{ν_0} l'algèbre de Lie abélienne de fonctions associées aux champs de vecteurs de g_{ν_0} , Ω_{ν_0} la restriction de Ω à S_{ν_0} et H_{ν_0} la restriction de H.

 $(S_{\nu_0},\Omega_{\nu_0},H_{\nu_0},A_{\nu_0})$ est alors un système hamiltonien muni d'intégrales premières en involution. On suppose désormais que $(M,\Omega,H,f^1,...,f^m)$ est un système hamiltonien complètement intégrable non commutatif au sens de [M-F] et Marle [M]. Soit dim Ker $\Lambda=\dim M$ - $\dim g=p$, où Λ est le tenseur de Poisson usuel sur g^* . On a alors :

$$m - 2p = 2n - m$$
 soit $m = n+p$
 $\dim S_{\nu_0} = 2(n-p)$ et $\dim A_{\nu_0} = n-p$.

On suppose alors que le système hamiltonien $(S_{\nu_0}, \Omega_{\nu_0}, H_{\nu_0}, A_{\nu_0})$ est équivalent au modèle des variables action-angle avec singularités d' Eliasson [E] au voisinage de x_0 . Quitte à restreindre S_{ν_0} , il existe sur S_{ν_0} un système de coordonnées action-angle avec singularités $(e_1, ..., e_k, \phi_1, ..., \phi_k, q_1, ..., q_r, \theta_1, ..., \theta_r)$ tel que :

- 1°) $S_{\nu_0} = D(0,r_1) \times ... \times D(0,r_k) \times \mathbb{T}^r \times \widehat{\Omega}$ où $D(0,r_i)$ est le disque de centre 0 et de rayon r_i dans \mathbb{R}^2 , \mathbb{T}^r le tore de dimension r et $\widehat{\Omega}$ un ouvert de \mathbb{R}^r .
- $2^{\circ}) \quad \Omega_{\mu_0} = \sum_{i=1}^k e_i de_i \wedge d\phi_i + \sum_{j=1}^k dq_j \wedge d\theta_j.$
- 3°) Pour tout $f \in A_{\mu_0}$, $f(e,\phi,q,\theta) = \phi(e^2,q)$.
- 4°) $q_1,...,q_r$, e_1^2 ,..., e_k^2 sont des intégrales premières du système.

On définit, pour tout $f \in A_{\mu_0}$, l'application :

$$\begin{split} \widehat{f} : D^{k} \times D^{r} & \longrightarrow \pi^{k} \times \pi^{r} \\ (e_{i}, q_{i}) & \longmapsto (\frac{1}{e_{i}} \frac{\partial f}{\partial e_{i}} (q, e), \frac{\partial f}{\partial q_{i}} (q, e)) \end{split}$$

En prenant sur $\mathbb{T}^k \times \mathbb{T}^r$ le système de coordonnées (ϕ_i, θ_i) correspondant aux coordonnées action (e_i, q_i) où D est un domaine de \mathbb{R} .

Il est relativement facile de voir que \hat{f} est bien définie et ne dépend pas des variables action-angle avec singularités choisies.

On observera aussi, que les \hat{f} caractérisent entièrement le système $(S_{\nu_0}, \Omega_{\nu_0}, A_{\nu_0})$ sous les hypothèses ci-dessus.

Définition I.2.1. On appelle invariants caractéristiques du système (M,Ω,A) au point $\mathbf{x}_{_0}$, sous les hypothèses ci-dessus, l'ensemble $\hat{A}_{\nu_0} = \{\hat{\mathbf{f}},\, \mathbf{f}\in A_{\nu_0}\}$.

<u>Problème</u>: Ces invariants classifient-ils complètement le modèle (localement) sous les hypothèses ci-dessus?

Les 2 théorèmes suivants donnent une réponse affirmative à cette question.

- i) Les orbites $G.\mu$ et $G'.\mu'$ pour la représentation co-adjointe passant respectivement par μ et μ' sont réductives et régulières.
- ii) Soient $(S_{\psi}, \Omega_{\psi}, H_{\psi}, A_{\psi})$ et $(S'_{\psi'}, \Omega'_{\psi'}, H'_{\psi'}, A'_{\psi'})$ les systèmes hamiltoniens munis d'intégrales premières associés respectivement à μ et μ' , définis dans la proposition 1.2.1. On suppose qu'ils sont équivalents aux modèles action-angle avec singularités respectivement aux points x et x'. On note \hat{A}_{ψ} et $\hat{A}'_{\psi'}$ leurs invariants caractéristiques respectifs.

Alors (M,Ω,A) et (M',Ω',A') sont équivalents en (x,x') si et seulement si il existe un isomorphisme $\phi: g \to g'$ tel que

- 1) $\phi^*\mu' = \mu$ où ϕ^* désigne la transposée de ϕ .
- $2) \hat{A}_{\nu} = \hat{A}'_{\nu'}.$

Théorème 2. Soient ${\bf g}$ une algèbre de Lie, ${\bf G}$ le groupe de Lie connexe et simplement connexe correspondant, ${\bf \mu} \in {\bf g}^*$ et ${\bf g}_{{\bf \mu}}$ l'isotropie infinitésimale au point ${\bf \mu}$. On suppose que l'orbite du point ${\bf \mu}$ pour la représentation co-adjointe et régulière et réductive. On considère, si ${\bf p} = \dim {\bf g}_{{\bf \mu}}$, le système modèle $({\bf S}_{{\bf \mu}} = D(0,{\bf r}_1) \times ... \times D(0,{\bf r}_k) \times \hat{\bf \Omega} \times {\bf T}^r$, ${\bf \omega}_{{\bf o}}$, ${\bf q}_{{\bf i}}$, ${\bf e}_{{\bf i}}^2$) avec ${\bf k}+{\bf r}={\bf p}$ et ${\bf p}$ fonctions, de variables ${\bf q}_{{\bf i}}$ et ${\bf e}_{{\bf i}}^2$, soient ${\bf f}^1,...,{\bf f}^p$, nulles en 0, et dont les différentielles sont de rang ${\bf r}$ en 0.

Alors il existe une variété symplectique M de dimension 2n = m+p si m = dim G et une algèbre de Lie A de fonctions pour le crochet de Poisson, isomorphe à g, de manière que, en

un point $x_0 \in M$, les invariants caractéristiques de A soient définis par $f^1,...,f^p$ et que, si J désigne le moment du système ainsi défini, on ait $J(x_0) = \mu$.

II. DEMONSTRATION DU THEOREME 1.

Si (M, Ω, A) et (M', Ω', A') sont équivalents en (x,x'), il existe un difféomorphisme symplectique Ψ d'un voisinage ouvert U g-invariant de x sur un voisinage ouvert U', g'-invariant de x' qui applique x en x' et tel que le diagramme :

$$\begin{array}{c|c}
(U,x) & \xrightarrow{\Psi} & (U',x') \\
\downarrow & & \downarrow \\
J' & & \downarrow \\
g^* & \xrightarrow{\Psi^{-1}} & & \downarrow g'^*
\end{array}$$

soit commutatif.

Si on note $\phi = \Psi_{*/g}$, on a évidemment $\phi^*\mu' = \mu$, ce qui entraı̂ne que l'image par ϕ de l'isotropie infinitésimale g_{ν} au point μ est l'isotropie infinitésimale au point μ' . On a aussi $m'_{\nu} = \phi(m_{\nu})$, soit $\Psi(S_{\nu}) = S'_{\nu}$. En identifiant S_{ν} et S'_{ν} au modèle action-angle avec singularités et en utilisant le fait que rg Jx = rg J'x', on a 2).

. Supposons maintenant qu'il existe un isomorphisme $\phi: g \to g'$ tel que 1) et 2) soient vérifiés.

On identifie g et g' à l'aide de ϕ ce qui entraîne, en vertu de 1), que $g_{\nu} = g'_{\nu'}$. La relation 2) nous permet de trouver un difféomorphisme symplectique $\phi_{\nu} : (S_{\nu}^{'}, \Omega_{\nu}^{'}) \to (S'_{\nu'}, \Omega'_{\nu'})$ qui échange A_{ν} et $A'_{\nu'}$.

Soient X_{f^1} ,..., $X_{f^{2p}}$ une base de m_{μ} et (ϕ_1^{ℓ}) ,..., (ϕ_{ℓ}^{2p}) les flots associés. On définit alors deux applications différentiables :

$$\begin{split} \boldsymbol{\chi}_1 : \overline{\Omega} \times \boldsymbol{S}_{\boldsymbol{\mu}} &\to \boldsymbol{M} \\ (\boldsymbol{t}_1, ..., \boldsymbol{t}_{2p}, \boldsymbol{y}) &\mapsto \boldsymbol{\phi}_{\boldsymbol{t}_p}^1 \circ ... \circ \boldsymbol{\phi}_{\boldsymbol{t}_{2p}}^{2p} (\boldsymbol{y}) \end{split}$$

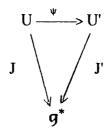
$$\begin{split} \boldsymbol{\chi}_2 : \overline{\Omega} \times S'_{\boldsymbol{\mathfrak{t}'}} &\to M' \\ (\boldsymbol{\mathfrak{t}_1}, \dots, \boldsymbol{\mathfrak{t}_{2p}}, \boldsymbol{y}) & \mapsto \boldsymbol{\varphi}_{\boldsymbol{\mathfrak{t}_1}}^1 \text{ o } \dots \text{ o } \boldsymbol{\varphi}_{\boldsymbol{\mathfrak{t}2p}}^{2p} \ (\boldsymbol{y'}) \end{split}$$

Les orbites respectives de x et x' pour l'action de g_{μ} étant compactes, \varkappa_1 et \varkappa_2 induisent deux difféomorphismes locaux respectivement de $\overline{\Omega} \times S_{\mu}$ sur un voisinage ouvert U, g-invariant, de x et de $\overline{\Omega} \times S'_{\mu}$ sur un voisinage ouvert U', g'-invariant, de x'.

On définit, alors, un difféomorphisme local $\Psi: U \to U'$ par

$$\Psi(\phi_{l_1}^1 \circ ... \circ \phi_{l_{2p}}^{2p}(y)) = \phi_{l_1}^1 \circ ... \circ \phi_{l_{2p}}^p(\phi_{l_1}(y)).$$

Il est clair que $\Psi(x)=x'$ et $\Psi_{/S_U}=\phi_{\nu}$ et que le diagramme suivant est commutatif :



Pour conclure, il suffit de montrer que Y est symplectique.

 Ψ est symplectique en restriction à S_{μ} .

Pour tout $x \in S_{\mu}$ $T_{x}M = T_{x}S_{\mu} \oplus m_{\mu}(x)$. Ceci entraîne que Ψ est symplectique le long de S_{μ} et donc (par équivariance) partout. \bullet

III. DEMONSTRATION DU THEOREME 2.

La donnée de $f^1,...,f^p$ définit sur le modèle $D(0,r_1)\times...\times D(0,r_k)\times \hat{\Omega}\times \mathbb{T}^r$ muni de coordonnées action-angle avec singularités $(e_1,\phi_i,\theta_i,q_i)$ et de la forme fondamentale

 $\omega_o = \sum_{i=1}^k e_i de_i \wedge d\phi_i + \sum_{j=1}^r dq_j \wedge d\theta_j \text{ , une algèbre abélienne de champs de vecteurs hamiltoniens à savoir <math>X_{f^1},...,X_{f^p}$. Comme les fibres sont compactes, ces champs sont complets et déterminent donc une action verticale hamiltonienne de $\mathbb{R}^p \simeq g_u$.

On considère la fibration principale $\Pi:G\to G.\mu$ de groupe structural G_{ν} . Soit G_{ν}^{o} la composante connexe de l'élément neutre. C'est en général un cylindre $\mathbb{T}^{h}\times\mathbb{R}^{p-h}$. Soit ϕ_{ν} une trivialisation locale de G au-dessus d'un disque D_{ν} centré en μ . On a :

$$\begin{split} \phi_{\boldsymbol{\nu}} \colon \boldsymbol{G}_{\boldsymbol{\nu}}^{\mathfrak{o}} \times \boldsymbol{D}_{\boldsymbol{\nu}} &\to \boldsymbol{\Pi}^{-1}(\boldsymbol{D}_{\boldsymbol{\nu}})^{\mathfrak{o}} \\ (\boldsymbol{g}, &\boldsymbol{\mu}') \: \: \boldsymbol{\iota} \! \! \to \boldsymbol{s}_{\boldsymbol{\nu}}(\boldsymbol{\mu}') \boldsymbol{g} \end{split}$$

où s_{μ} est une section locale du fibré $\Pi:G\to G.\mu$ et $\Pi^{-1}(D_{\mu})^o$ une composante connexe de $\Pi^{-1}(D_{\mu})$.

On considère la projection canonique $q:\mathbb{R}^p\to G_{\nu}^o$, on définit alors une projection $P:\mathbb{R}^p\times D_{\nu}\to \Pi^{-1}(D_{\nu})^o \text{ par } P(\widetilde{g},\mu')=s_{\nu}(\mu')q(\widetilde{g}). \ (\mathbb{R}^p\times D_{\nu},P) \text{ est le revêtement universel de } \Pi^{-1}(D_{\nu})^o.$

Les champs fondamentaux de l'action à gauche de G sur lui-même, c'est-à-dire les champs invariants à droite, se relèvent en une algèbre de Lie g de champs simplement transitive sur $\mathbb{R}^p \times D_{\mu}$. En particulier, g_{μ} se relève en une algèbre de Lie g_{μ} abélienne verticale pour la fibration $\tilde{\Pi}: \mathbb{R}^p \times D_{\mu} \to D_{\mu}$.

Considérons la projection $\tilde{P}: \mathbb{R}^p \times D_{\mu} \times S_{\mu} \Rightarrow D_{\mu} \times S_{\mu}$ définie par

$$\hat{P}(\tilde{g},\mu',e,\phi,q,\theta) = (\mu',\tilde{g}(e,\phi,q,\theta)).$$

Lemme III.1. L'action infinitésimale de \tilde{g} sur le facteur $\mathbb{R}^p \times D_{\mu}$ de $\mathbb{R}^p \times D_{\nu} \times S_{\mu}$ se projette par \tilde{P} en une action infinitésimale de g sur $M = D_{\nu} \times S_{\nu}$.

Preuve du lemme. Soient $(\tilde{g}_0, \mu_0, (e_0, \phi_0, q_0, \theta_0))$ et $(\tilde{g}'_0, \mu'_0, (e'_0, \phi'_0, q'_0, \theta'_0))$ se projetant par \tilde{P} au même point. Ceci veut dire que

$$\tilde{g}'_{0} = \tilde{g}_{0} \cdot y_{0} \text{ et } (e'_{0}, \phi'_{0}, q'_{0}, \theta'_{0}) = g^{-1}_{0} \cdot (e_{0}, \phi_{0}, q_{0}, \theta_{0})$$

Suite de la démonstration du théorème 2 :

On définit une projection $J: M \to g^*$ de la façon suivante : $f^1,...,f^p$ définissent une projection de S_{ψ} sur $g_{\psi}^* \simeq m_{\psi}^{\perp}$ soit J_{ψ} . On en déduit une projection $J: S_{\psi} \to \mu + m_{\psi}^{\perp}$ en posant $J(x) = \mu + J_{\psi}(x)$. On étend cette projection à M de la façon suivante : soit $\mu' = g.\mu$ ($g \in G$). On pose : $J(\mu', e, \phi, q, \theta) = g.J_{\psi}(e, \phi, q, \theta) + \mu'$ ce qui assure que J est équivariante du point de vue infinitésimal.

On définit maintenant une forme fondamentale ω de la façon suivante : on la définit le long de S_{ψ} , puis on l'étend par équivariance [relativement à l'action infinitésimale de G] . Pour cela, on observe que l'ensemble des champs de vecteurs fondamentaux associés aux éléments de m_{ψ} définit en tout point de $S_{\psi} \longrightarrow M$ un supplémentaire de TS_{ψ} . On va décider que ces 2 sous-espaces sont orthogonaux du point de vue symplectique, donc on a :

$$\left\{ \begin{array}{l} \omega/_{S_{\mu}} = \omega_{o} \ , \\ \omega(Y_{M}(m), Y_{M}'(m)) = < J(m), \, [Y, Y'] > Y, Y' \in m_{\mu} \end{array} \right.$$

On observe que la forme $\omega/_{S_{\mu}}$, ainsi définie le long de S_{ν} , est invariante pour les champs X_M , $X \in g_{\nu}$, puisque ceux-ci sont hamiltoniens, et que l'action de G_{ν} laisse invariantes les projections J et J_* .

Par suite, le long de chaque fibre $D_{\nu} \times \{e, \phi, q, \theta\}$, ω s'étend de manière que la forme obtenue soit équivariante.

Par construction, ω est de rang 2n le long de S_{ψ} , donc partout [par équivariance] . ω est fermée :

On observe que $d\omega |_{S_{\mu}} = 0$. Pour conclure il suffit de montrer que $d\omega$ est nulle le long de S_{μ} , donc [par équivariance] partout.

En vertu de ce qui précède, on a, pour tout $m \in S_u$:

$$T_m M = T_m S_{\mu} \oplus m_{\mu}(m)$$

Un calcul relativement simple permet d'affirmer que

$$\begin{split} &-d\omega_{m}(Y_{M}^{1}\;(m),\,Y_{M}^{2}\;(m),\,Y_{M}^{3}\;(m))=0 &\qquad \qquad \text{si }Y^{1},Y^{2},Y^{3}\in\,m_{\psi}\\ &-d\omega_{m}(Y_{M}^{1}\;(m),\,X_{m}\;,\,Y_{m})=0 &\qquad \qquad X_{m},\,Y_{m}\in\,T_{m}\,S_{\psi}\;\;\text{et }\;Y^{1}\in\,m_{\psi}\\ &-d\omega_{m}\;(X_{M}\;,Y_{M}^{1}\;(m),Y_{M}^{2}\;(m)=0 &\qquad X_{m}\in\,T_{m}S_{\psi}\;\;\text{et }\;Y^{1},Y^{2}\in\,m_{\psi}\;. \end{split}$$

Finalement (M,ω) est symplectique. Si, maintenant, X est un champ fondamental, dans g, comme $\mathfrak{Z}_\chi \omega = 0$, X est localement hamiltonien. Le long de S_ψ , l'orthogonal de TS_ψ est engendré par les champs fondamentaux de m_ψ . L'orthogonal de Ker J_* est l'espace des champs fondamentaux, donc les formes fermées duales des champs fondamentaux sont basiques le long de S_ψ , donc partout par équivariance. Il en résulte, D_ψ étant un disque, que les champs fondamentaux sont hamiltoniens et leurs hamiltoniens J-projetables.

On peut supposer que le "vrai" moment $J': M \to g^*$ de l'action de g coı̈ncide avec J en x_o , donc sur l'orbite de ce point. La transversale sur laquelle g_{μ} est le noyau de Ker J'_* coı̈ncide avec V_{μ} et sa préimage coı̈ncide avec S_{μ} . D'ailleurs J' et J coı̈ncident sur S_{μ} et finalement [par équivariance] partout . lacktriangle

BIBLIOGRAPHIE

- [A-M] R. ABRAHAM J.E. MARSDEN: Foundations of Mechanics, (2nd edition). Benjamin-Cummings, Reading 1978.
- [D-V] M. DUFLO M. VERGNE: Une propriété de la représentation co-adjointe d'une algèbre de Lie, C.R. Acad. Sci. Paris, série A, 268, 1969, 583-585.
- [E] H. ELIASSON: Hamiltonian system with Poisson commuting integrals, Thèse, Stockholm (1984).
- [G-P] V. GUILLEMIN A. POLLACK: Differential topology, Prentice-Hall, New Jersey, 1974.
- [G-S] V. GUILLEMIN S. STERNBERG: Convexity Proprieties of the Moment Mapping, Invent. Math. 67 (1982), 491-513.
- [M] C.M. MARLE: Normal Forms generalizing action-angle coordinates for Hamiltonian action of Lie group, Letters in Math. Phys. 7 (1983), p. 55-62.
- [M-F] MISCHENKO FOMENKO: Generalized Liouville method of integration of hamiltonian systems, Funct. Anal. and Appl. 12 (1978), p. 113-121.
- [Mo] P. MOLINO: Structure transverse aux orbites de la représentation co-adjointe: Le cas des orbites réductives. Sém. Géom. Diff. (1983-1984), Montpellier.
- [N] NEHORSEV: Action-angle variable and their generalizations, Trans. Moscow, Math. Soc. 26 (1972), p. 180-198.
- [S] I.M. SOURIAU: Structure des systèmes dynamiques, Paris, Dunod, 1970.
- [W] A. WEINSTEIN: The local structure of Poisson manifolds, J. of Diff. Geom. (1984).

M. BOUCETTA

Université des Sciences et Techniques du Languedoc
Place Eugène Bataillon
34060 MONTPELLIER
France