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FUUNDAMENTAL PROPERTIES OF INFINITE TREES

Bruno COURCELLE

UER de Mathématiques et Informatique, Université Bordeaux-1, 33405 Talence. France

Introduction

Infinite trees naturally arise in mathematical investigations on the semantics of
programming languages. They arise in essentially two ways: when one unloops or
unfolds a program undefinitely. One obtains then either a rree of execution paths
(infinite in general) in the case of a program written in an imperative language like
FORTRAN or an expression tree in the case of a program written in an applicative
language like LISP. In the latter case, the expression tree is usually infinite although

its value can be finitely computed in each case; this is possible by the use of
if-then—else as a base function (like the addition of integers) and not as a piece of
control structure. Once again, the infiniteness of the tree corresponds to the
infiniteness of the set of possible computations.

In both cases. the semantics of the program is completely defined by the associated
tree. Hence two programs are equivalent if the associated trees are the same (the
converse being not true). Roughlyv speaking, this allows to distinguish between the
equivalence of programs which is only due to the contro! structure (loops, recursive
calls, etc....) from the equivalence which also depends on the properties of the
.domains of computation and the given "base” functions on these domains.

It should be noted that these infinite trees are finitely defined. Hence we are
lead to try to decide whether two infinite trees defined in some finitary way are
equal.
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Two types of infinite trees will be considered: the regular trees which are defined
by unlooping FORTRAN-like program or flowcharts and the algebraic trees which
are defined by unfolding recursive program schemes more or less derived from
LISP programs.

We shall introduce operations on trees: the first-order substitution which corre-
sponds {roughly) to the sequential composition of flowcharts (by the operator; of
ALGOL) or to functional application tin the case of an applicative language). We
shall also introduce the second-order substitution which corresponds to the replace-
ment of a function symbol in an expression tree by some expression tree intended
to denote the corresponding function.

Here is a brief survey of the content of the paper which is intended to be a

synthesis of several aspects of infinite trees usually defined and studied separately

for different purposes: )
(1) Topological ti.e. metric) and order-theoretical properties of infinite trees are

investigated in parallel in order to enlighten similarities and differences.

(2) First- and second-order substitutions are investigated in the two above
frameworks.

(3) Regular trees. rational expressions defining them are studied. The concept
of an iterative theory, due to C.C. Elgot. is one of the possible algebraic frameworks
where to study infinite trees: the sct of regular trees forms the free iterative theory.,
Regular trees also arise as most general first-order unifiers in a generalized sens_c.

(4) Algebraic trees play a similar role with respect to second-order substitutions
as regular trees with respect to first-order ones. Their combinatorial properties are
sufliciently complicated to vyicld an open problem equivalent to the DPDA
equivalence problem.
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THE SOLUTIONS OF TWO STAR-HEIGHT PROBLEMS FOR
REGULAR TREES
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Introduction

Regular trees, i.e., trees which are either finite or infinite with only finitely many
distinct subtrees, play an important role in the theory of program schemes [hey
have been mvestigated by Cousineau [9], Jacob [16], Elgot et al. [13] and C ourcelle
[8]

Since they form the free iterative theory (generated by some ranked alphabet
F), they are denoted by certain iterative theory expressions (see [2, 13, 14})) These
iterative theory expressions include the rational expressions independently defined
by Cousmeau [9]. The relation between these two classes of expressions has been
shown by Courcelle [8].

All these expressions use an iteration operator (denoted T or *) very close to
Kleene's * for languages. They raise a star-height problem, i.e., the problem of
constructing a rational expression of minimal star-height which defines a given
regular tree

This problem is trivial for iterative theory expressions which use vector iteration
since every regular tree can be defined by such an expression with one iteration if
the tree 1s infinite and no iteration if it is finite [12]. It is not if iterative theory
expressions are restricted so as to use only scalar iteration. We solve it and we show
that the mimimal star-height is exactly the rank of the minimal graph of the tree
{the rank of a directed graph has been introduced by Eggan [10] for the study of
rational expressions defining languages and further investigated by McNaughton
[17. 18] and C ohen and Brzozowski [3-6]).

These expressions use an operation called composition, a typical case of which is
e..le. . e, which denotes the tree obtained by the substitution of
Val(e,). . Val(e,) at certain leaves of Val(¢) (we denote by Val(e) the tree
defined by the expression e).

The major contribution of Cousineau was to show that the operation of composi-
tion is dispensable und that the resulting expressions still generate all regular trees
(see [ 8] for a simple proof). These restricted expressions raise another star-height
problem for which we also give the solution. The minimal star-height in this sense
18 also obtained trom the consideration of the mimimal graph of the tree.
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For technical reasons, we shall work neither with iterative theory expressions
[2, 8, 13] nor with rational expressions [8. 9] but with slightly different expressions
(still called ranonal) which use the following constructions:

*, (e). 1terate Val(e) with respect to the variable v.

‘bl .., e ) substitute Val(e)),...,Val{e) for v,,..., v in
Val(e).

e

oy

Our results will be obtained for these rational expressions but they transfer easily
to the above mentioned expressions.

The proofs of our two results follow the same pattern that can be sketched as
follows.

A regular tree s manipulated by means of a finite pointed graph of which it is
the infinite unlooping. These graphs can be “structured’, in different ways, but each
‘structuring’ is characterized by an integer, its “depth’.

For each structuring of ‘depth’ s, one can construct a rational expession of
star-height n. Hence. a certain rational expression can be associated with a ‘structur-
ing’ of minimal "depth’ of the minimal pointed graph of the given tree.

It turns out that this rational expression is the right one, t.e., is of minimal
star-height among all those defining the given tree.

In order to prove this, we first define some syntactical manipulations performing
some simplifications of rational expressions. They transform a rational expression

into an equivalent one in normal form.

From the svntactical structuring of a minimal rational expression in normal form.
one can construct a ‘structuring’ of the minimal graph of the tree whose “depth’ s
not less than the star-height of the expression. And from the first construction one

gets an equality as required.
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