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S O M E R E C E N T R E S U L T S O N S Q U A R E F R E E W O R D S 

b y J e a n B E R S T E L <1 > 

"Fur die Entwicklung der logischen 

Wissenschaften wird es, oh ne Rucks icht 

ouf etwaige Anwendungen, von Bedeutung 

sein, ausgedehnte Felder fur Spekulation 

ùber schwierige Problème zu finden. 11  

Axel Thue, 1912. 

1 . I n t r o d u c t i o n . 

When Axel Thue wrote these lines in the introduction to his 1912 paper 

on squarefree words, he certainly did not feel as a theoretical computer 

scientist. During the past seventy years, there was an increasing interest 

in squarefree words and more generally in repetitions in words. However, 

A. Thue fs sentence seems still to hold : in some sense, he said that there 

is no reason to study squarefree words, excepted that it 1s a difficult 

question, and that it is of primary importance to investigate new domains. 

Seventy years later, these questions are no longer new, and one may ask if 

squarefree words served already. 

First, we observe that infinite squarefree, overlap-free or cube-free 

words indeed served as examples or counter-examples in several, quite different 

domains. In symbolic dynamics, they were introduced by Morse in 1921 [36] . 

Another use is in group theory, where an infinite square-free word is one 

(of the numerous) steps in disproving the Burnside conjecture (see Adjan [2]). 

Closer to computer science is Morse and Hedlund fs interpretation in relation 

1) Le présent texte reproduit avec sa permission l'article de l fauteur au 

"Symposium for theoretical aspect of Computer Science (STACS f84). N.D.E. 
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with chess [37]. We also mention applications to formal language theory : 
Brzozowsky, K. Culik II and Gabriellian [7] use squarefree words in 
connection with noncounting languages, J. Goldstine uses the Morse sequence 
to s h o w a property of some family of languages [22] . See also Shyr [52], 
and Reutenauer [43]. All these are cases where repetition-free words served 
as explicit examples. In other cases, questions about these words led to 
new insights in other domains, such as for DOL languages and for context-
free languages. At the present time, the set of result on repetitions cons­
titutes a topic in combinatorics on words. 

This paper gives a survey of some recent results concerning squarefree 
words and related topics. In the past years, the interest in this topic 
was indeed growing, and a number of results are now available. An account of 
basic results may be found in Salomaa [45,46] and in Lothaire [30] . For 
earlier work, see also Hedlund's paper [25] . The more general concept of 
unavoidable pattern is introduced in Bean, Ehrenfeucht, McNulty [4] . 
Part 2 deals with powers and repetitions, part 3 with language-theoretic 
results, part 4 gives the estimations . on growth, part 5 describes results 
on morphisms. 

2 . P o w e r s a n d r e p e t i t i o n s . 

A square is a word of the form xx, with x a nonempty word. Cubes and 
k-th powers are defined accordingly. A word is squarefree if none of his 
factors (in the sense of Lothaire [30] , or subwords) is a square. A word 
is overlap-free if it contains no factor of the form xuxux, with x nonempty. 
The concept of k-th power free words where k implicitly is a positive integer, 
can be extendee to rational numbers as follows : if r = n + s is a rational 
positive number with n positive integer and 0 <s<1, then an r-th power is 
a word of the form 

n i 
u u 

with exactly n consecutive u ! s and one left factor u 1 of u satisfying 

l u ' l / l u l = s. 
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The The-Morse sequence 

m = 011010011001011010010110... 
contains squares and is overlap-free (Thue [54] , Morse [36]), the word 

t = abcacbabcba... 

derived from m by the inverse morphism a — > 011, b —> 01 , c — > 0 is 
square-free (Thue [55]). The Fibonacci word 

f = abaababaabaababaabab... 

containe cubes but is 4-th power free (see e.g. Karhumaki [27]). Many other 
special infinite words with some repetition property are known. Usually, they 
are constructed by iterating morphisms or by tag systems in the sense of 
Minsky [35] . (See also Pansiot's paper in the STACS f84 proceedings). Let us mention 
that some words may also be defined by an explicit description of the positions 
of the letters occuring in them. This holds for the Thue-Morse sequence, since 
the i-th letter can be shown to be 0 or 1 according to the number of "1" in 
the binary expansion of i being even or odd. A more systematic treatement 
of these descriptions is given in Christol, Kamae, Mendes-France, Rauzy [10] . 
One of the properties of these generalized sequences is given by Cerny [9] . 
He defines, for a given fixed word w over {0,1} an infinite word by setting 
the i-th letter to 0 or to 1 when the number of occurences of w in the 
binary expansion of i is even or is odd. Thus the original Thue-Morse sequence 
is the special case where w=1. Cerny shows that the infinite word that is 
obtained in this manner has no factors of the form 

(xu) X 

Iw l 
where k=2* 1 , and x is nonempty. 

Squares are unavoidable over two letters, and they are avoidable over 
three letters. Here "unavoidable 1 1 means that every long enough word has 
a square. On the contrary, avoidable means that there are infinite square-
free words. So one may ask for the minimal avoidable repetition or (almost) 
equivalently for the maximal unavoidable repetition over a fixed k letter 
alphabet. Denote the maximal unavoidable repetition over k letters by s(k). 

23 



If s(k)=r, then every long enough word has a r-th power, and there is 
an infinite word with no factor of the form wa with w an r-th power and a 
the first letter of w. The Thue-Morse sequence shows that s(2)=2 (since 
squares are unavoidable over 2 letters). Over three letters, squares are 
avoidable. So s(3)<2. It has been shown by F. Dejean [15] that s(3)=7/4. 
(Indeed, every word over three letters of length 39 contains a 7/4th power !) 
For four letters, the lower bound s(4) > 7/5 has been verified by F. Dejean 
and her conjecture that this bound is sharp has been proved by Pansiot [40] . 
For more than four letters, the precise value of s(k) is unknown. F. Dejan 
shows that s(k) > k/(k-1) and conjectures that this is the right value. 

The interesting question of constructing efficient algorithms for 
testing whether a word is squarefree was considered by several authors. 
The naive algorithm derived from the pattern matching algorithm is in time 

2 
0(n ) for words of length n, The first significant improvement was made by 
Main, Lorentz [32] who proposed an 0(nlog n) algorithm for testing square-
freeness.A linear algorithm, based on the suffix tree of Weiner [56] and 
McCreight [34] is given by Crochemore [13] . (See also Slisenko [53]). 

Another related problem is to determine ALL repetitions in a word. 
Considering for instance the Fibonacci word (a finite left factor of it), 
one cas see that there are "many" repetitions, even if one restricts to 
maximal repetitions, i.e. those which cannot be extended, neither to the 
left nor to the right : there are 0(nlog n) in this left factor of length n. 

THEOREM. - There is an algorithm to compute all powers in a word of length 

n in time 0(n log n ) . 

There are at least three different proofs of this result. By alphabetic 
order, Apostolico, Preparata [3] give an algorithm using suffix trees. 
Crochemore [11] uses partitioning in his algorithm. Main and Lorentz 1 

paper [33] contains an extension of the divide-and-conquer method of their 
previous paper. 
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There still remain several open problems. First, to give linear 
algorithms for testing cubefreeness etc. Then, to give efficient algo­
rithms (if they exist) for testing abelian squarefreeness. 

3. T h e l a n g u a g e o f s q u a r e f r e e w o r d s . 

The study of the language of squarefree words has produced new insights 
in formal language theory. Indeed, the special form of words of the com­
plement of this language implies that standard techniques cannot be applied. 

More precisely, it is a straightforward consequence of the pumping lemma 
that the set of squarefree words over a fixed alphabet is not context-free. 
Consider the complement of this set, that is the language of words containing 
a square. This set is not rational. However, the standard pumping technique 
obviously fails in this case, since any strict power of a word is in the 
language. The question whether the language of words containing powers 
is context-free was asked by Autebert, Beauquier, Boasson, Nivat [1]. 
The answer is no : 

THEOREM. - The set of words containing a square is not context-free. 

Two different proofs of this result exist, one by Ehrenfeucht, Rozenberg [20] 
(also [19]) , and the other one by Ross and Winklmann [44] . The proofs are 
quite different, the first shows that there is no EOL-language separating 
squarefree words from the set of words containing squares, the second proof 
uses an argument on pushdown automata. 

The second technique is more developed in the socalled Interchange 
Lemma for context-free languages of Ogden, Ross and Winklmann [38] . This 
lemma was used by Main in the proof of the following result. 

THEOREM (Main [31]). - The set of words over an alphabet of at least 16 

letters containing an abelian square is not context-free. 
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An abelian square is a word uv, such that v is a permutation of u. 
It is known that there exist infinite words without abelian squares over 
a five letter alphabet (Pleasants [41]). It is easily seen by inspection 
that any word of length 8 over 3 letter contains an abelian square. It 
is open whether there is an infinite word without abelian square over a 
four letter alphabet. 

OPEN PROBLEMS : There are several questions which seem still to be open, 
concerning the language of words containing squares. A conjecture by 
Ehrenfeucht, Haussler and Rozenberg [16] says that any context-free lan­
guage which contains all square-containing words is cofinite. Another 
question concerns transformations that maintain the separation of square-
free and square-containing words : squarefree morphisms have this property, 
but also the reversal function. Are there other transformations of this 
kind ? The set of words containing cubes presumably is also noncontext-free. 
The same should hold for the set of words containing overlapping factors. 

4 . H o w m a n y w o r d s a r e s q u a r e f r e e ? 

There is an interesting question which remained open for some time 
and which was solved recently : are there "many" squarefree words ? 

Consider a three letter alphabet. Since there is some difficulty 
involved with constructing squarefree words, one may suppose that there 
are only "few"" such words. In other terms, the number c(n) of squarefree 
words of length n on three letters may grow as a polynomial. The following 
table gives the first values of c(n), they are token from Brandenburg [5] 
who gives values up to 24 : 

n 1 2 3 4 5 6 7 8 9 10 1 1 12 13 14 

c(n) 3 6 12 18 30 42 60 78 108 144 204 264 342 456 
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They seem to grow rather slowly. However, there is a surprising result due 
to Brandenburg showing that the number c(n) grows exponentially : 

THEOREM (Brandenburg [5] ) . - Let c(n) be the number of squarefree words 

of length n on a three letter alphabet. Then 

6 * c* c(n) 4 6 * 

where ^ 1. 032 and ^ 1 .38. 

The proof goes approximatively as follows. Take any squarefree word 
of length k over three letter a,b,c and replace any letter by itself and 

k 
by a primed copy in all possible ways. This gives exactly 2 squarefree 
words of length k over a six letter alphabet a,a !,b,b T,c,c f. Next map 
these words back into a three letter alphabet by a morphism that preserves 
squarefreeness. Such a morphism exists. Each of the six letters is mapped 
onto a word of length 22. Moreover, the morphism is injective, and conse-

k 
quently there are at least 2 squarefree words of length 22k over a three 
letter alphabet. Since 

2 ( 1 / 2 2 ) = 1.032... 

this gives the lower bound. The upper bound is obtained by observing that 
each squarefree word w can be extended to the right by at most c(n) words 
of length n. Thus c(n+m) ^ c(n) + c(m), from which the conclusion follows 
by taking n=22. 

There still remains a gap between the upper and the lower bounds, but 
the very precise value is not so important. There is also a similar proof of 
the result by Brinkhuis [6]. 

An analoguous proof shows that the number of cubefree words over a 
two letter alphabet also grows exponentially. In contrast, there is a 
very interesting polynomial bound on the number of overlap-free words : 
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THEOREM (Restivo, Salemi [42]). - There is a constant C such that the 

number p(n) of overlap-free words of length n over a two letter 

alphabet satisfies 

p(n) v< C . n l o S 1 5 

The proof is based on a clever factorization of overlap-free words 
into factors which are the initial factors of length 4 n of the two 
letter Thue-Morse sequence and those obtained by exchanging a and b. 
Each overlap-free word is shown to have a unique factorization of this 
kind. A computation of all possible factorizations for words of length 
n then gives the upper bound. 

It remains to investigate the tree of squarefree words in more detail. 
This tree is obtained by assigning a node to each squarefree word and by 
connecting the node of a word to the node for each extension by a letter 
added on the right. Since there are infinitely many squarefree words, 
this tree is infinite. Therefore, there are infinite paths in it 
(Konig's lemma). But there are also finite branches in it, as for 
example abacaba. These correspond to maximal squarefree words which cannot 
be extended by any of the three letters. These right-maximal squarefree 
words were described by Li [29] : they have exactly the expected form 
namely (over three letters) : 

wvuabuacvuabua 

provided they are squarefree. They are derived from the simplest of them, 
abacaba, by inserting a word u before the a fs, a word v before the uabua's 
and w in front. 

It was shown by Kakutani (see [21]) that there are uncountably many 
infinite squarefree words over three letters. So one may ask "where" these words 
are in the tree : more precisely, is the tree uniform in some sense ? One 
could imagine indeed that there are infinite paths in the tree where all 
leaving paths are finite, yielding a "sparse" infinite branch. That this 
cannot happen was proved by Shelton and Soni. 
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TEEORSX (Snelton., Soni i.50,51]-. - The set of infinite squarefr-a words 

v v e . : :hree letters is perfect. 

- l i i i statement: means that if there is an ivifi-iite word going thrc-.gh 
a node of the tree, then this infinite word w i l l eventually split into t w o 

(and therefore into infinits±y many infinite tquarefree words. There is :.• 
related result which says that one must n o : walk too much in the tree t o 

find an infinite path. 

THEOREM (Shelton, Soni [51]). - There is a constants such that if u is a 
squarefree finite word on a three letter alphabet of length n and if 

3/2 
u can be extended to a squarefree word uv of length n + K*n , 
then u can be extended to an infinite squarefree word. 

5. S q u a r e f r e e m o r p h i s m s . 

The first, and up to now the only technique to construct squarefree 
words which was systematically investigated are morphisms. The method goes 
as follows. First, a endomorphism is iterated, giving an infinite set of 
words (which can also be considered as an infinite word). Then a second 
morphism is applied to the set (infinite word). If everything is conve­
niently choosen, the result is squarefree. 

This technique was used already by Axel Thue [55] to compute the first 
infinite squarefree word. Of course, there exist infinite squarefree words 
which cannot be constructed this way, since there are uncountably many 
of these words. However, the method still is very useful. The sets of words 
squarefree or not, obtained by morphism, have interesting combinatorial 
properties. Among these, their ! ,subword complexity11. See Ehrenfeucht et al. 
[17,18,19] . 

One of the basic questions asked in this context is whether a given 

morphism ^ ^ 
h : A — > B 
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is squarefree. By definition, h is a squarefree morphism if h preserves 
squarefree words, i.e. if the image h(w) is a squarefree word whenever w 
is squarefree. 

Examples : The morphism of Thue [55] 

h(a) = abcab , h(b) = acabcb , h(c) = acbeacb 
is squarefree. The following morphism (see Hall [23] ,I^trail [26] 

h(a) = abc , h(b) = ac , h(c) = a 
is not squarefree since h(abc) = abcacabc. 

The last morphism is too "simple" to be squarefree. Indeed, A. Carpi [8] 
has shown that a squarefree morphism over three letters must have size at 
least 18. Here the size is the sum of the lengths of the images of the 
letters. Thue's morphism given above has size 18 , so it is (already) 
optimal. The second morphism has only size 6. 

Several people have investigated squarefreeness of morphisms, and have 
derived conditions that ensure that they are. The most precise description 
is that given by Crochemore : 

THEOREM (Crochemore [12,13]). - Let h:A — > B be a morphism, with A 
having at least three letters. Then h is squarefree iff the two 

following conditions hold : 

i) h(x) is squarefree for squarefree words x in A of length 3 ; 
ii) No h(a) , for a in k, contains a internal presquare. 

Roughly speaking, a presquare is a factor u of h(a) such that h(ax) 
or h(xa) contains the square uu for some word x for which ax resp. xa 
is itself squarefree. Another condition is given in Ehrenfeucht, 
Rozenberg [19]. 
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The theorem implies that it is decidable whether a morphism is squarefree : 
it suffices to test squarefreeness for long enough words. The following bound 
is derived by Crochemore from his theorem. For an nonerasing morphism 
h : A > B , define 

m(h) = min { |h(a) | : a in A } 
M(h) = max { |h(a)| : a in A } 

PROPOSITION (Crochemore [ibid.]). - Let h : A * — > B* be a morphism. Then 

h is squarefree iff h(x) is squarefree for all squarefree words x of 
length k = max {3, |"(M(h)-3) /m(h)] + 1}. 

Examples show that this bound is sharp. For uniform morphisms, i.e. when 
M(h) = m(h), the bound is 3. The nicest corollary of Crochemore's theorem 
is perhaps the following 

& k 
THEOREM (Crochemore [ibid.]). - Let h : A > B be a morphism, with A 

a three letter alphabet. Then h is squarefree iff h(x) is squarefree 

for all words x of lengh 5. 

Such an explicit bound which does not depend on the morphism cannot 
exist for bigger alphabets. Crochemore gives counterexamples. The results 
for higher powers than 2 are not yet so complete. I quote two of them 
which are particularly beautiful. The first concerns cube-free words 
generated by iterating a morphism over a two letter alphabet. 

k k 
THEOREM (Karhumaki [27]). - Let h : A > A be a morphism over a two 

letter alphabet, such that h(a) starts with an a. Then the infinite 

word h(A)(a) is cube-free iff the tenth power h ^ ( a ) is cube-free. 

Another result concerns power-free morphisms. A morphism h is called 
power-free if for all k > 2, h(w) is k-th power free for all k-th power 
free words w. 
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* * 
THEOREM (Leconte [28]). - Let h : A > B be a morphism. Then h is 

power-free iff h is squarefree and if h(aa) is cube-free for each 

letter a in A. 

The situation for overlap-free morphisms is different : there are 
(essentially) only two such morphisms ! A more general result was proved 
by Seebold. Recall first that the socalled Morse morphism (rediscovered 
independently by Morse [36] after Thue [54]) is defined by : 

m(a) = ab ; m(b) = ba. 

Pansiot [39] has observed that the only morphisms generating the Thue-
Morse word are powers of m. This was extended by Seebold to : 

THEOREM (Seebold [47,48,49]). - Let x be an infinite overlap-free word 

over the alphabet {a,b} that is generated by iterating some morphism 

h. Then h is a power of m. 

The following is proved by Harju : 

THEOREM (Harju [24]). - If h : {a,b} > {a,b} is an overlap-free 

morphism, then either h is a power of m, or h is the product of the 

morphism that exchanges a and b and of a power of m. 

This shows that there are only very few non overlapping morphisms over 
two letters. Harju characterizes also cyclically non overlapping words and 
morphisms and asks for a similar characterization of cyclically square-free 
words. 

•k'k'k-k-k 

I gratefully acknowledge helpful discussions with M. Crochemore. 
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