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THE NILPOTENT MODEL FOR A FUNCTION SPACE

by C. WATKISS

INTRODUCTION, = The purpose of these notes is to describe Sullivan's
construction of a nilpotent model for a function space Y. The motivating
idea is to assume the existence of a cocommutative chain theory from
topological spaces to coalgebras (which, by abuse of notation, we write
as X X). One then simply translates the universal properties of Y*
into algebraic universal properties, and solves the corresponding

algebraic problem.

For example, there is an evaluation map Y¥x x $ v such that,
given any continuous map Z x X €, Y there exists a unique map

¢ : Z>YX such that the diagram

Yxx & v

() ¢ x1 ,I :
e

ZxX

comnutes. Given a coalgebra X (corresponding to the space X) and a
nilpotent algebra . (corresponding to Y) we comstruct a nilpotent
algebra &/(#,X) which corresponds to the function space ‘e +, and

satisfies a dual algebraic universal property.
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The nilpotent model for a function space

Unfortunately, the function space Y* is in general not connected.
This fact is reflected algebraically by the existence of elements of
negative degree in &/ (# ,X). In effect, since the geometrical signifi-
cance of these generators is not clear, we calculate the nilpotent model
for a connected component of Gl given a map £ : X > Y ; the f-component
of Y* satisfies the universal property but for any pointed space (Z; »)
and map e : 2 x X~ Y whose restriction to # x X is simply f, then there
1s a unique pointed map (Z,* ) $ (Yx,f) such that the above diagram (z)
comnutes. In the algebraic situation the map f : X + Y corresponds to an
algebra homomorphism p: & > X" ; we construct a nilpotent algebra #(p,X)
which is a nilpotent model for the f-component of the function space ‘4 -
and which satisfies an analogous universal property. The essential ingredient
in the proof that #( 0,X) is indeed a nilpotent model for the f-coponent
of Y is careful study of the dependence of the algebre %#(p,X) on a change
of X or # by a map inducing an isomorphism on(co)homology. It is this

algebraic study that we present here.

0. NOTATION .

All algebras, coalgebras, etc. will be over a field k of charac—
teristic 0. We abbreviate commutative differential graded algebra by CDGA
and cocommutative differential graded coalgebra by CDGC. (CDGA's are not

necessarily positively graded : A = (Ap)pez with d : AP » APH. On the
other hand a CDGC is positively graded : C = (C with 3: C_~»> C .

GC p y 8 ( p)p 5 o > p-1
For convenience we raise degrees by cP = C__so that C = (Cp) <o is

negatively graded and 3: Cp Cp+] ) If A is CDGA and C a CDGC then
Hom(C,A) is a CDGA with the usual notations : Homp(C JA) = H Hom(C Al p),

om(¢>) =d, o ¢+ (-l)|¢|+] o 3, L. Hom(A ,m ).Hom(C k) is denoted C™
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The nilpotent model for a function space

The free CGA on a graded vector space Q is denoted 1Q.
A CDGA A is nilpotent if # is free as a CGA (M = AQn) and the space

of generators QM has a well-ordered basis {xa} such that dxu is a

polynomial in the X, with B «a

A CDGA or CDGC - map f : A+ B is called a quasi-isomorphism if
H(f) : H@Q) 3 H(B) is an isomorphism.

1. THE MODEL FOR A FUNCTION SPACE.

Suppose X is a CDGC and A = AQM a nilpotent CDGA (with QM
strictly positively graded). Then there is a CDGA & = & ( _# ,X) and
a morphism
€ : M - Hom(X, )
with the universal property that for any CDGA Z and map e :#-+ Hom(X,Z)

there is a unique map & 4 Z such that the diagram

M £ %Hom(xsd)

e Hom(X,¢)

Hom(X,2)

commutes. In fact, let ¥ = A(QM ® X) as a CGA. Define the map ¢ on gene-
retors Q, by

e(y) x) = y© x, yeQM , xeX.
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The nilpotent model for a function space

The differential in & is chosen precisely so that ¢ is a map

of CDGA's : Eodﬂl = dHom o € forces the definition
?M(y’@ 5 =e(dgy ) (}) + (-l)IY|e(y)(3xx).

This differential is extended to a degree A derivation in & : it is
~

trivial to check that %ﬂ ° %ﬂ = 0 and the universal property is

satisfied.

1.1. REMARKS. 1. In general &/ need not be positively graded (since
X is negatively graded).
2. & 1is nilpotent.

Now suppose p:.# -~ X‘is a CDGA map. By the universal property
for ¢, there is a unique augmentation

ev, : o (MLX) >k
such that the diagram

€

M > Hom(X, &)
pl L Hom(X,evp)
& Hom(X,k)

commutes. Let Ip € A be the ideal generated by o <° ( the elements of
negative degree), don Ker ev , and dQ( (#° N Ker evp). Note that Ip is d
. <~1 <o . -1 ) .

is d, -stable : dd(d Yesd , and «.:Id(.z’ e o N ker evp (since

ev, is a CDGA map).

1.2. DEFINITION . - & (p,X) = (A ,X)/I, .

1.3. LEMMA. - @(p,X) is a nilpotent CDGA.
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The nilpotent model for a function space

PROOF. - To see that & is free, we describe IS differently. Let QA

denote the space of generators for & obtained by replacing each degree O
generator Yby £ - evP'f. (Note that we still have.sx’é.ﬂAQA and this

doesn't affect the nilpotence of f ). Let K ¢ Q, be the graded subspace
defined by

& f'QAp p< o
l QA(QA) p=1
0 p>1

and let IIQ 2 Q> QA/K = QB be the projection. Then Z= AQg and under
this isomorphism I : & > @ is just AHQ ¢ A QA-> AQB . The nilpotence

of # is then an easy argument.

1.4 REMARK, - Let € = Hom(X,TI) o € : - # > Hom(X,#). Then  satisfies
the following universal property for any augmented CDGA $ k and morphism
e : M/ ——> Hom(X,Z) such that the diagram

M ¢ », Hom(X.Z)

Hom(X,a)

%*
X

commutes, there exists a unique map ¢ : # —> Z such that

Hom(X, &)

Hom(X,2) .
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The nilpotent model for a function space

1.5 NATURALITY IN # . Suppose X fixed and ¢ : .A?o > AWI a map of

nilpotent algebras. By the universal property there exists a unique map. |
by 1 AMUD) > A (M)

such that the diagram

A, ° > HowX, & (M X))
¢}’ Hom(X, ¢ ot )
v
M, — Hom(X, A (M| 5X))
€
1

commutes.

Suppose now that JW]-———a X* . The universal property again

implies that evp o %”,= eVp o so that ?&( is augmentation preservity
It follows that ¢ of (1 po¢) C.Ip , and Oy therefore induces a CDGA map-

‘g’ B (po$,X) —> B(p,X).
Clearly in the situation

we obtain a commutative diagram

2 (p4,X) =4 Q(pw X)
(;:Z;\\\w ¢////
g(p,x)

78



The nilpotent model for a function space

Po 4
. 1
As an example, a pair of maps ///_.__7 )& ._____>J/l
induces
'l DO@OI »* » m X
(posp]) : s/”o ® . 1 — X ® X —_— 35X

Let jv : A?v '*w7; 8 wa » v=o0,1 , be the inclusions. The following

result is immediate.

1.6. PROPOSITION. - The maps
(J ) : Q(p X) - Q((poap]);x): V= 0,1 ,
yield a natural zsomorphzsm
(Gg Uiy ) B0K) e B, > #(p;,0,),%).
P
1.7 NATURALITY IN X. - Suppose £ : X_~ X, is a CDGC map and .4 > X a
CDGA map. Just as above, the universal property implies that f induces
«
%<
Moreover, in the situation Xo -—£~? X] ———§—§ X2 ,.1?~117X2 ,

there is a commutative diagram

Q(f*g"p,X) s B(g p.X)

(sf\ /
# (D ’XZ) .

1.8. HOMOTOPY INVARTANCE. The crucial results are the following.

THEOREM A. - Given ./IIO——“’—y M, —2, x* with ¢ a quasi—iso, then
b B (po $,X) —> B (p,X)

18 a quast-iso.
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The nilpotent model for function space

f

THEOREM B. - Given M —» X"; and a quasi—iso X —X%, , then

fg : 2 (ftp,xo)»-—»g(p,xl) 18 a quasi-1so.

These theorems permit the following definition : if f : X > Y

1s a morphlsm,ofNCDQC:s;‘choose a mnimal moael p : .4 > Y&

1.9 DEFINITION. - QZ(Y",f) = B{p,X).

It follows that the homotopy type of # (Y,f) depends only on
the homotopy type of f.

2. PROOF OF THEOREM A.

We begin by studying a particularly easy special case of the
theorem, which turns out to be the fundamental step in the proof
(and at the same time gives a nice illustration of the construction

of #) : suppose J?] = A(x,dx), a contractible CDGA with |x| = n > o,

¢
Then of course k - ,4?1 is a quasi-iso. On the other hand Z(k ~ X*,X) =k,
since &(k,X) = AX is negatively graded. If the theorem is to be true
then for any map p : /Il = A(x,dx) + X* the algebra % (p,X) must be

acyclic. In fact the theorem will follow immediately from this.

2.1. LEMMA. - Let M = A(x,dx) with |x| = n > o. Then for any X and
awyy p 2 M > x* the algebra RB(p,X) is contractible.

PROOF. - Choose a basis {: for each X" . Then a basis for the
generating space of & = & {p,X) in dimension p is given by
{x8 kg'“ , dx ® tg'“"} . The differential d , is entirely linear

given by :
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The nilpotent model for a function space

dy x8FF™ =ax 0P+ -nD" x 0 FPT"
(2.2) p~n-1

Pty D" ax 0 ofP

dy (dx 8% 6

Notice that there are no generators in degrees > n+] because X
is negatively graded.
To obtain QB we first kill all of the negative generators. We

next replace the degree O generators by constants.
-n -n
8 =
x {a ev, (x O;a )
dx Gzén-l = evp(dx o{;n-l)

Finally we kill the differentials of the degree o generators :

dx @E;n = ¢-D™ x e ] T

-n-1
dx @ 9 = 0.
x B

It follows that the generators Qg of % are given by

x) 6 x ™ per

((x)  X*™) @ ((ax) 8 X’ ™) | 1 < p < o+,

L
o
i

(dx) ® X° , p = n+l,

0 , otherwise.

Moreover the differential is still given by. (2.2).
To show that & is contractible we decompose the generators

Qg‘% Rg ® Sg so that

B.2) ¢ : R sg”, sP > 0.

To do this we first decompose X! =B e u' ockin such a way that
+
B:Cr%Brl,Br-—vo,Hrao.

r ., .
(H" is the (cd~homology and BY the (co)boundaries in degree r).
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The nilpotent model for a function space

We then put

R§=(x)®Xp_n, l<spsn,
Sg = (dx) ® Xp-n-] » 2& P g ntl,

The isomorphism

p p < p
RB(B SB———->QB

is defined to be the inclusion on Rg , (dx) ® Bp—n-l and
p—n-1

8 of (dx) ® Cp-n-l

(dx) 6 Hp—n—l, while a generator dx G§

is sent to

dx @Eé"“'l + (D% x 0 ofP0!

B

Property (2.3) is now clear in virtue of the definition of the differential
in (2.2).

2.4 COROLLARY. - For any contraticble CDGA M and any o : .M > x*,
B (p,X) is contractible.

PROOF. - This follows from lemma 2.1 by taking direct limits.

2.5. COROLLARY. - Theorem A holds in the special case that Ay =M B D
0

where b 18 contractible and o : //[O —_ //1 18 the inelusion.

PROOF. - Apply Prop. 1.6 and Cor. 2.4.

2.6. COROLLARY. - It ig suffictent to prove theorem of unite case that

18 minimal.
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The nilpotent model for a function space

PROOF. - By a theorem of Sullivan, any (positively graded) nilpotent
~ ~

algebra decomposes in the form .A?o %z .4?0 & b , where M, is the

minimal model of M”'o » b is contractible and the isomorphism is

an isomorphism of CDGA's. Then apply Cor. 2.5 and naturality.

2.7. PROOF OF THEOREM A : By Cor. 2.6, we can assume that 4::%{0__,/(1
is a minimal model of J”]. But .A?l ¥ M, 9 b, so uniqueness of
minimal models gives a homotopy-commutative diagram

o M,

Mo —2

0
M, ® b

This means that there is a CDGA map ¢ : _J?; > .Aﬂ and a strictly

commutative diagram

By Cor. 2.5 each of j and (i]) is a quasi-iso, so by naturality Q%a

2 2

is a quasi-iso. Again by Cor. 2.5 ; (io%? is a quasi-iso, so naturality in

the upper triangle finally implies that ¢_ is a quasi-iso.

2
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p
0 B
2.8 COROLLARY. - If #/ ———2 X are homotopic then R (0 »X)
R
1
and B (p],X) are homotopy equivalent.
‘ I .
PROOF. - A homotopy MM B, m Y m
fo 3
Py
x¥
yields quasi-isos @ (p »X) ——(-—T-—-* B(8,X) e— ga(p 3X) .
°R (i)g

3, PROOF OF THEOREM B,

Recall that # is a (pos. graded) nilpotent CDGA, f : X > x]

a quasi-iso of CDGC's and p : A =~ Xl a CDGA map. We must show that
»
fg + B(£o0,X ) —> B(0,X))

is a quasi-iso. We give an outline of the proof here.

The idea is to use the nilpotence of 4 to give and inductive
proof. Choose a basis {y } for the generators QM of M such that
./I{ (ya_)e MM"” the sub-DGA generated by {yB B<a’§ . U51ng
1
//lsac_.: ——> X, we construct CDGA's (4 , )sa and (@ 1)\<a

1
with f inducing

(f‘@)Sa ( go)«x (g])éa

We prove by inducing on &« that (f,@ )<a is a quasi-iso.
~

The first step is to decompose the generators (QJ{ )< ® X. as
((QJ” )<a
Xl in the form Hi ® Bi ® Ci (as in lemme 2.1) so that the induced map
H — H is simply H(f) : H(Xo) > H(X]).Just as in lemme 2.1, this leads
to a decomposition

8 X.) ® ((y;) 6 X.). The next step is to decompose X and
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The nilpotent model for a function space

(%) x (gai) @ ARiO Asi , 1 =0,1,

1°La <o
where, denoting |%~| = n,
P = -n+p
Ri (}’d) 0 Hi s P 2 ] ’

-n+]
j(ya)eci ,p=1,

st =
l (v) @B TP 8 (y)8c" P ,p>1.
With these identifications (fga )501 is of the form
(f.@ )<a ® AH(E) ® 4% : (A o)<a ® AR ] AS,

)

(B )., ©® ARy ® AS.

Each l\.Si is evidently acyclic, while AH(f) : I\Ro =, AR] is an iso-
morphism and, by the inductive hypothesis ,

(fg) (2 )

<q : o’<a (Ql)m

is a quasi-iso. It follows easily that (f‘@ )<a is a quasi-iso ,
A

and this completes the induction.
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