Manabu Harada
 Applications of Factor Categories to Completely Indecomposable Modules

Publications du Département de Mathématiques de Lyon, 1974, tome 11, fascicule 2 , p. 19-104
http://www.numdam.org/item?id=PDML_1974__11_2_19_0
© Université de Lyon, 1974, tous droits réservés.
L'accès aux archives de la série «Publications du Département de mathématiques de Lyon » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

APPLICATIONS OF FACTOR CATEGORIES TO COMPLETELY
INDECOMPOSABLE MODULES
by Manabu HARADA

In this note we assume the reader is familiar to elementary properties of rings and modules. In some sense we can understand that the theory of categories is a generalization of the theory of rings. Especially, additive categories A have very similar properties to rings from their definitions.

From this point of view, we shall define an ideal C in A and a factor category $\underline{A} / \underline{C}$ of \underline{A} with respect to \underline{C} (see Chapter 1), which is analogous to factor modules or rings. The purpose of this lecture is to apply those factor categories to completely indecomposable modules.

First, we take an artinian ring R. The radical $J(R)$ of R is a very important tool to study structures of R. Since $R / J(R)$ is a semi-simple and artinian ring, we know useful properties of $R / J(R)$. In order to study structures of R, we contrive to lift those properties to R. The idea in this note is closely related to the above situation.

Let R be a ring with identity and $\left\{M_{\alpha}\right\}_{I}$ a set of completely indecomposable right R-modules. In Chapter 1 we define the induced category A from $\left\{M_{\alpha}\right\}$, which is a full sub-additive category in the category M_{R} of all right R-modules and define a special ideal J^{\prime} of A. Then $\underline{A} \underline{J}^{\prime}$ is a abelian Grothendieck and completely reducible category (Theorem 1.4.8), which is nearly equal to M_{S}, where S is a semi-simple artinian ring. In this note we frequently make use of this theorem. Especially, in Chapter 2 we shall prove the Krull-Remak-Schmidt-Azumaya' theorem by virtue of this theorem, (see below).

Let $\left\{M_{\alpha}\right\}_{I}$ and $\left\{M_{B}\right\}_{J}$ be any sets of completely indecomposable modules such that $M=\sum_{I} \oplus M_{\alpha}=\sum_{J} \oplus N_{\beta}$. Then we consider the following properties:
I) There exists a one-to-one mapping ϕ of I to J such that $M_{\alpha} \approx N_{\phi(\alpha)}$ ana hence, $\left|I_{1}^{\prime}=|J|\right.$, where $| I \mid$ means the cardinal of I.
II) (Take out (some components)) For any subset I' of I, there exists a one-to-one mapping ψ of I^{\prime} into J such that $M_{\alpha^{\prime}} \approx N_{\psi\left(\alpha^{\prime}\right)}$ for $\alpha^{\prime} \in I^{\prime}$ and $M=\sum_{\alpha^{\prime} \in I^{\prime}} \oplus \mathbb{N}_{\psi\left(\alpha^{\prime}\right)} \oplus \sum_{\alpha^{\prime} \in I-I^{\prime}} \oplus M_{\alpha^{\prime \prime}}$.

II') (Put into) For any subset I' of I, there exists a one-to-one mapping ψ of I^{\prime} into J such that $M_{\alpha^{\prime}} \approx N_{\psi\left(\alpha^{\prime}\right)}$ for $\alpha^{\prime} \in I^{\prime}$ and $M=\sum_{\alpha^{\prime} \in I^{\prime}} \oplus M_{\alpha^{\prime}} \oplus \sum_{\beta^{\prime} \in J-\psi\left(I^{\prime}\right)} \oplus N_{\beta^{\prime}}$.
III) Every direct sumand of M is also a direct sum of completely indecomposable modules.

M has always the properties I), II) and II') if (' in II) and II') are finite, which we call the Krull-Remak-Schmidt-Azumaya' theorem. If it is allowed to take any subset I^{\prime}, in II) or II'), then it is clear that II) and II') are equal to each other.
G. Azumaya [1] proved the avove II) and II') step by step and proved I) with II) and II'), provided I' is finite. We shall prove them independently and its proof suggests us how we can drop the assumption of finiteness on I ' in the Azumaya' theorem. This argument is very much owing to the factor category $A /$ I' $^{\prime}$. The idea of dropping the assumption of finiteness gives us a definition of locally semi-T-nilpotency of the set of $\left\{M_{\alpha}\right\}_{I}$ (see Chapter 2), which is a generalization of T-nilpotency defined by H. Bass [2].

On the other hand, the exchange property is very impcrtant to study decompositions of modules (cf. [4]). In this note we shall slightly change its definition as follows : Let M be an R-module and N a direct summand of M. We suppose that for any decomposition $M=\Sigma \oplus K_{B}$ with $|I| \leqslant a$, we have a new decomposition ; $M=N \oplus \sum_{I} \oplus K_{B}^{\prime}, \stackrel{I}{\text { where }} K_{B}^{\prime} \leqslant K_{B}$ for all $\beta \in I$. In this case, we say N has the a-exchange property in M. If N has the a-exchange property in M for any cardinal a, we say N has the exchange property in M. Furthermore, we define a new concept in

Chapter 3. Let K be a submodule of M and $K=\sum_{J^{\prime}}^{\Sigma} \oplus K_{\gamma^{\prime}}$. If for any finite subset J^{\prime} of $J \quad \sum_{J} \oplus K_{\gamma^{\prime}}$ is a direct summand of M, we call K a locally direct summand of M (with respect to the decomposition $K=\underset{J}{\Sigma} \oplus K_{\gamma}$). It is clear that if all K_{γ} are injective, K is always a locally direct summand of M. This property is useful to consider the problem of Matlis [29] , which is the property III) in case of injective modules.

Those concepts are mutually related in the following theorem (Theorems 3.1.2 and 3.2.5): Let M and $\left\{M_{\alpha}\right\}$ be as above. Then the following statements are equivalent.

1) M satisfies the take out property of any subset I' of I and for any $\left\{\mathbb{N}_{B}\right\}_{J}$.
2) Every direct summand of M has the exchange property in M.
3) $\left\{M_{\alpha}\right\} J$ is a locally semi-T-nilpotent system.
4) Every locally direct summand of M is a direct summand of M.
5) $I^{\prime} \cap \operatorname{End}_{R}(M)$ is equal to the Jacobson radical J of $\operatorname{End}_{R}(M)$.
6) $\operatorname{End}_{R}(M) / J$ is a regular ring in the sense of Von Nermann and every idempotents in $\operatorname{End}_{R}(M) / J$ are iifted to $\operatorname{End}_{R}(M)$.

We study the propery III in Chapters 3 and 4 and give a special answer for it, even though it is not complete, (Theorem 3.2.7), (cf. $[6,7,17$, $18,24,381)$.

In 1960 H. Bass [2] defined (semi-) perfect rings as a generalization of semi-primary rings and E. Mares [28] further generalized them to (semi) perfect modules in 1963. In Chapter 5 we shall prove the following theorem (Theorem 5.2.1) ; let $\left\{P_{\alpha}\right\}$ be a set of projective modules and $P=\sum_{I} \oplus P_{\alpha}$. Then $J(F)$ is small in P if and only if $J\left(P_{\alpha}\right)$ is small in P_{α} for all $\alpha \in I$ and $\left\{P_{\alpha}\right\}_{I}$ is a locally semi-T-nilpotent system. Using this theorem and Mares' results, we shall study structures of (semi-) perfect modules.

In Chapter 6 we shall study injective modules. Let $\left\{E_{\alpha}\right\}$ be a set of injective modules and \underline{B} the induced category from $\left\{E_{\alpha}\right\}$. First we shall prove that B / \underline{J} is an abelian Grothendieck and spectral category, where J is the radical of B (Theorem 6.2.1). We shall study decompositions of injective modules by making use of this theorem (cf. $[10,29,31])$. Finally we shall consider the Matlis'problem (cf. $[9,12$, $25,38,40,41]$). Relating to it, we shall give the following theorem (Theorem 6.5.3) ; Let $\left\{E_{\alpha}\right\}$ be a set of injective and indecomposable modules, $E=\sum_{I} \oplus E_{\alpha}$ and \underline{A}^{\prime} the induced category from the all completely indecomposable modules. Then the following statements are equivalent.

1) $\left\{\mathrm{E}_{\alpha}\right\}_{\mathrm{I}}$ is a locally semi-T-nilpotent system.
2) Every modute M in A^{\prime} which is an extension of E contains E as a direct summand.
3) Every module M in \underline{A}^{\prime} which is an essential extension of E anincides with E.
4) For any monomorphism f in $E n d_{R}(E)$ Im f is a direct sumand of E.

This lecture note gives some applications of the theory of category to the theory of modules, however conversely we can apply some concepts in this note to special categories and define semi-perfect or semiartinian Grothendieck categories, which preserve many properties of semi-perfect or semi-artinian rings (see [22]).

This lecture was given at Universidad national del Sul in Argentina and The University of Leeds in England and the first part was given at Universite Claude Bernard Lyon-1 in France in 1973. The author would like to express his heartful thanks to those universities for their kind invitations and hospitalites and to Université de Lyon for publication of this note.

CHAPTER 1. A PRINCIPAL THEOREM

We shall assume the reader has some knowledge about elementary definitions and properties of modules and categories. We refer to $[11,30]$ for them.

1.1. IDEALS.

We always study additive categories \underline{A} and so we shall assume that categories in this note are additive, unless otherwise stated. We shall use the following notations :
M_{R}; the category of all right R-modules, where R is a ring with identity.
$A_{n 2}$; the class of all morphisms in A.
For α, β in A_{m} " $\alpha \beta$ is defined" implies codomain of $\beta=$ domain of α and " $\alpha \pm \beta$ is defined" implies domain of $\alpha=$ domain of β and codomain of $\alpha=$ codomain of β.

We shall define ideals in an additive category \underline{A}.
DEFINITION. - Let \underline{C} be a subclass of A_{m}. If \underline{C} satisfies the following conditions, \underline{C} is called a left ideal of A.

1. For any,$\alpha \in A_{m}$ and $\beta \in \underline{C}$ if $\alpha \beta$ is defined, $\alpha B \in \underline{C}$.
2. For any $\gamma, \delta \in \underline{C}$, if $\gamma \pm \delta$ is defined, $\gamma \pm \delta \in C$, (cf. [5]).

We can define similarly right or two-sided ideals in A. Let \underline{C} be a two-sided ideal in A. If $[A, A] \cap \underset{C}{ }$ is the Jacobson radical of $[A, A]$ for all $A \in \underline{A}, \underline{C}$ iscalled the Jacobson radical of \underline{A}, (if \underline{A} has finite co-products,
the Jacobson radical is uniquely determined, (see $[16,27]$)).
The following notion is essential in this note.
DEFINITION...Let \underline{A} be an additive category and \underline{C} a two-sided ideal in \underline{A}. We define a factor category $\underline{A} / \underline{C}$ of \underline{A} with respect to \underline{C} as follows :

1 The objects in $\underline{A} / \underline{C}$ coincide with those in $\underset{A}{ }$ (for A in A, \bar{A} means that \bar{A} is considered in $\underline{A} / \underline{C}$).

2 For $\bar{A}, \bar{B} \in \underline{A} / \underline{C},[\bar{A}, \bar{B}]=[A, B] /[A, B] \cap \underline{C}$ (for $f \in[A, B], \bar{f}$ means the residue class of f in $[A, B] /[A, B] \cap \underline{C})$.

Remarks 1..It is clear $\underline{A} / \underline{C}$ is also an additive category. In general even if \underline{A} is abelian, $\underline{A} / \underline{C}$ is not abelian. If we want to use structures of factor categories, we should find good ideals \underline{C} such that $\underline{A} / \underline{C}$ become good categories.
2. Let $A=\sum_{i=1}^{n} \oplus A_{i}$ in \underline{A}. Then there exists inclusions i_{k} and projections p_{k} such that ${ }_{A}=\sum i_{k} p_{k} ; \quad p_{k} i_{k}=1_{A_{k}}$ and $i_{j} p_{k}=0$ if $j \neq k$. Those relations are preserved in $\underline{A} / \mathbb{C}$, i.e. $\bar{i}_{A}=\sum \bar{i}_{k} \bar{p}_{k}, \overline{\mathcal{P}}_{k} \bar{i}_{k}=\overline{1}_{A_{k}}$ and $\vec{i}_{j} \vec{p}_{k}=0$ if $j \neq k$. Hence, $\bar{A}=\Sigma \oplus \bar{A}_{i}$ in A / C. This is not true for infinite coproducts.
3. If A, B are iscmorphic each other in A, then there exist morphisms $\alpha: A \longrightarrow B$ and $B: B \longrightarrow A$ such that $\alpha B=1_{B}$ and $B \alpha=1_{A}$. Hence, \bar{A}, \bar{B} are isomorphic each other in $\underline{A} / \underline{C}$. However the corverse is not true, in general. If \mathbb{C} is the Jacobson radical, the converse is also true. Because, if \bar{A}, \bar{B} are isomorphic, there exist $\alpha^{\prime}: A \longrightarrow B, B^{\prime}: B \longrightarrow A$
such that $\bar{\alpha} \bar{\beta}^{\prime}=\overline{1}_{B}$ and $\bar{\beta}^{\prime} \bar{\alpha}^{\prime}=\overline{1}_{A}$. Hence, ${ }^{1} A^{-\beta^{\prime} \alpha^{\prime}}$ is in the radical of $[A, A]$. Therefore, $\beta^{\prime} \alpha^{\prime}$ is a unit in $[A, A]$. Similarly, $\alpha^{\prime} \beta^{\prime}$ is a unit in $[B, B]$. Hence, α, B^{\prime} are isomorphisms.

```
PROPOSITION 1.1.1. - Let A,B
    an additive covariant functor. Then }\underline{C}={\alpha|\epsilon\mp@subsup{A}{m}{},T\alpha=0} ') is a two
    sided ideal in \underline{A}\mathrm{ and }T=\mp@subsup{\overline{T}}{0}{}\psi\mathrm{ , where, }\psi:\underline{A}->\underline{A}/\underline{C}\mathrm{ is a natural}
    functor and }\vec{T}:\underline{A}/\underline{C}->\underline{B}\mathrm{ is naturally induced from T.
```

1.2. ABELIAN CATEGORIES.

Let A be an additive category. There are many equivalent definitions for A to be abelian. We shall take the following :
i For any two objects A, B in A the coproduct $A \oplus B$ of A and B is defined and belongs to A.
ii A contains a zero object (so does an additive category).
iii For each morphism f in $\mathbb{A}_{1} \operatorname{Ker} f$ and Coker f exist in A .
iv (normal) For each monomorphism f in A, f is a kernel of some morphism in .
iv' (concrmal) For each epimorphism f in A, f is a cokernel of some morphism in A.

In this section, we shall rewrite the above definition of an abelian category by virtue of another terminologies, which are very familiar to the ring theory.

[^0]Let A be an additive category and S a subclass of A_{m}. We put $\left.(S: \alpha)_{r}=\left\{\beta \mid \in A_{m}, \alpha \beta \text { is defined and } \alpha \beta \in S\right\}^{*}\right),(S: \alpha)_{1}=\left\{\beta \mid \in A_{m}\right.$, $\beta \alpha$ is defined and $\beta \alpha \in S\}$. If $(0: \alpha)_{r} \neq 0$ for some $\alpha \in \frac{A_{m}}{m}, \alpha$ is called a left zero-divisor. Similarly, we define a right zero-divisor. From the definitions, we know that α is monomorphic (epimorphic) if only only if α is not left (rjeht) zero-divisor. Let $C \xrightarrow{\alpha^{\prime}} A \xrightarrow{\alpha} B$ De a sequence. Then α^{\prime} is the keruel of α if and only if $\left(0: \alpha^{\prime}\right)_{r}=0$ and $(0 ; \alpha)_{r}=\alpha^{\prime} A_{m}$, where $\alpha^{\prime} A_{m}=\left\{\alpha \quad \gamma \mid \gamma \in A_{m}, \alpha \gamma\right.$ is defined\}. α is the cokernel of α^{\prime} if and only if $(0: \alpha)_{1}=0$ and $\left(0 ; \alpha^{\prime}\right)_{1}=A_{m} \alpha$.

PROPOSITION 1.2.1..Let A be an additive category with finite co-products.
Then A is abelian if and only if A satisfies the following conditions
1 For each $\alpha=A_{m}$, there exists $\beta \in A_{m}$ such that $(0: B)_{r}=0$ and $(0: \alpha)_{r}=B A_{-m}$.

2 For each $\alpha \in \frac{A}{m}$ there exists β^{\prime} such that $\left(0: \beta^{\prime}\right)_{1}=0$ and $(0: \alpha)_{1}$
$=A_{M^{\prime}} \beta^{\prime}$.
3 For each $\gamma \in A_{m}$ such that $(0: \gamma)_{r}=0,\left(0:(0: \gamma)_{1}\right)_{r}=\gamma A_{m}$.
4 For each $\gamma^{\prime} \in A_{-m}$ such that $\left(0: \gamma^{\prime}\right)_{1}=0,\left(0:\left(0: \gamma^{\prime}\right)_{r}\right)_{1}=A_{-m} \gamma^{\prime}$.

Proof. - By the assumption A_{m} satisfies i, ii in the above definition and iii corresponds to 1,2 from the above remark. We assume A is abelian Let γ be as in 3. Then there exists a cokernel B of $\gamma ; 0 \rightarrow A-\gamma \rightarrow B \xrightarrow{B} C \rightarrow 0$ exact. Then $\gamma=\operatorname{Ker} \beta$ and $\beta=$ Coker γ. Hence, $(0: \beta)_{r}=\gamma A_{m}$ and $(0: \gamma)_{1}=A_{-m} B$ from the above remark. Therefore, $\left(0:(0: \gamma)_{1}\right)_{r}=\left(0: A_{m} \beta\right)_{r}=(0: \beta)_{r}=\gamma A_{m}$.

4 is dual to 3. Conversely, we assume A_{-m} satisfies $1 \sim 4$. We know from the remark that 1,2 guarantee the existence of kernel and cokernel for any $\alpha \in A_{-m}$. Let $y: A \rightarrow B$ be monomorphic. Then there exists $\beta \in A_{-m}$ such that B is epimorphic and $(0: \gamma)_{1}=A_{m} \beta$ from 2. Furthermore, $\left(0:(0: \gamma)_{1}\right)_{r}=$ $\left(0: A_{-m} \beta\right)_{r}=(0: \beta)_{r}=\gamma{\underset{m}{m}}^{A}$ by 3. Hence, $\gamma=\operatorname{Ker} \beta$ and we have iv. iv' is dual to iv. Therefore, A is abelian.

1.3. AMENABLE CATEGORIES.

We shall define some special categories which we shall use later.

DEFINITION. Let A be an additive category. \underline{A} is called regular if $[A, A]$ is a regular ring in the sense of Von Neumann for all $A \in \underline{A}$. A is called amenable if A has finite co-products and for any idempotent e in $[A, A]$ splits, i.e. $A=\operatorname{Im} e \oplus \operatorname{Ker} e$ for all $A G A,($ see $[11])$. A is called spectral if all $f \in A_{-m}$ splits (see [13]).

PROPOSITION 1.3.1. - Let \underline{A} be an additive, amenable and regular category. Then A is abelian.

Proof. - Since \underline{A} is amenable, \underline{A} satisfies the assumption in (1.2.1). We shall show A satisfies $1 \sim 4$ in (1.2.1). Let $\alpha: A \rightarrow B$ be monomorphic. Put $\alpha^{\prime}=\left(\begin{array}{ll}0 & 0 \\ 0 & { }_{\alpha}\end{array}\right): A \oplus B \rightarrow A \oplus B$. Since A is regular, there exists $x=\left(x_{i j}\right) \in[A \oplus B, A \oplus B]$ such that $\alpha^{\prime} x \alpha^{\prime}=\alpha^{\prime}$. Hence, $\alpha=\alpha x_{12} \alpha$. Put $e=x_{12} \alpha$, then $e=e^{2}$ and $\alpha e=\alpha$. Hence, $A_{m} \alpha=A_{m}$ e. Since A is amenable,
$e=i_{e} e^{\prime}$, where $e^{\prime}: A \rightarrow \operatorname{Im} e$ is epimorphic and $i_{e}: \operatorname{Im} e \rightarrow A$ is the inclusion. Thus, we have $(0: \alpha)_{r}=\left(0: A_{m}{ }^{\alpha}\right)_{r}=\left(0: A_{m} e\right)_{r}=(0: e)_{r}=\left(1_{A}-e\right)_{A_{m}} \subseteq$ ${ }^{i}(1-e) A_{m} \subseteq(0: \alpha)_{r}$. Hence $(0: \alpha)_{r}=i_{(1-e)} A_{m}$ and $\left(0:(0: \alpha)_{r}\right)_{1}=(0: i(1-e))_{1}=A_{m} e=$ $A_{\mathrm{m}} \alpha$, which gives 2 and 4 in (1.2.1). From the duality we obtain 1 and 3. Therefore, A is abelian.

We can easily see from the above proof that $\operatorname{Im} e=\operatorname{Im} \alpha$. Thus, we have

COROLLARY 1.3.2 [35]. Let A be an additive and amenable category, Then A is (abelian) spectral if and only if A is (abelian) regular.
1.4 A principal theorem on indecomposable modules

Let R be a ring with identity. We consider always unitary right R-modules M. If $\operatorname{End}_{R}(M)$ is a local ring (i.e. its radical is a unique max maximal left or right ideal), M is called completely indecomposable module (briefly c.inde.). It is clear that c.inde. module is indecomposable as a directsum, however the converse is not true. We note that the radical is equal to the set of all non-isomorphisms in $\operatorname{End}_{R}(M)$ if M is c.inde. by the following.

LEMMA. 1.4.1. - Let M_{i}, $i=1.2 .3$ be (c.) inde. and $f_{i}: M_{i} \rightarrow M_{i+1}$
R-homomorphisms for $i=1$,2. if $f_{2} f_{1}$ is isomorphic, f_{i} are isomorphic.

Proof. - Since $f_{2} f_{1}$ is isomorphic, f_{1} is monomorphic and f_{2} is epimorphic. Furthermore, $M_{2}=\operatorname{Im} f_{1} \oplus \operatorname{Ker} f_{2}$. Hence, Ker $f_{2}=0$ and $\operatorname{Im} f_{1}=M_{2}$.

Let $\left\{M_{\alpha}\right\}_{I},\left\{N_{\beta}\right\}_{J}$ be sets of modules and put $M=\sum_{I} \oplus M_{\alpha}$ and $N=\sum_{J} \oplus N_{\beta}$. We shall describe $\operatorname{Hom}_{R}(M, N)$ as the set of matrices. Let $\alpha_{i j}: M_{j} \rightarrow N_{i}$ be R-homomorphisms. If I and J are finite, $\operatorname{Hom}_{R}(M, N)=\left\{(J \times I)\right.$ matrices $\left.\left(\alpha_{i j}\right)\right\}$. We assume I and J are infinite. Let m be an element in M_{1} and $f \in \operatorname{Hom}_{R}(M, N)$. Then $f(m)=\sum_{i=1}^{n} n_{\beta i} ; n_{\beta i} \in N_{B i}$. From this remark, we can define a summable set of homomorphisms $\left\{\alpha_{j}{ }^{1}\right\}_{j}$ as foilows : for any m in M_{1} $\alpha_{J 1}(m)=0$ for almost all $j \in J$. In this case $\sum_{J} \alpha_{J}$, has a meaning and
$\alpha_{J 1}: M_{1} \rightarrow N$ is an R-homomorphism. A matrix $\left(\alpha_{i j}\right)$ is called column surmable if $\left\{\alpha_{j i}\right\}_{j}$ is summable for all $i \in I$. Then it is clear that $\mathrm{Hom}_{R}(\mathrm{M}, \mathrm{N})$ is isomorphic to the modules of all column surmable matrices with entries $\alpha_{i j}$.

Let $T=\sum_{K} \oplus T_{\delta}$ be another module and $f \in \operatorname{Hom}_{R}(M, N), g \in \operatorname{Hom}_{R}(N, T)$. We assume $f=\left(\alpha_{i j}\right)$ and $g=\left(\beta_{p q}\right)$ as above. Then we can easily show that $g f=\left(B_{p q}\right)\left(\alpha_{i j}\right)$. Thus, if $M=N=T$, End (M) is isomorphic to the ring of all column surmable matrices $\left(\alpha_{i j}\right)$.

Now, we shall assume that all M_{α}, N_{β} and T_{γ} are c.inde. . We define a subset.
$J^{\prime}(\beta, \alpha)=\left\{\left(\alpha_{i j} ; \mid \in \operatorname{Hom}_{R}(M, N)\right.\right.$ and no one of $\alpha_{i j}$ is isomorphic $\}$, ${ }_{(J)}(\beta, \alpha)$ may depend on decompositions M and N).

LEMMA 1.4.2. - Let $M=\sum_{I} \oplus M_{\alpha}, N=\sum_{J} \oplus N_{\sigma}$ and $T=\sum_{K} \oplus T_{\rho}$ and all
$M_{\alpha,} N_{\sigma}$ and $T_{\rho} c$.inde.. Then $\operatorname{Hom}_{R}(N, T) J^{(\sigma, \alpha)} \subseteq J^{\prime}(\beta, \alpha), J J(\rho, \sigma)$.
$\operatorname{Hom}_{R}(M, N) \subseteq J^{(\rho, \alpha)}$.

Proof. - Let $f=\left(a_{i j}\right) \in J^{(\sigma, \alpha)}, h=\left(b_{j k}\right) \in \operatorname{Hom}_{R}(N, T)$ and $h f=\left(x_{t s}\right)$, where $x_{t s}=\sum_{K} b_{t k} a_{k s}$. If $M_{s} \neq T_{t}, x_{t s}$ is not isomorphic. We suppose $M_{s} \approx T_{t}$. Let $m \neq 0$ be in M_{s}. Since ($a_{i j}$) is column surmable, there exists a finite subset J^{\prime} of J such that $a_{k s}(m)=0$ if $k \in J-J '$. Put $x_{t s}=\sum_{K_{i} \in J}{ }^{b}{ }^{\prime} k_{i} a_{i} k_{i} s$ $+\sum b_{t k}{ }{ }_{k s}$. Then neither the latter nor former term is isomorphic by the 'J'efinition of J^{\prime} and (1.4.1). Thus $x_{t s}$ is not isomorphic by the remark before (1.4.1) and the fact $M_{s} \approx T_{t}$. Hence, $h f \in J^{\prime}(\rho, \alpha)$. Similarly we have the last part.

PROPOSITION.-1.4.3 [1] The above module $\mathrm{J}^{(\sigma, \alpha)}$ does not depend on decompositions of M and N. Especially, if $M=N$, J^{\prime} is a two-sided ideal in $\operatorname{End}_{R}(M)$.

Proof. - Let $M=\sum_{I} \oplus M_{\alpha}$ and $N=\sum_{J} \oplus N_{\sigma}=\sum_{J} \oplus N_{\sigma}^{\prime}$, Put $T=N=\sum_{J^{\prime}} \oplus N_{\sigma}^{\prime}$ in (1.4.2). Then for any $f \in J^{\prime}(\sigma, x), f=1_{N^{\prime} \in J}(\sigma, \alpha)$. Therefore, $J^{\prime(\sigma, \alpha)} \subseteq J^{\prime}\left(\sigma^{\prime}, \alpha\right)$. Similarly, we obtain $J^{\prime}{ }^{\left(\sigma^{\prime}, \alpha\right)} \subseteq J^{\prime}(\sigma, \alpha)$ and hence $J^{\prime\left(\sigma^{\prime}, \alpha\right)}=J^{(\sigma, \alpha)}$. From (1.4.3) we denote $J^{(\sigma, \alpha)}$ by J^{\prime}. We shall give here elementary properties of a ring.

LEMMA 1.4.4. - Let R be a ming and e,f idempotents such that $e R \approx \phi_{1} f^{\prime}$ and $(1-e) R \underset{\sim}{\phi_{e}}(1-f) R$. Then there exists a regular element a in R such that $f=a^{-1}$ ea.

Applications of Factor Categories. ..

Proof. - $R=\operatorname{eR} \oplus(1-e) R=f R \oplus(1-f) R$. Therefore, $\phi=\phi_{.}+\phi_{2} \in \operatorname{End} R_{R}(R)=R_{1}$, say $\phi=a_{1}$. Then it is clear that $a_{1} e_{1}=f_{1} a_{1},\left(R_{1}\right.$ means the set of the left multiplications of elements in R).

We shall later make use of the following.

COROLLARY 1.4.5. - Let P be a vector space over a division ring Δ, say $P=\sum_{I} \oplus u_{\sigma} \Delta$. Let $S=$ End $_{\Delta}(P)$ and e an idempotent in S. Then there exist a subset J of I and a regular element a in S such that for the projection $f: P \rightarrow \sum_{J} \oplus v_{\gamma} \Delta \quad e=a^{-1} \mathrm{fa}$.

Proof. - Let eP $=\sum_{J}^{\top} \oplus v_{\gamma} \Delta$ and we may assume $P=\sum_{J}^{\oplus} u_{\rho} \Delta \oplus \sum_{I-J} \oplus u_{\sigma} \Delta$. Since es $\approx \operatorname{Hom}_{\Delta}(P, e P) \approx \operatorname{Hom}_{\Delta}(P, f P)$, we have the corollary by (1.4.4). Now, we shall enter into a main part of this section. Let $\left\{M_{\alpha}\right\}_{I}$ be a set of c.inde. Modules. By $\underline{A}_{\left(\underline{A}_{f}\right)}$ we shall denote the full sub-additive category in M_{R}, whose objects consist of all kinds of (finite) direct sums $\sum_{K} \oplus T_{\gamma}$ such that T_{γ}, s are isomorphic to some M_{B} in $\left\{M_{\alpha}\right\}_{I}$. We call A (A_{f}) the (finitely) induced category from $\left\{M_{\alpha}\right\}^{\prime}$, (we shall use the same terminology even if $\left\{M_{\alpha}\right\}$ are not c.inde.).

DEFINIMION .. Let \underline{B} be an additive category. If \underline{B} satisfies the following properties, B is called a Grothendieck category.

1 B is abelian.
2 B has any co-products.
3 Let $B \in \underline{B}$ and $\left\{B_{\alpha}\right\}, C$ sub-objects of B such that $\left\{B_{\alpha}\right\}$ is a directed set. Then

```
(U\mp@subsup{B}{\alpha}{}})\capC=U(\mp@subsup{B}{\alpha\cap}{}\mp@subsup{C}{}{C})
(This corresponds to a fact that functor }\underset{->}{\operatorname{Lim}}\mathrm{ is exact (see [30], Ch. 3)).
    4 B has a generator, (this implies B is complete (see [14])).
Definition. Let B}\mathrm{ be as above. If every object in B
with respect to sub-objects, B is called artinian (noetherian). If every
object in B}\mathrm{ is a co-product of minimal objects, B is called completely
reducible. If the Jacobson radical of }B\mathrm{ is zero, B}\mathrm{ is called semi-simple.
```

LEMMA 1.4.6. - Let A be a semi-simple category with finite co-products. If $\alpha \neq 0 \in[M, N]$, there exist $\beta, \beta^{\prime} \in[N, M]$ such that $\beta \alpha \neq 0$ and $\alpha \beta^{\prime} \neq 0$. Proof. - Put $F=M \oplus N, S=[P, P]$ and $\alpha^{*}=\left(\begin{array}{ll}0 & 0 \\ \alpha & 0\end{array}\right)$. If $[N, M] \alpha=0, S \alpha^{*}$ is nilpotent, which is a contradiction. Similarly, we have $\alpha[N, M] \neq 0$.

COROLLARY 1.4.7. - Let \underline{A} be as above. If $[\mathrm{M}, \mathrm{M}]$ is a division ring, M is a minimal object.

Proof. - Let $M \underset{\neq}{\underset{f}{N}}$. Then $[M, N]=0$. Hence, $[N, M]=0$ by (1.4.6) and so the inclusion map : $N \rightarrow M$ is zero.

From now on, by $[M, N]$ we shall denote $\operatorname{Hom}_{R}(M, N)$ for R-modules M, N.
THEOREM 1.4.8 (Principal theorem) [17].-Let $\left\{M_{\alpha}\right\}_{I}$ be a set of c. inde. modules and $\underline{A}, \underline{A}_{f}$ the induced category and finitely induced category, respectively. Let J^{\prime} be the ideal in A defined before (1.4.2). Then $A / \underline{J}^{\prime}\left(\underline{A}_{f} / \underline{I}^{\prime}\right)$ is a Grothendieck and completely reducible (completeiy) category.

Proof. - We put $\underline{\bar{A}}=\underline{A} / \underline{J}^{\prime}\left(\overline{\underline{A}}_{\mathrm{f}}=\underline{A}_{\mathrm{f}} / \underline{J}^{\prime}\right)$. From the definition of co-product and (1.4.3) we can easily show ${\bar{\sum} \oplus M_{\gamma}}^{J}=\boldsymbol{\Sigma} \oplus \bar{M}_{\gamma}$. Put $\bar{S}_{M}=[M, M] /[M, M] \cap \underline{J}^{\prime}$ for an object $M=\sum_{J} \oplus M_{\gamma}$ in A. Then $\bar{S}_{M}=\left\{\left(\frac{J}{a} \sigma_{\sigma \tau}\right)\right.$, column finite $\}$, since $\vec{a}_{\sigma \tau}=0$ for almost all σ. We rearrange M as follows : $M=\sum_{\alpha} \sum_{I_{\alpha} \rightarrow \beta} \oplus M_{\alpha \beta}$;
 $\left[\sum_{I_{\alpha}} \oplus \bar{M}_{\alpha \beta}, \sum_{I_{\alpha}} \oplus \bar{M}_{\alpha \beta}\right] \approx\left\{\left(x_{\alpha \beta}\right) \mid\right.$ column finite and $x_{\alpha \beta} \epsilon\left[\bar{M}_{\alpha}, \bar{M}_{\alpha}\right]=\Delta_{\alpha}$, which is a division ring\}. Therefore, $\overline{\mathbb{A}}$ and $\overline{\mathbb{A}}_{f}$ are regular and semi-simple. Next, we shall show that they are amenable. Put $\bar{S}_{\alpha}=\left[\sum_{I_{\alpha}}^{\oplus} \oplus \bar{M}_{\alpha \beta}, \sum_{I_{\alpha}} \oplus \bar{M}_{\alpha \beta}\right]$, then $\bar{S}_{M}=\prod_{\alpha} \bar{S}_{\alpha}$. Let $\overline{\mathrm{e}}$ be an idempotent in $\overline{\mathrm{S}}_{M}=T \overline{\mathrm{~S}}_{\alpha} ; \overline{\mathrm{e}}=\pi \overline{\mathrm{e}}_{\alpha}, \overline{\mathrm{e}}_{\alpha} \in \overline{\mathrm{S}}_{\alpha}$, $\bar{e}_{\alpha}^{2}=\bar{e}_{\alpha}$. Then there exist a regular element $\bar{a}_{\alpha} \epsilon \bar{S}_{\alpha}$ and a projection $f_{\alpha}: \sum_{I_{\alpha}}^{\oplus M} M_{\alpha \beta} \rightarrow \sum_{J_{\alpha}} \oplus M_{\alpha \beta}$ in M_{R} such that $\bar{e}_{\alpha}=\bar{a}_{\alpha}^{-1} \bar{f}_{\alpha} \bar{a}_{\alpha}$ by (1.4.5), (note \bar{S}_{α} may be regarded as the endomorphism ring of a vector space). Since f_{α} is the projection in M_{R}, \bar{f}_{α} sPits in \bar{A}. Hence, so does \bar{e}_{α} since \bar{a}_{α} is regular, and $\bar{e}_{\alpha}: \bar{M}_{\alpha} \xrightarrow{\bar{f}_{\alpha}} \operatorname{Im} \bar{f}_{\alpha} \xrightarrow{\bar{a}_{\alpha}^{-1} \overline{\mathrm{if}}_{\alpha}^{-}} \bar{M}_{\alpha}$. Therefore, so does \bar{e}, which implies that $\overline{\mathbb{A}}\left(\overline{\mathbb{A}}_{f}\right)$ is amenable. Thus, $\overline{\bar{A}}\left(\overline{\mathbf{A}}_{f}\right)$ is abelian and spectral by (1.3.2). On the other hand, \bar{M}_{α} is a minimal object by (1.4.7). Hence, $\overline{\mathbb{A}}$ is completely reducible. Finally we shall show that $\overline{\bar{A}}$ satisfies the condition 3) in the definition of Grothendieck categories. Let $\left\{\vec{A}_{\alpha}\right\}_{K}$ be a directed set of subobjects in an object \bar{F} and
 $\left(U_{K} \bar{A}_{\alpha}\right) \cap \bar{B}=\left(U_{K} \bar{A}_{\alpha}\right) \cap\left(\bar{C} \cup \bar{B}_{O}\right)=\bar{C} \cup\left(\left(U_{K} \bar{A}_{\alpha} \cap \bar{B}_{0}\right)\right.$, since $\bar{C} \subseteq U_{K} \bar{A}_{\alpha}$. We assume $\left(U_{K} \bar{A}_{\alpha}\right) \cap \bar{B}_{O}=\bar{D} \neq 0$. From an exact sequence $: \sum_{K} \oplus \bar{A}_{\alpha} \xrightarrow{\mp} U_{K} \bar{A}_{\alpha} \rightarrow 0$
 is spectral. Let \bar{D}_{0} be a minimal sub-object in $\overline{\mathrm{D}}$. Then $\overline{\mathrm{g}} \mid \overline{\mathrm{D}}_{\mathrm{O}}$ is a column finite matrix from the first part. Hence, $\operatorname{Im}\left(\bar{g} \mid \bar{D}_{0}\right) \leqslant \sum_{1}^{n} \oplus \bar{A}_{\alpha_{i}}$ and so $\bar{D}_{C} \subseteq \bigcup_{i=1}^{n} \bar{A}_{\alpha_{i}} \subseteq \bar{A}_{\beta}$ for some $B \in K$ such that $B \geqslant \alpha_{i}$. Thus, $\bar{D}_{0} \subseteq \bar{A}_{\beta} \cap \bar{B} \subseteq \bar{C}$ and $\bar{D}_{0} \leqslant \bar{B}_{0}$, which is a contradiction. Therefore, $\left(U_{K} \bar{A}_{\alpha}\right) \cap \bar{B}=U_{K}\left(\bar{A}_{\alpha} \cap \bar{B}\right)$.

Applications of Factor Categories...

CHAPTER 2. THE THEOREM OF KRULL-REMAK-SCHMIDT-AZUMAYA.

In this chapter we shall prove the titled theorem as an application of (1.4.8).
2.1. Azumaya' theorem :

Let $\quad\left\{M_{\alpha}\right\}_{I}$ be a set of c.indie. modules and $M=\sum_{I} \oplus M_{\alpha}$.

LEMMA 2.1.1 [1] .-Let M and $\left\{M_{\alpha}\right\}_{I}$ be as above and $S_{M}=[M$,]. Let a be any element in S_{M}. Then for any finite subset $\left\{M_{\alpha i}\right\}_{i=1}^{n}$ of $\left\{M_{\alpha}\right\}_{I}$, there exists a set $\left\{M_{i}\right\}_{i=1}^{n}$ of direct sumand of M such that $M=\sum_{i=1}^{n} \oplus M_{i} \sum_{\alpha \neq\left\{\alpha_{i}\right\}} \oplus M_{\alpha}$ and $M_{\alpha i}$ is isomorphic to M_{i} via a or (1-a) for each i.

Proof. - Let e_{1} be the projection of M to $M_{\alpha 1}$. Then $e_{1} a \mid M_{\alpha 1}$ and $e_{1}(1-a) e_{1} \mid M_{\alpha 1}$ are in $\left[M_{\alpha 1}, M_{\alpha 1}\right]$ and $1_{M_{\alpha 1}}=\left(e_{1} a e_{1}+e_{1}(1-a) e_{1}\right) \mid M_{\alpha 1}$. Since $M_{\alpha 1}$ is c.inde., either $e_{1} a e_{1} \mid M_{\alpha 1}$ or $e_{1}(1-a) e_{1} \mid M_{\alpha 1}$ is isomorphic : $M_{\alpha 1} \xrightarrow{b} b\left(M_{\alpha 1}\right) \xrightarrow{e_{1}} M_{\alpha 1}$, where $b=a$ or $(1-a)$. Hence, $M=$ $b\left(M_{\alpha 1}\right) \oplus \operatorname{Ker} e_{1}=b\left(M_{\alpha 1}\right) \oplus \sum_{\alpha \neq \alpha_{1}} \oplus M_{\alpha}$. Repeating this argument on the last decomposition, we obtain (2.1.1).

LEMMA 2.1.2 [1] .. Let I^{\prime} be the ideal in § 1.4. Then J^{\prime} does not contain non-zero idempotents.

Proof. - Let e be a non-zero idempotent in S_{M}. Then there exists a finite subset $\left\{M_{\alpha i}\right\}_{i=1}^{n}$ of $\left\{M_{\alpha}\right\}_{I}$ such that $e M \cap \sum_{i=1}^{n} \oplus M_{\alpha i} \neq 0$. We apply (2.1.1) to e and $\left\{M_{\alpha i}\right\}_{i=1}^{n}$. Then we can find a direct summand $\sum_{i=1}^{n} \oplus M_{i}$ of M such that $M_{i}=b_{i}\left(M_{a i}\right)$, where $b_{i}=e$ or (1-e). It is impossible that all b_{i} are equal to (1-e). Hence, $e_{i} e e_{\alpha i}$ is isomorphic for some i, where $e_{\alpha_{i}}: M \longrightarrow M_{\alpha_{i}}, e_{i}: M \longrightarrow M_{i}$ are projections. Therefore, e $\notin J^{\prime}$ by (1.4.3).

LEMMA 2.1.3.- Let $M=\sum_{i=1}^{n} \oplus N_{i}$ and N_{i} c.inde.. Then J ' is the Jacobson radical of S_{M}.

Proof. - Let $x=\left(x_{i j}\right)$ be in J^{\prime}. Then we note that $1-x_{i j}$ is regular in $S_{M_{i}}$ and that a sum of non isomorphisms of $S_{M_{i}}$ is not isomorphic. By the above remark and (1.4.2) we can find regular matrices P, Q in S_{M} such that $P(1-X) Q=1_{M}$. Hence, X is quasi-regular.

We shall consider a similar lemma in a case of infinite sum in the next section.

Now we can prove the Krull-Remak-Schmidt-Azumaya' theorem.

THEOREM 2.1.4 $[1,7,17]$. - Let $\left\{M_{\alpha}\right\}_{I},\left\{N_{\beta}\right\}_{J}$ be sets of c.inde. modules such that $M=\sum_{I} \oplus M_{\alpha}=\sum_{J} \oplus N_{B}$. Then
I) There exists a one-to-one mapping ϕ of I onto J such that
$M_{\alpha} \approx N_{\phi(\alpha)}$ for all $\alpha \in I$ and hence, $|I|=|J|$, where $|I|$ is the cardinal of I.
II) For any finite subset I' of I, there exists a one-to-one mapping ψ of I' into J such that $M_{i} \approx N_{\psi(i)}$ for all i $\in I^{\prime}$ and $M=\sum_{i \in J^{\prime}} \oplus N_{\psi(i)} \oplus \sum_{I-I^{\prime}} \oplus M_{\alpha^{\prime}}$.

II') For any finite subset I' of I^{\prime}, there exists a one-to-one mapping ψ^{\prime} of I^{\prime} into J such that $M \equiv \approx N_{\psi^{\prime}(i)}$ for all $i \in I^{\prime}$ and $M=\sum_{I^{\prime}} \oplus M_{i} \oplus \sum_{J-\psi^{\prime}\left(I^{\prime}\right)} \oplus N_{B^{\prime}}$.
III) Let M^{\prime} be a direct sumand of M, then M^{\prime} is isomorphic to some $\sum_{i=1}^{n} \oplus M_{\alpha i}$ or for any $m<\omega M$ ' contains a direct surmand, which is isomorphic to some $\sum_{i=1}^{m} \oplus M_{\alpha i}$.

Proof. - I) Let A be the induced category from $\left\{M_{\alpha}, N_{B}\right\}(I, J)$ and I^{\prime} the ideal in \underline{A} defined in 6.1.4. Then $\underline{A} / \underline{J}^{\prime}=\bar{A}$ is a Grothendieck and completely reducible category by (1.4.8). Furthermore, we know from its proof that $\bar{M}=\sum_{I} \oplus \bar{M}_{\alpha}=\sum_{J} \oplus \bar{N}_{B}$. Since \bar{M}_{α} and \bar{N}_{B} are minimal objects, there exists a one-to-one mapping ϕ of I onto J such that $\bar{M}_{\alpha}=\bar{N}_{\phi(\alpha)}$, (note that we may use the similar argument in \bar{A} to the ring theory, since \bar{A} is a good category). On the other hand, $S_{M_{\alpha}}^{\cap} J^{\prime}$ is equal to the Jacobson radical. Hence, $\bar{M}_{\alpha} \approx \bar{N}_{\phi(\alpha)}$ implies $M_{\alpha} \approx N_{\phi(\alpha)}$ as R-modules by the remark 3 in §1.1.
II) Put $M_{0}=\sum_{I} \oplus M_{\alpha i}$ and let $p: M \rightarrow M_{o}$ be the projection. Then $\bar{M}=$ $=\operatorname{Ker} \overline{\mathrm{p}} \oplus \sum_{I^{\prime}} \oplus \overline{\mathrm{N}}_{\psi\left(\alpha_{i}\right)}$, since $\overline{\underline{A}}$ is completely reducible, where $\overline{\mathrm{M}}_{\alpha_{i}} \approx \overline{\mathrm{~N}}_{\psi(\alpha i)}$. It is clear Im $\bar{p}=\sum_{I^{\prime}} \oplus \bar{M}_{\alpha i}$. Put $N_{0}=\sum_{I^{\prime}} \oplus N_{\psi\left(\alpha_{i}\right)}$ and let i : $N_{0} \rightarrow M$ be the inclusion. Then $\overline{p i}$ is isomorphic in \bar{A}. Since $N_{0} \in \underline{A}_{f}, J^{\prime} \cap\left[N_{0}, N_{0}\right]$ is equal to the radical of $\left[N_{0}, \mathbb{N}\right]$ by (2.1.3). Hence, pi is isomorphic in M_{R} by the remark 3 in $§ 1.1$. Therefore, $M=N_{0} \oplus \operatorname{Ker} p$ in M_{R} and so $M=N_{0} \oplus \sum_{\mathbf{I}-\mathrm{I}} \oplus M_{\alpha^{\prime}}$. It is clear that $M_{\alpha_{i}} \approx N_{\psi\left(\alpha_{i}\right)}$ in M_{R}.

II') The following argument is dual to that in the above. Put $M_{0}{ }^{\prime}=\sum_{I^{\prime}} \oplus M_{\alpha_{i}}$. Since \bar{A} is completely reducible,

$$
\bar{M}=\bar{M}_{0}^{\prime} \oplus \sum_{J-\psi^{\prime}\left(I^{\prime}\right)} \oplus N_{B^{\prime}} \text {, where } \psi^{\prime}: I^{\prime} \rightarrow J \text { and } \bar{M}_{\alpha_{i}^{\prime}} \approx \bar{N}_{\psi^{\prime}\left(\alpha_{i}^{\prime}\right)} \ldots(*) .
$$

Let F^{\prime} be the projection of M to $N_{0}^{\prime}=\sum_{I^{\prime}} \oplus N_{\psi^{\prime}}\left(\alpha_{i}^{\prime}\right)$. It is clear that Ker $\overline{\mathrm{p}}{ }^{\prime}=\sum_{J-\psi^{\prime}\left(I^{\prime}\right)}{ }^{\oplus N_{\beta^{\prime}}}, \operatorname{Im} \overline{\mathrm{p}}=\sum_{I^{\prime}} \oplus \bar{N}_{\psi^{\prime}\left(\alpha_{i}^{\prime}\right)}$ and $\overline{\mathrm{p}} \mid \overline{\mathrm{M}}_{0}^{\prime}$ is isomorphic by (*). Let $i^{\prime}: M_{0}^{\prime} \rightarrow M$ be the inclusion, then $\overline{p^{\prime} i}$ is isomorphic. Since M_{0}^{\prime} is in \mathbb{A}_{f}, $p^{\prime} i$ is isomorphic in M_{R}. Therefore, $M=M_{0} \not{ }^{\oplus} \operatorname{Ker} p^{\prime}$ in M_{R} and $M=M_{0}{ }^{\prime} \oplus \sum_{J-\psi^{\prime}\left(I^{\prime}\right)} \oplus N_{B^{\prime}}$.
III) Let e be a projection of M to M^{\prime}. Since $\overline{\bar{A}}$ is completely reducible, $\operatorname{Im} \bar{e}=\sum_{I^{\prime}} \oplus \bar{M}_{\alpha}^{\prime}$, where M_{α}^{\prime} are isomorphic to some M_{B} in $\left.\underline{=} M_{\alpha}\right\}_{I}$. Put $M_{0}=\sum_{I^{\prime}} \oplus M_{\alpha_{i}^{\prime}}^{\prime} \oplus>M_{0}^{\prime}=\sum_{i=1}^{t} \oplus M_{\alpha_{i}^{\prime}}^{\prime}$ in $M_{P R}$. Then from the definition of A,
we have the following R-nomomorphisms : i : $M_{0}{ }^{\prime} \rightarrow M_{0} \dot{\ddagger}^{\prime} M$ and $p: M \xrightarrow{e^{\prime}} M_{0} \rightarrow M_{0}^{\prime} \quad$ such that \bar{i} is the inclusion $\bar{M}_{0}^{\prime} \rightarrow \bar{M}, \bar{p}: \bar{M} \longrightarrow \bar{M}_{i}$, is the projection and $\bar{i} \cdot \bar{e}{ }^{\prime}=\bar{e}$. Since $M_{0}^{\prime} \in \mathcal{A}_{f}$ and $\overline{p e i}$ is isomorphic in $\overline{\mathrm{A}}$, so is pei in $\underline{M}_{\mathrm{R}}$;

$$
M_{0}^{\prime} \xrightarrow{i} M \xrightarrow{e} M \xrightarrow{f} M_{0}^{\prime} \ldots(* *) .
$$

Hence, Im e in $M_{R}=M^{\prime}$ contains Im ei, which is a direct summand of M and isomorphic to $\sum_{i=1}^{n} \oplus M_{\alpha_{i}}^{\prime}$. If I^{\prime} is infinite, the above argument gives the last part in III). We assume I' is finite. In this case, we can take $M_{0}^{\prime}=M_{0}$. Hence, $M^{\prime}=\operatorname{Im}$ e contains Im ei as R-direct summand from (**). On the other hand, $\operatorname{Im} \bar{e}=\operatorname{Im} \bar{e} \bar{i}$ and hence, M ' is equal to Im ei by (2.1.2), which is isomorphic to $\sum_{i=1}^{t<\infty} \oplus M^{\prime} \alpha_{i}^{\prime}$.

REMARK 1. In the above proof, we used only an assumption "I' is finite" to obtain that $J^{\prime} \cap\left[M_{0}, M_{0}\right]$ is equal to the radical of $\left[M_{0}, M_{0}\right]$ for some module M_{0}. Hence, if we can show the above property with another assumption, the proofs given above are still valid. We shall make use of this fact in Chapter 3.

2.2 SEMI-T-NILPOTENT SYSTEM.

We shall give, in this section, a new concept which is a generalization of T-nilpotency defined by H. Bass [2] .

Let $\left\{M_{\alpha}\right\}_{I}$ be a set of modules (not necessarily c.inde.). Let \underline{A} be the induced category from $\left\{M_{\alpha}\right\}$ and \underline{C} an ideal in \underline{A}. Take any countably infinite subset $\left\{M_{\alpha_{i}}\right\}$ of $\left\{M_{\alpha}\right\}$ and a set of morphisms $\left\{f_{i}: M_{\alpha_{i}} \rightarrow M_{\alpha_{i+1}}\right.$,
$\left.f_{i} \in \underline{C}\right\}$. If for any such sets and any element m in $M_{\alpha_{1}}$, there exists a natural number n (depending on the sets and m) such that
$f_{n} f_{n-1} \ldots f_{1}(m)=0,\left\{M_{\alpha}\right\}_{I}$ is called a locally semi-T-nilpotent system with respect to C. Let $\left\{M_{i}\right\}^{\infty}$ be a countable set of modules M_{i} such that M_{i} are isomorphic to some ones in $\left\{M_{\alpha}\right\}$. If any such set and any set of morphisms f_{i} satisfy the above, we say $\left\{M_{\alpha}\right\}$ a locally T -nilpotent system, ($[17,28]$). If I is finite, we understand by the definition that $\left\{M_{\alpha}\right\}$ is a locally semi-T-nilpotent system. If the above n does not depend on any element m in $M_{\alpha_{1}}$, we omit the word "locally". If every M_{α} is finitely generated, we have this situation.

In this section, we give a principal lemma (2.2.3), which we shall frequently use later.

Let $M=\sum_{I} \oplus M_{\alpha}$ and describe End $(M)=S_{M}$ by the ring of the column summable matrices. We may assume I is well ordered. Let $\alpha_{1}<\alpha_{2}<\ldots<\alpha_{n}$ (or $\alpha_{1}>\alpha_{2} \cdots>\alpha_{n}$) be in I and $b_{\alpha_{i}} \alpha_{i-1} \in\left[M_{\alpha_{i-1}}, N_{\alpha_{i}}\right]$. Then by $b\left(\alpha_{n}, \alpha_{n-1}, \ldots \alpha_{1}\right)$ we denote $b_{\alpha_{n} \alpha_{n-1}} b_{\alpha_{n-1} \alpha_{n-2}} \ldots b_{\alpha_{2} \alpha_{1}}$ for the sake of simplicity.

LEMMA 2.2.1 (Konig graph theorem). - Let $M,\left\{M_{\alpha}\right\}_{I}$ and \underline{C} as above.
Let $f=\left(b_{\sigma \tau}\right)$ be in $S_{M} \cap \underline{C}$. Put $F_{\tau}=\left\{b\left(\alpha_{n}, \alpha_{n-1}, \ldots, \alpha_{2}, \alpha_{1}=\tau\right)\right.$, for any $n \geqslant 2\}$. We assume $\{M\}_{I}$ is locally semi-T-nilpotent system with respect to \underline{C}. Then for any element x_{τ} in M_{T}, $b\left(\alpha_{n}, \alpha_{n-1}, \ldots, \alpha_{1}\right)\left(X_{\tau}\right)=0$ for almost all bin F_{τ}.

Proof. - Since $\left(b_{\sigma \tau}\right)$ is column summable, there exists a finite subset \mathbb{T}_{1} of I such that $b_{\sigma \tau}\left(x_{\tau}\right)=0$ for all $\sigma \in I-T_{1}$. Let B be in T_{1}. Then the subset $T_{2}=\left\{\gamma \mid b(\gamma, \beta, \tau)\left(x_{\tau}\right) \neq 0\right\}$ of I is also finite. On the other hand, $\left\{M_{\alpha}\right\}_{I}$ is locally semi-T-nilpotent and $b_{\sigma \tau} \in \underline{C}$, since \underline{C} is an ideal. Hence, (2.2.1) is clear from Konig graph theorem.

REMARK 2. Let $b\left(\alpha_{n}, \alpha_{n-1} \ldots, \alpha_{1}\right)$ be as above. Then for $\tau<\sigma$ $\sum_{a_{i}} b\left(\sigma, \alpha_{\tau}, \ldots, \alpha_{2}, \tau\right)$ is an Element in $\left[M_{\tau}, M_{\sigma}\right]$.

LEMMA 2.2.2. - Let $\left\{M_{\alpha}\right\}_{I}, M$ and \underline{C} be as above. We assume $\left\{M_{\alpha}\right\}_{I}$ is locally semi-T-nilpotent with respect to C . Let $\left(\mathrm{b}_{\sigma \tau}\right)$ be in $\mathrm{S}_{\mathrm{M}} \cap \mathrm{C}$ such that $b_{\sigma \tau}=0$ if $\sigma \leqslant \tau$. Then $\left(b_{\sigma \tau}\right)$ is quasi-regular, (cf. $[33,36]$).

Proof. - Put $B=\left(b_{\sigma \tau}\right)$. Then each entry of the column of B^{n} consists of some elements in F_{τ}. Hence, $\sum_{1}^{\infty} B^{n}$ has a meaning and is an element in S_{M} by (2.2.1). Put $A=\sum_{1}^{\infty} B^{n}$. Then $(-A) B-B=-A$. Hence, B is quasiregular.

LEMMA 2.2.3 [19] (principal Leman) Let $\left\{M_{\alpha}\right\}_{I}$ be a set of modules and \mathbb{C} an ideal in the induced category from $\left\{M_{\alpha}\right\}$. By S_{α} we denote End $\left(M_{\alpha}\right)$. Suppose

1) $\underline{C} \cap S_{\alpha} \subseteq J\left(S_{\alpha}\right)$ for $\alpha \in J$.
2) If $\left\{\mathrm{a}_{\alpha}\right\}_{\mathrm{I}}$, is a set of morphisms in $\underline{C} \cap\left[M_{\sigma}, M_{\tau}\right]$ such that $\left\{\mathrm{a}_{\alpha}\right\}_{\mathrm{I}}$, is surmable, then $\sum_{I}, a_{\sigma} \in \underline{C} \cap\left[M_{\alpha}, M_{\tau}\right]$.
3) $\left\{M_{\alpha}\right\}_{I}$ is a iocally semi-T-nilpotent system with respect to \underline{C}. Then $\underline{C} \cap S_{M} \subseteq J\left(S_{M}\right)$.

Proof. - Let $A^{\prime}=\left(a_{\sigma \tau}^{\prime}\right)$ be in $\underline{C} \cap S_{M}$ and put $A=\left(a_{\sigma \tau}\right)=E-A^{\prime}$, where E is the identity matix. We shall show that A is regular in S_{M} by the similar argument to (2.1.3). Since $A a^{\prime}{ }_{\sigma \sigma}$ is in $J\left(S_{\sigma}\right)$ by $1, a_{\sigma \sigma}$ is regular in s_{σ}. Put $b_{\sigma 1}=a_{\sigma 1} a_{11}{ }^{-1}$ for $\sigma>1$, then $\left\{b_{\sigma 1}\right\}_{\sigma}$ is summable and $b_{\sigma 1} \in \underline{C}$. We shall define $\dot{\sigma}_{\sigma \tau}$ for $\sigma>\tau$ with the following properties :
i) $\left\{b_{\sigma \tau}\right\}_{\sigma}$ is summable and $b_{\sigma \tau} \in \mathbb{C}$.
ii) $b_{\sigma \tau}=-y_{\sigma \tau} y_{\tau \tau}^{-1}$, where
$y_{\sigma \tau}=a_{\sigma \tau}+\sum_{\tau>\alpha_{t}} b\left(\sigma, \alpha_{t}, \alpha_{t-1}, \ldots, \alpha_{1}\right) a_{\alpha_{1} \tau} \ldots(*),(c f$. Remark 2).
We defined $\left\{b_{\sigma}\right\}$ with $\left.i\right)$ and $\left.i i\right)$. We suppose we have defined $\left\{b_{\sigma \rho}\right\}$ for $\rho<t$. Then since every terms in (*) are defined, we can define $y_{\sigma \tau}$ by (*). Since $\sum_{\tau>\alpha_{t}} b\left(\tau, \alpha_{t}, \ldots, \alpha_{1}\right) a_{\alpha_{1} \tau} \in \underline{C \cap} S_{\tau} \subseteq J\left(S_{\tau}\right)$ by (2.2.1) and $1.2, y_{\tau \tau}$ is regular in S_{τ}. Hence, we can define $b_{\sigma \tau}$ by ii). It is clear from
(2.2.1) and 2 that $\left\{b_{\sigma \tau}\right\}$ is summable and $b_{\sigma \tau} \in \underline{C}$. Now, we define $c=\left(c_{\sigma \tau}\right)$ by setting $c_{\sigma \sigma}=1_{\sigma}, c_{\sigma \tau}=0$ for $\sigma<\tau$ and $c_{\sigma \tau}=\sum_{\alpha_{i}} b\left(\sigma \alpha_{\tau}, \ldots, \alpha_{2} \tau\right)\left(\in \underline{C} \cap\left[M_{\tau}, M_{\sigma}\right]\right)$ for $\sigma>\tau$. Then C is column summable and hence, $C \in S_{M}$. Put $D=C A=\left(d_{\sigma \tau}\right)$. First we shall show $a_{\sigma \tau}=0$ for $\sigma>\tau$.
$d_{\sigma \tau}=\sum_{\rho} c_{\sigma \rho} a_{\rho \tau}=a_{\sigma \tau}+\sum_{\rho^{<} \sigma} c_{\sigma \rho}{ }^{a} \rho \tau=a_{\sigma \tau}+\sum_{\rho<\sigma \alpha_{i}} b\left(\sigma \alpha_{\tau}, \ldots, \alpha_{2}, \rho\right)$.

 $=\sum_{\sigma>\alpha_{t " \prime}^{\prime \prime}>\tau} b_{\sigma \alpha_{t " \prime}^{\prime \prime}{ }^{\alpha} \alpha_{t " \prime}^{\prime \prime} \tau} \cdots(* *)$.

It is clear from $(* *) \alpha_{\tau+1 \tau}=0$ for all τ. If we use the transfinite induction on σ, τ, we can show $d_{\sigma \tau}=0$ if $\sigma>\tau$ from (**). Futhermore, $d_{\sigma \sigma}=\sum b\left(\sigma, \alpha_{t}, \ldots, \alpha_{1}\right) a_{\alpha_{1} \sigma}+a_{\sigma \sigma}$ is regular in S_{σ}. Put $C_{1}=$ $\operatorname{diag}\left(d_{11}{ }^{-1}, \ldots, d_{\sigma \sigma}{ }^{-1}, \ldots\right)$ and $K=E-C_{1} C A=E-C_{1} D$. Then the entries of K, which are in the diagonal or under the diagronal, are all zero and the entries of upper the diagonal belong to $\subseteq \leq$ by ii) and 2 . Hence, K is quasiregular by 3 and (2.2.2), (which is a case of $\alpha_{1}>\alpha_{2}>\ldots>\alpha_{n}$). Therefore, $C_{1} C A$ is regular in S_{M}. Again using (2.2.2), we know C is regular in S_{M}. Thus so is A. Therefore, $\subset \cap S_{M} \subseteq J\left(S_{M}\right)$.

REMARK 3. - In the introduction we defined" take out property" of a module M, which is the property II) in (2.1.4) without the assumption of the finiteness of I'. In that definition, we assumed that any kinds of decompositions of M should have the take out property. Now we fix a decompesition of $M: M=\sum_{I} \oplus M_{\alpha}, M_{\alpha}$ are c.inde.. We shall note that if this decomposition has the take out property for any another decompositions $M=\sum_{J} \oplus N_{B}$, then so do any kinds of decompositions of $M: M=\underset{K}{\Sigma} \oplus M_{\alpha}^{\prime}$. Because, let $M=\sum_{I} \oplus M_{\alpha}=\sum_{K} \oplus M_{\alpha^{\prime}}^{\prime}=\sum_{J} \oplus N_{\beta}$. Then there exist a one-to-mapping ϕ of

Applications of Factor Categories ...

K onto I and a set of isomorphisms $f_{\alpha^{\prime}}: M_{\alpha}^{\prime}, \rightarrow M_{\alpha}(\alpha)$. Put $F=\Sigma f_{\alpha^{\prime}}, S_{M^{\prime}}$ which is isomorphic. Hence, $M=\sum_{I} \oplus M_{\alpha}=\sum_{J} \oplus F\left(N_{\gamma}\right)$, If we epply the take out property for those decompositions, we obtain $M=\sum_{I^{\prime}} \oplus F\left(N_{\psi(\alpha)}\right) \oplus \sum_{I-I^{\prime}} \oplus M_{\alpha}$. Therefore, $M=F^{-1}(M)=\sum_{\alpha \in K^{\prime}} \oplus N^{\prime} \psi(\alpha) \oplus \sum_{K-K^{\prime}} \oplus M_{\alpha}^{\prime},$.

CHAPTER 3. SEMI-T-NILPOTENCY AND THE RADICAL

```
We have defined a (locally) semi-T-nilpotency for a set of modules \(\left\{M_{\alpha}\right\}_{I}\) in Chapter 2. In this chapter we study some relations between a semi-T-nilpotency of a set of \(c\). inde. modules \(\left\{M_{\alpha}\right\}\) and the radical of End \((M)\), where \(M=\sum_{I} \oplus M_{\alpha}\).
```

3.1. EXCHANGE PROPERTY.

We shall define, in this section, the exchange property of a direct summand of a modules, which is slightly weaker than the usual one (cf.[4]). DEFINITION.. Let N be an R-module and N a direct summand of M. We say N has the α-exchange property in M if for any decomposition of $M: M=\sum_{I} \oplus T \gamma$ with $|I| \leqslant \alpha$, there exists always a new decomposition $M=N \oplus \sum_{I} \oplus T_{\gamma}^{\prime}$, such that $T_{\gamma}{ }^{\prime} \leqslant T_{\gamma}$, (and hence, T_{γ}, is a direct summand of T_{γ} for all $\gamma \in I$). If \mathbb{N} has the α-exchonge property for any α, we say N has the exchange property in M. If in the above, N has the α-exchange property whenever all $T \gamma$ are c.inde., we say N has the α-exchange property with respect to $c . i n d e$. modules.

REMARKS 1. It is clear from the definition that M has always the exchange property in M.
2. Suppose $M=\sum_{i=1}^{n} \oplus N_{i}$. If N_{1}, N_{2} have the α-exchange property in M, then so does $N_{1} \oplus N_{2}$ by [4] . However, the converse is not true.

Furthermore, even if neither N_{1} nor N_{2} has the α-exchange property in $M_{\text {, }}$ it is possible that $N_{1} \oplus N_{2}$ so does.

LEMMA 3.1.1. - Let $\left\{M_{\alpha}\right\}_{I}$ be a set of (c.inde.) modures and $M=\sum_{I} \oplus M_{\alpha}$. Suppose M satisfies the take out property for any subset I' with $\left|I^{\prime}\right| \leqslant x_{0}$. Then $\left\{M_{\alpha}\right\}_{I}$ is a locally semi-T-nilpotent system (with respect to J^{\prime}).

Proof. - Let $\left\{M_{i}\right\}_{1}^{\infty}$ be a subset of $\left\{M_{\alpha}\right\}_{I}$ and $\left\{f_{i}: M_{i} \rightarrow M_{i+1}\right\}$ a set of given morphisms. First we shall show that some of $\left\{f_{i}\right\}$ is not monomorphic. Fut $M_{i}^{\prime}=\left\{m_{i}+f_{i}\left(m_{i}\right) \mid m_{i} \in M_{i}\right\} \subseteq M_{i} \oplus M_{i+1}<\oplus M$ and $M_{0}=\sum_{I-I_{0}} \oplus M_{\gamma}$, where $I_{0}=(1,2, \ldots, n \ldots)$. Then it is clear that $M=M_{1} \oplus M_{2}{ }^{\prime} \oplus M_{3} \oplus M_{4}{ }^{\prime} \oplus \ldots \oplus M_{0}$

$$
=M_{1}{ }^{\prime} \oplus M_{2} \oplus M_{3}^{\prime} \oplus M_{4} \oplus \ldots \oplus M_{0^{\prime} \cdot} \cdots(*)
$$

We assume that all f_{i} are monomorphic and use the take out property for the above decomposition. We take a subset $I^{\prime}=(2,4, \ldots, 2 n, \ldots)$. Then we obtain from the take out property that

$$
M=M_{1}{ }^{\prime} \oplus M_{3}{ }^{\prime} \oplus \ldots \oplus M_{0} \oplus \psi_{2}\left(M_{2}\right) \oplus \psi_{4}\left(M_{4}\right) \oplus \ldots \oplus \psi_{2 n}\left(M_{2 n}\right) \oplus \ldots .(* *)
$$

where $\psi_{2 n}\left(M_{2 n}\right)$ is equal to one of modules in the first decomposition except moduies in M_{0}. Fror the above assumptions no one of $\left\{f_{i}\right\}$ is epimorphic. Hence, every $M_{2 n}$ ' has to be equal to some $\psi_{2 m}\left(M_{2 m}\right)$. Therefore, $\sum_{I^{\prime}} \oplus \psi_{2 n}\left(M_{2 n}\right) \supseteq \sum_{I^{\prime}} \oplus M_{2 m}^{\prime}$. We shall show $\sum_{I^{\prime}} \oplus \psi_{2 n}\left(M_{2 n}\right)=\sum_{I^{\prime}} \oplus M_{2 m}{ }^{\prime}$. If $\sum_{I^{\prime}} \oplus \psi_{2 n}\left(M_{2 n}\right) \neq \sum_{I^{\prime}} \oplus M_{2 m^{\prime}}$, we had some $2 i$ such that $\psi_{2 i}\left(M_{2 i}\right)$ is equal to some $M_{2 k+1}$. First we assume that we had $\psi_{2 n}\left(M_{2 n}\right)=M_{2 i+1}$ and $\psi_{2 m}\left(M_{2 m}\right)=M_{2 j+1}$
for $i<j$. Then since $M_{2 k}$ ' is equal to some $\psi_{2 p}\left(M_{2 p}\right), M_{2 i+1}+M_{2 i+1}{ }^{\prime}+M_{2 i+2^{\prime}}+$ $\ldots+M_{2 j}{ }^{\prime}+M_{2 j+1}$ is a direct sum from (**). We shall denote $f_{p} f_{p-1} \ldots f_{q}$ by $\theta(p, q)$ for $p>q$. Let $x \neq 0$ be in $M_{2 i+1}$, then

$$
(* * x)
$$

which is a contradition to the above. Therefore, if $\Sigma \oplus \psi_{2 n}\left(M_{2 n}\right) \neq \Sigma \otimes_{2 n}{ }^{\prime}$, we should have only one $\psi_{2 k}\left(M_{2 k}\right)$ which is equal to some $M_{2 i+1}$. Thus, $M=\sum_{p=1}^{2 i} \oplus M_{p}^{\prime} \oplus M_{2 i+1} \oplus M_{2 i+1}^{\prime} \oplus \sum_{k>2 i+1} \oplus M_{k}^{\prime} \oplus M_{0}=\sum_{q=1}^{2 i+1} \oplus M_{q} \oplus I m f_{2 i+1} \oplus \sum_{k>2 i+1} \oplus M_{k}^{\prime} \oplus M_{0}$. Since $f_{2 i+1}$ is not epimorphic, we can show by the same argument to ($* * *$) that $M_{2 i+2} \not \ddagger M$. Therefore, some of $\left\{f_{i}\right\}$ has to be non-monomorphic. From those arguments, we may assume there are infinite many of non-monomorphisms f_{j} among $\left\{f_{i}\right\}$. Let $f_{i_{i}} ; i_{i_{2}}, \ldots, f_{i_{n}}, \ldots$ be such a set. Put $\theta\left(i_{k+1}-1, i_{k}\right)=g_{k}$. Then all g_{k} are non-monomorphic. In order to show that $\left\{f_{i}\right\}$ is a locally semi-T-nilpotent system, it is sufficient to show that so is $\left\{\mathrm{g}_{\mathrm{k}}\right\}$. We put $M_{k}^{*}=M_{i_{k}}$. Let $x \neq 0 \in \operatorname{Ker} g_{i}$, then $x \in M_{i}^{*} \cap M_{i}{ }^{*}$ '. When we use the above argument for $\left\{M_{k}{ }^{*}\right\}$, we know from (**) that $\psi_{2 n}\left(M_{2 n}{ }^{*}\right)$ is not equal

$$
\begin{aligned}
& x=x+f_{2 i+1}(x) \\
& \epsilon \quad M_{2 i+1}{ }^{\prime} \\
& -f_{2 i+1}(x)-f_{2 i+2} f_{2 i+1}(x) \\
& \epsilon \quad M_{2 i+2}{ }^{\prime} \\
& \text {...... } \\
& \begin{aligned}
\pm(\theta(2 j-1,2 i+1)(x) & +\theta(2 j, 2 i+1)(x)) \in M_{2 j}, \\
& -\theta(2 j, 2 i+1)(x) \in M_{2 j+1},
\end{aligned}
\end{aligned}
$$

Applications of Factor Categories ...

to any $M_{2 m+1}{ }^{*}$. Therefore, $\psi_{2 n}\left(M_{2 n}{ }^{*}\right)$ is equal to some $M_{2 m} *^{\prime \prime}$ and $N=M_{1}^{*} \nsubseteq M_{2}^{* '} \oplus \ldots \oplus M_{0}$ (it is possible that some $M_{2 m^{*}}$ ' may not appear in this decomposition). Take $x \neq 0 \in M_{1}^{*}$ and use the formular ($* * * *$), then we know that there exists some t such that $\theta(t, 1)(x)=0$. Therefore, $\left\{f_{i}\right\}$ is a locally semi-T-nilpotent system.

We shall later make use of the following lemma and we can prove it by the similar argument to the above and so we shall leave a proof to the reader.

LEMMA 3.1.1'..Let $\left\{M_{\alpha}\right\}_{I}$ and $\left\{N_{\beta}\right\}_{J}$ be sets of c.inde. modules. Put $T=\sum_{I} \oplus M_{\alpha} \oplus \sum_{J} \oplus N_{B}$. We assume that $\sum_{J} \oplus N_{B}$ has the χ_{0}-exchange property in T. Then for any countable subsets $\left\{M_{i}\right\}$ and $\left\{N_{i}\right\}$ of $\left\{M_{\alpha}\right\}$ and $\left\{N_{B}\right\}$, respectively and for any non-isomorphisms $f_{i}: M_{i} \rightarrow \mathbb{N}_{i}, g_{i}: N_{i} \rightarrow M_{i+1}$; and for any $x \in M_{1}$, there exists m suck that $g_{m} f_{m} \cdots g_{1} f_{1}(x)=0$.

The following main theorem gives us an answer in a case where we drop the assumption of finiteness in Azumaya' theorem (2.1.4).

THEOREN 3.1.2 [19,24] (MAIN THEOREM). - Let $\left\{M_{\alpha}\right\}_{\text {I }}$ be a set of c.inde. modules and $M=\sum_{I} \oplus M_{\alpha}$. Then the following statements are equivalent. 1) M satisfies the take out property for any subset I' and any other decompositions (cf. 2 Remark 3 in Chapter 3).
2) Every direct summand of M has the exchange property in M.
3) Every direct summand of M has the exchange property in M with respect to $c . i n d e$ modules.
4) $\left\{M_{\alpha}\right\}_{I}$ is a locally semi-T-nilpotent system with respect to I' defined in \$1.4.
5) I' \cap End(M) is equal to the Jacobson radical of End(M).

Proof. - 1) \rightarrow 4) It is clear from (3.1.1).
$4) \rightarrow 5$) Since $S_{M} / \underline{J}^{\prime} \cap S_{M}$ is semi-simple by (1.4.8), $S_{M} \cap \underline{J}^{\prime} \supseteq J\left(S_{M}\right)$, where $S_{M}=\operatorname{End}(M)$. We shall prove the converse inclusion from (2.2.3). The first condition in (2.2.3) is clear for S_{α}. Let $\left\{a_{i}\right\}$ be a set of element in $J^{\prime} \cap\left[M_{\sigma}, M_{\tau}\right]$ such that $\left\{a_{i}\right\}$ is summable. Put $a=\Sigma a_{i}$. If $M_{\sigma} \not \approx M_{\tau}$, then aGI' $\left[M_{\sigma}, M_{\tau}\right]$. If $M_{\sigma} \approx M_{\tau}$, we can show by the same argument in the proof of (1.4.2) that a is not isomorphic. Hence, $a \in I^{\prime} \cap\left[M_{\sigma}, M_{\tau}\right]$, which is the second condition in (2.2.3). The third one is equal to 4). Hence, $J^{\prime} \cap S_{M} \subseteq J\left(S_{M}\right)$ by (2.2.3).
5) \rightarrow 1) Let $M^{\prime}=\sum_{I^{\prime}} \oplus M_{Y}$ and e the projection of N to M^{\prime}. It is clear by (1.4.3) that $\left(\underline{J}^{\prime} \cap S_{M}\right) \cap S_{M^{\prime}}=\underline{J}^{\prime} \cap S_{M^{\prime}}$. On the other hand, it is well known that $e S_{M^{\prime}}=S_{M^{\prime}}$ anc $J\left(S_{M^{\prime}}\right)=e J\left(S_{M}\right)$ e. Hence, $J\left(S_{M \prime}\right)=J^{\prime} \cap S_{M^{\prime}}$, which guarantees 1) by Remark 1 in $§ 2.1$.
2) \rightarrow 3) It is clear from the definition.
3) \rightarrow 1) 3) implies 4) by (3.1.1) and hence, implies 1).
$1) \rightarrow 2$) In order to show this, we need the following proposition.
If we use it, the proof is clear.

PROPOSITION 3.1.3. - Let $\left\{M_{\alpha}\right\}$ and M be as in (3.1.2). Then the following statements are qeuivalent.

1) The property III in the introduction ; every direct summand of M is a direct sum of c.inde. modules $M^{\prime}{ }_{\alpha}$ such that M_{α}^{\prime} are isomorphic to some M_{γ} in $\left\{M_{\alpha}\right\}_{I}$, is true.
2) For any idempotents e, f in S_{M} we have $e S_{M} \approx f S_{M}$ if and only if $e S_{M} / e\left(\underline{J}^{\prime} \cap S_{M}\right) \approx f S_{M} / f\left(J^{\prime} \cap S_{M}\right)$.
Proof. - 1) \rightarrow 2) Put $\bar{S}_{M}=S_{M} /^{\prime} \cap S_{M^{\prime}} e M=\Sigma \oplus M^{\prime}{ }_{\alpha}$, and $f M=\Sigma \oplus M_{\alpha \prime \prime}^{\prime \prime \prime}$. We Assume $\bar{e}_{\bar{S}}^{M} \approx \overline{\mathrm{~S}} \bar{S}_{M}$. Then $\operatorname{Im} \overline{\mathrm{e}} \approx \operatorname{Im} \overline{\mathrm{f}}$ in $\underline{\mathbb{A}}$, where \underline{A} is the category in (1.4.8). Hence, since $\operatorname{Im} \overline{\mathrm{e}}=\Sigma \oplus \bar{M}^{\prime}{ }_{\alpha}$ and $\operatorname{Im} \overline{\mathrm{f}}=\Sigma \oplus \bar{M}_{\alpha}{ }_{\alpha}{ }^{\prime}{ }^{\prime},,_{\alpha}^{\prime}$, is isomorphic to some $M_{\alpha \prime \prime}^{\prime \prime}$ and vice versa by (1.4.8). Therefore, $e M \approx f M$, which implies $\mathrm{eS} \mathrm{M} \approx \mathrm{fS}_{\mathrm{M}}$.
3) \rightarrow 1) Let M be a direct summand of M and e the projection. We showed in the proof of (2.1.4) that there exists an idempotent f in S_{M} such that $\mathrm{fM}=\sum_{I^{\prime}} \oplus \mathrm{M}_{\delta} ; \mathrm{I}^{\prime} \leqslant \mathrm{I}$ and $\overline{\mathrm{e}} \bar{S}_{M} \approx \overline{\mathrm{fS}}_{\mathrm{M}}$. Hence, $\mathrm{eS} \mathrm{M}_{\mathrm{M}} \approx \mathrm{fS}_{\mathrm{M}}$ implies $\mathrm{eM} \approx \mathrm{fM}$. COROLLARY 3.1.4 [7]. - Let $\left\{\mathrm{M}_{\alpha}\right\}$ be as in (2.1.2). If one of the conditions in (3.1.2) is satisfied, then the property III is true for M.

REMARKS 1. We can replace 2) and 3) in (3.1.2) by the X_{0}-exchange property by virtue of (3.1.1).
2. Let z be the ring of integers and p a prime. Then $\left\{z / p^{i}\right\}_{i=1}^{\infty}$ is not a semi-T-nilpotent system. Hence, $M=\sum_{i=1}^{\infty} \oplus Z / p^{i}$ does not satisfy any statements in (3.1.2). However, M satisfies the property III (see §4.2).
3. Let $\left\{M_{\alpha}\right\}$ be a set of indecomposable modules with finite composition lengthes wifh do not exceed a fixed natural number n. Then $\left\{M_{\alpha}\right\}$ is a T -nilpotent system with respect to \underline{J}^{\prime} (see [17]).
4. Let K be a field and R the ring of lower tri-angular matrices with infinite degree. Put $M=\sum_{i} \oplus e_{i i} R$, where $e_{i i}$ are matrix units in R. Then $\left\{e_{i i} R\right\}$ is not a semi-T-nilpotent system, but M satisfies the property III (see §4.2) .
5. Let K be the ring of upper tri-angular matrices. Then $\left\{e_{i i} R\right\}$ is a T-nilpotent system.

3.2. DENSE SUBMODULES.

In this section we shall give a special answer to the property III. Let $\left\{M_{\alpha}\right\}$ be a set of c.inde.modules and $M=\sum_{I} \oplus M_{\alpha}$. By A we denote the induced category from $\left\{M_{\alpha}\right\}_{I}$. Let J^{\prime} be the ideal in A defined in $\S 1.4$. We denote $\underline{A} / \underline{J}^{\prime}$ by \underline{A}.

DEFINITION. - Let M and N be in A such that N is a submodule in M, $i: N \rightarrow M$ inclusion. If \vec{i} is isomorphic in \bar{A}, i.e. $\vec{N}=\vec{M}$; N is called a dense submodule in M, (note that if N is a submodule of M which is a direct sum of c.inde. modules and \bar{i} is isomorphic in \bar{C}, then $N \in \underline{A}$, where C is the induced category from all c.inde.modules). NOTATION. . Let e be an idempotent in $S_{M}=\operatorname{End}(M)$. Then $M=e M \oplus(1-e) M$ in M_{R}. We do not know whether $e M \in \underline{A}$ or not, however we shall denote $\operatorname{Im} \bar{e}$ in \bar{A} by $\overline{e M}$ for the sake of conveniency. It is clear that if $\mathrm{eM} \in \underset{A}{A}$, Im $\bar{e}=\overline{\mathrm{eM}}$ in \bar{A}. We note that even if $f(M)$ is in A for some $f \in S_{M} ; \operatorname{Im} \bar{f}$ is not
equal to $\overline{f(M)}$ in general.

PROPOSITION 3.2.1. - Every dense submodule of M is isomorphic to M. Proof. - Since $\bar{M}=\sum_{I} \oplus \bar{M}_{\alpha}=\bar{N}=\Sigma \oplus \bar{N}_{\gamma}, M \approx N$ as R-modules by (1.4.8), where N_{γ} 's are c.inde. modules.

PROPOSITION 3.2.2. - Let M and P in A and $\vec{M} \supseteq \vec{P}$ in A. Then there exists a submodule P_{0} in M which satisfies the followings :

1) P_{0} is in A i.e. $P_{o}=\sum_{J} \oplus M^{\prime}{ }_{\alpha}{ }^{\prime}$.
2) For any finite subset J^{\prime} of $J \sum_{J^{\prime}} \oplus M_{\alpha}^{\prime}$, is a direct summand of M. If $\left\{\mathrm{M}_{\alpha}^{\prime}\right\}_{\mathrm{J}}$ is a locally semi-T-nilpotent system with respect to I ; then P_{0} is a direct surmand of M.
3) $P_{o} \approx \mathrm{P}$ as R -modules.

Furthermore, if e is an idempotent in S_{M} and $\overline{\mathrm{P}}=\operatorname{Im} \overline{\mathrm{e}}$, then we can find such P_{o} in $\operatorname{Im} e$ in M_{R}.

Proof. - Since $\overline{\mathbb{A}}$ is completely reducible by (1.4.8), there exist R-homomorphisms i: $P \rightarrow M$ and $p: M \rightarrow P$ such that $\overline{p i}={\underset{p}{p}}^{p}$. Let $P=\sum_{K} \not P_{\gamma}$; P_{γ} are c.inde.. For a subset K of K we denote the injection : $P_{K^{\prime}}=\sum_{K^{\prime}} \oplus P_{\gamma} \rightarrow P$ and the projection $: P \rightarrow P_{K^{\prime}}$ by $i_{K^{\prime}}$ and $p_{K^{\prime}}$, respectively : $P_{K^{\prime}} \underset{P_{K^{\prime}}}{\stackrel{i_{K^{\prime}}}{\rightleftarrows}} P \underset{P}{\stackrel{i}{\leftrightarrows}} M$. Then $\xrightarrow[p_{K^{\prime}}, P_{i} K^{\prime}]{ }=\overline{1}_{P_{K^{\prime}}}$ If either K^{\prime} is finite or $\left\{P_{\gamma^{\prime}}\right\}_{K^{\prime}}$ is semi-T-nilpotent, $S_{P_{K}}{ }^{\prime} \underline{J}^{\prime}=J\left(S_{P_{K^{\prime}}}\right)$ by (3.1.2). Hence, $p_{K^{\prime}}{ }^{\text {pii }}{ }_{K^{\prime}}$ is R-isomorphic. Therefore, ii $_{K}$, is monomorphic in M_{R} for every finite
subset K^{\prime} of K, which means i is monomorphic in M_{R}. Put $P_{o}=\operatorname{Im}$ i in M_{R}. Then P_{0} satisfies 1$\left.) \sim 3\right)$. Suppose $\operatorname{Im} e=P$. Then $M=P \oplus(1-e) M$ and hence, pei $=$ pi. Put $P_{0}=I m$ ei in M_{R}. From the above argument, we know that P_{0} satisfies the all requirment in(3.2.2).
REMARK 6. Let $N=\sum_{i=1}^{n} \oplus M_{i}$ be a submodule of M via the inclusion i_{N}. Then we know by the above proof that \bar{i}_{N} is monomorphic in \bar{A} if and only if N is a direct summand of M.

LEMMA 3.2.3[1]. - Let M and J^{\prime} be as above. Then for any $I \in J^{\prime} \cap S_{M^{\prime}}$ ${ }^{1} M^{-f}$ is monomorphic.

Froof. - Suppose Ker $(1-f) \neq 0$. Then there exists a finite subset I^{\prime} of I such that Ker $(1-f) \cap \sum_{I^{\prime}} \oplus_{\alpha} \neq 0$. By (2.1.1) we obtain a set of direct summands $\left\{M^{\prime}{ }_{\phi\left(\alpha^{\prime}\right)}\right\}_{I^{\prime}}$. such that $M=\sum_{I^{\prime}} \oplus M^{\prime}{ }_{\phi\left(\alpha^{\prime}\right)} \oplus \sum_{I-I^{\prime}} \oplus N_{\alpha}$ and $M_{\alpha}, \approx M_{\phi\left(\alpha^{\prime}\right)}$ for each $\alpha^{\prime} \in I^{\prime}$ via either f or (1-f). However, f is in J^{\prime} and hence, we must obtain those isomorphisms by (1-f), which is a contradiction. Therefore, $\operatorname{Ker}(1-f)=0$.

We shall give criteria forsubmodules to be dense.

THEOREN 3.2.4. - Let $\left\{M_{\alpha}\right\}$ be a set of c.inde. modures, A the induced category from $\left\{M_{\alpha}\right\}_{I}$ and J^{\prime} the usual ideal in A. Let N be in A. i.e. $N=\sum_{J} \oplus N_{\gamma}$ and a submodule of M via the inclusion $i_{N}: N \rightarrow M$. Then the followings are equivalent.

1) N is a dense submodule of M.
2) \bar{i}_{N} is monomorphic in A / \underline{J} ' and for any direct summand P of M, there exists a finite subset J^{\prime} of J such that $P \cap N_{J}, \neq 0$ or $P \oplus N_{J^{\prime}}$ is not a direct summand of M, where $N_{J^{\prime}}=\sum_{J^{\prime}} \oplus N_{\gamma^{\prime}}$. 3) \bar{i}_{N} is monomorphic and N contains $\operatorname{Im}(1-f)$ in M_{R} for some $f \in J '$. Hence, $\operatorname{Im}(1-f)$ is a dense submodule in M for all $f \in J$. Furthermore, the above N_{J} is a direct sumand of M if either $\mathrm{J} "$ is finite or $\left\{\mathrm{N}_{\gamma^{\prime}}\right\}^{\prime}$ " is a semi-T-nilpotent system.

Proof. - 1) \Rightarrow 2) Since P contains a direct summand of M which is c.inde. by (2.1.4), we may assume P is c.inde.. Furthermore, since A is a Grothendieck category and \bar{P} is minimal in $\overline{\mathbb{A}}, \overline{\mathrm{P}} \subseteq \sum_{J^{\prime}} \oplus \overline{\mathrm{N}}_{\gamma^{\prime}}=\overline{\mathrm{N}}_{J^{\prime}}$ for some finite subset J^{\prime} of J. Suppose $P \cap N_{J}=0$ and $P \oplus N_{J}$, is a direct summand of $M ; M=P \oplus N_{J}, \oplus M_{0}$. Let $i: P \oplus N_{J}, M$ be the inclusion. Then $\operatorname{Im} \bar{i}=\bar{P} \oplus \overline{\mathbb{N}}_{J}$, which is a contradiction. Hence, $P \oplus N_{J}$, is not a direct summand of M.
2) \Longrightarrow 1) We assume that \bar{i}_{N} is monomorphic and $\bar{M} \neq \bar{N}$. Then there exists a minimal object \bar{M}_{α} such that $\bar{M}_{\alpha} \cap \bar{N}=0$. Hence, for any finite subset JI of $J \bar{M}_{\alpha} \cap \bar{N}_{J}$, $=\overline{0}$. Therefore, $M_{\alpha} \oplus N_{J}$, is a direct summand of M by Remark 6 (take first a formal direct sum $M_{\alpha} \oplus N_{J}$, and consider a natural mapping from $M \oplus N_{J}$, to $\left.M_{\alpha} \cup N_{J}, \subseteq M\right)$.

1) \Rightarrow 3) Since \bar{i}_{N} is isomorphic, there exists an R-homomorphism $j \in[M, N]$ such that $\bar{i}_{N} \bar{j}=\overline{1}_{M}$. Then $f=1-i_{N} j \in \underline{J}^{\prime}$ and $\operatorname{Im}(1-f)$ in $M_{R} \subseteq \operatorname{Im} i_{N}=N$.
$3) \Rightarrow 1$) Since $1-f$ is monomorphic by (3.2.3), $\operatorname{Im}(1-f)$ in $M_{R}=N^{\prime}$ is in . Put $1-f: M \xrightarrow{\left(1-f^{\prime}\right)}{ }^{\prime} N^{\prime} \xrightarrow{i} M$. Then $\overline{1}_{M}=\overline{1-f}=\bar{i}(\overline{1-f})$ '. Hence, \bar{i} is isomorphic in A, since ($1-f$)' is isomorphic in M_{R}. Therefore, $\operatorname{Im}(1-f)$ ' is a dense submodule in M. Since \bar{i}_{N} is monomorphic and $N \supseteq \operatorname{Im}(1-f), N$ is also dense.

The remaining part is clear from Remark 6 and (3.1.2).
REMARK 7. - In general, we have many dense submodules P in $M=\sum_{i=1} \oplus M_{i}$, for instance such as $P \cap \sum_{i=1}^{n} \oplus M_{i}=0$ for some $n<\infty$ or $P \cap M_{i} \neq 0$ for all i (see [18]).

In the above we showed that if J^{\prime} is a finite set, then N_{J} is a direct summand of M for a dense submodule N. We generalize this property as follows :

DEFINITION..Let $A \supset B$ be R-modules and $B=\sum_{J} \oplus B_{\gamma}$. If for any finite subset J^{\prime} of $J, \sum_{J^{\prime}} \oplus B_{\gamma}$ is a direct summand of A, we call B a locally direct surmand of A (with respect to the decomposition $B=\sum_{J} \oplus B_{\gamma}$).

We note that if all B_{γ} are injective, B is always a locally direct summand of A. We shall use this fact in Chapter 6. In general $B=\sum_{I} \oplus B_{\gamma}$ is a locally direct summand of $\prod_{I} B_{\gamma}$.

THEOREM 3.2.5. - Let $\left\{M_{\alpha}\right\}_{I}$ be a set of c.inde.modules and $M=\sum_{I} \oplus M_{\alpha}$. Then the following statements are equivalent.

1) $\left\{M_{\alpha}\right\}_{I}$ is a locally semi-T-nilpotent system with respect to J'
2) Every dense submodules coincide with M .
3) Every locally direct summand M^{\prime} of M with respect to $M^{\prime}=\sum_{K} \oplus T_{\alpha}$
with any cardinal $|K|$ is a direct summand of M.
4) 3) is true for decomposition with $|K| \leqslant x_{0}$.
1) 4) is true whenever all T_{α} are c.inde. modules.
1) $\mathrm{S}_{\mathrm{M}} / \mathrm{J}\left(\mathrm{S}_{\mathrm{M}}\right)$ is a regular ring in the sense of Von Nermann and every idempotent in $S_{M} / J\left(S_{M}\right)$ is iifted to S_{M}.

Proof. - 1) $\boldsymbol{\rightarrow}$ 2) Every dense submodule N of M is a direct summand of M by the last part of (3.2.4). Hence, $N=M$ by (2.1.2).
2) $\Rightarrow 1$) Since $\operatorname{Im}(1-f)$ is dense in M for $f \in J^{\prime} \cap S_{M}, 1-f$ is regular by 2). Hence, $J^{\prime} \cap S_{M} \subseteq J\left(S_{M}\right)$, which implies 1) from (3.1.2).

1) \Rightarrow 3) Every direct summand of M is a direct sum of c.inde.modules by (3.1.4). The assumption of locally direct summand implies that $\sum_{K} \oplus \bar{T}_{\alpha}$ is a subobject of \bar{M} via $\vec{i}_{M^{\prime}}$, where $i_{M^{\prime}}: M^{\prime} \rightarrow M$ inclusion. Hence, M^{\prime} is a iErect summand by Remark 1 in $§ 2.1$ and (3.1.2).
2) $\Rightarrow 4) \Longrightarrow$ 5) They are clear.
$5) \Rightarrow 1$) We shall recall the proof of (3.1.1). Let $\left\{M_{i}\right\}_{1}^{\infty}$ be a countable subset of $\left\{M_{\alpha}\right\}$ and $\left\{f_{i}: M_{i} \rightarrow M_{i+1}\right\}$ a given set of morphisms in J '. We defined the submodule $M^{\prime}=M_{1}{ }^{\prime} \oplus M_{2}{ }^{\prime} \oplus \ldots$ in M. Since $M_{1}{ }^{\prime} \oplus \ldots \oplus M^{\prime}{ }_{n} \oplus M_{n+1}=$ $\sum_{i=1}^{n+1} \oplus M_{i}$ for any n, M^{\prime} is a locally direct summand of M. Hence, M^{\prime} is a direct summand of M and hence, so is in $M_{0}=\sum_{i=1}^{\infty} \oplus M_{i}$. Since $M^{\prime}=$ im (1-f) in N_{R}, M^{\prime} is a dense submodule of M_{0}, where $f=\sum_{i=1}^{\infty}-e_{i i+1} f_{i} ; e_{i j}{ }^{\prime}$ s are matrix units in S_{M}. Hence, $M=M_{0}$. If we use the formula ($\times \kappa *$) in the proof of (3.1.1), then we know that $\left\{\mathrm{f}_{\mathrm{i}}\right\}^{\infty}$, is a locally semi-T-nilpotent system.
$1) \Rightarrow 6$) Since $\underline{J}^{\prime} \cap S_{M}=J\left(S_{M}\right)$ by (3.1.2) and A / J^{\prime} is a regular ring by (1.4.8), so is $S_{M} / J\left(S_{M}\right)$. Let $f \in S_{M}$ such that $\vec{f}^{2}=\vec{f}$. Then there exists a direct summand M_{1} of M such that $\bar{M}_{1}=i m$ by (8.2.2). Let e be the projection of M to M_{1}. Since $\operatorname{Im} \bar{f}=\operatorname{Im} \bar{e}, \operatorname{Im}(\overline{1-f}) \approx \operatorname{Im}(\overline{1-e})$ in \bar{A}. Hence, there exists a regular element \bar{a} in \vec{S}_{M} such that $\bar{f}=\bar{a}^{-1} \bar{e} \bar{a}$ by (1.4.4). Since $J^{\prime} \cap S_{M}=J\left(S_{M}\right)$, a is regular in S_{M} and hence, a^{-1} ea is a idempotent.
$6) \Longrightarrow 1) \quad J^{\prime} \cap S_{M} \supseteq J\left(S_{M}\right)$ by (1.4.8). Since $S_{M} / J\left(S_{M}\right)$ is regular, ($\left.J^{\prime} \cap S_{M}\right) / J\left(S_{M}\right)$ contains a non-zero idempotent if $J^{\prime} \cap S_{M} / J\left(S_{M}\right)$. Then this idempotent is lifted to S_{M} by 6) and hence it is in $J^{\prime} \cap S_{M}$, which contradicts (2.1.2).

COROLLARY 3.2.6. - Let R be a local ring with T-nilpotent radical $J(R)$ and S the ring of colvon finite matrices over R with any degree. Then every idempotent in $\mathrm{S} / \mathrm{J}(\mathrm{S})$ is iffed to S .

Proof. - Put $M=\sum_{I} \oplus R$, then $S \approx \operatorname{End}_{R}(M)$.
The following theorem is some generalization of (3.2.4) and is a special answer to the property III.

THEOREM 3.2.7. - Let $\left\{M_{\alpha}\right\}_{I}, M$ and A be as in (3.2.4). Let $M=\sum_{J} \oplus N_{r}$ where N_{γ} may not be in \underline{A}. Then there exists a set of submodules $\left\{P_{\gamma}\right\}_{J}$ of M as follows:

1) $N_{\gamma} \supseteq P_{\gamma}$ and $P_{\gamma} \in$.
2) $\Sigma \oplus P_{\gamma}$ is a dense submodule in M.

Proof. - Let Π_{γ} be the projection of M to N_{γ} (note that Π_{γ} is regarded as an element in $[M, M]$. It is clear that $\left\{\pi_{\gamma}\right\}$ is a summable set and $1_{M}=\sum_{J} \Pi_{\gamma}$. Let M_{1} be an element in $\left\{M_{\alpha}\right\}$. For any non-zero element m_{1} in M_{1} we have $\Pi_{\gamma}\left(m_{1}\right)=0$ for all $\gamma \in J-J^{\prime}$, where J^{\prime} is a finite subset of J. Hence, $\Pi_{\gamma} \mid M_{1} \in J^{\prime}$ for all $\gamma \in J-J^{\prime}$. We shall express Π_{γ} as matrices (${ }_{\alpha \alpha_{\alpha}}^{\gamma}$) in 31.4 . Since $\left\{\pi_{Y}\right\}_{J}$ is summable, so is $\left\{x_{\alpha \beta}^{\gamma}\right\}_{J}$ for any $\alpha \beta$. It is clear $\Pi_{\gamma} \mid M_{q}=\left(x_{\alpha_{1}}^{\gamma}\right)_{\alpha \in I}$. Therefore, $\quad \sum_{J-J J^{\prime}} \Pi_{\gamma} \mid M_{1} \in \underline{J}^{\prime} \quad$ (see the proof of (1.4.2)). Then $\bar{M}_{1}=\operatorname{Im} \overline{1}_{M} \mid \vec{M}_{1} \subseteq \operatorname{Im}\left(\sum_{J^{\prime}} \bar{\Pi}_{\gamma} \mid \bar{M}_{1}+\left(\sum_{J-J^{\prime}} \bar{\Pi}_{\gamma} \mid M_{1}\right)=\operatorname{Im}\left(\sum_{J^{\prime}} \bar{\Pi}_{\gamma} \mid \bar{M}_{1}\right) \subseteq \sum_{J^{\prime}} \operatorname{Im} \bar{\Pi}_{\gamma^{\prime}}\right.$. Hence, $\bar{M}=\sum \operatorname{Im} \bar{\Pi}_{\gamma}$. On the other hand, there exists a set $\left\{P_{\gamma}\right\}_{J}$ of a submodule in \mathbb{N}_{γ} such that $P_{\gamma} \in \underline{A}$ and $\vec{P}_{\gamma}=\operatorname{Im} \vec{\Pi}_{\gamma}$. It is clear that $\bigcup_{\delta \in K} \operatorname{Im} \vec{\Pi}_{\delta}=\sum_{\delta \in K} \oplus \operatorname{Im} \bar{\Pi}_{\delta}$ for any finite subset K of J, and so $\bar{M}=\sum_{J} \oplus \operatorname{Im} \bar{\Pi}_{\delta}=\sum_{J} \oplus \bar{P}_{\gamma}$.

We shall call such P_{γ} a dense submodule in N_{γ}.
The following proposition shows that dense submodules in N_{γ} are maximal submodules in N_{γ} up to isomorphism in some senses.

PROPOSITION 3.2.8. - Let M be as above and N a direct sumand of M . Let N^{\prime} be a dense submodule in N and T a submodue of N and in A. If T is a locally direct stomand of N, T is isomorphic to a direct sumand of N^{\prime}. Every countably generated R -submodule of N is isomorphic to some submodule of N^{\prime}.

Proof. - We leave the proof to the reader (cf. (4.2.1)).

CHAPTER 4. THE EXCHANGE PROPERTY

Let $\left\{M_{\alpha}\right\}$ be a set of c.inde. modules and $M=\sum_{I} \oplus M_{\alpha}$ as before. In chapter 3 we have considered a case where every direct summand of M has the exchange property in M. We shall concentrate, in this chapter, in a direct summand of M which has the exchange property in M.
4.1. SEMI-T-NILPOTENCY AND THE EXCHANGE PROPERTY.

Let M be as above, A the induced category from $\left\{M_{\alpha}\right\}_{I}$ and $\bar{A}=\underline{A} / J^{\prime}$ as before. It is clear that if a direct summand N of M has the exchange property in M, then $N \in A$.

PROPOSITION 4.1.1.- Let $M=N_{1} \oplus N_{2}$. If either N_{1} is a finitely generated R-module or its dense submodule is a direct sum of c.inde. modules $\left\{M^{\prime}{ }_{\alpha}\right\}_{J}$ such that $\left\{M^{\prime}{ }_{\alpha}{ }^{\prime}\right\}_{J}$ is a locally semi-T-nilpotent system, then $\mathbb{N}_{1} \in \underset{A}{A}$.

Proof. - If N_{1} is finitely generated, N_{1} is contained is some $\sum_{i=1}^{n} \oplus M_{\alpha_{i}}<\oplus M$. Hence, N_{1} is a direct summand of $\sum_{i=1}^{n} \oplus M_{\alpha_{i}}$. Therefore, $N_{1} \in \underline{A}$ by (2.1.4), III. If a dense submodule N^{\prime} of N is of form in the assumption, then $N_{1}=N^{\prime}$ by (3.2.4).

The following proposition is true in a general case (see $[4,38]$), however we shall prove it by virtue of a structure of \bar{A}.

PROPOSITION 4.1.2 $[4,38]$. - Let M be as before. If $M=N_{1} \oplus N_{2}$ and $N_{1}=\sum_{i=1}^{n} \oplus M_{\alpha_{i}}, M_{\alpha_{i}}$'s are c.inde, then N_{1} has the exchange property in M .

Proof. - Let $M=\sum_{I^{\prime}} \oplus Q_{\alpha}$ be any decomposition. Then each Q_{α} contains a dense submodule $P_{\alpha}, P_{\alpha}=\sum_{J_{\alpha}} \oplus P_{\alpha_{j}}, P_{\alpha_{j}^{\prime}}$ s are c.inde.. Then $\bar{M}=$ $\vec{N}_{1} \oplus \bar{N}_{2}=\sum_{I^{\prime}} \oplus \bar{Q}_{\alpha}=\sum_{I^{\prime}} \sum_{J_{\alpha}} \oplus \bar{P}_{\alpha_{j}}$ (see Notation in $\S 3.2$). Since $\bar{N}_{1}=\sum_{i=1}^{n} \oplus \bar{M}_{\alpha_{i}}$, \vec{N}_{1} is contained in a co-product of finite many of $\vec{P}_{\alpha_{j}}$, say $\sum_{i=1}^{m} \sum_{J_{i}^{\prime}} \oplus \bar{P}_{i j}$ ' where $J^{\prime}{ }_{i}$ is a finite subset of J_{i}. Hence, $P=\sum_{i=1}^{m} \sum_{J}^{i=1} \oplus P_{i j}$ contains a direct summand N_{1}^{\prime} such that $N_{1}, \approx N_{1}$ in M_{R} and $\bar{N}_{1}^{\prime}=\vec{N}_{1}$ by (3.2.2). Since $N_{1}, P \in A_{f}, P=N_{1} \oplus \sum_{i} \sum_{J_{i}} \not{ }^{\prime} \oplus P_{i j} ; J_{i}{ }^{\prime} \subseteq J_{i}{ }^{\prime}$ by (3.1.2) and (2.1.3).
Furthermore, P is a direct summand of M by (3.2.2). Since $Q_{i} \supset \sum_{J_{i}} \oplus P_{i j}$ ', $Q_{i}=\sum_{J^{\prime}} \oplus P_{i j} \oplus Q_{i}^{\prime}$. Hence, $M=N_{1}{ }^{\prime} \oplus \sum_{i} \sum_{J_{i}}{ }^{\prime \prime} P_{i j} \oplus \sum_{i=1}^{m} \oplus Q_{i}{ }^{\prime} \oplus \sum_{\alpha \neq i}^{J} \oplus Q_{\alpha}$. Let p be the projection of M to $N_{1}{ }^{\prime}$ in the above decomposition. Since $\vec{N}_{1}^{\prime}=\bar{N}_{1}$, $\overline{\mathrm{p}}\left|\overrightarrow{\mathrm{N}}_{1}=\overline{\mathrm{p}}\right| \overline{\mathrm{N}}_{1}$, and $\overline{\mathrm{pi}}_{\mathrm{N}_{1}}=\bar{i}_{\mathrm{N}_{1}}$. Since $\mathrm{N}_{1}{€ A_{f}}_{\mathrm{m}}$, pi N_{1} is isomorphic in M_{R} by (2.1.3). Hence, $M=N_{1} \oplus K \operatorname{Ker} p=N_{1} \oplus \sum_{i=1}^{m}\left(\sum_{J_{i} \prime \prime} \oplus ?_{i j} \oplus Q_{i}^{\prime}\right) \oplus \sum_{\alpha \neq i} \oplus Q_{\alpha}$.

We note that if I is finite, we may regard $\left\{M_{\alpha}\right\}_{I}$ as a locally semi-T-nilpotent system, (see § 3.2).

THEOREM 4.1.3. - Let $\left\{M_{\alpha}\right\}_{I}$ be a set of c.inde.modules and $M=\sum_{I} \oplus M_{\alpha}=N_{1} \oplus N_{2}$. Suppose $N_{1}=\sum_{I^{\prime}} \oplus M^{\prime} \alpha^{\prime} ; M^{\prime}{ }_{\alpha}$, are c.inde. If $\left\{M_{\alpha^{\prime}}{ }^{\prime}\right\}_{I^{\prime}}$, is a locally semi-T-nilpotent system, N_{1} and N_{2} have the exchange property in M.

Proof. - First, we shall show that N_{2} has the exchange property in M. Let $M=\sum_{J} \oplus Q_{\alpha}$ be any decomposition. By (3.2.7) each Q_{α} contains a dense submodule $P_{\alpha}=\sum_{T_{\alpha}} \oplus P_{\alpha i}$. Since \bar{A} is a completely reducible and Grothendieck category by (1.4.8), we have

$$
\bar{M}=\bar{N}_{2} \oplus \sum_{J \ni \alpha} \sum_{T_{\alpha}^{\prime}} \oplus \bar{P}_{\alpha i}, \text {, where } T_{\alpha}^{\prime} \subseteq T_{\alpha} \ldots \text { 1). }
$$

It is clear that $\bar{N}_{1} \approx \sum_{J} \sum_{T_{\alpha}} \oplus \overline{\mathrm{P}}_{\alpha i}$, . Hence, $\left\{\mathrm{P}_{\alpha \mathrm{I}^{\prime}}\right\}_{J \mathrm{~T}_{\alpha}^{\prime}}$ is a locally semi-T-nilpotent system by the assumption. Put $\mathrm{p}_{\mathrm{N}_{1}}$ be the projection of M to N_{1} with $\operatorname{Ker} \mathrm{p}_{\mathrm{N}_{1}}=\mathrm{N}_{2}$. From 1) we know that $\overline{\mathrm{p}}_{\mathrm{N}_{1}} \mid \sum_{\mathrm{J}} \sum_{\mathrm{T}_{\alpha^{\prime}}} \oplus \overline{\mathrm{P}}_{\alpha \mathrm{ai}^{\prime}}$ is isomorphic in \bar{A}. Hence, $p_{N_{1}} \mid \sum_{J} \sum_{T_{\alpha}^{\prime}} \oplus P_{\alpha i}$, is isomorphic in M_{R} by (3.1.2). Therefore, $M=\sum_{J} \sum_{T_{\alpha}^{\prime}} \quad P_{\alpha i^{\prime}} \oplus \operatorname{Ker} p_{N_{1}}=\sum_{J} \sum_{T_{\alpha}} \oplus P_{\alpha i} \oplus N_{2}$. Since $\sum_{T_{\alpha^{\prime}}} \oplus P_{\alpha i}, \subseteq Q_{\alpha}$, N_{2} has the exchange property in M. Next, we shall show that N_{1} has the exchange property in M. From the similar argument to 1) we have a dense submodule $P_{\alpha}=P^{\prime}{ }_{\alpha} \oplus P^{\prime \prime}$ in Q_{α} such that

$$
\begin{array}{llll}
\bar{M} & =\bar{N}_{1} \oplus \sum_{J} \oplus \bar{P}_{\alpha}^{\prime} & \cdots & \text { 2) and } \\
\bar{N}_{1} \approx \sum_{J} \oplus \bar{P}_{\alpha}^{\prime \prime} & \cdots & \text { 3). }
\end{array}
$$

Since $\bar{M}=\sum_{J} \oplus \bar{P}^{\prime}{ }_{\alpha} \oplus \sum_{J} \oplus \bar{P}^{\prime \prime}{ }_{\alpha}$, there exists $p \in\left[M, \Sigma \oplus P_{\alpha}^{\prime \prime}\right]$ in M_{R} such that Ker $\overline{\mathrm{p}}$ in $\overline{\mathrm{A}}=\sum_{J} \oplus \overline{\mathrm{P}}_{\alpha}^{\prime}$ and $\overline{\mathrm{p}} \mid \overline{\mathrm{M}}$ is the projection of $\overline{\mathrm{M}}$ to $\Sigma \overline{\oplus P}^{\prime \prime}{ }_{\alpha} \ldots$ 4). From 3) and (3.1.2) we obtain $M=\sum_{J} \oplus P_{\alpha}^{\prime \prime} \oplus$ Ker p and hence, $Q_{\alpha}=$ $P_{\alpha}^{\prime \prime} \oplus\left(\right.$ Ker $\left.p \cap Q_{\alpha}\right)$. Then $M=\sum_{J} \oplus Q_{\alpha}=\sum_{J} \oplus P^{\prime \prime}{ }_{\alpha} \oplus \sum_{J} \oplus\left(\right.$ Ker $\left.P_{\cap} Q_{\alpha}\right)=$ $\sum_{J} \oplus P^{\prime \prime}{ }_{\alpha} \oplus$ Ker p. Hence,

$$
\text { Ker } p=\sum_{J} \oplus\left(\text { Ker } p_{\cap} Q_{\alpha}\right) \ldots 5 \text { 5). }
$$

From 2) and 4) Ker $\overline{\mathrm{p}}_{\cap} \overline{\mathrm{N}}_{1}=0$ and $\mathrm{p}(\overline{\mathrm{M}})=\overline{\mathrm{p}}\left(\bar{N}_{1}\right)=\Sigma \oplus \overline{\mathrm{P}}_{\alpha}$. On the other hand, from 3) we know that $p \mid N_{1}$ is isomorphic in M_{R}. Hence, $M=N_{1} \oplus$ Ker $p=$ $N_{1} \oplus \sum \oplus\left(\operatorname{Ker} p \cap Q_{\alpha}\right)$ by 5$)$.

The following theorem is a generalization of (3.1.2,2) and 5).
THEOREM 4.1.4. - Let M and $\left\{M_{\alpha}\right\}_{I}$ be as in (4.1.3) and $M=N_{1} \oplus N_{2}$. Let f be the projection of M to N_{1}. Then fJ'f $=$ fJf if and only if every direct summand of N_{1} has the exchange property in M . In that case N_{2} also has the exchange property in M , where $J^{\prime}=J^{\prime} \cap \mathrm{S}_{\mathrm{M}}$ and $J=J\left(S_{M}\right)$.

Proof. - We assume fJ'f = fJf. Since A is completely reducible, there exists a subset K of I such that $\operatorname{Im} \overline{\mathrm{f}} \approx \sum_{K} \oplus \bar{M}_{\alpha}=\bar{M}_{K}$. Let e be a projection
 such that $b a \equiv f$ and $\left.a b \equiv e(\bmod J)^{\prime}\right)$. Put $f-b a=n \in J '$. Then $n=f n f \in f J^{\prime} f=$ fJf, which is equal to the radical $S_{N_{1}}=\operatorname{End}\left(N_{1}\right)$. Therefore, ba is an automorphism in $S_{N_{1}}: N_{1}=f M \xrightarrow{a} e M \xrightarrow{b} N_{1}$. Then $e M=a(f M) \oplus$ Ker b in ${\underset{R}{R}}$.

On the other hand, since $a b \equiv e\left(\bmod J^{\prime}\right), \bar{b} \int \overline{e M} \rightarrow \bar{M}$ is monomorphic (note $e M \in \underline{A}$). By considering a dense submodule of Ker b, we know $\overline{\operatorname{Ker}} b=\overline{0}$ in \bar{A}. Therefore, Ker $b=0$ by (2.1.2) and $e M \approx f M$ in M_{R}. Since fJ'f=fJf, $\left\{M_{\alpha}\right\}$ is a locally semi-T-nilpotent sytem by (3.1.2). Hence, every direct summand of $N_{1}=f M(\in A$) has the exchange property in M by (4.1.3). Conversely, we assume that every direct sumand N_{1} ' of N_{1} has the exchange property in M. Then $N=\sum_{K} \oplus T_{\gamma} ; T_{\gamma}$ are c.inde. and $N_{1}{ }^{\prime}$ has the exchange property in N_{1}. Hence, $\left\{T_{\gamma}\right\}_{K}$ is a semi-T-nilpotent by (3.1.1). Therefore, $f^{\prime} f=f J f$ by (1.4.3) and (3.1.2). The remaining part is clear from (4.1.3).

COROLLARY 4.1.5. - Let M and N_{i} be as in (4.1.3). We suppose that for every monomorphism g in $\mathrm{S}_{\mathrm{N}_{1}}$ Im g is a direct swmand of N_{1} i.e. $\mathrm{gS}_{\mathrm{N}_{1}}=e \mathrm{~S}_{\mathrm{N}_{1}}$ and $\mathrm{e}=\mathrm{e}^{2}$. Then every direct surmand of N_{1} has the exchange property in M. Especially, if N_{1} is quasi-injective, N_{1} satisfies the condition.

Proof. - Let f be the projection of M to N_{1} and effJ'f. Then (1-a) is monomorphic by (3.2.3). Futhermore, $(1-a) \mid N_{2}={ }_{1} N_{2}$ and $\operatorname{Im}(1-a)=$ $\operatorname{Im}\left((1-a) \mid N_{1}\right) \oplus N_{2}$. From the assumption, $\operatorname{Im}\left((1-a) \mid N_{1}\right)$ is a direct sumand of N, and hence, $\operatorname{Im}(1-a)$ is a direct summand of M. On the other hand, $\operatorname{Im}(1-a)$ is a dense submodule of M by (3.2.4). Therefore, $\operatorname{Im}(1-a)=M$ and so $\operatorname{Im}\left((1-a) \mid N_{1}\right)=N_{1}$. Hence, a is quasi-regular in $S_{N_{1}}$ and fJ'f $\subseteq f J f$. It is clear $f J f \subseteq f J^{\prime} f$, since $J \subseteq J^{\prime}$. Now we assume N_{1} is quasi-injective and g is a monomorphism in $\mathrm{S}_{\mathrm{N}_{1}}$. Then we have a commutative diagram :

Since g^{-1} is epimorphic, $\mathrm{N}_{1}=\operatorname{img} \notin \operatorname{Ker} \theta$.
Faith and Walker [9] proved the abjve corollary and Warfield [39] did in a more general case, where N_{1} is injective. Fuchs [12] generalized [39] in a case of quasi-injective modules. Kahlon [25] and Ymagata [40] studied the corollary when all M_{α} are injective.

As we see above, the locally semi-T-nilpotency of a submodule N guarantees the exchange property in M (more strongly for all direct summands of N). However, the converse is not true, for example M itself has the exchange property in M, but its direct summands do not. Of course this is a special example.

Let Z be the ring of integers and p_{i} primes. Put $M=\sum_{i=1}^{\infty} \oplus Z / p_{1}^{i}$ $\oplus \sum_{i=1}^{\infty} \oplus Z / p_{2}^{i},\left(p_{1} \neq p_{2}\right)$. Since $N_{1}=\sum_{i=1}^{\infty} \oplus Z / p_{1}^{i}$ is the set of all p_{1}-primary N_{1} has the exchange property in M, but $\left\{z / p_{1}^{i}\right\}_{1}^{\infty}$ is not semi-T-nilpotent. This example is similar to the first case. Let $M=\Sigma \oplus Z / p^{i}=N_{1} \oplus N_{2}$. Then N_{1} has the exchange property in M if and only if either N_{1} or N_{2} is isomorphic to a finite direct sum of $\left\{2 / \mathrm{p}^{\mathrm{i}}\right\}$, (see (4.1.7)). Hence, in this case either N_{1} or N_{2} must have the property of semi-T-nilpotency.

In the following we shall study those situations (I do not know
whether the concepts of the exchange property and semi-T-nilpotency are equivalent, except special cases).

Let $M=\sum \oplus M_{\alpha}$ be as before and $M=N_{1} \oplus N_{2}$. We noted that if N_{1} has the exchange property in M, then $N_{i} \in A$.

PROPOSITION 4.1.6. -Let $\mathrm{M}, \mathrm{N}_{\mathrm{i}}$ be as above. We assume that $\mathrm{N}_{\mathrm{i}}=$

$M(2)_{Y \beta}^{\prime \prime} \approx M(2)_{Y \beta}$ and $M(i)_{Y \beta} \neq M(j)_{\gamma^{\prime} B^{\prime}}$ if $\gamma \neq \gamma$.Furthermore, we assume that if $0 \leqslant\left|J(2)_{\gamma}\right|<\infty,\left|J(1)_{\gamma}\right| \leqslant\left|J(2)_{\gamma}\right|$. Then N_{1} has the (X_{0}-)exchange property in M if and only if $\left\{M(1)_{Y \beta}\right\}$ is a Zocally semi-T-nilpotent system with respect to J!

Proof. - "If" part is clear from (4.1.3). Conversely, let $\left\{M(1) \gamma_{j} \beta_{i}\right\}_{i=1}^{\infty}$ be a subset of $\left\{M(1)_{Y \beta}\right\}$ and $\left\{f_{i} \mid \overline{M(1)} Y_{i} \beta_{i} \rightarrow M(1)_{Y_{i+1}} \beta_{i+1}\right.$ and $\left.f_{i} \in \underline{J}\right\}$. From the assumption, we may assume that $J(2)_{Y_{i}} \neq \emptyset$ for all i and that if $\left|J(1)_{\gamma_{i}}\right|=\infty,\left|J(2)_{\gamma_{i}}\right|=\infty$. In order to show that $\left\{f_{i}\right\}$ is a semi-Tnilpotent, we may change $f_{2 i}$ by suitable $g_{2 i}: M(2)_{\gamma_{i} \beta_{i}} \rightarrow M(1)_{\gamma_{i+1} \beta_{i+1}} \in J^{\prime}$ from the above assumption. Then we obtain the proposition from (3.1.1).

If $\left|J(2)_{\gamma}\right|=\infty \quad$ for all γ, the assumption is satisfied.
PROPOSITION 4.1.7. - Let $\{M\}_{1}^{\infty}$ be a set of c.inde. modules such that
M_{i} is monomorphic but not isomorphic to M_{i+1} for all i.

1) Let $M=\sum_{1}^{\infty} \oplus M_{i}=N_{1} \oplus N_{2}$. Then N_{1} has the (X_{0}-) exchange
property in M if and only if N_{1} or N_{2} is a direct sum of c.inde. modules $\left\{M_{i}\right\}_{J}$ which is locally semi-T-nilpotent (in this case N_{1} or N_{2} is a finite direct sum).
2) Furthermore, we assume that any of M_{i} is itself a locally Tnilpotent system and $M=\sum_{I} \oplus T_{\alpha} ; T_{\alpha}$ is isomorphic to some M_{i}. Then we have the same statement as in 1).

Proof. - 1) If N_{1} and N_{2} are infinite directsums of c.inde. modules, it contradicts (3.1.11). We can prove it similarly to 1) and (4.1.6) and welcave it to the reader.

Contrary to the assamption in (4.1.7) we have

PROPOSITION 4.1.8. - Let $M=\sum_{I}^{\oplus} M_{\alpha}$ and M_{α} isomorphic to a fixed c.inde. module M_{1} for all α. Let $M=N_{1} \oplus N_{2}$. Then N_{1} has the exchange property in M if and only if N_{1} is a direct sum of c.inde.modules $\left\{\mathrm{M}_{\alpha},\right\}_{J}$ which is a locally semi-T-nilpotent system.

We leave the proof to the reader.

4.2. THE PROPERTY III.

We shall study the property III in the introduction, namely let $M=\sum_{I} \oplus M_{\alpha}$ be in A, then every direct summand of M is in A. Whether the property III is true for any M in A or not is still an open problem. If $\left\{M_{\alpha}\right\}$ is a locally semi-T-nilpotent system, this property is true by (3.1.2). We shall give the combined result (4.2.5) of $[38]$ and [24].

Applications of Factor Categories ...

LEMMA 4.2.1. - Let $M=\sum_{I} \oplus M_{\alpha}=N_{1} \oplus N_{2}$ be as before. For any x in N_{1} there exists a direct summand N_{0} of N_{1} such that $x \in N_{0}$ and $N_{0} \in \mathcal{A}$.

Proof. - It is clear that there exists a finite subset J of I such that $x \in M_{J}=\sum_{J} \oplus M_{\alpha}$. Since M_{J} has the exchange property in M by (4.1.2), $M=M_{J} \oplus N_{1}{ }^{\prime} \oplus N_{2}{ }^{\prime}$, where $N_{i}{ }^{\prime} \subseteq N_{i}$. Put $N_{i} "=N_{i} \cap\left(M_{J} \oplus N_{j}{ }^{\prime}\right)(i \neq j)$. Then $x \in N_{1} "$ and $M=\sum_{i=1}^{2} \oplus\left(N_{i}{ }^{\prime} \oplus N_{i} "\right)$. Hence, $M_{J} \approx \sum_{i=1}^{2} \oplus N_{i} "$ and so $N_{i} " \in \underline{A}$ by (2.1.4).

COROLLARY 4.2.2. - Let $M=N_{1} \oplus N_{2}$ be as above. If N_{1} is countably generated, $N_{1} \in \underline{A}$.

Proof. - We can prove it by an induction from (4.2.1).

LEMMA 4.2.3 [26]. - Let M be a direct sum of countably generated R-modules. Then every direct summand of M is also a direct sum of countably generated R-modules. See [26] or [34] for the proof.

LEMMA 4.2.4 $[4,38$.$] - Let M=\sum_{I} \oplus M_{\alpha}$ and let all M_{α} be countably generated and c.inde.modules. Then the property III is true for M.

Proof. - It is clear form (4.2.2) and (4.2.3).

THEOREM 4.2.5. - Let $\left\{M_{\alpha}\right\}_{J},\left\{M_{\beta}^{*}\right\}_{K}$ be sets of c.inde.modules such that $\left\{M_{\alpha}\right\}_{J}$ is a semi-T-nilpotent system with respect to J^{\prime} and $\sum_{K} \oplus M_{B}$ satisfies the property III for any direct summand of it. Then $M=\sum_{\mathrm{J}} \oplus \mathrm{M}_{\alpha} \oplus \sum_{\mathrm{K}}^{\oplus} \oplus \mathrm{M}_{\beta}$ satisfies the property III for any direct summand of M .

Proof. - Let $M=N_{1} \oplus N_{2}$. Since $\sum_{J} \oplus M_{\alpha}=N_{0}$ has the exchange property in M by (4.1.3), $M=M_{0} \oplus N_{1}{ }^{\prime} \oplus N_{2}^{\prime}$, where $N_{i}=N_{i}{ }^{\prime} \oplus N_{i}^{\prime \prime}$. Hence, $M / M_{0} \approx N_{1}{ }^{\prime} \oplus N_{2}{ }^{\prime} \approx \sum \underset{K}{ } \oplus M_{B^{*}}^{*}$ Therefore, $N_{i}{ }^{\prime} \in \underline{A}$ from the assumption. On the other hand, $N_{1} " P N_{2} " \approx M_{0}$ and hence, $N_{i} " \in A$ by (3.1.4).

COROLLARY 4.2.6. - Let $M=\sum_{I} \oplus M_{\alpha}$ and M_{α} c.inde. Let $\left\{M_{B}\right\}_{K}$ be the subset of $\left\{\mathrm{M}_{\alpha}\right\}$ which consists of all countably generated R-modules. If $\left\{\mathrm{M}_{\mathrm{Y}}\right\}_{\mathrm{I}-\mathrm{K}}$ is a locally semi-T-nilpotent system with respect to \underline{J}^{\prime}, then the property III is true for M.

Proof. - It is clear form (4.2.4) and (4.2.5).
Finally, we add here a corollary to (4.2.4).

Corollary 4.2.7. - Let M, N_{i} be as in (4.1.3). If N_{1} is R-projective, $\mathrm{N}_{1} \in$. Especially, if M is R -projective, the property III is true for M .

Proof. - Every R-projective module is a directsum of countably generated R-modules by (4.2.3) and hence, $N_{1} \in \underline{A}$ by (4.2.4).

CHAPTER 5. SEMI-PERFECT MODULES

H. Bass [2] defined semi-perfect or perfect rings as a generalization of semi-primary rings in 1960. Later E. Mares [28] succeeded to generalize them to modules in 1963.

In this chapter we shall give many interesting properties of semiperfect modules given by $[19,28]$. We always assume that a ring R contains the identity and modules are right R-modules and unitary.
5.1. Semi-perfect modules

Let $M \supseteq N$ be R-modules. If any submodule T of M with property : $M=T+N$, always coincides with M, N is called small in M.

LEMMA 5.1.1. - Let $A \subseteq B \subseteq M \subseteq N$ be R-moduzes. Then

1) If B is small in M, then A is small in N.
2) Let $\left\{A_{i}\right\}_{1}^{n}$ be a finite set of small submodules in M, then $\sum_{i=1}^{n} A_{i}$ is also suall in M.
3) Let f be a homomorphism of M to M^{\prime}. If A is small in M, $f(A)$ is small in M^{\prime}.

Proof. - It is clear from the definition. DEFINITION. - Let $P \xrightarrow{\pi} M \rightarrow O$ be an exact sequence of R-modules. If P is R-projective and Ker π is samll in P, we say P is a projective cover of M. We shall denote it by (P, π) and P by $P(M)$, respectively.

LEMMA 5.1.2. - Projective covers (P, π) of M are unique up to isomorphism if they exist. If $P^{\prime} \longrightarrow M \longrightarrow 0$ is an exact sequence with P^{\prime} projective, then (P, π) is naturally imbedded in P^{\prime} as a direct summand.

Proof. - From a diagram ;

p'
we have θ and $P=\operatorname{Im} \theta+\operatorname{Ker} \pi$, since P^{\prime} is projective and f is surjective. Hence, $P=\operatorname{Im} \theta$, which implies $P^{\prime}=P_{0} \oplus K e r \theta$, since P is projective. The first part is clear from the last.

DEFINITION. - Let P be an R-module. If P is R-projective and every factor modules of P have projective covers, we call P semi-perfect. If every direct sum of copies of P are semi-perfect, we call P perfect.

LEMMA 5.1.3 [2,28]. - Let M be semi-perfect and U a submodule of M. Let $U_{U}: M \rightarrow M / U$ be the natural epimorphism. Then there exist projective submodules P and V of M and of U, respectively auch that $M=P \oplus V, J_{U} \mid P \rightarrow M / U$ is a projective cover and $U \cap P$ is saall in P.

Proof. - Take a diagram;

Then $M=P \oplus$ Ker f by (5.1.2), where $P \stackrel{f}{\approx} P(M / U)$ and $P \cap U$ is small in P. It is clear Ker $f \subseteq U$.

COROLLARY 5.1.4. - Let M be semi-pefect. Then for any submodule U of M , U is small in M or there exists a non-zero direct sumand V of M such that $U \geq V$.

Proof. - If U is not small in $M, U \underset{\neq U}{ } \cup P$ by (5.1.1) and (5.1.3). Hence, $P \not P U$ and so $V \neq 0$.

LEMMA 5.1.5 [37].- Let P be R-projective and $S_{P}=\operatorname{End}(P)$. Then $J(S)=\{f \mid \in S, \operatorname{Im} f$ is small in $P\}$.

Proof. - Denote the set of right side in (5.1.6) by $\mathrm{J}^{\prime}(\mathrm{s})$. It is clear from (5.1.1) that $J^{\prime}(S)$ is a two-sided ideal in S. For any $f \in S$ we have $P=\operatorname{Im} f+\operatorname{Im}(1-f)$. Hence, if $f \in J^{\prime}(S), P=\operatorname{Im}(1-f)$. Since P is projective, $P=\operatorname{Ker}(1-f) \oplus P^{\prime}$. Put $K=\operatorname{Ker}(1-f)$. Then $K=f(K) \subseteq f(P)$, which is small in P. Hence, $P=P^{\prime}$ and $K=0$. Therefore, $J^{\prime}(S) \subseteq J(S)$. Conversely, let $g \in J(S)$. We shall show that $g(P)$ is small in P. Let $P=T+g(P)$ for some $T \leqq P$ and consider a diagramm ;

Then $(1-\mathrm{gk})=0$ and hence, $\nu=0$, since $\mathrm{gk} \in J(\mathrm{~S})$. Therefore, $\mathrm{P}=\mathrm{T}$.

PROPOSITION 5.1.6. - Let M be a semi-perfect module. Then $S / J(S)$ is a regutar ring in the sense of Von Neumann, where $S=\operatorname{mad}_{R}(M)$, (cf. $[23,28]$).

Froof. - Let $s \in S$. Then there exists a submodule P of M such that $M=\operatorname{Im} s+P$ and $P \cap \operatorname{Im} s$ is small in M by (5.1.3). We define an R-homomorphism $\phi: M / P \longrightarrow M / s^{-1}(P)$ by setting $\phi(s(m)+P)=m+s^{-1}(P)$, which is clearly well defined. Now consider a diagram ;

Then $t s(m)-m \in s^{-1}(P)$ and hence $s(t s(m)-m) \in P \cap I m s$. Therefore, $s-s t s \in J^{\prime}(s)=J(s)$ by (5, 1.5).

For any R-module A we put $J(A)=\cap$ (Maximal submodules in A) or $J(A)=A$ is there exist non maximal submodules. If $A=R, J(R)$ is the Jacobson radical of R. We note that every small submodule in A is contained in $J(A)$ and that $f(J(A)) \subseteq J(B)$ for any R-homomorphism f of A to B. From now on, we shall denote $\operatorname{Hom}_{R}(A, B)$ by $[A, B]$ and $\operatorname{End}_{R}(A)$ by S_{A}. PROPOSITION 5.1.7. - Let P be R-projective. Then $J(P)$ is small in P if and only if $J\left(S_{P}\right)=[P, J(P)]$. In this case $S_{P} / J\left(S_{P}\right) \approx E n d_{R}(M / J(P))$ as rings.

Proof. - From the above remark we always have $J\left(S_{P}\right) \subseteq[P, J(P)]$ by (5.1.6) for projective P. If $J(P)$ is small in $P,[P, J(P)] \subseteq J\left(S_{P}\right)$ by (5.1.5). Conversely, suppose $[P, J(P)]=J\left(S_{P}\right)$ and $P=J(P)+N$ for some submodule N. Then we consider a diagram !

From it we obtain $J(P)=h(P)+N \cap J(P)$ and hence, $P=N+J(P)=N+h(P)$. Since $h \in[P, J(P)]=J\left(S_{P}\right), h(P)$ is small in P. Therefore, $P=N$ and we have shown that $J(P)$ is small in P. Since P is projective, we have an exact sequence $; 0 \rightarrow[P, J(P)] \rightarrow S_{P} \rightarrow[P, P / J(P)] \rightarrow 0$. It is clear that $[P, P / J(P)]=[P / J(P), P / J(P)]$ by the above remark.

LEMMA 5.1.8.- Let $\left\{A_{\alpha}\right\}_{I}$ be a set of R-modules such that $\left[A_{a}, J\left(A_{\alpha}\right)\right] s J\left(S_{A_{\alpha}}\right)$ for all $\alpha \in I$. Put $A=\sum_{I} \oplus A_{\alpha}$. If $\operatorname{Ker}(1-f) \neq 0$ for some $f \in S_{A}$, then $\operatorname{Im} f \neq J(\operatorname{Im} f)$.

Proof. - Put $B=\operatorname{Im} f$ and suppose $B=J(B)$. Since $J(B) \subseteq J(A), f \in[A, J(A)]$. $\operatorname{Ker}(1-f) \neq 0$ implies that there exists a subset $\{1,2, \ldots, n\}$ such that $\left(\sum_{i=1}^{n} \oplus A_{i}\right) \cap \operatorname{Ker}(1-f) \neq 0$. The following argument is analogous to the proof of (2.1.1.). Let e_{1} be the projective of A to A_{1}. Since $f \in[A, J(A)], e_{1} f e_{1} \mid A_{1} \in\left[A_{1}, J\left(A_{1}\right)\right] \subseteq J\left(S_{A_{1}}\right)$ by the assumption. Hence,

Applications of Factor Categories ...

$e_{1}(1-f) e_{1} \mid A_{1}$ is an automorphism of $A_{1}: A_{1} \xrightarrow{(1-f) e_{1}} A \xrightarrow{e_{1}} A_{1}$ and so $A=(1-f)\left(A_{1}\right) \oplus \operatorname{Ker} e_{1}=(1-f)\left(A_{1}\right) \oplus \sum_{\alpha \neq 1} \oplus A_{\alpha}$ and $A_{1} \xlongequal{\sim} \approx(1-f)\left(A_{1}\right)$ Now, we repeat the same argument on the latest decomposition and on A_{2}. Then we have $A=(1-f)\left(A_{1}\right) \oplus(1-f)\left(A_{2}\right) \oplus \sum_{\alpha=1,2} \oplus A_{\alpha}$. Finally, we have that $(1-f) \mid\left(\sum_{i}^{n} \oplus A_{i}\right)$ is isomorphic from this argument, which is a contradiction. Hence, $B \neq J(B)$.

COROLLARY 5.1.9[2]. - If P is R-projective, $P \neq J(P)$ and $J(P)=P J(R)$. Proof. - It is clear $J(R)=[R, J(R)]$ and P is a direct sumand of copies of R. Hence, $P \neq J(P)$ from (5.1.8). The last part is also clear.

We note that $(5.1 .9)$ shows that P contains a maximal submodule.

COROLLARY 5.1.10. - If M is semi-perfect, $J(M)$ is small in M.

Proof. - $\because y(5.1 .4)$ either $J(M)$ is small in M or $J(M)$ contains a nonzero submodule $;$ such that $M=V \oplus V^{\prime}$. If we had the latter, then $J(M)=$ $J(V) \oplus J\left(V^{\prime}\right)$ and $J(V)=J(M) \cap V=V$. Hence, $V=0$ by (5.1.9).

PROPOSITION 5.1.11. - Let M be semi-perfect. Then $M / J(M)$ is a semisimple module.

Proof. - Put $\bar{M}=M / J(M)$ and $\bar{U}=U / J(M)$ for a submodule $U \geq J(M)$. By (5.1.3) there exist submodules P, V in M such that $M=P \oplus V, V \subseteq U$ and $U \cap P$ is small in M. Then $U \cap P \subseteq J(M)$. On the other hand, $(P+J(M)) \cap U=$ $(P \cap U)+J(M)=J(M)$. Hence, $\bar{M}=\bar{P} \oplus \bar{U}$. Therefore, M is semi-simple (since
R contains the identity or $J(M) \neq M)$.

LEMMA 5.1.12. - Let P be an R-projective module such that $J(P)$ is small in P. Suppose that $P / J(P)$ is a direct sum of submoduzes $\left\{\bar{P}_{\alpha}^{1}\right\}$ as $R / J(R)$-modules and that for each $\alpha \in I$, there exists a projective module $Q_{\alpha} / J\left(Q_{\alpha}\right) \approx \bar{P}_{\alpha}^{\prime}$. Then the above decomposition of \bar{P} is lifted to P .

Proof. - Put $Q=\sum_{I} \oplus Q_{\alpha}$. Since $P \rightarrow P / J(P)$ is a projective cover of $P / J(P), P / J(P) \approx Q / J(Q)$ and Q is projective, $Q=P \oplus Q^{\prime}$ by (5.1.2):

Q
Then $Q=P+J(Q)=P \oplus J\left(Q^{\prime}\right)$ and hence, $Q^{\prime}=0$.
COROLLARY 5.1.13. - Let M be semi-perfect and $M / J(M)=\Sigma \oplus \bar{M}_{\alpha}^{\prime}$.
Then there exists a decomposition of $M: M=\sum_{I} \oplus M_{\alpha}$ which induces the above. Especially M is a direct sum of c.inde. modules.

Proof. - We know from the proof of (5.1.11) that M satisfies the condition in (5.1.12). Hence, we obtain the first part from (5.1.12). Since $M / J(M)$ is semi-simple by $(5.1 .11), M=\sum_{J} \oplus M_{B}^{\prime \prime}$, where $M_{B}^{\prime \prime} / J\left(M_{B}^{\prime \prime}\right)$ are minimal by the first part. Since End $\left(M_{B}^{\prime \prime} / J\left(M_{B}^{\prime \prime}\right)\right)=\operatorname{End}\left(M_{B}^{\prime \prime}\right) / J\left(\right.$ EndM $\left.M_{B}^{\prime \prime}\right)$ by (5.1.7), $M_{\beta}^{\prime \prime}$ is c.inde..

Applications of Factor Categories ...

From this corollary we can apply the results in the previous chapters to semi-perfect modules.

THEOREM 5.1.4 [28].- Let M be semi-perfect. Then we obtain

1) $J(M)$ is small in M.
2) $M / J(M)$ is semi-simple.
3) Every decomposition of $M / J(M)$ such as $M / J(M)=M_{1}{ }^{\prime} \oplus M_{2}^{\prime}$ is Zifted to M.

Conversely, if a projective module M satisfies 1)~3), then M is semi-perfect.

Proof. - We have shown the first half. We assume a projective module M satisfies 1$) \sim 3$). Let A be a submodule of M and put $M=M / J(M)$ and \bar{A} $(A+J(M)) / J(M)$. From 2) and 3) there exist submodules M_{1}, M_{2} such that $M=M_{1} \oplus M_{2}$ and $\bar{M}_{1}=\bar{A}$. Then we have a diagram ;

Ker $\phi=(A+J(M ; / A$ is small in M / A by 1$)$ and (5.1.1). Hence, f is surjective. On the other hand, Ker $f \subseteq$ Ker $\varepsilon=J\left(M_{2}\right)$, which is small in M_{2} by 1). Therefore, $\left(M_{2}, f\right)=P(M / A)$.

5.2. SEMI-T-NIIPOTENCY AND SEMI-PERFECTION

We have shown by (5.1.3) that every semi-perfect modules are directsums of c.inde.projective modules. In this section, we shall consider the converse case.

THEOREM 5.2.1. - Let $\left\{P_{\alpha}\right\}$ be a set of projective modules P_{α} and $P=\sum_{I} \oplus P_{\alpha}$. Then $J(P)$ is small in P if and only if $J\left(P_{\alpha}\right)$ is small in P_{α} for all acI and $\left\{P_{\alpha}\right\}_{I}$ is a locally semi-T-nilpotent system with respect to the radical J (of the induced category from $\left\{\mathrm{P}_{\alpha}\right\}{ }_{\mathrm{I}}$).

Proof. - If $J(P)$ is small in P then $J\left(P_{\alpha}\right)$ is small in P_{α} by (5.1.1). Let $\left\{P_{i}\right\}_{1}^{\infty}$ be a subset of $\left\{P_{\alpha}\right\}_{I}$ and $\left\{f_{i}: P_{i} \rightarrow P_{i+1}\right.$ and $\left.f_{i} \in J\right\}$. Put $P_{i}^{\prime}=\left\{p_{i}+f_{i}\left(p_{i}\right) \mid G P_{i} \oplus P_{i+1}<\oplus P, p_{i} \in P_{i}\right\}$. since $J\left(P_{i}\right) \oplus J\left(P_{i+1}\right)$ is small in $P_{i} \oplus P_{i+1}, f_{i}\left(p_{i}\right) \in J\left(P_{i+1}\right)$ by (5.1.7). Then $P=\sum_{1}^{\infty}+P_{i}^{\prime}+$ $\sum_{\gamma \neq(i)}+P_{\gamma}+J(P)$. Since $J(P)$ is small in $P, P=\sum_{i=1}^{\infty} \oplus P_{i} \oplus \sum_{\gamma \neq(i)} \oplus P_{\gamma}$. Hence, $\left\{P_{\gamma}\right\}_{\text {I }}$ is a locally semi-T-nilpotent system from (***) in the proof of (3.1.1). Conversely, we assume that $J\left(P_{\alpha}\right)$ is mall in P_{α} for all $\alpha \in I$ and $\left\{P_{\alpha}\right\}$ is locally semi-T-nilpotent. Then $\left[P_{\alpha}, J\left(P_{\alpha}\right)\right]=J\left(S_{P_{\alpha}}\right)$ by (5.1.7). We shall put $\underline{C} \cap\left[P_{\alpha}, P_{\beta}\right]=\left[P_{\alpha}, J\left(P_{\beta}\right)\right]$ in (2.2.3). Then \underline{C} satisfies all conditions in (2.2.3). Hence, $[P, J(P)] \subseteq J\left(S_{P}\right)$, which implies that $J(P)$ is small in P by (5.1.7).

COROLLARY 5.2.2. - Let $\left\{\mathrm{P}_{\alpha}\right\}$ and P be as above. Then P is (semi-)perfect if only if P_{α} is (semi-)perfect and $\left\{\mathrm{P}_{\alpha}\right\}_{I}$ is a locally (semi-)Tnilpotent system with respect to J .

Proof. - We assume that P is semi-perfect. Then each P_{α} is semi-perfect and $J(P)$ is small in P by (5.1.14). Hence, $\left\{P_{\alpha}\right\}$ is locally semi-T-nilpotent. If P is perfect, consider any co-products of copies of P, then the above argument shows that $\left\{P_{\alpha}\right\}$ is locally T-nilpotent. Conversely, we assume that each P_{α} is semi-perfect. Then by (5.1.11) and (5.1.13) $P / J(P)$ is a semi-simple module and $P=\sum_{J} \oplus P_{\beta}^{\prime}$, where P_{β}^{\prime} are c. inde.. Since $\left\{P_{\alpha}\right\}_{I}$ is a locally semi-T-nilpotent system with respect to J, so is $\left\{P_{\beta}^{\prime}\right\}_{J}$. Furthermore, $\underline{J}^{\prime} \cap\left[P_{\beta}^{\prime}, P_{\beta}^{\prime}\right]=\underline{J} \cap\left[P_{\beta}^{\prime}, P_{\beta}^{\prime}\right]$, (see § 1.4 for the definition of $\left.J^{\prime}\right)$. Hence, every idempotent in $S_{P} / J\left(S_{P}\right)$ is lifted to S_{P} by (3.2.5). $J(P)$ is small in P by (5.2.1). Therefore, P is semi-perfect by (5.1.14). If $\left\{P_{\alpha}\right\}$ is locally T-nilpotent, we can use the above argument on any co-products of copies of P. Hence, P is perfect.

COROLLARY 5.2.3 [33,36]. - Let S be any ming with radical $J(S)$ and $(S)_{I}$ the ring of column finite matrices over S with any degree I. Then $J\left(\left(S_{I}\right)\right)=(J(S))_{I}$ if and only if $J(S)$ is right T-nilpotent. Proof. - Put $M=\sum_{I} \oplus S$, then $[M, M]=(S)_{I}$ and $[M, J(M)]=(J(S))_{I}$. Hence, $(J(S))_{I}=J\left((S)_{I}\right)$ if and only if $J(M)$ is small in M by (5.1.7) and hence if and only if $J(S)$ is right T-nilpotent by (5.2.1).

THEOREM 5.2.4. - Let P be an indecomposable and projective modules. Then P is semi-perfect if and only if P is c.inde. .

Proof. - If P is semi-perfect, P is c.inde. by (5.1.13). The converse is a special case of the following theorem.

THEOREM 5.2.4'. - Let P be projective, then we have the following equivalent statements.

1) S_{P} is a local ring.
2) Every proper submodule of P is small in P.
3) P is semi-perfect and indecomposable.

Proof. - 1) \rightarrow 2) Since S_{P} is local, P is c.inde. and hence, $J\left(S_{P}\right)$ consist of all non-isomorphisms in S_{P}. Let N be a proper submodule of P and $P=T+\mathbb{N}$ for some submodule T in P. Then we have a diagram ;

Since $N \neq P, \alpha \in J\left(S_{P}\right)$ and $N=T \cap N+\operatorname{Im} \alpha$. Hence, $P=T+\operatorname{Im} \alpha$. Since $\operatorname{Im} \alpha$ is small in P by (5.1.5), $P=T$.
2) \rightarrow 1) Let $f \neq 0 \in S_{P}$ be a non-isomorphism. If $\operatorname{Im} f=P, P=P_{0} \oplus K e r f$, since P is projective. Hence, $\operatorname{Ker} f=0$ by 2), which contradicts the assumption. Therefore, $\operatorname{Im} \mathrm{f} \neq \mathrm{P}$. Let g be another non-isomorphism in S_{P}.

Then $P_{\neq} \operatorname{Im} f+\operatorname{Im} g \supseteq \operatorname{Im}(f+g)$. Hence, the set of non-isomorphisms in S_{P} is the two-sided ideal, which means that S_{P} is local.
2) \rightarrow 3) It is clear.
$3) \rightarrow 2$) Let T be a proper submodule of P and $P^{\prime}=P(P / T)$. Since P is projective, $P=P^{\prime} \oplus P^{\prime \prime}$ by (5.1.2). Hence, $P^{\prime}=P$ and T is small in P. REMARK. - If P is semi-perfect and indecomposable, $J(P)$ is a unique maximal submodule of P by (5.2.4'),2). Hence, $P \approx e R$ for some idempotent e, since P is cyclic. Thus, there exist semi-perfect modules if and only if R contains a local idempotent e, i.e. eRe is a local ring.

COROLLARY 5.2.5. - Let P be a semi-perfect. Then there exist maximal ones among perfect direct sumands of P and those modules are isomorphic each other.

Proof. - Let $P=\sum_{I} \oplus P_{\alpha}$ and P_{α} c.inde.. Let \underline{S} be the set of subset $\left\{P_{\gamma}\right\}_{J}$ of $\left\{P_{\alpha}\right\}_{I}$ such that $\left\{P_{\gamma}\right\}_{J}$ is locally T-nilpotent. We can find a maximal one in \underline{S} by Zorn's lamma, say $\left\{P_{\gamma}\right\}_{J}$, since $\left\{P_{\alpha}\right\}_{I}$ is semi-T-nilpotent. Put $P_{0}=\sum_{J} \oplus P_{\gamma}$, then P_{0} is a desired perfect summand of P by (5.2.3). Let $P=\sum_{J} \oplus P_{\gamma} \oplus \sum_{K} \oplus P_{\delta}=\sum_{J^{\prime}} \oplus P_{\gamma}^{\prime} \oplus \sum_{K^{\prime}} \oplus P_{\delta}^{\prime}$, where $\sum_{J} \oplus P_{\gamma}$ and $\sum_{J^{\prime}} \oplus P_{\gamma}^{\prime}$ are maximal perfect submodules. Then P_{γ} and P_{γ}^{\prime} are themselves T-nilpotent, respectively. Hence, if P_{γ} is isomorphic to some $\mathrm{P}_{\mathrm{f}}^{\prime} \cdot \mathrm{M}$ in $\left\{P_{\left.\delta^{\prime},\right\}_{K},}\left\{\left\{P_{Y^{\prime}}^{\prime}\right\}_{J}, P_{Y}\right\}\right.$ is locally T-nilpotent. Which contradicts to the maximality of $\sum_{J} \oplus P_{\gamma}^{\prime}{ }^{\prime}$. Therefore, $\sum_{J} \oplus P_{\gamma} \approx \sum_{J^{\prime}} \oplus P_{\gamma^{\prime}}^{\prime}$, by (2.1.4).

Applications of Factor Categories ...

PROPOSITION 5.2.6. - Let P be semi-perfect and P_{o} a projective sub-module in P. Then P_{0} is a direct sumand of P if and only if $J(P) \cap P_{0}=J\left(P_{0}\right)$.

Proof. - Suppose $J\left(P_{0}\right)=J(P) \cap P_{0}$, then $P_{0} / J\left(P_{0}\right) \subseteq P / J(P)$. By (5.1.13) there exists a direct summand P_{1} of P such that $P_{1} / J\left(P_{1}\right) \oplus P_{0} / J\left(P_{0}\right)=P / J(P)$. On the other hand, the formal directsum $P_{9} \oplus P_{0}$ is isomorphic to P by (5.1.12). Hence, $J\left(P_{0}\right)$ is small in P_{0}. Consider a diagram ;

where i is the inclusion. Then $\left(1_{P_{0}}-g i\right)\left(P_{0}\right) \subseteq J\left(P_{0}\right)$ and hence, $\left(1_{P_{0}}-g i\right) \in J\left(S_{P_{0}}\right)$ by (5.1.5). Therefore, gi is isomorphic in $S_{P_{0}}$, which means that P_{o} is direct summand of P. The converse is clear.

5.3. PROJECTIVE ARTINIAN MODULES.

Let M be an R-module. If for every series $M_{1} \supseteq M_{2} \supseteq \ldots \geq M_{n} \supseteq \ldots$ of submodules M_{i} of M there exists n such that $M_{n}=M_{n+t}$ for all t, we call M artinian. Let T be a subset of S_{M}. We put $T M=\{f(m) \mid f \in T$ and $m \in M\}$. IEMMA 5.3.1. - Let M be artinian and projective. If $\mathrm{AM}=\mathrm{A}^{2} \mathrm{M} \neq 0$ for a right ideal A in S_{M}, Then A contains a non-zero idempotent.

Proof. - Since M is artinian, there exists a minimal submodule $N=A^{\prime} M$ with respect to properties $N^{\prime}=A^{\prime \prime} M=A^{\prime \prime} M \neq 0$ for a right ideal $A^{\prime \prime} \leq A$.

Then A^{\prime} is not nilpotent. Hence, there exists x in A^{\prime} such that $x A^{\prime} \neq 0$. Again from the assumption we can find a minimal one among submodules $x^{\prime} M,\left(x^{\prime} \in A\right)$ and $x^{\prime} M \neq 0$, say $x M,(x \in A)$. Since $x A^{\prime} A^{\prime} M=x A^{\prime} M \neq 0$, there exists $y \in x A^{\prime}$ such that $y A^{\prime} \neq 0$. Then $y M \subseteq x A^{\prime} M \subseteq x M$. Hence, $y M=x M$ by the minimality of $x M$. Now, consider a diagram ;

Then $x=y r=x a$, where $a \in A$. Hence, $x=x a=x a^{2}=\ldots$. Therefore, a is not nilpotent and $x\left(a-a^{2}\right)=0$. Put $n=a^{2}-a$. If $n=0$, a is a nonzero idempotent. Suppose $n \neq 0$. Put $A^{*}=\left\{z \mid \epsilon A^{\prime}, x z=0\right\}$, then $A^{\prime} \underset{\ddagger}{\supset} A^{*} \ni n$. We consider a series ; $A^{*} M \supseteq A^{*}{ }^{2} M \supseteq \ldots \supseteq A^{* n} M \supseteq \ldots$. Since M is artinian, $A^{*} M=A^{* n+1}$ for some n. Since $A^{\prime} M \supseteq A^{*} M$ and $A^{\prime} M$ is the minimal one, $A^{\prime} M=A^{*} M$ or $A^{*}{ }^{n} M=0$. On the other hand, $x A^{\prime} \neq 0$ and $x A^{*}=0$ and hence, $A^{*}{ }^{n}=0$, which implies that n is nilpotent. Next, put $a_{1}=a+n-2 a n$, then all a, n and a_{1} commute each other, since they are generated by a. Hence, $(-n+2 a n)$ is also nilpotent and a_{1} is not nilpotent. Furthermore, $a_{1}{ }^{2}-a_{1}=n^{2}(4 n-3)$. Repeating this argument we get nonnilpotent elements $a_{i} \in A^{\prime}$ such that $\left(a_{i} a_{i}{ }^{2}\right)=n^{2 \mu} z_{i}, z_{i} \in S_{M}$. Since n is nilpotent, we have a non-zero idempotent a_{t} in A^{\prime}.

COROLLARY 5.3.2. - Let M be as above. Then S_{M} is a semi-primary ring.

Proof. - Since M is artinian, M is a finite directsum of indecomposable, projective module M_{i}. First we assume $M=M_{1}$. For any right ideal A in $S_{M}, A^{n} M=A^{n+1} M$ for some n. If $A^{n} \neq 0$, A contains a non-zero idempotent e by (5.3.1). Since M is indecomposable, $e=1$. Therefore, S_{M} is a local ring with nilpotent radical. Next, we may assume $M=\sum_{i=1}^{n} \sum_{j=1}^{S i} \oplus M_{i j}$, where $M_{i_{i j}} '^{\prime}$ are indecomposable and $M_{i j} \approx M_{i j}{ }_{s}, M_{i j} \neq M_{i \prime j}$, if i$\neq i$. Then $S_{M}=\left\{\left(s_{i j}\right) s_{i j} \in S_{i j}=\left[\sum_{k=1}^{s_{j}} \oplus M_{j k^{\prime}} \sum_{k^{\prime}=1}^{S_{i}} \oplus M_{i k}\right]\right\}$. Since $M_{i j}$ is c.inde. from the above,

$$
J\left(S_{M}\right)=\quad\left(\begin{array}{cccc}
J\left(s_{11}\right) & s_{12} & \cdots & s_{i n} \\
s_{21} & J\left(s_{22}\right) & \cdots & s_{2 n} \\
& & & \\
s_{n 1} & & \cdots \cdots & \\
& & \cdots \cdots & J\left(s_{n n}\right)
\end{array}\right)
$$

by (2.1.3). Furthermore. All $J\left(S_{i i}\right)$ are nilpotent and hence, $J\left(S_{M}\right)$ is nilpotent and $S_{M} / J\left(S_{M}\right) \approx \sum_{i=1}^{n} \oplus S_{i i} / J\left(S_{i i}\right)$. It is clear that $S_{i i} / J\left(S_{i i}\right)$ is the ring of matrices wer a division ring $S_{M_{i 1}} / J\left(S_{M_{i 1}}\right)$.

IEMMA 5.3.3. - Let M be R -projective and A a finitely generated might ideal in S_{M}. Then $A=[M, A M]$. Furthermore, if M is R-finitely generated, $A^{\prime}=\left[M, A^{\prime} M\right]$ for any right ideal A^{\prime} in S_{M}.

Applications of Factor Categories ...

Proof. - Let $A=\sum_{i=1}^{n} a_{i} S_{M}$. Then we shall consider a diagram ;

where $M_{i} \approx M$ for all $i, \phi=\left(a_{1}, a_{2} \ldots, a_{n}\right)$ and x is any element in $[M, A M]$. We shall denote h by $\left(\begin{array}{l}h_{1} \\ h_{2} \\ h_{n}\end{array}\right)$. Then $x=\sum_{i=1}^{n} a_{i} h_{i}$ is in A. Hence,
$[M, A M] \subseteq A$. It is clear $A \subseteq[M, A M]$. If M is finitely generated, we replace $\sum_{i=1}^{n} \oplus M_{i}$ by $\sum_{a \in A} \oplus M_{a}$ in the above, then $h(M) \subseteq \sum_{i=1}^{t} \oplus M_{a_{i}}$. Hence, we can make use of the same argument.

THEOREM 5.3.4. - Let M be R-projective and artinian. Then M is a perfect R-finitely generated module and S_{M} is right artinian. Proof. - It is clear from the proof ef (5.3.2) that $M=\sum_{i=1}^{n} \oplus M_{i}$, where M_{i} ' s are c.inde. Furthermore, since S_{M} is semi-primary by (5.3.2), M_{i} is a (locally) T-nilpotent system with respect to \mathcal{J}. Therefore, M is perfect by (5.2.2) and (5.2.4) and M_{i} is cyclic. Furthermore, (5.3.3) gives a lattice monomorphism of the set of right ideals in S_{M} into. the set of submodules of M. Hence, S_{M} is right artinian.

CHAPTER 6. INJECTIVE MODULES

In this chapter we assume that the reader knows elementary properties of injective modules and we refer to [8] for them.

We mainly study some application of (1.3.2) to injective modules and hence, we shall consider directsums of indecomposable and injective modules. We reproduce $[10,25,29,31,40]$ by virtue of factor categories and study the Matlis'problem in $\S 6.5$.

6.1. ENDOMORPHISM RINGS OF INJECTIVE MODULES.

In this section we shall recall some properties of the endomorphism rings of injective modules, which we make use of later. If the reader is not familiar to them, consult [8].

As a dual of the concept "small", we shall define the concept "large". Let M?N be R-modules. If for any son-zero submodule T of M, $N \cap T \neq 0$, we say N is large submodule in M or M is an essential extension of N. We denote it by MÓN.

As a dual of (5.1.6) we have

LEMMA 6.1.1. Let E be injective and $S_{E}=$ End(E). Then $J\left(S_{E}\right)=$ $\left\{f \mid \epsilon S_{E}\right.$, Ker $f \subseteq \in E$ and $S_{E} / J\left(S_{E}\right)$ is a regular ring. As a dual of (5.1.14).

LEMMA 6.1.2. Let E and S_{E} be as above. Then a finite set of mutually orthogonal idempotents in $S_{E} / J\left(S_{E}\right)$ is lifted to S_{E}.

As a dual of projective cover, we define an injective envelope (injective hull) E of R-modules M as follows ; E is injective and M is large in E. Contrary to projective covers, every modules have injective hulls and every injective hulls are isomorphic (dual to (5.1.2)). Hence by $E(M)$ we shall denote an injective hull of M.

6.2. CATEGORIES OF INJECTIVE MODULES.

We shall give here an application of (1.3.2) to injective modules. Let M be an R-injective module. We shall define a full sub-additive category $\underline{C}(M)$ in \underline{M}_{R} as follows (cf. the induced category in $\S 1.4$); the objects in $\underline{C}(M)$ consist of all direct surmands of any products $\pi M_{\alpha} ; M_{\alpha} \approx M$. If M is an injective and cogenerator in M_{R}, then $\underline{C}(M)$ is I the category of all injective modules. We also call $\underline{C}(M)$ the category of injective modules induced from M. Let I be the radical of $C(M)$ (see §1.1. for the definition).

THEOREM 6.2.1 [17, 39] . - Let M be and R-injective module and $\underline{C}(M)$ the category of injective modules induced from M and I the radical of $\underline{C}(M)$. Then $\underline{C}(M) / \underline{J}$ is a Grothendieck and spectral category.

Proof. - We shall denote $\underline{C}(M) / \underline{J}$ by $\underline{\bar{C}}(M)$. Then $\underline{\bar{C}}(M)$ has a finite coproducts from the definition and Remark 2 in $§ 1.1$, and $\overline{\mathbb{C}}(M)$ is a regular category from (6.1.1). Furthermore, (6.1.2) shows that $\underline{\overline{\mathrm{C}}}(\mathrm{M})$ is amenable. Hence, $\overline{\bar{C}}(M)$ is an abelian spectral category by (1.3.2). We shall show that $\overline{\bar{C}}(M)$
has finite co-products. Let $\left\{\bar{A}_{\alpha}\right\}$ be a set of objects in $\overline{\mathrm{C}}(M)$. Since $A_{\alpha}<\oplus \prod_{I_{\alpha}} M, \sum_{I} \oplus A_{\alpha}<\oplus \prod_{\alpha} \prod_{I_{\alpha}}^{M}$ and $E=E\left(\sum_{I} \oplus A_{\alpha}\right)$ is an object in $\underline{C}(M)$, since $\pi \pi M$ is injective. We show $\bar{E}=\Sigma \oplus \bar{A}_{\alpha}$. Let N be any object in $\underline{C}(M)$ and $\left\{\bar{f}_{\alpha}: \bar{A}_{\alpha} \rightarrow \bar{N}\right\}$ a set of morphisms, where $f_{\alpha}: A_{\alpha} \rightarrow N$ is a representative. Then there exists $f: \Sigma \oplus A_{\alpha} \rightarrow N$ in $\frac{M_{R}}{}$ such that

Since N is injective, there exists $g: E \rightarrow N$ which commutes the above diagram. We can easily show from (6.1.1) that g does not depend on a choice of representative f_{α} and that \bar{B} is uniquely determined, (cf. the proof of (3.2.7)). Also we can similarly show that for a given $\overline{\mathrm{g}}: \overline{\mathrm{E}} \rightarrow \overline{\mathrm{N}}$, there exists a unique set of $\overline{\mathrm{f}}_{\alpha}: \overline{\mathrm{A}}_{\alpha} \rightarrow \overline{\mathrm{N}}$ such that $\overline{\mathrm{g}}=\pi \overline{\mathrm{f}}_{\alpha}$ Hence, $\bar{E}=\Sigma \oplus \vec{A}_{\alpha}$. Next we shall show that $\underline{\bar{C}}(M)$ has a generator. Let \underline{S} be the set of right ideals K in R such that $E_{K}=E(R / K) \in \underline{C}(M)$. Put $\bar{U}=\sum_{K \in \underline{S}} \oplus \overline{\mathrm{E}}_{\mathrm{K}}$. Let T be an object in $C(M)$ and $t \neq 0 \in T$. Then $T \in t R \approx R /(0: t)_{r}$ and $E\left(R /(0 ; t)_{r}\right) \in \underline{S}$, since T is an injective and in $\underline{C}(M)$. Therefore, $E_{(0 ; t)_{r}}$ is isomorphic to a direct summand of T, which implies $[\bar{U}, \bar{T}] \neq 0$. Finally, we shall show similarly to the proof of (1.4.8) that $\left(U_{K} \bar{A}_{\alpha}\right) \cap \bar{B}=\bigcup_{K}\left(\bar{A}_{\alpha} \cap \bar{B}\right)$
for a subobject \bar{B} and a directed set of subobjects $\left\{\bar{A}_{\alpha}\right\}_{K}$ in a given object
 We put $\bar{D}=\left(\bigcup_{K} \bar{A}_{\alpha}\right) \cap \bar{B}_{O}$ and assume $\bar{D} \neq 0$. From an exact sequence $\sum_{K} \oplus \bar{A}_{\alpha} \rightarrow \bigcup_{K} \bar{A}_{\alpha} \rightarrow 0$, we obtain a monomorphism $\overline{\mathrm{g}}: \overline{\mathrm{D}} \rightarrow \sum_{\mathrm{K}} \oplus \bar{A}_{\alpha}$ such that $\overline{\mathcal{F}_{\bar{G}}}=1_{\bar{Q}_{\mathcal{D}}}$ We note that g is R-monomorphic, since \underline{J} is the Jacobson radical and that $\left.\sum_{K} \oplus \bar{A}_{\alpha}=\overline{E\left(\Sigma \oplus A_{\alpha}\right.}\right)$. Put $D^{\prime}=\operatorname{Im} g$ in $M_{R^{\prime}}$. Then $\bar{D}^{\prime}=\operatorname{Im} \bar{g}$. Since $D^{\prime} \neq 0, D^{\prime} \cap \sum_{K} \oplus A_{\alpha} \neq 0$ in M_{R}. Let $x \neq 0$ be an element in $D^{\prime} \cap \sum_{K} \oplus A_{\alpha}$ and let $E(x R), E_{1}(x R)$ be injective hulls of $x R$ in D^{\prime} and $\sum_{i=1}^{n} \oplus A_{\alpha}^{i}$, respectively, where $x \in \sum_{i=1}^{n} \oplus A_{\alpha_{i}}$. Then $\overline{E(x R)}=\overline{E_{1}(x R)} \subseteq \sum_{1}^{n} \oplus \bar{A}_{\alpha_{i}}$ from Remark 2 below. Hence, $\bar{E}\left(g^{-1}(x) R\right) \subseteq \cup \bar{A}_{\alpha_{i}} \subseteq \bar{A}_{\beta}$ for some β such that $\beta \geqslant \alpha_{i}$ and $\bar{E}\left(g^{-1}(x) R\right) \subseteq \bar{D}$, which is a contradiction.

REMARKS 1. We noted in the proof of (1.4.8) that ${\bar{\Sigma} \bar{I}^{\oplus} M_{\alpha}}=\sum_{I} \oplus \bar{M}_{\alpha}$ in the factor category of c.inde.modules. However, in $\underline{C}(M) \sum_{I} \oplus A_{\alpha}$ is not, in general, an object in $C(M)$ and $\sum_{I} \oplus \bar{A}_{\alpha}$ means $\bar{E}\left(\sum_{I} \oplus A_{\alpha}\right)$.
2. Let E, E^{\prime} be injective and $f: E \rightarrow E^{\prime}$. We shall find Ker f and $\operatorname{Im} f$ in $\underline{C}(M)$. Let $K=\operatorname{Ker} f$ in M_{R} and $E \prime=E(K)$ in E. Then $E=E " \oplus E_{1}$. We define $f^{\prime} \in\left[E, E^{\prime}\right]$ by setting $f^{\prime}=\left(0, f \mid E E_{1}\right)$. Then Ker $\left(f-f^{\prime}\right)=K \oplus E, E$. Hence, $\bar{f}=\bar{f}^{\prime}$. Therefore, Ker $\bar{f}=\operatorname{Ker} \bar{f}^{\prime}=\bar{E}^{\prime \prime}$ and $\operatorname{Im} \bar{f}=\operatorname{Im} \bar{f}^{\prime}=\bar{f}_{\left(E_{q}\right)}$. This argument shows that $\operatorname{Ker} \overline{\mathrm{f}}$ ($\operatorname{Im} \overline{\mathrm{f}}$) does not depend on a choice of injective hulls of K in E and that we can give direct proofs of many
results in the following without factor category. However, if we use the factor category, the proofs are simple and natural in some sense. 3. If $\underset{I}{ } \neq 0, \overline{\Pi A}_{\alpha} \neq \bar{\pi} \bar{A}_{\alpha}$ for $A_{\alpha} \in \underline{C}(M)$ in general. 4. Instead of injective modules, we can consider the full subadditive category \underline{P} of projective modules in M_{R}. However, in this case $\underline{P} / \underline{J}$ is not spectral. We know that $\underline{P} / \underline{J}$ is spectral and Grothendieck category if and only if R is right perfect ring (see [19]).

For any R-module M we put $Z(M)=\left\{m \mid \in M,(O: m)_{r} \subseteq \in\right\}$. It is clear that $Z(M)$ is an R-submodule of M and we call $Z(M)$ the singular submodule of M .

LEMMA 6.2.2. - Let M be an injective moduze with $Z(M)=0$, then $J\left(S_{M}\right)=0$. Proof. - Let $f \in J\left(S_{M}\right)$. Then Ker $f \subseteq M$ and so $Z(M / \operatorname{Ker} f)=M / \operatorname{Ker} f$. On the other hand, $M /$ Ker f is isomorphic to a submodule of M. Hence, $M=\operatorname{Ker} f$. PROPOSITION 6.2.3. - Let M be an injective R-module with $Z(M)=0$. Then $\underline{C}(M)$ is a spectral and Grothendieck category with generator M. For any morphism f in $\underline{C}(M), \operatorname{Ker} f(\operatorname{Im} f)$ in $\underline{C}(M)$ is equal to $\operatorname{Ker} f(\operatorname{Im} f)$ in. M_{R}.

Proof. - From (6.2.2) we obtain $\underset{J}{ }=0$. Hence, $\underline{C}(M)$ is a spectral and Grothendieck category. Furthermore, since M is a cogenerator in $C(M), M$ is a generator. The remaining part is clear from Remark 2.

COROLLARY 6.2.4. - Let N be an R-module with $Z(N)=0$ and Q_{1}, Q_{2} injective submodules in N. Then $Q_{1}+Q_{2}$ and $Q_{1} \cap Q_{2}$ are injective.

Proof. - Let $E=E(N)$ and consider $\underline{C}(E)$. Then $Q_{i} \in \underline{C}(E)$ and $Q_{1}+Q_{2}$ and $Q_{1} Q_{2}$ are an image and a kernel in M_{R} of morphisms in $\underline{C}(E)$, respectively. Hence , they are injective in M_{R} by (6.2.3).

LEMMA 6.2.5. - Let Be a full sub-additive category in M_{R}. Suppose B contains a generator (cogenerator) in M_{R}. Then every monomorphism (epimorphism) in \underline{B} is monomorphic (epimorphic) in M_{R}.

Proof. - Let U a generator in M_{R}, which is contained in B and $f: A \rightarrow B$ a monomorphism in \underline{B}. Put Ker $f=C$ in M_{R}. If $C \neq 0$, there exists $g \neq 0 \in[U, C]$ in M_{R} such that ig $\neq 0$, where $i: C \rightarrow A$ is the inclusion. However, $\operatorname{ig} \in[U, A] \in \underline{B}$ and fig $=0$, which is a contradiction.

PROPOSITION 6.2.6. - Let M be an R-injective module. We assume M is a generator and cogenerator in M_{R}, (e.g. R is a Q.F. ring). Then $\underline{C}(M)$ is an abelian category if and only if R is a semi-simple artinian ring.

Proof. - We assume $\underset{C}{C}(M)$ is abelian. We shall show for any morphism f in $\underline{C}(M)$ that $(\operatorname{Ker} f \operatorname{in} \underline{C}(M))=\left(\operatorname{Ker} f\right.$ in M_{R}). Let $f: N \xrightarrow{f^{\prime}} \operatorname{Im} f \rightarrow N^{\prime}$ be a decomposition of f in $\underline{C}(M)$. Since $\underset{C}{(M)}$ is abelian, f^{\prime} is epimorphic in $\underline{C}(M)$ and i is monomorphic in $\underline{C}(M)$. Hence, so are they in \underline{M}_{R} by (6.2.5). Hence, $(\operatorname{Im} f \operatorname{in} \underline{C}(M))=\left(\operatorname{Im} f \operatorname{in} M_{R}\right)$. Put $K_{1}=(\operatorname{Ker} f \operatorname{ing} \underline{C}(M))$ and $K_{2}=(\operatorname{Ker} f$ in ${\underset{R}{R}}^{M_{2}}$.

It is clear $K_{1} \subseteq K_{2}$ by (6.2.5). On the other hand, K_{1} is R-injective and hence, $N=K_{1} \oplus N^{\prime \prime}$ in M_{R}. Then $N^{\prime \prime} \in \underline{C}(M)$ and $N^{\prime \prime} \xlongequal{f}$ in $M_{R}\left(\operatorname{lm} f\right.$ in M_{R}) from the above. Hence, $K_{1}=K_{2}$. Let A be any R-module, then there exists an R-exact sequence $; 0 \rightarrow A \rightarrow \underset{I_{1}}{7} M \rightarrow \underset{I_{2}}{\pi}$. Since $\pi M \in \underline{C}(M), A=(\operatorname{Ker} f$ in $\left.M_{R}\right)=(\operatorname{Ker} f$ in $\underline{C}(M))$. Hence, A is injective. Therefore, R is semisimple and artinian. The converse is clear.
6.3. DECOMPOSITIONS OF INJECTIVE MODULES.

This section is a reproduction of [29] by virtue of factor category and we shall give a condition under which every injective module is an injective hull of some direct sum of c.inde. modules, which is equivalent to a fact that A / \underline{J} is completely reducible, where A is the full sub-additive category of all injective modules in M_{R}.

LEMMA 6.3.1. Let B be a full sub-additive category in M_{R}. We assume that every direct summand in M_{R} of an object in B belongs to B. Then every finite co-product in B / \mathbb{J} is lifted to M_{R}.

Proof. - Let B, B_{1} and B_{2} be in B and $\bar{B}=\bar{B}_{1} \oplus \bar{B}_{2}$ in $\underline{B} / \underline{J}$. Then there exist morphisms $i_{k}: B_{K} \rightarrow B$ and $p_{k}: B \rightarrow B_{k}$ such that $\overline{1}_{B}=\overline{i_{1} p_{1}}+{\overline{i_{2}} p_{2}}$ and $\bar{p}_{k} i_{k}=\overline{1}_{B k}$. Since J is the radical, $p_{k} i_{k}$ is isomorphic in M_{R}. Hence, $M=\operatorname{Im} i_{1} \oplus \operatorname{Ker} p_{1}$ in M_{R}. By the assumption $\operatorname{Im} i_{1}$ and Ker $p_{1} \in \underline{B}$ and it is clear that Ker $\overline{\mathrm{p}}_{1}=\overline{\mathrm{B}}_{2}$ and $\overline{\mathrm{B}}=\operatorname{Im} \overline{\mathrm{i}}_{1} \oplus \operatorname{Ker} \overline{\mathrm{p}}_{1}=\overline{\mathrm{B}}_{1} \oplus \overline{\mathrm{~B}}_{2}$.

COROLLARY 6.3.2. - Let M be R-injective. Then an object N in $\underline{C}(M) / \underline{\mathcal{J}}$ is minimal if and only if N is indecomposable.

Proof. - It is clear from (6.2.1) and (6.3.1).

PROPOSITION 6.3.3. - Let R be a left perfect ring and $\mathrm{M} R$-injective as a right R -module. Then $\underline{\mathrm{C}}(\mathrm{M}) / \underline{\mathcal{J}}$ is a completely reducible and Grothendieck category.

Proof. - Since R is left perfect, every right R-module contains minimal submodules by [2] . Let N be in $C(M)$ and $S(N)$ the socle of N in M_{R}, i.e. $S(N)=\Sigma \oplus_{-} I_{\alpha}$ and I_{α} 's are minimal R-modules. We know from the assumption that $N ?^{\prime} \Sigma \oplus I_{\alpha}$. Hence, $\overline{\mathrm{N}}=\Sigma \oplus \overline{E\left(I_{\alpha}\right)}$ by Remark 1 and $\left.\overline{E\left(I_{\alpha}\right.}\right)$ is a minimal object in $\underline{\bar{C}}(\mathrm{M})$ by (6.3.2).

Let A be the full sub-additive category of all injective modules in \underline{M}_{R}. By $\underline{\mathbb{A}}$ we shall always denote $\underline{A} / \underline{J}$ in the follows. We know from (6.3.3) that if R is a left perfect ring, then A is completely reducible. We shall give a condition for \bar{A} to be completely reducible [29] . DEFINITION.-Let K be a right ideal in $R . K$ is called reducible if there exist right ideal K_{i} in R such that $K=K_{1} \cap K_{2}$ and $K_{i} \neq K$. If K is not reducible, we call K irreducible.

We shall denote $E(R / K)$ by E_{K}.
LEMMA 6.3.4. - Let E be R-injective. Then the following statements are equivalent.

1) E is indecomposable.
2) E is an essential extension of any submodule.
3) $\mathrm{E}=\mathrm{E}_{\mathrm{K}}$ for some irreducible right ideal K .

Furthermore, E_{K}, is indecomposable for a right ideal K^{\prime}, then K^{\prime} is irreducible.

Proof. - 1) \Longleftrightarrow 2) It is clear from the definition.
2) $\Leftrightarrow 3$) Let $x=0 \in E$. Then $E \supseteq x R \approx R /(0: x)_{r}$. If $(0: x)_{r}=K_{1} \cap K_{2}$, $R /(0: x)_{r} 2 K_{1} /(0: x)_{r} \oplus K_{2} /(0: x)_{r}$. By 2) we have K_{1} or $K_{2}=(0: x)_{r}$. Hence, $(0: x)_{r}$ is irreducible. This proof shows the last part.
3) \Rightarrow 1) Let $E_{K}=E_{1} \oplus E_{2}$ and $p_{i}: E \rightarrow E_{i}$ the projections. Put $K_{i}=$ $\operatorname{Ker}\left(p_{i} \mid R / K\right)$. Then $K=K_{1} \cap K_{2}$. We may assume $K=K$ from 3). Then Ker $p_{1}=0$ since $E \supseteq R / K$. Hence, $E_{2}=0$.

THEOREM 6.3.5 $[17,29,39]$. - Let \bar{A} be as above. Ther. \bar{A} is completely reducible if and only if for every right ideal K, K always has a decomposition as follows : $K=K_{1} \cap K_{2}$ and K_{1} is irreducible and $R \geq K_{2} \neq K$.

Proof. - If E_{K} is completely reducible, $E_{K}=E_{1} \oplus E_{2}$ by (6.3.1) and S.3.2), where E_{1} is indecomposable. Then we have $K=K_{1} \cap K_{2}$ and E_{1} contains an isomorphic image of R / K, from the proof of 3) 1) of (6.3.4). Hence, K_{1} is irreducible from (6.3.4). Conversely, if $K=K_{1} \cap K_{2}$ and $K_{2} \neq K$, then we have a natural exact sequence $: 0 \rightarrow R / K \xrightarrow{\phi} R / K_{1} \oplus R / K_{2}$ and $\phi\left(K_{2} / K\right) \subseteq R / K_{1}$. Hence, $E(R / K) \supseteq E\left(R / K_{1}\right)$ since $E\left(R / K_{1}\right)$ is indecomposable. We knew already from the proof of (6.2.1) that every injective module E contains some E_{K}. Therefore, E contains a minimal object in \bar{A} and hence
\bar{A} is completely reducible, since \bar{A} is a spectral, Grothendieck category.
COROLLARY 6.3.6. - We have the following equivalentstatements

1) R is a right noetherian ring.
2) Every injective modules are a direct sum of c.inde.modules.
3) Any directsums of injective modules are also injective, ($[3,29,32]$).

Proof. - 1) $\langle 3$) See [3] or [8].
$1) \Rightarrow$ 2) Since R is right noetherian, the condition of (6.3.5) is satisfied and so \underline{A} is completely reducible. Hence, for any injective module $E, E=E\left(\Sigma \oplus Q_{\alpha}\right)$ by Remark 1 and (6.3.2), where Q_{α} 's are indecomposable and injective. Since $\Sigma \oplus Q_{\alpha}$ is injective, $E=\Sigma \oplus Q_{\alpha}$. 2) \rightarrow 3) Let $\left\{E_{\alpha}\right\}_{I}$ be a set of indecomposable injective modules. We put $E=E\left(\Sigma \oplus E_{\alpha}\right)$. Then we have $E=\sum_{J} \oplus Q_{\beta}$ by 2), where Q_{β} 's are indecomposable and $\vec{E}=\sum_{J} \oplus \bar{Q}_{\beta}=\Sigma \oplus \bar{E}_{\alpha}$. Hence, $|J|=|I|$ and \vec{E}_{α} is isomorphic to some \bar{Q}_{β} and vice versa, since \bar{E}_{α} and \bar{Q}_{β} are minimal in A. Therefore $\sum_{I} \oplus E_{\alpha} \approx \sum_{J} \oplus Q_{B}$ is injective.

Remark 5. The completely reducibility of $\overline{\underline{A}}$ does not guarantee that R is a right noetherian ((6.3.3)). Furthermore, $\overline{\mathbb{A}}$ is not completely reducible in general (see [17]).
6.4. GOIDIE DIMENSION.
A. Goldie [15] defined a dimension of modules as a generalization of noetherian modules. J. Fort [10] and Y. Miyashita [31] generalized it 96
independently to an infinite case. We shall reproduce them as an application of (6.2.1).

DEFINITION.-Let M be an R-module. If M is always essential extension of any non-zero sub-modules, M is called uniform. Let N be an R-module. We consider the set \underline{S} of sub-modules T of N such that $T=\sum_{I} \oplus K_{\alpha}$, where K_{α} 's are uniform. Put $\operatorname{dim} N=\underset{I}{\max }(|I|)$ if it exists (we shall show in (6.4.3) that dim N exists for any N).

THEOREM 6.4.1 $[10,17,31]$. - Let E be R-injectives. Then dim E exists and we have a decomposition $\mathrm{E}=\mathrm{E}_{1} \oplus \mathrm{E}_{2}$ such that dim $\mathrm{E}=\operatorname{dim} \mathrm{E}_{1}$, $\operatorname{dim} E_{2}=0$ and E_{1} is a minimal injective submodule of E among injective submodules E^{\prime} of E with decompositions as above. Fiurthermore this decomposition is unique up to isomorphism.

Proof. - We take the factor category $\underline{\mathbb{A}}$ in $\S 6.3$. Then dim $E=0$ if and only if the socle $S(\vec{E})$ of \bar{E} in \bar{A} is zero. We assume $S(\bar{E}) \neq 0$ and $S(\bar{E})=$ $\left.\Sigma \oplus \bar{E}_{\alpha}=\overline{E\left(\Sigma \oplus E_{\alpha}\right.}\right)$, where E_{α}^{\prime} 's are indecomposable injectives. Then $E=E\left(\Sigma \oplus E_{\alpha}\right) \oplus E_{2}$ and $\operatorname{dim} E_{2}=0$. Let $N=\sum_{J} \oplus N_{\alpha}$ be a submodule in E, where $N_{\alpha}^{\prime \prime s}$ are uniform. Then $E(N)=E\left(\sum_{J} \oplus E\left(N_{\alpha}\right)\right)$ and $\left.\overline{E(N}{ }_{\alpha}\right)$ is minimal in \bar{A}. Hence, $\overline{E(N)} \subseteq S(\bar{E})$ and so $|J| \leqslant|I|$. Therefore, dim $E=|I|$ Let E^{\prime} be an injective submodule of E such that $E=E^{\prime} \oplus E_{2}^{\prime}, \operatorname{dim} E^{\prime}=\operatorname{dim} E$ and $\operatorname{dim} E_{2}^{\prime}=0$. Then \bar{E}^{\prime} contains $S(\bar{E})=\sum_{I} \oplus \bar{E}_{\alpha}$. Hence, E_{1} is a minimal one among injectives with such a decomposition. Let $E=E_{1} \oplus E_{2}=E_{1}{ }^{\prime} \oplus E_{2}^{\prime}$ such that $\operatorname{dim} E_{1}=\operatorname{dim} E_{1}^{\prime}$ and $\operatorname{dim} E_{2}=\operatorname{dim} E_{2}^{\prime}=0$ and E_{1}, E_{1}^{\prime} are minimal in such decompositions. Then $\bar{E}_{1}=\bar{E}_{1}^{\prime}=S(\overline{\mathrm{E}})$ and hence, $\bar{E}_{2} \approx \bar{E}_{2}^{\prime}$. Since \underline{J} is

Applications of Factor Categories ...

the radical, $E_{1} \approx E_{1}^{\prime}$ and $E_{2} \approx E_{2}^{\prime}$ in M_{R} by Remark 3 in $§ 1.1$.

LEMMA 6.4.2. - Let $M=\sum_{I} \oplus M_{\alpha}$ in M_{R} and N a submodule of M. Put $N_{\alpha}=M_{\alpha} \cap N$
 (further, $M \supseteq^{\prime} N^{\prime}$).

Proof. - Suppose $M_{\alpha} \geq{ }^{\prime} N{ }_{\alpha}$ for all α. Let $m \neq 0 \in M ; m=\sum m_{\alpha_{i}}{ }^{n} \boldsymbol{l}_{\alpha_{i}} \neq 0 \in M_{\alpha_{i}}$. from the assumption, there exists $r \in R$ such that $m r=m_{\alpha_{1}} r+\sum_{i \geqslant 2} m_{\alpha_{i}} r$ and $m_{\alpha_{1}} r \neq 0 \in N_{\alpha_{1}}$. Repeating this, we obtain $m R \cap N^{\prime} \neq 0$. Hence, $M \geq N^{\prime}$. The converse is clear.

PROPOSIMION 6.4.3. - Let N be an R-module. Then $\operatorname{dim} N$ exists and N is an essential extension of a submodule $N_{1} \oplus N_{2}$ such that $\operatorname{dim} N_{1}=\operatorname{dim} N=|I|$ and $\operatorname{dim} N_{2}=0$ and N_{1} is an essential extension of $\sum_{I} \oplus T_{\alpha}$, where T_{α} 's are unifform.

Proof. - Put $E=E(N)$. Then $E=E_{1} \oplus E_{2}$ as in (6.4.1). Put $N_{i}^{\prime}=N \cap E_{i}$. Then $E_{i} \supseteq N_{i}^{\prime}$ and $N \xrightarrow{2} N_{1}^{\prime} \oplus N_{2}^{\prime}$ by (6.4.2). Hence, $\operatorname{dim} E_{2}=\operatorname{dim} N_{2}^{\prime}=0$ and $E_{1}=E\left(N_{1}^{\prime}\right)$. Let $E_{1}=E\left(\sum_{\alpha} E_{\alpha}\right)$, where E_{α} 's are indecomposable. Put $E_{\alpha} \cap N_{1}^{\prime}=N_{\alpha}$ and $N_{1}=\sum_{I} \oplus N_{\alpha}$. Then N_{α}^{\prime} s are uniform and $N_{1}^{\prime} \xrightarrow[2]{\prime} N_{1}$ by (6.4.2). Suppose $N \geqslant T^{\prime}=\Sigma \oplus T_{\alpha}$, where T_{α} 's are uniform. Then $\left.\left.\overline{E\left(T^{\prime}\right)}=\overline{E\left(\sum \oplus E\left(T_{\alpha}\right.\right.}\right)\right)=\Sigma \theta \frac{J}{J}\left(T_{\alpha}\right) \subseteq \bar{E}_{1}$. Hence, $|J| \leqslant|I|$ and $\operatorname{dim} N=\operatorname{dim} E=|I|$.

COROLIARY 6.4.4. [9]. - Let $\left\{\mathrm{E}_{\alpha}\right\}_{\mathrm{I}}$ be a set of injective modules and $Q=\sum_{I} \oplus E_{\alpha}$. Let P be a submodule of Q such that $P=\sum_{J} \oplus P_{B} ; P_{B}{ }^{\prime} s$ are indecomposable injectives. Then $|J| \leqslant|I|$.

6.5. THE PROPERTY III IN INJECTIVE MODULES.

In this section we shall study the property III in a case where every c.inde. modules are injective, which is called Matlis'problem [29]. We do not know a complete answer for this problem and we shall give here some affirmative answers given by [25] and [40].

From the proof of (6.2.2) we have
LEMMA 6.5.1. - Let $\left\{N_{\alpha}\right\}$ be a set of indecomposable injectives. If $Z\left(N_{\alpha}\right)=0$ for some α, every non-zero element in $\left[\mathrm{N}_{\gamma}, \mathrm{N}_{\alpha}\right]$ is isomorphic. Especially, if $Z\left(N_{\alpha}\right)=0$ for all $\alpha \in I^{+},\left\{N_{\alpha}\right\}$ is a T-nilpotent system with respect to I!

THEOREM 6.5.2 $[21,25,40]$. - Let $\left\{N_{\alpha}\right\}_{J}$ be a set of indecomposable injectives and $N=\Sigma \oplus N_{\alpha}$. Suppose $N=M_{1} \oplus M_{2}$ and $Z\left(M_{1}\right)=0$. Then M_{i} is a directsum of c.inde. injectives for $i=1,2$.

Proof. - M_{i} contains a dense submodule T_{i} by (3.2.7). Let $\mathrm{T}_{1}=\sum_{\mathrm{I}} \oplus \mathrm{T}_{\alpha} ; \mathrm{T}_{\alpha}{ }^{\prime} \mathrm{s}$ are c.inde. Since $Z\left(M_{1}\right)=0, Z\left(T_{1}\right)=0$. Hence, $\left\{T_{\alpha}\right\}_{I}$ is a T-nilpotent system by (6.5.1). Therefore, we have the theorem from (3.2.2) and (4.1.3).

THEOREM 6.5.3. - Let $\left\{\mathrm{E}_{\alpha}\right\}$ I be a set of indecomposable injective modules and $E=\sum_{I} \oplus E_{\alpha}$. Then the followings are equivalent.

1) $\left\{\mathrm{E}_{\alpha}\right\}_{\mathrm{I}}$ is a locally semi-T-nilpotent system with respect to J'.
2) Every module in \underline{C} which is an extension of E contains E as a direct surmand.
3) There are no proper and essential extension of E which are in C.
4) For each monomorphism g in $S_{E}=\operatorname{End}(E)$, Im g is a direct summand of E,
where \underline{C} is the category of all c.inde.modules.

Proof. - 4) \Rightarrow 1) It is proved by (4.1.5).

1) \Rightarrow 4) Let g be a monomorphism in S_{E}. Then $\operatorname{Im} g=\Sigma \notin g\left(E_{\alpha}\right)$ and $E_{\alpha}=g\left(E_{\alpha}\right)$. Since $g\left(E_{\alpha}\right)$ are injective, $\operatorname{Im} g$ is a locally direct summand of E. Hence, Im g is a direct summand of E by 1) and (3.2.5).
2) \Rightarrow 2) It is clear from the above proof.
3) $\Rightarrow 3$) It is also clear.
4) \Rightarrow 1) Suppose $\left\{E_{\alpha}\right\}_{I}$ is not a locally semi-T-nilpotent. Then there exist a subset $\left\{E_{\alpha_{i}}\right\}_{1}^{\infty}$ of $\left\{E_{\alpha}\right\}_{I}$ and a set of non-isomorphisms $f_{i}: E_{\alpha_{i}} \vec{E}_{\alpha_{i+1}}$ such that for some element x in $E_{\alpha_{1}} f_{n} f_{n-1} \ldots f_{1}(x) \neq 0$ for all n. We note Ker $f_{i} \neq 0$, since $E_{\alpha_{i}}$ are injective and indecomposable. Put $E_{i}^{\prime}=\left\{x_{i}+f_{i}\left(x_{i}\right) \mid x_{i} \in E_{\alpha_{i}}\right\} \subseteq \sum_{1}^{\infty} \oplus E_{\alpha_{i}}<\oplus E$. Put $E=\sum_{i=1}^{\infty} \oplus E_{\alpha_{i}} \oplus E_{0}$,
$E_{\alpha_{i}} \cap\left(\Sigma \oplus E_{j}^{\prime}\right) \geq \operatorname{Ker} f_{i} \neq 0$. Hence, $\Sigma \oplus E_{j}^{\prime} \oplus E_{o} \subseteq E^{\prime}$ by (6.4.2). It is clear $x \notin\left(\Sigma \oplus E_{j}^{\prime} \oplus E_{0}\right)$. Let E^{*} be an injective hull of E. Since $\left(\Sigma \oplus E^{\prime}{ }_{j} \oplus E_{0}\right) \underset{t}{\underset{ }{\underset{t}{x}}} \mathrm{E}$, we can extend this isomorphim to a monomorphism ϕ of E^{*}.Therefore, $\phi\left(\Sigma \oplus E_{j}^{\prime} \oplus E_{0}\right)=E \underset{f}{f} \phi(E)=\sum_{I} \oplus \Phi\left(E_{\alpha}\right) \sigma \underline{C}$. which is a contradiction.

COROLLARY 6.5.4. - Let $\left\{\mathrm{E}_{\alpha}\right\}$ and E be as above. Furthermore, we assme that each E_{α} is noetherian. Then all statements in (6.5.3) are true. Proof. - Let $\left\{E_{i}\right\}^{3}$ be a set of injective and indecomposable modules and $f_{i}: E_{i} \rightarrow E_{i+1}$ non-isomorphisms. Then Ker $f_{i} \neq 0$, $\operatorname{Im} f_{1} \cap \operatorname{Ker} f_{2} \neq 0$ if $f_{i} \neq 0$, since E_{2} is uniform. Hence, Ker $f_{1} \neq \operatorname{Ker} f_{2} f_{1}$, if $f_{1} \neq 0$. Therefore, $\left\{\mathrm{E}_{\alpha}\right\} \mathrm{I}$ is a T -nilpotent system form the assumption.

COROLLARY 6.5.5. Let M be a module in C and L a submodule of M. Suppose L is a direct sum of injective modules and $Z(L)=0$. Then L is a direct summand of M (cf. $[9,21,25]$).

Proof. - Since every injective module in M is in C by (4.1.5), the corollary is clear from (6.5.3).
Remark 6. Let $\left\{\mathrm{E}_{\alpha}\right\}$ be as in (6.5.3). In general $\left\{\mathrm{E}_{\alpha}\right\}_{\mathrm{I}}$ is not semi-T-nilpotent. Hence $E=\sum_{I} \oplus E_{\alpha}$ is not quasi-injective. Furthermore, even if E_{α} are noetherian, E is not injective. If E is (quasi-)injective or $Z(E)=0$ $\left\{E_{\alpha}\right\}$ is semi-T-nilpotent. However, the converse is not true (see [42]).
[1] G. AZUMAYA, Correction and supplementaires to my paper concering Krull-Remak-Schmidt'theorem, Nagoya Math. J. 1 (1950).
[2] H. BASS, Finitistic dimension and a homological generalization of semi-primary rings, Trans. Amer. Math. Soc. 95 (1960).
[3] S.U. CHASE, Direct products of modules, Trans. Amer. Math. Soc. 97 (1960).
[4] P. CRAWLEY and B. JONNSON, Refiniments for infinite direct decomposition of algebraic system, Pacific J. Math. 14 (1964).
[5] C. EHRESMANN, Catégories et structures, Dunod, Paris, 1965.
[6] S. ELLIGER, $2 u$ dem Satz von Krull-Remak-Schmidt-Azumaya, Math. Z. 115 (1970).
[7] , Interdirekte Summen von ModuIn, J. Algebra, 18 (1971).
[8] C. FAITH, Lectures on Injective Modules and Quotient Rings, Lecture Notes in Math. 49 (1967).
[9] C. FAITH and E.A. WALKER, Direct sum representations of injective modules, J. ALGEBRA 5 (1967).
[10] J. FORT, Sormes directes de sous-modules co-irréductibles d'un module, Math. Z. 103 (1968).
[11] P. FREYD, Abelian categories, New York, Harper and Row, 1964.
[12] L. FUCHS, On quasi-injective modules, Annali della Scuola Norm. Sup. Pisa, 23 (1969).
[13] P. GABRIEL and U. OBERST, Spektralkategorien und regulare Rings in Von Newmann Sinn, Math. 2. 92 (1966).
[14] P. GABRIEL and N. POPESCU, Caractérisation des catégories abéliennes avec générateurs et limites inductives exactes, C.R. Acad. Sci. Paris, 258 (1964).
[15] A. W. GOLDIE, Torsion-Free modules and rings, J. Algebra, 1 (1964).
[16] M. HARADA, On semi-simple abelian categories, Univ. de Buenos Aires, (-Osàka J. Máth. 5 (1968)).
[17] M. HARADA, and Y. SAI, On categories of indecomposable modules I, Osaka J. Math. 7 (1970).
[18] M. HARADA, On categories of indecomposable modules II, ibid 8 (1971).
[19] M. HARADA and H. KANBARA, On categories of projective modules, ibid, 9 (1971).
[20] M. HARADA, Supplementary remarks on categories of indecomposable modules, ibid 9 (1972).
[21] , Note on categories of indecomposable modules, Pub. Math. Univ. Lyon. T. 9. (1972).
[22] _, On perfect categories I~IV, Osaka J. Math. 10 (1973).
[23] R.E. JOHNSON and E.T. WONG, Self-injective rings, Can. Math. Bull. 2 (1969).
[24] K. KANBARA, Note on Krull-Remak-Schmidt-Azumaya' theorem, Osaka J. Math. 9 (1972).
[25] U.S. KAHLON, Problem of Krull-Remak-Schmidt-Azunaya-Matlis, J. Indian Math. Soc. 35 (1971).
[26] I. KhPLANSKY, Projective modules, Ann. of Math. 68 (1958).
[27] G.M. KELLY, on the radical of a category, J. Austral. Math. Soc. 4 (1964).
[28] E. MARES, Semi-perfect moduZes, Math. Z. 83 (1963).
[29] E. MATLIS, Injectives modules over noetherian rings, Pacific J. Math. 8 (1958).
[30] B. MITCHELL, Theory of categories, Academic Press, 1965.
[31] Y. MIYASHITA, Quasi-injective modules, Perfect modules and a theorem for modular lattices, J. Fac. Sci. Hokkaido Univ. 12 (1966).
[32] Z. PAPP, On algebraically closed modules, Publ. Math. Debrecen
$6(1959)$.
[33] E.M. PATTERSON, On the radical of rings of row-finite matrices, Proc. Royal Soc. Edinburgh 66 (1962).
[34] R.S. PIERCE, Lectures on Rings and Modules (Closure Spaces with Applications to Ring Theory), Lecture Notes in Math. 246, SpringerVerlag.
[35] Y. SAI, On regular categories, Osaka J. Math. 7 (1970).
[36] N.E. SEXAUER and J.E. WARNOCK, The radical of the row-finite matrices over an arbitrary ring, Trans. Amer. Math. Soc. 139 (1965).
[37] R. WARE and J. ZELMANOWITZ, The radical of the endomorphism ring of a projective modules, Proc. Amer. Math. Soc. 26 (1970).
[38] R.B. WARFIELD Jr., A Krull-Remak-Schmidt theorem for infinite sums of modules, Proc. Amer. Math. Soc. 22 (1969).
[39] $\frac{31(1969) .}{}$. Decomposition of injective modules, Pacific J. Math.
[40] K. YAMAGATA, Non-singuZar and Matlis'problem, sci. Rep. Tokyo Kyoiku-Daigaku, 11 (1972).
[41] A note on a Probiem of Matlis, Proc. Japan Acad. Sci. 49 (1973).
[42] $\overline{\text { property, to appear. }}$ Completely decomposable modules which have the exchange

Manuscrit remis 2 mai 1974.	Manabu HARADA
DEPAR TMENT OF MA THEMATICS	
	OSAKA CITY UNIVERSITY
	OSAKA Japan.

[^0]: *) In general, it is not a set, but we shall use the same notation as the set. We always use such notations.

