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APPLICATIONS OF FACTOR CATEGORIES TO COMPLETELY

INDECOMPOSABLE MODULES

by Manabu HARADA

In this note we assume the reader is familiar to elementary proper-
ties of rings and modules. In some sense we can understand that the
theory of categories is a generalization of the theory of rings.
Especially, additive categories A have very similar properties tc rings
from their definitions.

From this point of view, we shall define an ideal C in A and &
Tactor category A/C of A with respect to C (see Chapter 1), which is
analogous to factor modules or rings. The purpose of this lecture is to
apply those factor categories to completely indecomposable modules.

First, we take an artinian ring B. The radical J(R) of R is a very
important tocl to study structures of R. Since R/J(R) is a semi-simple
and artinien ring, we know useful properties of R/J(R). In order to
study structures of R, we contrive to 1ift those properties to R. The

idea in this note is closely related to the above situation.
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Applications of Factor Categories ...

Let R be a ring with identity and {Ma}I a set of completely inde-
composable right R-modules. In Chapter 1 we define the induced category
A from {Ma} , which is a full sub~-additive category in the category Mo
of all right R-modules and define a special ideal J' of A. Then A/J' is
a abelian Grothendieck and completely reducible category (Theorem 1.4.8),
whkich is nearly equal to MS’ vhere S is a semi-simple artinian ring. In
this note we frequently meke use of this theorem. Especially, in Chapter
2 we shall prove the Krull-Remak-Schmidt-Azumaya' theorem by virtue of
this theorem, (see below),

Let {Ma}I and {NB} be any sets of completely indecomposable modules

J

such that M = I @ Ma =7 @ NB . Then we consider the following properties :
I

1) There exists a one-to-one mapping ¢ of I to J such that Ma ¥ N

d(a)

and hence, |1, = |3| , where |1| means the cardinal of I.

II) (Take out (some ccmponents)) For any subset I' of 1, there
extsts a one-to-one mapping ¥ of I' into J such that Ma'Q’Nw(a') for
ateI'gndM= Y. &N, , & )J_ @M, .

arerr V@) T T o
II') (Put <nto) For any subset 1I1' of 1, there exists a one-to-one

mapping Y cof I' <into J such that M &N

vlat) for a'¢Il' and
M= 2= &M, o b ® Ng,
aterr  ° BleJ-w(I')
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Applications of Factor Categories ...

I11) Every direct summand of M 1is also a direct sum of completely

indecomposable modules.

M has always the properties I), II) and II') if I' in II) and II')
are finite, which we call the Krull-Remak-Schmidt-Azumaya' theorem. If
it is allowed to take any subset I', in II) or II'), then it is clear
thet II) and II') are equal to each other.

G. Azumaya [1] proved the avove II) and II') step by step and
proved I) with II) and II'), provided I' is finite. We shall prove them
independently and its proof suggests us how we can drop the assumption
of finiteness on I' in the Azumaya' theorem. This argument is very much
owing to the factor category A/J' . The idea of dropping the assumption
of finiteness gives us a definition of locally semi-T-nilpotency of the
set of {Ma}I (see Chapter 2), which is a generalization of T-nilpotency
defined by H. Bass [2] .

On the other hand, the exchange property is very impcrtant to
study decompositions of modules (cf. [4]). In this note we shall slightly

change its definition as follows : Let M be an R-module and N a direct

summand of M. We suppose that for any decomposition M = I & KB with
I )
III § a, we have a new decomposition ; M= N & I & Ké , Where KB SKB
I

for all B€I. In this case, we say N has the a-exchange property in M.
If N has the g-exchange property in M for any cardinal a, we say N has

the exchange property in M. Furthermore, we define a new concept in
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Applications of Factor Categories ...

Chapter 3. Let K be & submodule of M and K =L & Ky' . If for any
Jl
finite subset J' of J I ® K, 1is a direct summand of M, we call K
J'

a locally direct swmand of M (with respect to the decomposition
K = § ® KY). It is clear that if all K_Y are injective, K is always a
locally direct summand of M. This property is useful to consider the
problem of Matlis f2QJ , which is the property III) in case of injective
modules.

Those concepts are mutually related in the following theorem
(Theorems 3.1.2°and 3.2.5) : Let M and {Ma}I be as above. Then the
following statements are equivalent.

1) M satisfies the take out property of any subset I' of I and

for any {NB}J .
2) Every direct summand of M has the exchange property in M.
3) {Ma}J is a locally semi-T-nilpotent system.
4) Every ZocaZZy.direct swmmand of M s a direct summand of M.
5) J' f\EndR(M) t8 equal to the Jacobson radical J of EndR(M).

6) EndR(M)/J 18 a regular ring in the sense of Von Neumann and

every idempotents in EndR(M)/J are lifted to EndR(M).
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Applications of Factor Categories . ..

We study the propery III in Chapters 3 and 4 and give a special answer
for it, even though it is not complete, (Theorem 3.2.7), (cf.[6,7,17,
18,24,38]).

In 1960 H. Bass [2] defined (semi-) perfect rings as a generalization
of semi-primary rings and E. Mares [23} further generalized them to
(semi4d perfect modules in 1963. In Chapter S we shall prove the following
theorem (Theorem 5.2.1) ; let {PQ}I be a set of projective modules and

P= L®&P . Then J(P) Zs small in P Zf and only <if J(Pa) i1s small
I

in P, for all ael and {Pa}I 18 a locally semi-T-nilpotent system.
Using this theorem and Mares' results, we shall study structures of
(semi-) perfect modules.

In Chapter 6 we shall study injective modules. Let {Ea}I be & set
of injective modules and B the induced category from {Ea} . First we
shall prove that B/J <8 an abelian Grothendieck and spectral category,
vhere J is the radical of B (Theorem 6.2.1). We shall study decompo-
sitions of injective modules by making use of this theorem (cf.

[10, 29, 31]). Finally we shall consider the Matlis'problem (cf. [9, 12,
25, 38,40,41} ). Relating to it, we shall give the following theorem
(Theorem 6.5.3)'; Let {Ea}I be a set of injective and indecomposable
modules, E = L & Ea and A' the induced category from the all completely

I
indecomposable modules. Then the following statements are equivalent.

1) {Ea}l 18 a loeally semi-T-nilpotent system.
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Applications of Factor Categories ...

2) Every module M in A' which is an extension of E contains E

as a direct swmand.

3) Every module M in A' which is an essential extemsion of E

enincides with E.

L) For any monomorphism f in EndR(E) Im f is a direct swmmand

of E.

This lecture note gives some applications of the theory of category
to the theory of modules, however conversely we can apply some concepts
in this note to special categories and define semi-perfect or semi-
artinian Grothendieck categories, which preserve many properties of
semi-perfect or semi-artinian rings (see f22]).

This lecture was given at Universidad national del Sul in Argentina
and The University of Leeds in England and the first part was given at
Universite Claude Bernard Lyon-1 in France in 1973. The author would
like to express his hear tful thanks to those universities for their kind
invitations and hospitalites and to Université de Lyon for publication

of this note.
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Applications of Factor Categories

CHAPTER 1. A PRINCIPAL THEOREM

We shall assume the reader has some knowledge about elementary

definitions and properties of modules and categories. We refer to ﬁ1,3q

for them.

1.1. IDEALS.

We always study additive categories A and so we shall assume that
categories in this note are additive, unless otherwise stated. We shall
use the following notations

MR ; the category of all right R-modules, where R is a ring with
identity.

énx; the class of all morphisms in A.

For a,8 in A " aB is defined" implies codomain of B = domain of a
and "oB is defined" implies domain of a = domain of B and codomain of
o = codomain of 8.

We shall define ideals in an additive category A.

DEFINITION.~ Let C be a subclass of A.IfC satisfies the following

conditions, C is called a left ideal of A.

1. For any,aeém and B € C if af is defined, oBeC.
2. For any v,8 e C, if y¥§ 1is defined, yt§eC, (cf. [s]).
We can define similarly right or two-sided ideals in A. Let C be
a two-sided ideal in A. If [A,A]NC is the Jaccbson radical of [A,A] for

all A€ A, C iscalled the Jacobson radical of A, (if A has finite co-products,

25



Applications of Factor Categories ...

the Jacobson radical is uniquely determined, (see [16,27))).

The following notion is essential in this note.
DEFINITION..Let A be an additive category and C a two-sided ideal in A.
We defire a factor category A/C of A with respect to € as follows

1 The objects in A/C coincide with those in A (for A in A, A means
that A is considered in A/C).

2 For A,Bea/c, [A,B) = [A,Bl/(A,Bn C (for fc(A,B],f means the

residue class of f in [A,ﬂ /[A,@ ngch.

Remarks 1..It is clear A/C is also an additive category. In general even
if A is abelian, A/C is not abelian. If we want to use structures of

factor categories, we should find good ideals C such that A/C become good

categories.
n
2. let A= T ® A, in A. Then there exists inclusions i, and
i=1

projections P, such that 1A = [:ikpk; 'pkik = 1Ak and ijpk = 0 if j#k.

Those relations are preserved in A/C , i.e. TA =L Ekﬁk s Pkik = lAk
and ‘iij = 0 if j#k. Hence, A = L ® A, in A/C. This is not true for infi-
nite coproducts.

3. If A,B are isomorphic each other in A, then there exist mor-
phisms & : A—> B and B : B—>A such that af = 1, and Ba = Ty
Hence, ﬁ,é are isomorphic each other in A/C. However the corverse is not

true, in generel. If C is the Jacobson radical, the converse is also true.

Because, if'ﬁ;ﬁ are isomorphic, there exist a': A— B, B' : B —» A
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such that 0'B' = 1, and B'a' = 1 Hence, 1A-B'a' is in the radical of

B A’

[A,A}. Therefore, B'a' is a unit in [A,AJ. Similarly, o'f' is & unit in

[B,B]. Hence, alB' are isomorphisms.

PROPOSITION 1.1.1. - Let A,B be additive categories and T : A — B
: %)
an additive covariant functor. Then C = {a|é‘5m, Ta=0} <s a two-

sided tdeal in A and T = Toy , where, ¥ : A — A/C 15 a natural

functor and T - A/C — B is naturally induced from T.

1.2. ABELIAN CATEGORIES.
Let A be an additive category. There are many equivalent definiticns
for A to be abelian. We shall take the following :
i For any two objects A,B in A the coproduct A & B of A and
B is defined and belongs to A.
ii A contains a zero object (so does an additive category).
iii For each morphism f in A Ker f and Coker f exist in A.
iv  (normal) For each monomorphism f in A, f is a kernel of
some morprhism in A.
iv! (;oncrmal) For each epimorphism f in A, f is a cokernel
of some morphism in A.
In this section, we shall rewrite the above definition of an abelian
category by virtue of another terminologies, which are very familiar to

the ring theory.

#) In general, it is not a set, but we shall use the same notation as the
set. We always use such notations.
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Applications of Factor Categories.. .

Let A be an additive category and S a subclass of Am' We put
. . *)
(S:a)r = {Ble A 0B is defined and aB& S} R (S.on)1 = {B|e A
Bo. is defined and Ba€ S}. If (O:a)r#o for somecxeﬁﬁ, o is called a left
zero-divisor. Similarly, we define a right zero-divisor. From the
definitions, we know that o is monomorphic (epimorphic) if only only if

]
o is not left (right) zero-divisor. Let C & » A ag; B ve a sequence.

Then a' 1is the kernel of o if and only if (O:a')r=0 and (O;a)r=a'gm .
where a'A = {a Ylywzém , 0 Yy is defined}. a is the cokernel of o' if and

only if (O:oc)1=0 and (O;a')1=£\ma.

PROPOSITION 1.2.1..Let A be an additive category with finite co-products.
Then A is abelian if and only if A satisfies the following con&itions
1 For each o= A, there exists B€ A such that (0:B)_=0 and
“m m r
(O:a)r=8ém.
2 For each a«sém there exists B' such that (O:B')1=O and (O:OL)1

Aﬁﬁ"

3 For each YeA such that (O:Y)r=0, (O:(O:y)1 r = YA

4 For each Y'ngm such that (Ozy')1=o, (0:(0:y")_),=A y'.

Proof. - By the assumption ém satisfies i1, i1 in the above definition
and i1ii corresponds to 1,2 from the above remark. We assume A is abelian
Let Y be as in 3. Then there exists a cokernel B of vy 3 O—#A-»ylyB fiq C >0
exact. Then Y = KerB and B = Coker Y . Hence, (0:6)r = YA and (O:Y)1=Ame
from the above remark. Therefore, (O:(Ozy)1)r=(0:§m8)r=(0:8)r=yém.
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Applications of Factor Categories . ..

4 is dual to 3. Conversely, we assume ém satisfies 1~ L. We know from
the remark that 1,2 guarantee the existence of kernel and cokernel for
any o€ ém' Let Y:A—»B be monomorphic. Then there exists BGAm such that
B 1is epimorphic and (Ozy)1 = gmB from 2. Furthermore, (O:(Ozy)1)r =

(0:4 B) = (0:B). =¥

ém by 3. Hence, y = Ker B and we have iv. iv’ is
dual to iv. Therefore, A is abelian.

1.3. AMENABLE CATEGORIES.

We shall define some special categories which we shall use later.

DEFINITION. Let A be an additive category. A is called regular if [A,A]
is a regular ring in the sense of Von Neumann for all A€ A. A is called
amenable 1if A has finite co-products and for any idempotent e in
LA,A] splits, i.e. A= Ime ® Ker e for all AGA, (see [11}). A is

called spectral if all feA splits (see [13]).

PROPOSITION 1.3.1. - Let A be an additive, amenable and regular category.

Then A <s abelian.

Proof. - Since A is amenable, A satisfies the assumption in (1.2.1). We
shall show A satisfies 1 ~ L in (1.2.1). Let a:A = B be monomorphic.
Put a' = (O O) : A®B — A®B. Since A is regular, there exists

0 o
(xij) ¢ |A®B,A®B] such that o'xa'

X

o'. Hence, o = ax, 50 . Put

o , then e=e2 and ae=q. Hence, Ao = A e. Since A is amenable,
12 > S, =m -

(1]
H

X

29



Applications of Factor Categories. ..

e = iee’ , where e' : A—>Im e is epimorphic and ie:Im e —» A is the
inclusion. Thus, we have (O:OL)r = (O:.l\.mOL)r = (O:A.me)r = (O:e)r = (1A—e)ém§.
1e)BnS (O:oc)r.Hence(O:a);l(1_e)gm and (o:(o:a)r)1=(o:1(1_e))1=gme =

A a, which gives 2 and 4 in (1.2.1). From the duality we obtain 1 and 3.
Therefore, A is abelian.

We can easily see from the above proof that Im e = Im a. Thus, we
have
COROLLARY 1.3.2 [35] . Let A be an additive and amenable category, Then

A ze (abelian) spectral if and only if A is (abelian) regular.

1.4 A principal theorem on indecomposable modules

Let R be a ring with identity. We consider always unitary right
R-modules M. If EndR(M) is a local ring (i.e. its radical is a unique max
maximal left or right ideal), M is called completely indecomposable module
(briefly c.inde.). It is clear that c.inde. module is indecomposable as
a directsum, however the converse is not true. We note that the radical
is equal to the set of all non-isomorphisms in EndR(M) if M is c.inde.

by the following.

LEMMA. 1.4.1. - Let M. , i = 1,2.3 be (c.) inde. and f.:M. —» M,
1 1 1 1+1

R-homomorphisms for i = 1,2, if f2f1 is 1somorphic, f. are tsomorphic.

Proof. - Since f f is isomorphic, f, is monomorphic and £, is epimorphiec.

2
= Im f1 ® Ker f

1

Furthermore, M2 X Hence, Ker f2 = 0 and Im f1 = M2.
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Applications of Factor Categories...

=3 =X .
Let {Ma}I R {NB}J be sets of modules and put M - &M and N > ® Ng
We shall describe HomR(M,N) as the set of matrices. Let ST Mj - N
be R-homomorphisms. If I and J are finite, HomR(M,N) = {(JxI) matrices (aij)}.
We assume I and J are infinite. Let m be an element in M1 and f¢ HomR(M,N).
n
Then f{m) = 521 nBi ;rlBiENBi. From this remark, we can define

a summable set of homomorphisms {aj1}j as foilows : for any m in M1

aJ1(m) = 0 for almost all j¢€J. In this case %L % has a meaning and
J

arq ¢ M1—ﬁ N is an R-homomorphism. A matrix (aij) is called column

summable 1if {uji}j is summable for all i< I. Then it is clear that

HomR(M,N) is isomorphic to the modules of all column summable matrices

with entries a...
1]

Let T

L e Ts be another module and fe€ HomR(M,N), SGZHomR(N,T).
K

We assume f = (uij) and g = (qu) as above. Then we cai easily show that

gf = (qu) (O‘ij)' Thus, if M=N=T, End(M) is isomorphic to the ring of

all column summable matrices (ai.).

Now, we shall assume that all Ma s NB and TY are c.inde. . We

define a subset.

J.(B,ot)

= {(aij) | € HomR(M,N) and no ome of o is isomorphic},
(B,a)

(J* may depend on decompositions M and N).

LEMA 1.4.2. - Let M=L 6 M ,N=Z®N andT= Z & T_and all
1 ¢ g ¢ xk °

M N, and Tp e.inde.. Then HomR(N,T)J'(U’a) < J'(B’a)

(p 0)0
]" >
a H

Hom (M,N) ¢ gr(psa)
31
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(o,a)

Proof. - Let f = (aij) ¢ J' h = (bjk) € HomR(N,T) and hf = (x

ts)’

. - . . . el W
where Xx, EE{ btkaks If Ms #Tt, X, o 18 not isomorphic e suppose

M=T,. Let m#0 be in M. Since (a‘ij) is column summable, there exists a
P ' - 1 e J=-J!'. t =

finite subset J' of J such that a.ks(m) 0 if ke J-J'. Pu X o KEJ'btkiakis

+ Z b, 8 - Then neither the latter nor former term 1is isomorpfiic by

- ' - - 3
thg gefinition of J' and (1.4.1). Thus x, 1is not isomorphic by the remark

ts
before (1.4.1) and the fact M =~=T, . Hence, hf € J,(p,oc). Similarly we

have the last part.

(o0,a)

PROPOSITION..1.4.3 [ 1] The above module J' does not depend on

decompositions of M and N. Especially, if M=N, J' is a two-sided

ideal in EndR(M).

Proof. - Let M=1 ®M andN= Y N = L @N' ,.Put T=N=L ey
1 @ 5 9 g 0 n o
(0,a) (o,a)

in {1.4.2). Then for any f¢J' ,f = 1'\Tf€ J! . Therefore,

' ]
7000 ¢ 7 (00) a1y, we obtain 3% e 31 (D) L pence

g lota) _ (o)

(o,a)

From {1.L4.3) we denote J! by J'.

We shall give here elementary properties of a ring.

¢y
LEMMA 1.L.L, - Let R be a ring and e,f <dempotents such that eR=fR and
be

{(1-e)R =& (1-f)R. Then there exists a regular element a in R such
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Proof. - R = eR®(1-e)R = fR8(1-f)R. Therefore, ¢ = ¢ + 9,€ EndR(R)=R1,

say ¢ = a,. Then it 1s clear that a,e, = f1a1,(R1 means the set of the

left multiplications of elements in R).

We shall later meke use of the following.

COROLLARY 1.L4.5. - Let P be a vector space over a divieiton ring A, say

P=L@&ul . Let S = End, (P) and e an idempotent in S. Then there
I

exist q subset J of I and a regular element a in S such that for

the projection f:P—»EZ@vYA e = a-1fa.

J

Pr’oof.-LeteP=E®vA andwemayassumeP=2®uA®z'$uA .
g Y J P o1

Since eS ?:HomA(P,eP)=¥ HomA(P,fP), we have the corollary by (1.4.L).

Now, we shall enter into a main part of this section. Let {MQ}I
be a set of c.inde. Modules. By A(Af) we shall denote the full sub-additive
category in MR , whose objects consist of all kinds of (finite) direct

sums ) ®T_  such that T_’ s are isomorphic tc some M, in {M_}_. We call
x Y Y B a'l

A (Ap) the (finitely) induced category from {M };, (ve shall use the
same terminology even if {Ma} are not c.inde.).
DEFINITION ..Let B be an additive category. If B satisfies the follo-
wing properties, B is called a Grothendieck category.
1 B is abelian.
2 B has any co-products.

3 Let BGB and {Ba}’ C sub-objects of B such that {Ba} is a directed

set. Then 23
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(UBOL)/'\C = J(B .C).

an
(This corresponds to a fact that functor EEP is exact (see [3@, Ch. 3)).

L B has a generator, (this implies B is complete (see [ﬂq )).
Definition. Let B be as above. If every object in B is artinian (noetherian)
with respect to sub-objects, B is called artintan (noetherian). 1f every

object in B is a co-product of minimal objects, B is called completely

reducitble, If the Jacobson radical of B is zero, B is called semi-simple.

LEMMA 1.4.6. - Let A be a semi~simple category with finite co-products.

If o#0€ [M,N], there exist 8, B'e[N,M} such that Ba#0 and aB'#0.

0 0
Proof. - Put P = M@N, S = [P,P|and o” =( ) . 1f [N,Mfa = 0, sa”is
a 0

nilpotent, which is a contradiction. Similarly, we have a[N,M] # 0.

CORCLLARY 1.4.7. - Let A be as above. If [M}M] is a division ring, M is

a minimal object.

Proof. - Let M g N. Then [M,N] = 0. Hence, [N,M]= 0 by (1.4.6) and
so the inclusion map : N — M is zero.

From now on, by [M,li] we shall dencte HomR(M,N) for R-modules M,N,

THEOREM 1.4.8 (Principal theorem) [17).-Let {Ma}I be a set of .
inde. modules and A,Af the induced category and finitely induced
category, respectively. Let J' be the ideal in A defined before
(1.4.2). Then A/3' (A, /J') is a Grothendieck and completely reducible

(completely) category.
3k



Applications of Factor Categories ...

Proof. — We put A = A/J' (gf = Af/g'). From the definition of co-product

and (1.4.3) we can easily show I & MY =L e ﬁy' Put EM = [-M,M)/[M,M]ni'
J J

for an object M = I @M_ in A. Then 5y = {(

L o g’o‘r)’ column finite }, since
a__ = 0 for almost all 0. We rearrange M as follows : M =L 2 @M , ;
ot o I8 aB
a
— M i v L. T = M
M S M, and M qrpr i ata hen [ ¥,M] = T[E o Mg o Z’Ie aB]’

OLIOl

’
I a

Q
{Z ] ‘EEOLB , § ® MOLS-] o= {(xas)j column finite and XOLBG[‘MG ,T\{a] = A
o a

which is a division ring}. Therefore, A and E_P are regular and semi-simple.

Next, we shall show that they are amenable. Put S =2 6 M ,, & & M ],
a I aB aB

Q

a

S = S . =y 7 1 =7T”— . 3 =Te
then S, 'g; Sa Let € be an idempotent in SM Sa’ 2 TTea » €€ 5, s

e = 'éa . Then there exist a regular element —aa€ —Sa and a projection

-1

: M= i e =3 fa b,

£y %e a8 ); 8 gy in Mo such that & =3 £ a by (1.4.5), (note
a 6]

Sa may be regarded as the endomorphism ring of a vector space). Since f(x

is the projection in ‘\_’LP . .f_‘a sPits in _—A_ Hence, so does Ea since-aa is
- f'z‘aa - .aa"1 ifa -
regular, and ea:Mu——-; Im fo: > Ma'

Therefore, so does e, which implies that é (Ef) is amenable. Thus, 1 (-A_f)
is abelian and spectral by (1.3.2). On the other hand, F’Ia is a minimal
object by (1.4.7). Hence, ?A; is completely reducible. Finally we shall
show that A satisfies the condition 3) in the definition of Grothendieck

categories. Let {Aa}K be a directed set of subobjects in an object F and
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% a subotject in F. Put C = U("E‘omi)’ then B = E‘QI‘SO, since A is spectral.
K

(U.Z.a)ni = (U Ka)n(a Ugo) T U((UKKanﬁo)’ since C ¢ UKB‘Q' We assume

K K
- = _ = . - ¥ -
(V KAOL)“ Bo = D # 0. From an exact sequence : ZI:{ L] Aoz —-*,UKAOL —» 0

we obtain a monomorphism 'gTD — Z @I\a such that fg = 15 ,» because A
is spectral. Let 50 be & minimal sub-object in D. Then —glﬁo is a column

—— n —
finite matrix from the first part. Hence, Im (g}DO)Q Z e A, end so
1 i
n

D 2 CR > a.. B ¢ A0 BCT
Do < 1Aui C AB for some R&é K such that B > o, Thus, Dog AB(\ BCC

i=

and DOS B, which is a contradiction. Therefore, (U K'Aoc) A B =UK(Aan B).
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CHAPTER 2. THE THEOREM OF KRULL-REMAK-SCHMIDT-AZUMAYA.

In this chapter we shall prove the titled theorem as an application

of (1.4.8).
2.1, Azumaya' theorem :

Let {M }_ be a set of c.inde. modules and M = £ & M_.
a' I T o

LEMMA 2.1.1  [1] .-Let M and {M }; be as above and S, = (M, ] . Leta

be any element in Sy Then for any finite subset {M Nl of

a1 1=1

{Ma}I , there exists a set {Mi}?=1 of direct sumand of M such

n

that M = E ® M, Z. ® M and M_. <is Zsomorphic to M. via
: 1 o a1l 1
i=1 d#{ai}

a or (1-a) for each i.

Proof., - Let e, be the projection of M to Ma1 . Then e1a|Ma1 and
e1(1—a)e1iMa1 are in [Ma1 , Mu{] and 1Ma1 = (e1ae1 + e1(1—a)e1)l M
Since Ma1 1s c.inde., ejther e1ae1, Ma1 or ej(l-a)e#Mo‘1 1s 1somorphic
b &
My — b(Ma1)__—-——§ M/, » vwhere b = a or (1-a). Hence, M =
b(Ma1) ® Ker e, = b(Ma1) ® Z; ® M . Repeating this argument on the
oFa

1

last decomposition, we obtain (2.1.1).

LEMMA 2.1.2 [1] .-Let J' be the tdeal in § 1.4. Then J' does not contain

non-Zero idempotents.
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Proof. - Let e be a non-zero idempotent in Sy Then there exists a
n
n
ini n . .
finite subset {Mai}i=1 of {Ma}I such that eM g;; oM. # 0. We apply

n
(2.1.1) to e and {Mai}?‘1 . Then we can find & direct summand » . @ M,
- i=1
of M such that M, = bi<Mai)’ where b, = e or (1-e). It is impossible that
all bi are equal to (1-e). Hence, e.ee . is isomorphic for some i, where

e :M—> M , e. : M —» M, are projections. Therefore, e €J' by
a4 O.i 1 1

(1.4.3).

I
LEMMA 2.1.3.- Let M= ) @ N, and N, c.inde.. Then J' is the Jacobson

i=1
radical of Sy
Proof. = Let x = (xij) be in J'. Then ve note that 1-x.. is regular in
SM and that a sum of non isomorphisms of SM is not isomorphic. By the
i i

above remark and (1.4.2) we can find regular matrices P,Q in SM such that

P(1-X)Q = 1. Hence, X is quasi-regular.

M
We shall consider a similar lemma in a case of infinite sum in
the next section.
Now we can prove the Krull-Remak-Schmidt-Azumaya' theorem,

THEOREM 2.1.4 [1, T,17). - Let 4}y, {Ng}; be sets of c.inde. modules

such that M =2 &M =Y @ N, .Then
1 @ 7 B

I) There exists a one-to-one mapping ¢ of 1 onto J such that
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M, = Ncb(a) for all ael and hence, |1\ = 131, where |1l is the

eardinal of 1.

II) For any finite subset I' of 1, there exists a one-to-one

mapping Y of I' into J such that M, & N

M= L o 2. oM

o, .
iegr V) T

w(i) for all i€1' and

II') For any finite subset 1' of J', there exists a one-to-one

mapping ¢' of I' into J such that M:== Nw'(i) for all i€I' and

M=) ®M © 2. 8N

I 1 J'\D'(I') B'.

III) Let M' be a direct swmmand of M, then M' is isomorphic to

e}
some Y. ® Mcxi or for any m <% M' contains a direct swmmand,

i=1
m
which is isomorphic to some Y. @ M
i=1
Procf. - 1) Let A be the induced category from {Ma ’NB}(I 7 and J' the
9

ideal in A defined in 6.1.4. Then A/J' = E is a Grothendieck and com-
pletely reducible category by (1.4.8). Furthermore, we know from its

proof that M=LoM = Y@ N, . Since M_ and N, are minimal objects,
1 % g g e 8

there exists a one-to-one mapping ¢ of I onto J such that M =N

o ¢la)

(note that we may use the similar argument in 2&_ to the ring theory, since

A is a good category). On the other hard, SMf\g' is equal to the Jacobson
a

radical. Hence, MOL’«‘; N implies Ma'-==N¢(a) as R-modules by the remark

¢(a)
3in § 1.1,
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II) Put Mg = L $M ; and let p : M > M, be the projection. Then M=
Il

= Ker D © Z_' &N ) since Z\: is completely reducible, where ﬁaeﬁ
3

i Ui(cu) )

It is clear Im p = Z’@M..PutNo E@N( )andleti:No*M be
T e

P(a

the inclusion. Then pi is isomorphic in A. Since Nye A, I [NO,NO] is
equal to the radical of [NO,N(} by (2.1.3). Hence, pi is isomorphic in

M? by the remark 3 in § 1.1. Therefore, M = NO ® Ker p 1n &R and so

M=N e IZ_ZI' ®M ,. It is clear that Mai-v Nlb(ai) in Mp.

II') The following argument is dual to that in the above. Put MO =) oM .
i
Since A is completely reducible,

M=W¥'6e >  eN,, , where V' :I'-*JandM'v— cel (%),
0 J‘LU'(I') B ‘JJ (a )
Let p' be the projection of M to N -Z' ® N‘b (o))" It is clear that
%5
Ker D' = 2. 8y, Inp=2 ® N ,) and le is isomorphic by
J-y' (1) I
(¢). Let 1' : MO' + M be the inclusion, then 571 is isomorphic. Since

MO’ is in ﬁf , P'1 1s isomorphic in % Therefore, M = MO'QKer p' in M‘R

andM = M_' @ Y AeNB' )
J_wl (It )
III) Let e be a projection of M to M'. Since Z\_ is completely reducible,

Ime =), G)_I\_d-& , where M! are isomorphic to some Mg in '{=M0.}I . Put

t
)
- 1 - (] : . . o
=3 ' ® M a.i 8> M .E_ @er,. in Mo. Then from the definition of A,
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]
we have the following R- homomorphisms : 1 : Mo > Mo 3M and
1 - —_ - o — -—
p:M =, Mo—é; MO' such that 1 1s the inclusion MO'—>M, P —> \-"

is the projection and i'e' =e. Since Mé e.gf and pei is isomorphic in
A , SO is pei in MR 3

MO'——1—> M-S M—f—yMé voo (%),

Hence, Im e in MR = M' contains Im ei , which is a direct summand of

M and isomorphic to é§1 ® M’af . If I' is infinite, the above argument
gives the last part in III). w; assume I' is finite. In this case, we
can take Md = MO. Hence, M' = Im e contains Im el as R-direct summand
from (#%). On the other hand, Im ® = Im ei and hence, M' is equal to Im
ei by (2.1.2) , which is isomorphic to %ffoe M'af .

1=1 1

REMARK 1. In the above proof, we used only an assumption "I' is finite"
to obtain that_g'f\[Mo,Ma is equal to the radical of [MO,Mo for some
module Mo. Hence, if we can show the above property with another assump-

tion, the proofs given above are still valid. We shall make use of this

fact in Chapter 3.

2.2 SEMI-T-NILPOTENT SYSTEM.

We shall give, in this section, a new concept which is a genera-

lization of T-nilpotency defined by H. Bass [ﬂ .
Let {Ma} I be a set of modules (not necessarily c.inde.). Let A
be the induced category from {M&‘ and C an ideal in A. Take any countably

infinite subset {M_} of {M_} and a set of morphisms {f.'M -+ M s
oy o i ey L,
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f.e€C}. If for any such sets and any element m in Ma , there exists a
- 1

natural number n (depending on the sets and m) such that

££ ...f1(m) = 0, {Mu }I is called a locally semi-T-nilpotent system

with respect to C. Let {Mi}°° be a countable set of modules Mi such that

M. are isomorphic to some ones in {Ma} . If any such set and any set of

4

morphisms £, satisfy the above, we say {Ma} a locally T-nilpotent system,
([17,28]). If I is finite, we understand by the definition that {Ma}I
is a locally semi-T-nilpotent  system. If the above n does not depend

on any element m in Ma , we omit the word "locally". If every Ma is fini-

1
tely generated, we have this situation.

In this section, we give a principal lemma (2.2.2), which we shall
frequently use later.

Let M==Z:$ Ma and describe End(M) = SN by the ring of the column
I A
summable matrices. We may assume I is well ordered. Let a; < a2 < - <ap

br o1 >0z+->a,) te in I and bai 0, ¢ [Mai_1,Mai] . Then by

b(an, o al) we denote ba b ee ba 4. for the

Ly e
! n®n-1 %n-1%n-2 2%

sake of simplicity.

LEMMA 2.2.1 (Konig graph theorem). - Let M, {Mu}I and C as above.

Let f = (bOT) be in §,NC . Put F_ = {b(an b O qaeeeas,0, = T),

for any n > 2} . We assume (M }; 75 locally semi-T-nilpotent

system with respect to C. Then for any element x. in Mo

= 1 i
b(un,a . a1) (XT) 0 for almost all v in F.

n-1°°"°
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Proof. - Since (bOT) is column summable, there exists a finite subset
T, of I such that bOT(xT) = 0 for all ceI-T,. Let B be in T,. Then the
subset T, = {Ylb(Y,B,T)(xT) # 0} of I is also finite. On the other hand,

{Ma}I is locally semi-T-nilpotent and b . €C, since C is an ideal.

Hence, (2.2.1) is clear from Konig graph theorem.

REMARK 2. Let b(an,cxn_1 N a1) be as above. Then for T < O
I vl(o,0_,...,0.,T) is an e€lement in[M oM l.
a. T 2 0

1

LEMMA 2.2.2. - Let {M }, Mand C be as above. We assume (M } . <s

locally semi-T-nilpotent with respect to C. Let (bOT) be in §,nC
such that b =0 if o< 1. Then (bor) 18 quasti-regular, (cf.
[ 32,36]).

Proof. = Put B = (bOT). Then each entry of the column of B" consists of

o
some elements in F, . Hence, ¥ 8" has a meaning and is an element in
1
=]
Sy by (2.2.1). Put A = L B". Then (-A)B-B = - A. Hence, B is quasi-
1
regular.

LEMMA 2.2.3 [19] (principal lemma).let {MG}I be a set of modules and C
an ideal in the induced category from {Ma}' By S, we denote
End(Ma) . Suppose

C
1) gas ¢ J(SOL) for aed.
2) If {aa}l' 18 a set of morphisms in QA[MO,M;] such that (aa}I.

1s summable, then >1:' aocgn[Ma’Mr]'
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3) {Mcx} 18 a locally semi-T-nilpotent system with respect to C.

I
Then Cp8,CJ(8),) .

Proof. - Let A' = (&' ) ‘e in NS, and put A = (a

= T-pA?
ot ) = E-A', where E

at
is the identity matix. We shall show that A is regular in SM by the simi-

“

lar argument to (2.1.3). Since Aa' is in J(S_.) by 1, a

s oG 1S regular 1in

Q = > ]
S, - Put b, = aj&, for o> 1, then {bcﬂ}o is summable and b_, €C.

We shall define bm_ for 0 > T with the following properties :

i) {bo‘r}o is summable and b _€C.
ii) bOT = Vgr Yo o where
Yor = 8 * 12;(1 b(O,Ctt,at_1 seens oz1)aL0L1_r «e. (%), (cf. Remark 2).

t

We defined {bO ! with i) and ii). We suppose we have defined {bop} for
1

p<t. Then since every terms in (%) are defined, we can define Yot by (%),

Since Z b(T,oat yo oo s0

>
&y

is regular in ST . Hence, we can define b(jT by ii). It is clear from

<
1) aa1'r€gn”1 QJ(ST) by (2.2.1) and 1.2 Yoe

(2.2.1) and 2 that {b__} is summabdle and by €C .« Now, we define

c = (cm) by setting c __ = =0 for ¢ < T and

1
oo o? COT

- !/ .
Cor = %ib\o Ar seees cx2 ) (€ cn [MT,MO]) for 0>1. Then C is column

summeble and hence, C €S,. Put D = CA = (dOT). First we shall show

dO’T

d_= Lc_a a +¥ c_a a_ + I I
ot 5 O T OT <y 0P PT oT T o ; b(o G yeees05,0).

0 for o>71
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= ' 1
81 = 25t + ) b(o,aT,...,a1)aa : t bor( ? b(T @ groceea®

a
1" 7o' T
™0 1 : !
%, i
+ + M osees,a” + i +
8 ) 5 ,tbca" LT p(@ e, 1)aa"4_'r LTI ot L z oa
o>a t" a'. 1 u t
i 0>, >T
= Z b n 4 " D (*'l’) .
0>a;">T On QynT

It is clear from (ax) S

0 for all t. If we use the transfinite

induction on ¢,T, we can show dO 0 if o>t from (¥»). Futhermore,

d00 = X:b(c,at,...,a1)aa1o + acc is regular in So. Put C1 =

diag(dn_1 ,...,d00_1,...) and X = E-C1CA=E—C‘D. Then the entries of K,
which are in the diagonal or under the diagronal, are all zero and the
entries of upper the diagonal belong to S‘by ii) and 2. Hence, K is quasi-
regular by 3 and (2.2.2), (which is a case of a;>02>...>a,). Therefore,
C1CA is regular in SM. Again using (2.2.2), we know C is regular in SM.
Thus so is A. Therefore, CnSMSJ(SM).

REMARK 3. - In the introduction we defined" take out property" of a module
M, which is the property II) in (2.1.4) without the assumption of the
finiteness of I'. In that definition, we assumed that any kinds of decom-

positions of M should have the take out property. Now we fix a decompesi-

tion of M : M =% & M, » M, are c.inde.. We shall note that if this decom-
I

position has the take out property for any another decompositions

M= 2 QNB » then so do any kinds of decompositions of M:M=Z§0M&,. Because,
J K
let M= ¥ 6M_ = ZQM', = X ® N,. Then there exist a one-to-mapping ¢ of
1 ¢ x ¢@ ; B
Ls

d
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. . it -
K onto I and a set of isomorphisms £ ,:M!, > Nf.d(a) . Put F Z’fa,eSM,

which is isomorphic. Hence, M = L o, = Z GF(I\IY)« I# we apply the
I J K

take out property for those decompositions, we obtain

M= L gF(N
T

(e 2. eM_ . Therefore, M = F i (M)=Z en ( )eZ &M
-1

1]
skt Vi) g o't

L6
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CHAPTER 3. SEMI-T-NILPOTENCY AND THE RADICAL

We have defined a (locally) semi-T-nilpotency for a set of modules
{Ma}I in Chapter 2. In this chapter we study some relations between a

semi-T-nilpotency of a set of c. inde. modules {Ma}I and the radical of

End(M), where M = L @M _.
Qa
I
3.1. EXCHANGE PROPERTY.
We shall define, in this section, the exchange property of a direct

summand of a modules, which is slightly weaker than the usual one (cf.[4]).

DEFINITION..Let N be an R-module and N a direct summand of M. We say N
has the a-exchange property in M if for any decomposition of M:M= ZI‘OTY
with |I|¢a , there exists always a new decomposition M = N & Z:0T+ , such
that TY'&fLY,(and hence, TY' is a direct summand of 'I‘,Y for ill yel). If
N has the a-exchange property for any a , we say N has the exchange property
in M. If in the above, N has the a-exchange property whenever all TY are
c.inde., we say N has the a-exchange property with respect to c.inde.
modules.
REMARKS 1. It is clear from the definition that M has always the exchange
property in M.

2. Suppose M = 2%‘ ® Ni‘ If N1,N2 have the a-exchange property in

1=1
M, then so does N1$N2 by [H] . However, the converse is not true.

L7
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Furthermore, even if neither N, nor N, has the a-exchange property in M,

it is possible that N1®N2 so does.

LEMMA 3.1.1. - Let {Ma}I be a set of (e.inde.) modules and M = Z:GMG .

Suppose M satisfies the take out property for any subset I' with
1" ¢Xo . Then {Ma}I 18 a loecally semi-T-nilpotent system (with

respect to J').

[o <]
Proof. - Let {M.}, be a subset of {Ma}I and {f.:M; > M. .} & set of
given morphisms. First we shall show that some of {fi} is not monomorphic.
' = (m. . EM, . . =
Put Mi {mi+fi\ml)' m; € 1}9M1®M1+1<@ M and Mo EI ®M_ , where
o]
Io = (1,2,...,0n...). Then it is clear that M=M1®M2'®M30Mu'®...®Mo
' ; oo ()
—M1 $M2$M3 @MhG...QMd.

We assume that all fi are monocmorphic and use the take out property for the
above decomposition. We take a subset I' = (2,4,...,2n,...). Then we obtain
from the take out property that

M=M1'9M3'e...eMowg(raz)ewh(Mu)e 1B . (xn)

"$w2n(M2n

where wzn(M ) is equal to one of modules in the first decomposition except

2n

moduies in Mo . From the above assumptionsno one of {fi} is epimorphic.

Eence, every M2n' has to be equal to some wem(M ). Therefore,

2m
= &), (M, )2 £, @M, '. We shall shovy & ¢
I 2n-"2n’ = I! 2m I 2n

) ewEn(MZn) # Z:®M2m' , we had some 2i such that w2i(M2i) is equal to

2) Z'@Mzm.lf

some M . First we assume that we had b, ( )=M

. (M )=
Mon)™Mpieq 802 Vo My =My,

L8
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+M

- < - . . ‘ » . . '+ . '
for i < j. Then since M, ' is equal to some wzp(sz) Mo Mo Mo

e M L'+ . i i . P
M2J M2J +1 is & direct sun from (s#). We shall denote t‘pf‘p__1 fq

vy 6{p,q) for p>q. Let x # O be in - M:4q1 then
x = x+f54q(x) € My
iy (0 Tp54 500544 (x) € Myip'
s ()

+(0(2j-1,2i+1) (x)+6(23,2i+1)(x)) e sz '

26(2j,2i+1) (x) esz.‘_1 ’

. J
which is a contradition to the above. Therefore, if Z Owan(Mzn) $#Z &M,

we should have only one “’21;(“21;) which is equal to some M2i+1" Thus,
ETE > 34 z

M= @M OM, . &M . '@ M 'eM = oM @ Imf,_ . .8 ‘@M .
oy e e Tiaier O 5 B0 = 2 g 2i01® 2 % Mo

Since 1‘.‘2]._4_1 is not epimorphic, we can show by the same argument to ()
that M,. +2§.M. Therefore, some of {fi} has to be non-monomorphic. From
those arguments, we may assume there are infinite many of non-monomorphisms

f among {f,_.& . Let fi1_-;f12,...,fin,...

Then all g, are non-monomorphic. In order to show that { fi} is a locally

be such a set. Put e(1k+1-1’1 )=gk.

semi-T-nilpotent system, it is sufficient to show that so is { gk} . We
= * » t
put M % = M. . Let x # OE€Ker g;, then xeMiﬂ Mi . When we use the

above argument for {Mk-l‘} , we know from (**) that !b2n(M2n*) is not equal
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¥ . Therefore, Y. {M ' and

to any M o ‘Mo

ot 1 n*) is equal to some M, #
M o= Mr ‘®M2*'$...®MO (it is possible that some Mgmf' may not appear in
this decomposition). Take X#O€5M1* and use the formular (¥*%), then we
know that there exists some t such that 6(t,1)(x) = 0. Therefore, {fi§
is a locally semi~T-nilpotent system.

We shall later meke use of the fcllowing lemma and we can prove it

by the $imilar argument to the above and so we shall leave a proof to the

reader.

LEMMA 2.1.1'..Let {Ma}I and {NB}J be sets of c.inde. modules. Put

T = ZGMOLG Z'@NS . We assume that ?GNB has the Yo—exchange pro-
I J

perty in T. Then for any countable subsets {M;} and {N.} of {Ma}
I
and {NB%’ respectively and for any non-isomorphisms
fi:Mi—> Ni’ gi:I\Ii — Mi+1; and for any xeMP there exists m

suck that gmfm...g1f1(x)=0.

The following main theorem gives us an answer in a case where we

drop the assumption of finiteness in Azumaya' theorem (2.1.4).

THEOREM 3.1.2 [19,2&] (MAIN THEOREM). - Let {Ma}I be a set of e.inde.
modules and M =.Z:®Ma . Then the following statements are equivalent.
1) M satisfies 1I:he take out property for any subset I' and any
other decompositions (c¢f. 2 Remark 3 in Chapter 3).

2) Every direct swmmand of M has the exchange property in M.
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3) Every direct summand of M has the exchange property in M with
respect to c.inde. modules.

4) {Ma}I is a loecally semi-T-nilpotent system with respect to J'
defined in §1.4.

5) J'n End(M) 1is equal to the Jacobson radical of End(M).

Proof. = 1) —» L) It is clear from (3.1.1).
. . _ ,

L) —» 5) Since SM/Q'fWSM is semi-simple by (1.L.8), SMq:l QJKSM), where
Sy = End(M). We shall prove the converse inclusion from (2.2.3). The first
condition in (2.2.3) is clear for S . Let {ai} be & set of element in
i”“qu’M{] such that {aig is summable. Put a = Z.ai. It Mo:,‘-MT , then
aeJ'n [MO,MT]. If MoﬁzMT, we can show by the same argument in the proof
of (1.4.2) that a is not isomorphic. Hence, a€J'n [MG,MT], which is the
second condition in (2.2.3). The third one is equal tc U4). Hence,

\
2'18,¢C J(SM) by (2.2.3).
5) —» 1) Let M' = } @MY and e the projection of M to M'. It is clear by

I'
(1.4.3) that (I'N S )N 8,

d'n 8y, On the other hand, it is well known

that eSye = Sy, and J(SM,)

" eJ (S, )e. Hence, J(SM') =J'n 8y which

M

guarantees 1) by Remark 1 in § 2.1.

2) —>3) It is clear from the definition.

3) — 1) 3) implies 4) by {3.1.1) and hence, implies 1).

1) —> 2) In order to show this, we need the following proposition.

If we use it, the proof is clear.
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PROPOSITION 3.1.3. - Let {M } and M be as in (3.1.2). Then the following
statements are qeuivalent.
1) The property III in the introduction ; every direct swummand
of M 18 a direct sum of c.inde. modules M'a such that M& are

isomorphic to some M_ in {Ma}I’ 18 true.

Y

2) For any idempotents e,f in S, we have

M
= ’ ; ! = '
e8,® 8, if and only if eSM/e(i g SM) fSM/f(g n SM).

Proof. - 1) — 2) Put ’s"M =s,./J'NnsS

WL N8y eM =L @M' sand fM =L @M .. We

~Im f in A, where A is the category in (1.4.8),

o!

Assune eSMcszM. Then Im
Hence, since Ime = & Gﬁ“a and Im f = 2. @ ﬁ'&,,, M&, is isomorphic to
some M&" and vice versa by (1.4.8). Therefore, eM~fM, which implies

eSM% fSM,

2) — 1) Let M' be a direct summand of M and e the projection. We showed
in the proof of (2.1.4) that there exists an idempotent f in Sy such that

™M =Z ®M6;I'§Iandéé

~ 3 3 (S 1 Y -~
- oA fSM. Hence, euM "fSM implies eM = M,

M

COROLLARY 3.1.4k [7]. - Let {Ma} be as in (2.1.2). If one of the conditions

in (3.1.2) is satisfied, then the property III is true for M.

REMARKS 1. We can replace 2) and 3) in (3.1.2) by the Xo-exchange property
by virtue of (3.1.1).

2. Let Z be the ring of integers and p a prime. Then {Z/pl}:_1

>0 .

is not & semi-T-nilpotent system. Hence, M = %, (BZ/p1 does not satisfy any
i=1

statements in (3.1.2). However, M satisfies the property III (see § L4.2).
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3. Let {Ma}I be a set of indecomposable modules with finite composition
lengthes which do not exceed a fixed natural number n. Then {Ma}I is

a T-nilpotent system with respect to J' (see [171).

L. Let K be a field and R the ring of lower tri-angular matrices with

infinite degree. Put M = Z @ eiiR’ where e;; are matrix units in R. Then
i

{eiiR}is not a semi-T-nilpotent system, but M satisfies the property III
(see § L.2).

5. Let R be the ring of upper tri-angular matrices. Then {eiiR} is a

T-nilpotent system.

3.2. DENSE SUBMODULES.

In this section we shall give a special answer to the property
III. Let {M )  be a set of c.inde.modules and M = 2; ® M . By A we denote
the induced category from {Ma}I. Let J' be the ideal in A defined in § 1.bL.
We denote A/J' by A.
DEFINITION. — Let M and N be in A such that N is a submodule in M,
i:N—»M inclusion. If i is isomorphic in :A_, i.e. N =—b.d; N is called a
dense submodule in M, (note that if N is a submodule of M which is a
direct sum of c.inde. modules and_i ls isomorphic in .é, then N€ A, where
C is the induced category from all c.inde.modules).

NOTATION..Let e be an idempotent in S,=End(M). Then M = eM®{1-e)M in M.

M
We do not know whether eM& A or not, however we shall denote Ime in A
by eM for the sake of conveniency. It is clear that if eMeA, Im e = eM

in A. We note that even if f(M) is in A for some f €83 Im f is not
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——

equal to f(M) in general.

PROPOSITION 3.2.1. - Every dense submodule of M is isomorphic to M,

Proof. - Since M = = @ K«a =N=Z eTw'Y , M= N as R-modules by (1.4.8),
I

where Ny's are c.inde. modules.

PROPOSITION 2.2.2. - Let M and P in A and M>P in A. Then there exists a

submodule P. in M which satisfies the followings :

0
1) P _isin A Z.e. P_=2X @M ',
o = o a
2) For any finite subset J' of J z QMO'L, its a direct summand of M.

J‘|
If {M&}J 18 a locally semi-T-nilpotent system with respect to J)

then P is a direct swmand of M.
2) Poa; P as R-modules.

Furthermore, 1f e <s an idempotent in S, and P=In e, then we

M
ean find such Py in Im e in M.

Proof. - Since -_é_ is completely reducible by (1.4.8), there exist R-homo-

morphisms i: P —» M and p:M —> P such that pi = 1;. Let P = ZKO PY ;

PY are c.inde.. For a subset K' of K'we denote the injection :

P, =2 QPy——? P and the projection : P—» PK' by iK' and Pyp1s respecti-

K , .
K lK' i — _
vely : PK' —— P <= M. Then pK"piiK'=1P If either XK' is finite or
P P K'
Kl
{PY}K' is semi-T-nilpotent, SPqu J' = J(SPK') by (3.1.2). Hence, Py biip,

is R-isomorphic. Therefore, ii_, is monomorphic in MR for every finite

K'
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subset X' of K, which means i is monomorphic in MR' Put Po = Imiin gR.

Then P_ satisfies 1)~ 3). Suppose Im e = P, Then M = P & (1-e)M and

hence, pei = pi. Put Po = Im ei in MR' From the above argument, we know

that P_ satisfies the all requirment in(3.2.2).
n .
REMARK 6. Let N= 3 @ M. be a submodule of M via the inclusion ig.
i=1

Then we know by the above proof that EN is monomorphic in-é'if and only

if N is a direct summand of M.

LEMMA 3.2.3 [1]. -~ Let M and J' be as above. Then for any f£e€J'n Sype

Wt 18 monomorphic.

Proof. - Suppose Ker (1-f) # O. Then there exists a finite subset I' of I

such that Ker (1-f)n 2 @Mu # 0. By (2.1.1) we obtain a set of direct
I|

summands {M'¢(a')}1‘ such that M = E; ® M'¢( 'y @ %ZI' ®N_ and Ma'%:M¢(a')

for each «a'€I' via either f or (1-f). However, f is in J' and hence, we
must obtain those isomorphisms by (1-f), which is a contradiction. There-

fore, Ker (1-f) = C.

We shall give criteria for submodules to be dense.

THEOREM 3.2.k. - Let {M }. be a set of c.inde. modules, A the induced
category from {M }; and J' the usual ideal in A. Let N be in A.
i.e. N=28 NY and a submodule of M via the inclusion i :N-= M.
Then the fgllowings are -eguivalent.
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1) N <s a dense submodule of M.

2) IN is monomorphic in A/J' and for any direct summand P of M,

there exists a finite subset J' of J such that PAN,, # 0 or

P& Ny 18 not a direct suwmand of M, where Ny = z ONY,.
J'

3) iy ig monomorphic and N contains Im (1-f) in M, for some feJ'.

Hence, Im (1-f) is a dense submodule in M for all f€J'. Further-

more, the above N_, is a direct summand of M 1f etither J" is

J

finite or {NY”}J" is a semi-T-nilpotent system.

Proof. — 1) =% 2) Since P contains a direct summand of M which is c.inde.
by (2.1.4), we may assume P is c.inde.. Furthermore, since A is a

Grothendieck category and P is minimal in i, PcZ oN y S N
J'

J for some

finite subset J' of J. Suppose PONJ, =0and P & Ny is a direct summend
of M ; M=P &N, &M . Let i P@N,, —> M be the inclusion. Then

Imis=

® NJ, , which is a contradiction. Hence, P®N

dl

I is not & direct

summand of M.

2)=® 1) We assume that _i-N is monomorphic and M # N. Then there exists

a minimal object I\—'Ia such that T/Ian—ﬁ = 0. Hence, for any finite subset J'
of J -I*ZOLAT‘IJ, = 0. Therefore, Ma ] NJ, is a direct summand of M by Remark 6

(take first a formal direct sum Ma ® NJ, and consider a natural mapping

from M & N

7 cm).

to Mau NJ,
1) =» 3) Since —iN is isomorphic, there exists an R-homomorphism je[M,N]

- -

. - = = _s o ' - . c . =
such that iyj = 1y. Then f = 1-ij € J' and Im (1~f) in MpSIm i = N,
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3) —» 1) Since 1-f is monomorphic by (3.2.3), Im (1-f) in Mp = X' is in A.

(1—f'>)' _

Put 1-f:M

> M. Then TM = 1-f = i(1-f)'. Hence, i is iso-

morphic in A, since (1-f)' is isomorphic in M.. Therefore, Im (1-£)' is a
dense submodule in M. Since IN is monomorphic and N2Im (1-f), N is

also dense.
The remaining part is clear from Remark 6 and (3.1.2).

REMARK 7. - In general, we have many dense submodules P in M = pa OMi s
i=1

n
for instance such as Pn Q. @M. = O for some n< o0 or PN M, # 0 for all

i=1
i (see [18] ).
In the above we showed that if J' is a finite set, then NJ, is &
direct summand of M for a dense submodule N. We generalize this property

as follows :

DEFINITION..Let A 2B be R-modules and B = 2, & B, . If for any finite
subset J' of J, E:'e B, is a direct summandJof A, we call B a locally
direct summand ofJA (with respect to the decomposition B = ze BY)-

We note that if all BY are injective, B is always a lgcally direct

summand of A. We shall use this fact in Chapter 6. In general B = z QBY
I

is a locally direct summand of T BV .
I

THEOREM 3.2.5. - Let {M }; be a set of c.inde.modules and M = iI & M.
Then the following statements are equivalent.
1) {Ma}I is a locally semi-T-nilpotent system with respect to J'
2) Every dense submodules coincide with M.

3) Every locally direct summand M' of M with reepect to M' =L & T
K
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with any cardinal | K1 is a direct summand of M.

4) 3) is true for decomposition with |K|<xo-

5) 4) is true whenever all T, are e.inde. modules.

6) SM/J(SM) 18 a regular ring in the sense of Von Neumann and

every tdempotent in SM/J(SM) Zs lifted to Sy.

Proof. = 1) =» 2) Every dense submodule N of M is a direct summand of M
by the last part of (3.2.4). Hence, N = M by (2.1.2).
2) ==1) Since Im (1-f) is dense in M for f€ _J_‘f\SM, 1-f is regular by

2). Hence, J'N SM ¢ J(s

M)’ , which implies 1) from (3.1.2).

1) =» 3) Every direct summand of M is a direct sum of c.inde.modules by
(3.1.4). The assumption of locally direct summand implies that & Qia is

K

a subobject of M via i , where iM' : M'=> M inclusion. Hence, M' is a

M'
iZrect summand by Remark 1 in § 2.1 and (3.1.2).

3) => L) =>» 5) They are clear.

5) = 1) We shall recall the proof of (3.1.1). Let {Mi}:o be a countable

subset of {Moz} and {fi:Mi*PMiH} a given set of morphisms in J'. We

defined the submodule M' = M_'@M_'® ... in M. Since M_'®...6 M' 6M .=
1 2 1 n  n+1
n+1
® Mi for any n, M' is a locally direct summand of M. Hence, M' is a
i=1
o]
direct summand of M and hence, so is in M = 2. & Mi. Since M' = im (1-f)

1=1

. ¢ e - _ . )
in Mp, M' is a dense submodule of M_, where f = iZ=:1 ers Ty e;; S eare

matrix units in Sy -« Hence, M= Mo' If we use the formula («x«+*) in the proof

a2}
of (3.1.1), then we know that {fiz) is a locally semi-T-nilpotent system.
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1)=> €) Since J'N 8§ = J(SM) by (3.1.2) and A/J' is a regular ring by
(1.4.8), so is SM/J(SM). Let fGSM such that ?2 = f. Then there exists

e direct summand M, of M such that ﬁ1 = im f by (3.2.2). Let e be the
projection of M to M. Since Im f = Im &, Im (1-f) = Im (1-e) in A.
Hence, there exists a regular element & in §M such that f ='h-1éﬁ by
(1.L.L). Since J'n 5, = J(S,), a is regular in § and hence, 2 lea is a
idempotent.
6)=>1) JI'n SMQJ(SM) by (1.4.8). Since SM/J(SM) is regular,
(J'f)SM)/J(SM) contains & non-zero idempotent if gfr)SM/J(SM}. Then this
idempotent is lifted to §, by 6) and hence it is in J'n Sy, which contra-

dicts (2.1.2).
COROLLARY 2.2.6. - Let R be a loecal ring with T-nilpotent radical J(R)

and S “he ring of colum finite matrices over R with any degree.

Then every tdempotent in S/J(S) is lifted to S.

Proof. ~ Put M = X & R, then SeEnd.R(M).
I
The following theorem is some generalization of (3.2.4) and is a

special answer to the property III.

THEOREM 3.2.7. - Let {M_}; , M and A be as in (3.2.4). Let M = ZeN

;7 Y

where NY may not be in A. Then there exists a set of submodules

I ]

{PY}J of M as follows :
2
1) N 2P and P GA.

2) & QPY s a dense submodule in M.
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Proof. - Let IIY be the projection of M to NY (note that IIY is regarded

as an element in [M,M] . Tt is clear that {Hy} is a summable set and

1M = ZHY . Let M, be an element in {Ma}' For an'y non-zero element m, in
J

M, we have HY(m1) = 0 for all y¢J-J', where J' is a finite subset of J.

Hence, HY|M1€ J' for all Y€ J-J'. We shall express HY as matrices (x.(‘;ﬁ)

in $1.4. Since {HV}J is summable, so is {XIB}J for any a B. It is clear
= Y 3 Z '

HYIM1 (xal’d,GI' Therefore, J—J'H |M1€:l (see the proof of (1.4.2)).
Y —4 T : T M ’ = 1 M C )—-:

Then M, = Im 1MIV1£;Im( E' I JH, + ( }EJ'HY|M1) Im(§'HylM1)_ = Inm T

Hence, M= 2 Im ﬁY . On the other hand, there exists a set {PY}J of a

submodule in N‘Y such that PYéé and E’Y = Im ﬁY’ It is clear that

U Im‘ﬁ(S = Z ® Im EG for any finite subset K of J, and so
deK 8eK

E=Eemﬁs=ze§.
J g ¥

We shall call such PY a dense submodule inNY-

The following proposition shows that dense submodules in NY are

maximal submodules in NY up to isomerphism in some senses.

PROPOSITION 3.2.8. - Let M be as above and N a direct summand of M. Let
N' be a dense submodule in N and T a submodue of N and in A. If T
18 a locally direct summand of N, T is isomorphic to a direct
swmmand of N'. Every countably generated R-submodule of N is iso-
morphic to some submodule of N'.

Proof. - We leave the proof to the reader (cf. (L.2.1)).
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CHAPTER 4. THE EXCHANGE PROPERTY

Let {Ma}I be a set of c.inde. modules and M = 2. GMa as before.
I
In chapter 3 we have considered a case where every direct summand of M has
the exchange property in M. We shall concentrate, in this chapter , in a

direct summand of M which has the exchange property in M.
4L.1. SEMI-T-NILPOTENCY AND THE EXCHANGE PROPERTY.

Let M be as above, A the induced category from {M_}; and A=Ay
as before. It is clear that if a direct summand N of M has the exchange

property in M, then N€A.

PROPOSITION 4.1.1.- Let M = N, @ N,. If either N, is a finitely generated
R-module or its dense submodule is a direct sum of c.inde. modules

1
)

then N, €A.

such that {M'a'}J is a locally semi-T-nilpotent system,

n
Proof. - If N1 is finite_;Ly generated, N1 is contained is some 2, QMa{O M.

i=1 i
: n
Hence, N, is & direct summend of PN M, . Therefore, N.€A vy (2.1.4),
i=1 i
ITII. If a dense submodule N' of N is of form in the assumption, then

N, = N' by (3.2.4),

The following proposition is true in a general case (see [h,BB]),
however we shall prove it by virtue of a structure of _.K._
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PROPOSITION L4.1.2 [4,38). - Let M be as before. If M = N, ® N, and

n
Ny= 2. M, M ' sarec.inde, then N, has the exchange
property in M.

Proof. - Let M = P Q be any decomposition. Then each Q contains a

I! -
0 Pa = Z ‘ ® Pa. , Pa'. s are c.1lnde.. Then M

1] 1]
Jan J J

dense submodule P

- - - : - - n
N.6N =2 8#Q = = Z ¢P (see Notation in § 3.2). Since N, = > oM
2 ' o ) o, 1 —
I J J 1=1
- — m —
N, is contained in a co-product of finite many of Pa ysey P ] Pij'
i=1 J!
i

—_ Ca.

m i=
where .J"i is a finite subset of Ji' Hence, P =) _ & Pij contains a
i=1 !

ey

direct summand N; such that N ,zN in M, and N1' =-i1 by (3.2.2). Since

N., ,PEA, ,P=N_,8 & 2. ® P, .3 J."CJT. by (3.1.2) and (2.1.3).
1 =f n J" 1 1

Furthermore, P is a direct summand of M by (3.2.2). Since Q> X &P,

J ' i’
m
=2 erP,, 0 . Hence, M = N,'OL X ep.. 6 2 6Q.' ® Z’ ®Q,.

', U i J w1 i=1 o#i

i
P be the projection of M to N1' in the above decomposition. Since E}' = ﬁ1
-i= _ == , — _ . . e
}_)IN1 = p]l\I1 and p1N1 = 'N1' Since Nglegf , plN is isomorphic in gR by
(2.1.3). Hence, M = N.8Ker p = N, 82 ( 2. e”‘ e = ®Q,.

i=1 J." o#i

1

We note that if I is finite, we may regard {Ma}I as a locally semi-

T-nilpotent system, (see § 3.2).
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THEOREM L4.1.3. - Let {MG}I be a set of c.inde.modules and M =Z @M =N,6N,.
I
Suppose N, = & @& M' | ; M' | are c.inde. If {M' ,}., T8 a locally
1 I o a a''I

semi-T-nilpotent system, N, and N, have the exchange property in M.

Proof. - First, we shall show that N, has the exchange property in M.

Let M =Z‘®Qa be any decomposition. By (3.2.7) each Q, contains a dense
J

submodule Poz =2 o Pai . Since Z&_ is a completely reducible and
T
o

Grothendieck category by (1.4.8), we have

M=N 62 2 @P., ,vhereT' ¢T ... 1).
2 ai a~ "o
Jsa T !
o
It is clear that N = ? i ' ® P ., . Hence , {Pai'}J J) is a locally semi-
o]

T-nilpotent system by the assumption. Put Py be the projection of M to N1
1

with Ker p, = N_. From 1) we know that p, | £ 2 ® P ., is isomorphic
N 2 N ol
1 13 T,
a
inz\._. Hence, py | T I eP..

ai is isomorphic in Mo by (3.1.2). Therefore,
T J T
o

= = Z Z 3
M § }':r' P g1 @ Ker pN1 5 5 @P ., @K, Since T @ ., C Q ,
o o Td'

I\I2 has the exchange property in M. Next, we shall show that N1 has the
exchange property in M. From the similar argument to 1) we have a dense

= P! noo
submodule Pa P & P o in Qa such that

o
-I\_d=.ﬁ19265' 2) and
J o
_»11““'5:9?"0‘ cee 3).
J
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Since M = ¥ GQP'OL ® 2 8 F"a , there exists pG[M,Z OP"a] in My such that
J J

Ker pinA=Z8® -15'(} and Blﬁ is the projection of M to £ Q‘P"u vee b)),
J

From 3) and (3.1.2) we obtain M = & & P"u ® Ker p and hence, Q, =
J

" - - " -
P" ® (Ker pnQ,). Then M = %IGQQ- iapae ZJe(Ker Pn Q)

2 ®P"_ ®Ker p. Hence,
P a

Ker p = 2 ®(Ker P"Qa) ee. 5.
J

From 2) and 4) Ker N, = 0 and p(M) = B(F,) =X @P"_ . On the other hand,
from 3) we know that p[N.I is isomorphic in Mp. Hence, M = N, @ Ker p =

N, 828 (Ker pn Q) by 5).
The following theorem is a generalization of (3.1.2)2) and 5).

THEOREM L.1.L. - Let M and {Ma}I be as in (4.1.3) and M = N,8N,. Let f
be the projection of M to N,. Then £I'f = £Jf if and only if every
direct swmmand of N, has the exchange property in M. In that case

N, also has the exchange property in M, where J' = J'N Sy and
d= J(SM).

Proof. - We assume fJ'f = fJf. Since A is completely reducible, there

exists a subset K of I such that Im fo 2 & Mo, = ﬁK Let e be a projection
K
t ] .
of M to MK Then fSM/fJ r&:eSM/eJ . Hence, there exist a€e§,f, be s e

such that basf and abze {mod J'). Put f-ba = neJ'. Then n = fnf ¢ fJ'f =

fJf, vhich is equal to the radical §; = End(N1). Therefore, ba is an auto-

:
morphism in Sy : N, = ™ SRV N,. Then eM = a(fM)@Ker b in My .
1
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On the other hand, since ab=e (mod J'), bjeM—» M is monomorphic (note

eM&A). By considering a dense submodule of Ker b, we know Ker b = O in z._

Therefore, Ker b = 0 by (2.1.2) and eM= fM in ggq. Since fJ'f=fJf, {Ma}K

is a locally semi-T-nilpotent sytem by (3.1.2). Hence, every direct
summand of N, = fM(c A) has the exchange property in M by (L4.1.3). Conver-

sely, we assume that every direct summand N.' of N1 has the exchange pro-

1

perty in M. Then N =2 9 TY 3 TY are c.inde. and N1' has the exchange
K

property in N,. Hence, {TY}K is a semi-T-nilpotent by (3.1.1). Therefore,

fI'f = £Jf by (1.4.3) and (3.1.2). The remaining part is clear from (L.1.3).

COROLLARY L4.1.5. - Let M and N be as in (4.1.3). We suppose that for

every monomorphism g in Sy Imeg is a direct summand of N, 1.e.
1

gSy = eSy and e = e°. Then every direct swmand of N, has the
1 1

exchange property in M. Especially, if N, s quasi-injective, N,

satisfies the condition.

Proof. - Let f be the projection of M to N, and eefJ'f. Then (1-a) is

monomorphic by (3.2.3). Futhermore, (1-a)|N, = 1. and Im (1-a) =

N

2
Im ((1-a)‘N1)0N2. From the assumption, Im ((1—a.)’ N,) is a direct sumand
of I\I1 and hence, Im (1-a) is a direct summand of M. On the other hand,

Im(1-2) is a dense submodule of M by (3.2.4). Therefore, Im (1-a) = M

and so Im ((1-9.)'1\11) = N,. Hence, a is quasi-regular in Sy
1

It is clear fJfC fJ'f, since JC J'. Now we assume N,' is quasi-injective and

and fJ'f < fJf.

g 1s a monomorphism in SN . Then we have a commutative diagram :
1
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i
0—» Img —— N,

\.'L
N

Since g-1 is epimorphic, N, = im g & Ker 6.

1

Faith and Walker [9] proved the ad>ve corollary and Warfield f39]
did in a more general case, where N, is injective. Fuchs [1?] generalized
[39] in a case of quasi-injective modules. Kahlon [25] and Ymagata [hd}
studied the corollary when gll Ma are injective.

As we see above, the locally semi-T-nilpotency of a submodule N
guarantees the exchange property in M (more strongly for all direct
summands of N). However, the converse is not true, for example M itself
has the exchange property in M, but its direct summands do not. Of course

this is a special example.

w -
Let Z be the ring of integers and p: primes. Put M = Y GZ/p?
i=1
a0 i . e i
® GZ/p2 , (p1#p2). Since N, = = @ Z/p1 is the set of all p -primary
i=1 i=1 .
o
N1 has the exchange property in M, but {Z/p?i 1 is not semi-T-nilpotent.

1

This example is similar to the first case. Let M =Z$Z/p1 = N10N2. Then

N1 has the exchange property in M if and only if either N1 or N, is
isomorphic to a finite direct sum of {Z/pl} , (see (L.1.7)). Hence, in
this case either N1 or N, must have the property of semi-T-nilpotency.

In the following we shall study those situations (I do not know
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whether the concepts of the exchange property and semi-T-nilpotency are

equivalent, except special cases).

Let M= § '0 Ma be as before and M = N10N2. We noted that if N1
I

has the exchange property in M, then NiC A.

PROPOSITION L4.1.6. -Let M, N. be as above. We assume that N; =

: Z

2 oM(1) . where M(i)YB are c.inde. and M(1)YB%M(1)YB:Q'
J(i)Y 58 ¥

M(2)Y8u‘~= M(Q)YB”, and M(i)YB# M(j)Y,B,if Y % v .Furthermore,

we assume that if ole(e)Yl <o, |J(1)Y|§|J(2)Y|. Then N, has
the (Xo-)exchange property in M if and only if {M(1)YB} is a

locally semi-T-nilpotent system with respect to J!

Proof. - "If" part is clear from (L.1.3). Conversely, let {M(1) ¥*
73185 e
W(4) . .
be a subset of {M(”YB} and {fil. 1.8 M(1)Yi+18i+1 and f;€J}

From the assumption, we may assume that J(2)Y # @ for all i and that if
1
lJ(UY:' =00, 'J(Z)Yil = 0, In order to show that {fis is a semi-T-
nilpotent, we may change f.. by suitable g..:M(2) — M(1)
2 2 sy Yie1Bies
from the above assumption. Then we obtain the proposition from (3.1.7).

Ir 32, | ==

eJ!

for all Y, the assumption is satisfied.

PRCPOSITION L4.1.7. - Let {M }: be a set of c.inde. modules such that

M, 18 monomorphic but not isomorphic to M4 for all 1i.

(v
1) Let M=ZOMi=

N.®N,. Then N, has the (¥ o=) exchange
1
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property in M if and only if N, or N, 18 a direct sum of c.inde.
modules{—Mi,}J which is locally semi-T-nilpotent (in this case
N, or N, 18 a finite direct sum).

2) Furthermore, we assume that any of M, is itself a locally T-
nilpotent system and M = Z @&T

I
Then we have the same statement as in 1).

o ° Ta 18 tsomorphic to some Mi'

Proof. = 1) If N, and N, are infinite directsums of c.inde. modules, it

2
contradicts (3.1.1'). We can prove it similarly to 1) and (4.1.6) and
we Jcave it to the reader.

Contrary to the assumption in (4.1.7) we have

PROPOSITION 4.1.8. - Let M= 3 & M, and M, isomorphic to a fixed c.inde.
I

module M, for all a. Let M = N, &N Then N, has the exchange

o
property in M if and only if N, is a direct sum of c.inde.modulee

{M,}; which is a locally semi-T-nilpotent system.

We leave the proof to the reader.

L.2. THE PROPERTY III.

We shall study the property III in the introduction, namely let
M= '§ ® M, be in A, then every direct summand of M is in A. Whether the
property III is true for any M in A or not is still an open problem. If
{Ma} is a locally semi-T-nilpotent system, this property is true dby (3.1.2).

We shall give the combined result (k.2.5) of [38] and[2L] .
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LEMMA L.2.1, - Let M= 2 @& M, = N,®N, be as before. For any x in N,
I

there exists a direet swmmand N, of N, such that XN and N CA.
Proof. - It is clear that there exists a finite subset J of I such that
xeM; = % o, . Since M; has the exchange property in M vy (4.1.2),
M= MJ©N1'®N2', where N,'CN,. Put Ni" = Nir)(MJeNj') (i#j). Then x€N1"

and M = }_g_ ®(N.'6N."). Hence, MJQZZ-_ GNi" and so N."Cc A by (2.1.4).

1=1 i=1

COROLLARY 4.2.2. - Let M = N10N:2 be as above. If N1 is countably generated,

N,€A.

Proof. - We can prove it by an induction from (k4.2.1).

LEMMA L4.2.3 [26]. - Let M be a direct sum of countably generated R-modules.
Then every direct swmmand of M is also a direct sum of countably

generated R-modules.

See [26] or [34] for the proof.

Leava b.2.b [4,38]) - Let M= L oM and let all M be countably gemerated
I

and c.inde.modules. Then the property III is true for M.

Proof. - It is clear form (4.2.2) and (4.2.3).

THEOREM 4.2.5. - Let {Ma}J‘{M*B}K be sets of c.inde.modules such that
{Ma}J is a semi-T-nilpotent system with respect to J' and L OMB

K

satisfies the property III for any direct swmmand of it. Then

M= EOMOLG ZKQMB satisfies the property III for any direct summand of M.
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Proof. - Let M = N, &N Since EGMa = NO has the exchange property in M

J
', where N. = N.'@N.". Hence, M/M <N
i i o

o

by (L.1.3), M = M_ON . 'éN 'QNz'aZGM

K
Therefore, Ni'e A from the assumption. On the other hand, N1"DN2":;MO and

%
2 1 R*

hence, N."< A by (3.1.4).

COROLLARY L4.2.6, - Let M = X oM and M, e.inde. .Let {MB}K " be the subset
I

of {Ma} which consists of all countably generated R-modules. If
{MY}I-K 78 a locally semi-T-nilpotent system with respect to J',
then the property III is true for M.

Proof. - It is clear form (4.2.4) and (k4.2.5).

Finally, we add here a corollary to (L4.2.4).

Corollary 4.2.7. - Let M, N, be as in (4.1.3). If N, s R-projective,
N.€ A. Espectally, if M is R-projective, the property III is true

for M.

Proof. — Every R-projective module is a directsum of countably genera-

ted R-modules by (4.2.3) and hence, N, €A by (h.2.h).
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CHAPTER 5. SEMI-PERFECT MODULES

H. Bass f2] defined semi-perfect or perfect rings as a generalization
of semi-primary rings in 1960. Later E. Mares [261 succeeded to generalize
them to modules in 1963.

In this chapter we shall give many interesting properties of semi-
perfect modules ggven vy [19, 28] . We always assume that a ring R

contains the identity and modules are right R-modules and unitary.

5.1. Semi-perfect modules

Let M2N be R-modules. If any submodule T of M with property :

M = T+N,always coincides with M, N is called small in M.

LEMMA 5.1.1. - Let A¢BCcMcN be R-modules. Then
1) If B 18 small in M, then A i8 small in N.

2) Let {Ai‘? be a finite set of small submodules in M, them 2. A.

18 also small in M.

3) Let f be a homomorphism of M to M'. If A is small in M,

£(A) is small in M'.
Proof. - It is clear from the definition.

DEFINITION. - Let P15y M —30 be an exact sequence of R-modules. If P
is R-projective and KerM is samll in P, we say P is a projective cover

of M. We shall denote it by (P, 71) and P by P(M), respectively.
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LEMMA 5.1.2. - Projective covers (P,n) of M are unique up to tsomorphism
if they exist. If P'——> M—50 is an exact sequence with P'
projective, then (P,n) is naturally imbedded in P' as a direct

swmmand.

Proof. - From a diagram ;

1;\-;"' M ——30

\ ' p
AN
LN
.
!

we have © and P = Im 6+Ker % , since P' is projective and f is surjective.

Hence, P = ImO, which implies P'=Po®Ker6, since P is projective. The first

part is clear from the last.
DEFINITION. - Let P be an R-module. If P is R-projective and every fac-
tor modules of P have projective covers, we call P semi-perfect. If

every direct sum of copies of P are semi-perfect, we call P perfect.

LEMMA 5.1.3 [2,28]. - Let M be semi-perfect and U a subrﬁodule of M.
Let U, :M —» M/U be the natural epimorphism. Then there exist pro-
Jeetive submodules P and V of M and of U, respectively such that
M=Pe&V, 2 \P —7M/U 18 a projective cover and UaP is small in

P.

Proof. - Take a diagram ;

P(M/U)—L> M/U—>= 0
~ /S

) v
M
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Then M = P @ Ker f by (5.1.2), where P < P(M/U) and PA U is small in

P. It is clear Ker fcU.

COROLLARY 5.1.4. - Let M be gsemi-pefect. Then for any submodule U of

M, U Ze small in M or there exists a non-zero direct summand V of

M such that U>V.

Proof. = If U is not small in M, U;UAP by (5.1.1) and (5.1.3). Hence,

P#;U and so V # 0.

LEMMA 5.1.5 [37)}-- Let P be R-projective and S, = End(P).

Zhen J(8) = {f|eS, Im £ is small in P} .

Proof. - Denote the set of right side in (5.1.6) by J'(S). It is clear
from (5.1.1) that J'(S) is a two-sided ideal in S. For any f¢ S we have
P=Im f + Im (1-f). Hence, if f¢J'(S), P = Im (1-f). Since P is pro-
jective, P = Ker (1-f)®P', Put K = Ker (1-f). Then K=f(K) < £f(P), which
is small in P. Hence, P = P' and K = 0. Therefore, J'(S) cJ(8). Conver-
sely, let g&J(S). We shall show that g(P) is small in P. Let P = T+g(P)

for some TC P and consider a diagramm ;

g %
P,a—:——? —_—> E/T

- | (Jg is surjective),

e v
k =~
~
P

Then (1-gk)=0 and hence, ) = 0, since gk € J(S). Therefore, P = T.
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PROPOSITION 5.1.6. - Let M be a semi-perfect module. Then S/J(8) is a
regular ring in the sense of Von Neumann, where S = FndB(M),

tef. [ 23, 28)).

Proof. - Let s¢S. Then there exists a submodule P of M such that
M=Ins +Pand PyIms is small in M by (5.1.3). We define an R-homo-
morphism ¢ : M/P— M/s—1(P) by setting ¢(s(m)+P) = m+s_1(P), which

is clearly well defined. Now consider a diagram ;

M-———e»M/s Yp)—~ 0

T

AN M/P
T
I V
P
M
Then ts(m)-me s—1(P) and hence s(ts(m)-m)€PAnIm s. Therefore,
s-sts €J'(S) = J(S) by (5.1.5).
For any R-module A we put J(A) =N (Maximal submodules in A) or
J(A) = A is there exist non maximal submodules. If A = R, J(R) is the
Jacobson radical of R. We note that every small submodule in A is contai-
ned in J(A) and that f£(J(A))<CJ(B) for any R-homomorphism f of A to B.
From now on, we shall denote Hom.R(A,B) by [A,B] and EndR(A) by §,.
PROPOSITION 5.1.7. - Let P be R~projective. Then J(P) <s small in P if and
only if 3(Sp) = [P,J(P)] . In this case S,/J(Sp)~End (MJI(P)) as
rings.
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Proof. = From the above remark we always have J(SP)E;[P,J(Pj]by (5.1.6)
for projective P. If J(P) is small in P, [P,J(P)] S J(s, )by (5.1.5).
Conversely, suppose [P,J(P)] = J(SP) and P = J(P)+N for some submodule

N. Then we consider a diagram [

%(P)——a»J(P)/N o J(P) ——= O
55
\ P/N

h \\ Tl)
\

P

From it we obtain J(P) = h(P)+NAJ(P) and hence, P = N+J(P)

N+h(P).
Since he[P,J(P)] = J(8p), h(P) is small in P. Therefore, P = N and we
have shown that J(P) is small in P. Since P is projective, we have an

exact sequence ; 0 — [ P,J(P)] —» Sp~ [P,P/J(P)] = 0. It is clear

that (P,P/J(P]] =[P/J(P),”/J(P)] by the above remark.
LEMMA 5.1.8.- Let {A }, be a set of R-modules such that {Aa,J(Aa)]SJ(sAa)

for all a €I. Put A= L & Aa . If Ker (1-f) # O for some fes,,
I

then Im £ # J(Im f).

Proof. - Put B = Im f and suppose B = J(B). Since J(B)¢ J(A), fe[A,J(A)].
Ker (1-f) # O implies that there exists a subset {1,2,...,n} such that

n
( Z ® Ai)n Ker (1-f) # 0. The following argument is analogous to the
i=1

proof of (2.1.1.). Let e, be the projective of A to A,. Since

fe|a,J(a)] , e1fe1|A1€[A1,J(A1)] € J(8, ) by the assumption. Hence,
1
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(1—f)e1 e,

e1(1—f)e1)A1 is an automorphism of A, A1 — A — A1 and
1-f

so A= (1-f)(A,)8Ker e, = (1-)(A,) ® PR A, end A, = (1-1)(a,)

o#1
Now, we repeat the same argument on the latest decomposition and on A2.

Then we have A = (1-f)(A1)®(1—f)(A2)® Y OAa . Finally, we have that
a=1,2

n
(1-f)](§: ®Ai) is isomorphic from this argument, which is a contradiction.
1
Hence, B # J(B).
COROLLARY 5.1.9| 2|. - If P is R-projective, P # J(P) and J(P) = PJ(R).
Proof. — It is clear J(R) = [R,J(R)] and P is a direct summand of copies

of R. Hence, P#J(P) from (5.1.8). The last part is also clear.

We note that (5.1.9) shows that P contains & maximal submodule.
COROLLARY 5.1.10. - If M <s semi-perfect, J(M) is small in M.

Proof. - .y (5.1.4) either J(M) is small in M or J(M) conteins a non-
zero submodule / such that M = V & V', If we had the latter, then J(M) =

J(V)®J(V') and J(V) = J(M)NV = V. Hence, V = 0 by (5.1.9).

PROPOSITION 5.1.11. - Let M be semi-perfect. Then M/J(M) s a semi-

simple module.

Proof. - Put M = M/J(M) and U = U/J(M) for a submodule U2 J(M).
By (5.1.3) there exist submodules P,V in M such that M = P&V, V¢ U and
UNP is small in M. Then UAP< J(M). On the other hand, (P+J(M))n U =

(PU)+J(M) = J(M). Hence, M = P8U. Therefore, M is semi-simple (since
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R contains the identity or J(M) # M).

LEMMA 5.1.12. - Let P be an R-projective module such that J(P) is small
in P. Suppose that P/J(P) ig a direct sum of submodules {f’&}I as
R/J(R)-modules and that for each ael, there exists a projective
module Qa/J(Qa)z 5& . Then the above decomposition of P is lifted

to P,
Proof. - Put Q =7 @ Q’a . Since P P/J(P) is a projective cover of
I
P/J(P), P/J(P)> Q/J(Q) and Q is projective, Q = P&Q' by (5.1.2) :

0——J(P) — P — P/J(P) T e ?&_a,o

N I
\\\ e

\ sl —
TN g =Ze3
\\ I a
=T
Q
Then § = P+J(Q) = P&J(Q') and hence, Q' = O.
COROLLARY 5.1.13. - Let M be semi-perfect and M/J(M) = I eM! .

Then there exists a decomposition of M ¢t M =2 GMathch induces the
I
above. Espectially M is a direct sum of e.inde. modules.

Proof. - We know from the proof of (5.1.11) that M satisfies the condi-
tion in (5.1.12). Hence, we obtain the first part from (5.1.12). Since
M/J(M) is semi-simple by (5.1.11), M = % &M" , where Mg /J(Mg) are mini-
mal by the first part. Since End(Mg/J(Mé')) = End(ME)/J(EndME) by (5.1.7),

Mg is c.inde..
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From this corollary we can apply the results in the previous

chapters to semi-perfect modules.

THEOREM 5.1.L [28}-— Let M be semi-perfect. Then we obtain
1) (M) 28 small in M.
2) M/J(M) <Ze semi-gimple.
3) Every decomposition of M/J(M) such as M/J(M) = M, 'eM," is
lifted to M.
Conversely, i1f a projective module M satisfies 1) ~ 3), then M <s

semi-perfect.

Proof. - We have shown the first half. We assume a projective module
M satisfies 1)~ 3). Let A be a submodule of M and put M = M/J(M) and A

(A+J(M))/T(M). From 2) and 3) there exist submodules M,,M, such that

2
M= M10M and M, = A. Then we have a diagram ;

2 1
& - .
M/A-Z5 M/A — 0
N s
\
\ -
£\ M2
\
N\
\ €
\M
2

Xer ¢ = (A+J(M;,;/A is small in M/A by 1) and (5.1.1). Hence, f is sur-
jective. On the other hand, Ker f ¢Ker ¢ = J(M2), which is small in M2

by 1). Therefore, (M2,f) = P(M/A).
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5.2. SEMI-T-NILPOTENCY AND SEMI-PERFECTION

We have shown by (5.1.3) that every semi-perfect modules are

directsums of c.inde.projective modules. In this section, we shall consi-

der the converse case.

THEOREM 5.2.1. - Let {P }; be a set of projective modules P and

P= 8P . Then J(P) <s small in P Zf and only <if J(Pa) ig8 small in
1

P, for all acl and {Pa}I is a locally semi-T-nilpotent system

with respect to the radical J (of the induced category from {Pa}I)‘

Proof. - If J(P) is small in P then J(?a) is small in Py, by (5.1.1).

Let {Pi}1 be a subset of {Pa}I and {fi : P, ~> P, , endf.¢ J}. Put

' = :
P, {pi+fi(pi)‘6 P. P . < ®P,p; cPi}. Since J(Pi) ® J(Pi+1)

0
i i .8P. .(p. . O.7). = +p.' +
is smell in P;@P. ., fl(pl) €J(P.,,) by (5.1 7). Then P i1 P,

00
Z  +P_+J(P). Since J(P) is small in P, P = 2 P, '6 . @P_. Hence,
ve(i) Y 1=1 v#(i)

{PY}zr is a locelly semi-T-nilpotent system from (*%*) in the proof of
(3.1.1). Conversely, we assume that J(Pa) is mall in Pa for all o €I and
{Pa}I is locally semi~-T-nilpotent. Then [PG,J(PQ)] = J(SPa) by (5.1.7).

We shall put _Qn[Pu,PB] = [Pa,J(PB)] in (2.2.3). Then C satisfies all

conditions in (2.2.3). Hence, [P,J(Pﬁ] SJKSP), which implies that J(P)

is small in P by (5.1.7).
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COROLLARY 5.2.2. - Let {Pa}I and P be as above. Then P is (semi-)perfect
if only if P, is (semi-)perfect and {Pa}I is a locally (semi-)T-

nilpotent system with respect to J.

Proof. - We assume that P is semi-perfect. Then each P is semi-perfect
and J(P) is small in P by (5.1.14). Hence, {Pa}I is locally semi-T-nil-~
potent. If P is perfect, consider any co-products of copies of P, then
the above argument shows that {Pa}I is locally T-nilpotent. Conversely,
we assume that each Pa is semi-perfect. Then by (5.1.11) and (5.1.13)
P/J(P) is a semi-simple module and P = % OP'B , where P'B are c.inde..
Since {Pa}I is a locally semi-~T-nilpotent system with respect to J, so
is {P'B}J . Furthermore, gfn[PébPéJ =Jn [P',Pé] , (see § 1.4 for the
definition of J'). Hence, every idempotent in SP/3(SP) is lifted to Sp
by (3.2.5). J(P) is small in P by (5.2.1). Therefore, P is semi-perfect
by (5.1.14). If {Pa}I is locally T-nilpotent, we can use the above

argument on any co-products of copies of P. Hence, P is perfect.

COROLLARY 5.2.3 [33,36]. - Let S be any ring with radical J(S) and (S)I

the ring of colum finite matrices over S with any degree 1I.

Then J((S,))= (J(S))I if and only if J(S) is right T-nilpotent.

Proof. - Put M = L @S, then [M,M] = (8), and (M,0(m)) =(3(8));. Hence,
T
(J(s))I = J((S)I) if and only if J{(M) is small in M by (5.1.7) and hence

if and only if J(S) is right T-nilpotent by (5.2.1).
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THEOREM 5.2.L. - Let P be an indecomposable and projective modules.

Then P is semi-perfect i1f and only if P is c.inde. .

Proof. - If P is semi-perfect, P is c.inde. by (5.1.13). The converse is

a special case of the following theorem.

THEOREM 5.2.L4'. - Let P be projective, then we have the following
equivalent statements.
1) 8p s a local ring.
2) Every proper submodule of P is small in P.

3) P is semi-perfect and indecomposable.

Proof. = 1) —= 2) Since Sp is local, P is c.inde. and hence, J(SP) consist
of all non-isomorphisms in Sp. Let N be & proper submodule of P and

P = T+N for some submodule T in P. Then we have a diagram ;

00— TN — 1§\—> N/NAT—> O
\ SS

N

\
Ny

\
P

Since N # P, aéSJ(SP)'and N= TN N+Im o. Hence, P = T+Im a. Since Im a
is small in P by (5.1.5), P=T.

2) =» 1) Let T # O€SP be a non-isomorphism, If Im £ = P, P = POQKer f,
since P is projective. Hence, Ker f = O by 2), which contradicts the

assumption. Therefore, Im f # P. Let g be another non-isomorphism in Sp-
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Then Pg Im £ + Im g 2 Im(f+g). Hence, the set of non-isomorphisms in SP

is the two-sided ideal, which means that SP is local.
2) - 3) It is clear.
3) = 2) Let T be a proper submodule of P and P' = P(P/T). Since P is

projective, P = P'¢P" by (5.1.2). Hence, P' = P and T is small in P,

REMARK. - If P is semi-perfect and indecomposable, J(P) is a unique
maximal submodule of P by (5.2.4'),2). Hence, P=eR for some idempotent
e, since P is cyclic. Thus, there extst semi-perfect modules if and only

1f R contains a local idempotent e, i1.e. eRe ts a local ring.

COROLLARY 5.2.5. - Let P be a semi-perfect. Then there exist maximal ones
among perfect direct swmmands of P and those modules are isomorphic

each other.

Proof. - Let P = % &P, and P, c.inde.. Let S be the set of subset
I

{PY}J of {Pa}I such that {P‘Y}J is locally T-nilpotent. We can find a

maximal one in S by Zorn's lamma, say {PY}J' since {Pa}I is semi-T-nil-

potent. Put P_ r QPY, then P_ is a desired perfect surmand of P by

J

(5.2.3). Let P= L &P & 2 8P ZGP'G)Z’GP',whereZGP
T Y X § §

LA 7Y

and £ & P; are maximal perfect submodules. Then PY and P"Y are themselves
J'

T-nilpotent, respectively. Hence, if P

Y is isomorphic to some Pgyo in

{p! {{p!,}_,,P.} is locally T-nilpotent. Which contradicts to the
§YIK?T Tyt gy

—

maximality of 2 @ P; ' . Therefore, 2 & P
J

@%, ®p), by (2.1.4).
J'

Y
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PROPOSITION 5.2.6. - Let P be semi-perfect and P a projective sub-module

in P. Then P_ is a direct surmmand of P if and only if J(P)nP_ = J(P_).

Proof. - Suppose J(PO) = J(P)qPo ,then PO/J(PO)_C P/J(P). By (5.1.13)
there exists a direct summand P, of P such that P1/J(P1)OPO/J(PO)=P/J(P)-

Or the other hand, the formal directsum PlGPo is isomorphic to P by

(5.1.12). Hence, J(PO) is small in P . Consider a diagram ;

Vi
0—> J(P)—> P, —> P/(P +J(P))—>0 (exact)
~
AN
\
N vV
g \
N
P
where i is the inclusion. Then (1P -gi)(Po)S-J(PO) and hence,
)
(1P -gi)e J(SP ) by (5.1.5). Therefore, gi is isomorphic in Sp s which
° o

o
means that Po is direct summand of P. The converse is clear.

5.3. PROJECTIVE ARTINIAN MODULES.

Let M be an R-module. If for every series M, 2M,2...2M 2 ... of
submodules Mi of M there exists n such that Mn = Mn+t for all t, we call
M artinian. Let T be's subset of S,. We put ™ = {f(m)|f<T and meM}.

LEMMA 5.3.1. - Let M be artinian and projective. If AM = PGRY # 0 for a

right ideal A in Sy » Then A contains a non-zero idempotent.

Proof. - Since M is artinian, there exists a minimal submodule N = A'M
with respect to properties N' = A'"M = A"y # O for a right ideal A" A.
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Then A' is not nilpotent. Hence, there exists x in A' such that xA' # 0.
Again from the assumption we can find a minimal one among submodules
x'M,(x'e A) and x'M # 0, say xM, (xeA). Since xA'A'M = xA'M # O, there
exists y& xA' such that yA' # O. Then yMcxA'M¢ xM. Hence, yM = xM by

the minimality of xM. Now, consider a diagram ;

M—Y 5 yM = xM—>0
AN
AN
N x
Y N
M
Then x = yr = xa, where a€ A , Hence, x = xa = x8.2 = ... + Therefore,

. 2 .

a is not nilpotent and x(a-az) =0, Put n =a ~a. If n =0, a 1s a non-~
zero idempoten‘t. Suppose n # 0. Put A¥ = {zléA', Xz = 0} s then
A‘z A¥>3 n. We consider a series ; A¥ M_DA"'aM?... QA“nM?... . Since

N . . % - ‘n+1 . ' ¥ ' .
M is artinian, A Iy = for some n. Since A'M 5A*M and A'M is the
minimal one, A'M = A*"M or A*"M = 0. On the other hand, xA' # O and
xA* = 0 anéd hence, J R 0, which implies that n is nilpotent. Next, put

a, = a+n-2an, then all a,n and a

1 commute each other, since they are

1

generated by a. Hence, (-n+2an) is also nilpotent and &, is not nilpotent.

1

Furthermore, a12—a1 = ne(hn-3). Repeating this argument we get non-

nilpotent elements aiC-A' such that (ai-aiz) = na’] Zss ziGSM. Since n is

nilpotent, we have a non-zero idempotent a, in A'.

COROLLARY 5.3.2. - Let M be as above. Then Sy 18 a semi-primary ring.
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Proof. - Since M is artinian, M is a finite directsum of indecomposable,
projective module Mi' First we assume M = M1. For any right ideal A in

+1 : i
SM,AnM = An M for some n. If An # O, A contains & non-zero idempotent

e by (5.3.1). Since M is indecomposable, e=1. Therefore, SM is a locsal

n s;
ring with nilpotent radical. Next, we may assume M = 2, Zl ® Mij » wvhere
i=1j=1
’ . - . . <y
Mit.,' V are indecomposable ggd rv‘.(ij ~Mi'j's_’ Mij"-"' Mi'j , if 1 # i'. Then
= J(s.. .. ..=[ . 1 . . Si .inde.
Sy t(le)lle SlJ }i‘ ® MJk' 7.;'=1 ® Mlk'_)} Since MlJ is c.inde
from the above,
J(SH) 812 Sin
S J(s,,) ... S
I(s,) = 21 22 2n
5.4 eeenes (s )

by (2.1.3). Furthermore. All J(Sii) are nilpotent and hence, J(SM) is

n
rilpotent and SM/J(SM) ,’2‘-—51 ® Sii/J(Sii)' Tt is clear that sii/J(Sii)

is the ring of matrices wer a division ring SM /J(SM ).
. i1 i1

LEMMA 5.3.3. - Let M be R-projective and A a finitely generated right
ideal in Sy Then A = [M,AM]. Furthermore, 1f M s R-finitely

generated, A' = [M,A'M] for any right ideal A' in SM
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n
Proof. - Let A = X aiSM' Then we shall consider a diagram ;
i=1

Z@Mi__d’_) AM—%0
Iy
N
N\ X
N\
AN
N M

h

vhere M.=<M for all i, ¢=(a1,32...,an) and x is any element in[?M,AMJ .

1,
n - .
We shall dencte h by [ By |. Then x = 5 a;h; is in A. Hence,
h 1=
n

[M,AM]S A. It is clear AQEM,AM] . If M is finitely generated, we replace
n t
> 8 M. by 2z ® M, in the above, then n(M)C 2. @ M_ . Hence, we
i=1 acA i=1 i

can make use of the same argument.

THEOREM 5.3.4. - Let M be R-projective and artinian. Then M is a perfect

R-finitely generated module and Sy i1s right artinian.

n
Proof. — It is clear from the proof cf (5.3.2) that M = Z:'O Mi’ where
i=1

Mi' s are c.inde.. Furthermore, since S,, is semi-primary by (5.3.2), Mi

M
is a (locally) T-nilpotent system with respect to J. Therefore, M is

perfect by (5.2.2) and (5.2.4) and M, is cyclic. Furthermore, (5.3.3)
gives a lattice monomorphism of the set of right ideals in SM into. the

set of submodules of M. Hence, S, is right artinian.

M
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CHAPTER 6. INJECTIVE MODULES

In this chapter we assume that the reader knows elementary proper-
ties of injective modules and we refer to fS) for them.

We mainly study some application of (1.3.2) to injective modules
and hence, we shall consider directsums of indecomposable and injective

modules. We reproduce [10, 25, 29, 31, hd) by virtue of factor categories

and study the Matlis'problem in § 6.5.

6.1. ENDOMORPHISM RINGS OF INJECTIVE MODULES.

In this section we shall recall some properties of the endomorphism
rings of injective modules, which we make use of later. If the reader is
not familiar to them, consult (8].

As & dualof the concept "small", we shall define the concept
"large". Let M2 N be R-modules. If for any son-zero submodule T of M,

NNT # 0, we say N is large submodule in M or M is an essential extension

of N. We denote it by MON.

As a dual of (5.1.6) we have

LEMMA 6.1.1. Let E be injective and Sg = mMd(E). Then J(SE) =
/
{fleSE, Ker fCSE} and SE/J(SE) 18 a regular ring.

As a dual of (5.1.14).

LEMMA 6.1.2. Let E and Sg be as above. Then a finite set of mutually
orthogonal idempotents in SE/J(SE) is lifted to Sg.
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As a dual of projective cover, we define an injective envelope
(injective hull) E of R-modules M as follows ; E is injective and M is
large in E. Contrary to projective covers , every modules have injective
hulls and every injective hulls are isomorphic (dual to (5.1.2)). Hence

by E(M) we shall denote an injective hull of M.

6.2. CATEGORIES OF INJECTIVE MODULES.

We shall give here an application of (1.3.2) to injective modules.
Let M be an R-injective module. We shall define & full sub-additive
category C(M) in M as follows (cf. the induced category in § 1.4)
the objects in C(M) consist of all direct summands of any products
2’Ma ; M ~M. If M is an injective and cogenerator in Mp , then C(M) is
the category of all injective modules. We also call C(M) the category of

injective modules induced from M. Let J be the radical of C(M) (see §1.1.

for the definition).

THEOREM 6.2.1 [17, 39] . - Let M beand R-injective module and C(M) the
category of injective modules induced from M and J the radical of

C(M). Then C(M)/J is a Grothendieck and spectral category.

Procf. - We shall denote C(M)/J by C(M). Then C(M) has a finite coproducts
from the definition and Remark 2 in § 1.1, and C(M) is a regular category
from (6.1.1). Furthermore, (6.1.2) shows that C(M) is amenable. Hence,

E(M) is an abelian spectral category by (1.3.2). We shall show that éﬁM)
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has finite co-products. Let {Ka}I be & set of objects in C(M). Since

A, <@ M, ZeAa<91r MM and E = E( 5 @ A ) is an object in C(M),
o I

IOt I I

since W TM is injective. We show E = 2 @ 7\(1 . Let N be any object in C(M)
and {EG:EQ + N} a set of morphisms, where £, A >N is a representative.

Then there exists £ : £ & Aa -+ N in &R such that

Aa—aZQAa—’)E

Since N is injective, there exists g : E — N which commutes the above
diagram. We can easily show from (6.1.1) that g does not depend on a
choice of representative f, &nd that g is uniquely determined,(cf. the
proc? of (3.2.7)). Also we can similarly show that for a given &:E = N,
there exists a unique set of -f‘a : Ka-*ﬁ such that E = ﬂ;‘a Hence,

E=Z6 Ixa. Next we shall show that C(M) has a generator. Let S be the

set of right ideals K in R such that E, = E(R/K)&C(M). Put U

£ QE,.
Kes ©
Let T be an object in C(M) and t # 0€T. Then T2tRxR/(0:t) and

E(R/(O;t)r)é S, since T is an injective and in C(M). Therefore, E(O't)
3
r

is isomorphic to a direct summand of T, which implies [-l.J,'_I'] # 0. Finally,

we shall show similarly to the proof of (1.4.8) that (L l—\a)n-ﬁ = \)(I\an-B)
K K
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for a subobject B and a directed set of subobjects {Ka}K in a given object

F. Put C = U(A_NB), then B = CoB and (UA)aB=CUO((UR)AB).
a o a a )
K K K
We put D = (U Ka)f\%o and assume D # O. From an exact sequence

K

S ¢ A = Ui —>0, ve obtain a monomorphism g :.D—?ZKQ A, such that
o o
K K

g = 15, We note that g is R-monomorphic, since J is the Jacobson radical
D

and that 3 € A_ = E( ® A ). Put D' = Im g in M. Then D' = Im g. Since
K 03 a
D'#0,D'N Z @A, #0inM,. Let x # O be an element in D'N3 ® A, and
K a K a

n
let E(xR), El(x.R) be injective hulls of xR in D' and 7 & Aai s respecti-
i=1
@ Ka from Remark 2
i

e

n —_
vely, where x€ Z ® A, . Then E(xR) = E1(xR)_C
i=1 i

My

below. Hence, E(g ' (x)R)S Uia 57\8 for some B such that B > a; and
i

'E.:(g-1(x)R)_C D, which is a contradiction.

REMARKS 1. We noted in the proof of (1.L.8) that z &M = Z @ Ma in the

I I
factor category of c.inde.modules. However, in C(M) 2 @ A, is not, in
I
general, an object in C(M) and Z & Za means E(F @ Aa)'

I I
2. Let E, E' be injective and f : E — E'. We shall find Ker f

and Im f in C(M). Let K = Ker f in My and E" = E(K) in E. Then E = E"E, .
We define f'c [E,E'] by setting £' = (0,f| E,). Then Ker (£-£')=KéE, CE.
Hence, f=rf. Therefore, Ker f = Ker f' = B and Im £ = Im F' = f_(E1).
This argument shows that Ker £ (Im T) does not depend on a choice of

injective hulls of K in E and that we can give direct proofs of many
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results in the following without factor category. However, if we use
the factor category, the proofs are simple and natural in some sense.

3. If J # 0, IT—AOL # ﬁKa for A e C(M) in general.

L. Instead of injective modules, we can consider the full sub-
additive category P of projective modules in -béR However, in this case
P/J is not spectral. We know that P/J is spectral and Grothendieck category
if end only if R is right perfect ring (see [19]).

For any R-module M we put Z(M) = {mlem, (O:m)r C_{RB . It is clear
that Z(M) is an R-submodule of M and we call Z(M) the singular submodule

of M.

LEMMA 6.2.2. - Let M be an injective module with Z(M) = 0, then J(SM) = 0.

/
Proof. - Let feJ(SM). Then Ker f cM and so Z(M/Ker f) = M/Ker f. On the

other hand, M/Ker f is isomorphic to a submodule of M. Hence, M = Ker f.

PROPOSITION 6.2.3. - Let M be an injective R-module with Z(M) = 0. Then
C(M) is a spectral and Grothendieck category with generator M.
For any morphism £ in C(M), Ker £f(Im f) iZn C(M) Zs equal to

Ker £ (Im f) in.gR.

Proof. = From (6.2.2) we obtain J = 0. Hence, C(M) is a spectral and
Grothendieck category. Furthermore, since M is a cogenerator in C(M), M

is a generator. The remaining part is clear from Remark 2.
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COROLLARY 6.2.4L. - Let N be an R-module with Z(N) = 0 and Q1,Q2 injective

submodules in N. Then Q1+Q2 and Q1n Q2 are injective.

Proof. - Let E = E(N) and consider C(E). Then Q€ C(E) and Q+Q, and Q, Q2
are an image and a kernel in MR of morphisms in C(E), respectively. Hence

, they are injective in by (6.2.3).

Mo
LEMMA 6.2.5. - Let B be a full sub-additive category in M. Suppose B

contains a generator (cogenerator) in M. Then every monomorphism

(eptmorphism) in B is monomorphic (epimorphic) in Mg.

Proof. - Let U a generator in Mp , which is contained in B and f:A =B

a monomorphism in B. Put Ker £ = C in M_. If C # O, there exists

M.
g # Oe[b,C] in MR such that ig # O, where i:C ~»A is the inclusion.

However, igé[U,A] €B and fig = O, which is a contradiction.

PROPOSITION 6.2.6. - Let M be an R-injective module. We assume M is a
generator and cogenerator in MR’ (e.g. R 2s a Q.F. ring). Then
C(M) is an abelian category if and only if R 18 a semi-simple

artinian ring.

Proof. - We assume C(M) is abelian. We shall show for any morphism f in

f! i
C(M) that (Ker £ in C(M)) = (Ker f in M) Let £ : N —=Imf-—>N' bea
decomposition of £ in C(M). Since C(M) is abelian, f' is epimorphic in C(M)

and i is monomorphic in C(M). Hence, so are they in M, by (6.2.5). Hence,

(Im £ in C(M)) = (Im f in M7). Put K, = (Ker f in C(M)) and K, = (Ker f in

2
M ).
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It is clear K1§,K2 by (6.2.5). On the other hand, K, is R-injective and

f .
hence, N = X, @ N" in M.. Then N"¢ c(M) and N" —_ Yr (Im £ in ﬁa)

from the above. Hence, K1 = K2. Let A be any R-module, then there exists

an R-exact sequence ; O » A—}7'M —» T M. Since TMeC(M), A = (Ker f
I 1
1 2

in MR) = (Ker f in C(M)). Hence, A is injective. Therefore, R is semi-

simple and artinian. The converse is clear.

6.3. DECOMPOSITIONS OF INJECTIVE MODULES.

This section is a reproduction of [29) by virtue of factor cate-
gory and we shall give a condition under which every injective module is
an injective hull of some direct sum of c.inde. modules, which is equi-
valent to a fact that A/J is completely reducible, where A is the full

-sub-additive category of all injective modules in Me.

LEMMA 6.3.1.sLet B be a full sub-additive category in M. We assume that
every direct summand in M. of an object in B belongs to B. Then

every finite co-product in B/J ts lifted to M-

Proof. - Let B, B, and B, be in B and B =‘§1O§2 in B/J. Then there exist

X such that 1B = 11p1+ 1,P5 and

Pyi, = 1g,+ Since J is the radical, Pl is isomorphic in Mp. Hence,

morphisms ik:BKdv B and p,:B ~¥ B

—m——

M=1In i10Ker P, in %R By the assumption Im i.I and Ker p15_§ and it 1is

clear that Ker D) =B, and B = In 1, ® Ker B, ='1'31e_1§2.
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COROLLARY 6.3.2. - Let M be R-injective. Then an object N in C(M)/J s

minimal ©1f and only if N is indecomposable.

Proof. - It is clear from (6.2.1) and (6.3.1).

PROPOSITION 6.3.3. - Let R be a left perfect ring and M R-injective as a
right R-module. Then C(M)/J is a completely reductible and Grothen-

dieck category.

Proof. - Since R is left perfect, every right R-module contains minimal
submodules by [2] . Let N be in C(M) and S(N) the socle of N in Mg, e,
S(N) =2 Q—Ia and Ia's are minimal R-modules. We know from the assumption
that N_D,EO I,- Hence, N=2 GF‘:(_IOL) by Remark 1 and ma) is a minimal
object in é(M) by (6.3.2).

Let A be the full sub-additive category of all injective modules
in Mp. By A we shall always denote A/J in the follows. We know from
(6.3.3) that if R is a left perfect ring, then A is completely reducible.
We shall give a condition for 2\_ to be completely reducible (29] .
DEFINITION.-let K be a right ideal in R. K is called reducible if there
exist right ideal K. in R such that K = K,/ K, end XK, # K. If X is not

reducitle, we call K Zrreductble.

We shall denote E(R/K) by Ey+

LEMMA 6.3.4. - Let E be R-injective. Then the following statements are
equivalent.

1) E is indecomposable.
ok
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2) E is an essential extension of any submodule.
3) E= E, for some irreducible right ideal K.
Furthermore, Eyp, is indecomposable for a right ideal K', then

K' i8 trreducible.

Proof. = 1) &® 2) It is clear from the definition.

2)¢=>3) Let x = 0€E. Then E>xR~R/(0:x)_. If (0:x)_ = K,nK, ,
R/(O:x)r2K1/(O:x)r ® Ke/(O:x)r . By 2) we have K, or K, = (Ozx)r. Hence,
(O:x)r is irreducible. This proof shows the last part.

3)~=» 1) Let E, = E,6E, and p;: E —» E; the projections. Put K; =
Ker(pilR/K). Then K = K,;nK,. We may assume K = K, from 3). Then Ker p,=0

since ED>R/K. Hence, E_ = O.

TEEOREM 6.3.5 (17,29,39) . - Let A be as above. Ther A is completely
reductble ©f and only if for every right ideal K, K always has a

decomposition as follows : XK = K,N K, and K, is irreducible and
R2K, # K.
Proof. - If Ey is completely reducible, E, =E, @ E, by (6.3.1) and
'6.3.2), where E1 is indecomposable. Then we have K = K1f\ K2 and E1

contains an isomorphic ‘image of R/K1 from the proof of 3) we 1) of (6.3.4).

Hence, K, is irreducible from (6.3.4). Conversely, if K = K,» K, and

2
Ke# K, then we have a natural exact sequence : 0= R/K — R/K1GR/K2 and

¢(K2/K) < R/K1. Hence, E(R/K) 2E(R/K1) since E(R/K.) is indecomposable.

1
We knew already from the proof of {6.2.1) that every injective module
E contains some EK' Therefore, E contains a minimal object in E and hence
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A is completely reducible, since A is a spectral, Grothendieck category.

COROLLARY 6.3.6. - We have the following equivalent statements
1) R Zs a right noetherian ring.
2) Every injective modules are a direct sum of c.inde.modules.
3) Any directsums of injective modules are also injective,

([3, 29, 32]).

Proof. - 1) «=3) See [3] or (8] .

1) =» 2) Since R is right noetherian, the condition of (6.3.5) is
satisfied and so A is completely reducible. Hence, for any injective
module E, E = E(Z 8 Q ) by Remark 1 and (6.3.2), where Q 's are indecompo-
sable and injective. Since Z & Qa is injective, E = Z & ch'

2) =» 3) Let {Ea}I be a set of indecomposable injective modules. We put

E =E(X® Ea)' Then we have E = 75 ® Qg by 2), where QB's are indecompo-
sable and E = E.:] ® -Q'B =28 Ea . Hence, jJl = | I\ and T*:'a is isomorphic to

some QB and vice versa, since Ea and QB are minimal in A. Therefore

2 BE ~7% ®Q, is injective.

a B
I J

Remark 5. The completely reducibility of A does not guarantee that
R is a right noetherian ((6.3.3)). Furthermore, is not completely

reducible in general (see f17]).

6.4. GOLDIE DIMENSION.
A. Goldie [15] defined a dimension of modules as a generalization

of noetherian modules. J. Fort [10] and Y. Miyashita [31] generalized it
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independently to an infinite case. We shall reproduce them as an applica-
tion of §.2.1).

DEFINITION.~Let M be an R-module. If M is always essential extension of
any non-zero sub-modules, M is called untform . Let N be an R-module.

We consider the set S of sub-modules T of N such that T = o ® Ka s Where

I
Ka's are uniform. Put dim N = max({Il) if it exists (we shall show in
I
‘6.4.3) that dim N exists for any N).
THEOREM 6.4.1 [ 10, 17, 31} . - Let E be R-injectives. Then dim E exists

and we have a decomposition E = E, & E, such that dim E = dim E,,
dim E, =0 and E, 18 a mintmal injective submodule of E among
injective submodules E' of E with decompositions as above. Further-

more this decomposition is unique up to isomorphism.

Proof. - We take the factor category X in § 6.3. Then dim E = O if and
only if the sccle S(E) of E in A is zero. We assume S(E) # 0 and S(E) =
2 e E& = E(Z ® Ea)’ where Ea's are indecomposable injectives. Then

E=E(Z ® Ea) ® E, and dim E, = 0. Let N = R N, be a submodule in E,
J
where N 's are uniform. Then E(N) = E( ¥ @ E(Na)) and E(Na) is minimal

in A. Hence, E(N) & S(E) and so |J| s |Il. Therefore, dim E = JIl Let E'
be an injective submodule of E such that E = E'8E.', dim E' = dim E and

dim E2' = 0. Then E' contains S(E) = Z,@ifa . Hence, E, is & minimal one
I

among injectives with such a decomposition. Let E = E10E2=E1'0E2' such

that dim E, = dim E1' and dim E. = dim E2' =0 and E,, 31' are minirmal in

such decompositions. Then E1 =.§1’ = S(E) and hence, i245i2'- Since J is

n
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the radical, E1f'=-'E1' and E27«E2' in M. by Remark 3 in § 1.1,

LEMMA 6.4.2. - Let M= 3 &M 1in I\_/L_R and N a submodule of M. Put N_ = M NN
T o a o 2

and N' = I ® N_. Then M2N if and only if M 2N for all a€l,
I
7’
(further, M2XN').

/
Prcof. - Suppose M 2N  for all a . Let m # 0€M ;m —Zmaiuai# oGMai.

from the assumption, there exists r€R such that mr =m_r+ 2 m_r and
1 iz i

mn r # 0€EN . Repeating this, we obtain mRNN' # O. Hence, M S N'. The

converse is clear.

PROPOSITION 6.L.3, - Let N be an R-module. Then dim N extsts and N is an

essential extension of a submodule N, &N such that dim N,=dim N = Il

2

, =0 and N, 18 an essential extension of ZQ’I‘a » Where
I

and dim N

Ta's are un{form,

Proof. - Put E = E(N). Then E = E,®E, as in (6.L.1). Put N,' = NNE, .

Then Ei_D'Ni' and N2/N1'®N2' by (6.h.2). Hence, dim E, = dim N,' = 0 and

E,‘ = E(N1'). Let E1 = ﬁ(ZI®Ea), where Ea's are indecomposable. Put

anN1' =N, eand N, = ZI ® ch . Then N 's are uniform and N, 2’ N, by
(6.4.2). Suppose N2T' = 5 & T, » Where Ta's are uniform. Then

E(T') = E(;‘WTG)) = ZOE{*TG) _cﬁ1. Hence, |JI§ II| and dim N = dim E = |71,
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COROLLARY 6.L.4. [9] . - Let {E }; be a set of injective modules and

Q= 7 @ Ea . Let P be a submodule of Q such that P = ZfOPB : PB‘s
I J

are indecomposable injectives. Then |Jlg IIl.

6.5. THE PROPERTY III IN INJECTIVE MODULES.

In this section we shall study the property III in a case where
every c.inde. modules are injective, which is called Matlis'problem [2§}.
We do not know a complete answer for this problem and we shall give here
some affirmative answers given by [25] and [ho).

From the proof of (6.2.2) we have

LEMMA 6.5.1. - Let {Na}I be a set of indecomposable injectives. If
z(N,) = O for some a , every non-zero element in [NY,N&] 18
isomorphic. Especially, if Z(N ) = O for all ael, {Na}I is a

T-nilpotent system with respect to J!

THEOREM 6.5.2 [21, 25, bo] . - Let {N_}  be a set of indecomposable
injectives and N = 5 @ N, « Suppose N = M &M, and Z(M1) = 0.
Then M. 1s a directsum of c.inde. injectives for i = 1,2.

Proof. - Mi contains a dense submodule Ti by (3.2.7). Let T, = Z:QTG;TG'S

1
I
are c.inde.. Since Z(M1) = 0, Z(T1) = 0. Hence, {Ta}I is a T-nilpotent

system by (6.5.1). Therefore, we have the theorem from (3.2.2) and
(4.1.3).
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THEOREM 6.5.3. - Let {Ea}I be a set of indecomposable injective modules

and E= 2 ®E . Then the followings are equivalent.
I

1) {Ea}I is a locally semi-T-nilpotent system with respect to J'.
2) Every module in C which is an extension of E contains E as a
direct swmmand.

3) There are no proper and essential extension of E which are in
c.

¢) For each monomopphism g in Sp = End(E), Im g s a direct
swmmand of E,

where C is the category of all c.inde.modules.

Proof. - 4) =» 1) It is proved by (4.1.5).

1) =» 4) Let g be a monomorphism in SE' Then Im g = & Og(Ea) and Ea:-g(Ea),
Since g(Ea) are injective, Im g is & locally direct summand of E. Hence,

Im g is a direct summand of E by 1) and (3.2.5).

1) = 2) It is clear from the above proof.

2) =» 3) It is also clear.

3) == 1) Suppose {EG}I is not a locally semi-T-nilpotent. Then there exist

[+ 2] iy . .
a subset {Ea.}1 of {EdJI and & set of non-isomorphisms f; : E - E

Q.
1+1

such that for some element x in B, f f . ... f£,(x)# 0 for all n. We
1
note Ker fi # 0, since Ea are injective and indecomposable. Put

i

00 (Y2
' = . ¢ . =
E, ixi+fi(xi)| xleEa.S_ Y @ Eai ¢ ® E. Put E iZ=1 & E“i ®E_,
1
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/
E, N (z ® E'j) 2 Ker f, # 0. Hence, Z ® E'j ®E S Eby (6.4.2). It is
i

clear x*( 2 ® E'j ® EO). Let E* be an injective hull of E. Since

(Z ® E'j ® EO) = E, we can extend this isomorphim t to a monomorphism
t

¢ of E* .Therefore, ¢(Z @ E'. 8 E ) = E g ¢(E) = Z@¢(E )& C. which is
J ° I o

a contradiction.

COROLLARY 6.5.L4. - Let {Ea} and E be as above. Furthermore, we assume that

each Ea is noetherian. Then all statements in (6.5.3) are true.

F

Proof. - Let {E;}, be a set of injective and indecomposable modules and
f;, + E; —» E; , non-isomorphisms. Then Ker f. # 0, Im f.n Ker f, # 0 if
£, # 0, since E, is uniform. Hence, Ker f1iKer £,f, if f1# 0. Therefore,
{Eu}I is a T-nilpotent system form the assumption.

COROLLARY 6.5.5. Let M be a module in C and L a submodule of M. Suppose

L s a direct sum of injective modules and Z(L) = O. Then L i8 a

direct summand of M (cf. [9,21,25] ).
Proof. - Since every injective module in M is in C by (4.1.5), the
corollary is clear from (6.5.3).

Remark 6. Let {Ea} be as in (6.5.3). In general {Ea}I is not semi-T-nil-

potent. Hence E = Lo Ea is not quasi-injective. Furthermore, even if
I

Ea are noetherian, E is not injective. If E is (quasi-)injective or Z(E)=0
{Ea} is semi-T-nilpotent. However, the converse is not true (see [hé])-
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