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l. Introduction

Let T be a completely regular Hausdorff space, and let

R* = the set of all real-valued functions on T ,
LSC(T) = the set of all lower semi-continuous functions in RT

C(T) = the set of all continuous functions in a?

Consider the following three conditions on an arbitrary such T.

Condition A. For each heRT, there is an f ¢ C(T) such that f>

T

h
Condition B. For each ge¢LSC(T), there is an f¢C(T) such that £ g
Condition C. For each heR™, there is a geLSC(T) such that g>h

When does T satisfy each of the just-mentioned conditions?

If we replace > by = in the conditions, then the responses are

simple. Indeed, Condition A becomes C(T) = RT , Condition B be-
comes C(T) = LSC(T) , and Condition C becomes LSC(T) = BT, and
each of these occurs precisely when T is discrete.

However, finding those T which satisfy the Conditions A, B,
and C as actually posed does not involve such & trivial task, and
we devote this article to an attempt at characterizing in terms
of T when Conditions A, B, or C hold.

0f course Conditions A, B, and C hold whenever T is discrete.
One's first impression might be that if T is not discrete then T

would not satisfy any of the conditions. The situastion which occurs
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when T = [b,l] reinforces this impression. Indeed, let (tn);;l

enumerate the rationals in [b,l], and let

n, t =%, for some neN

hy(t) =
0, all other t€[0,1]

1/t , 0<t<1
go(t) =
O, for t+ =20

¥

Then h, € R and is unbounded on every non-empty open subset of

0
[O,l] , and goeLSC(T) eand is unbounded on [0,1] . Together these
facts imply straightaway that T = [0,1] satisfies none of the
Conditions A, B, or C.

In Section 2 we show that it is consistent with the usual
axioms of set theory to assume that no non-discrete T exists
satisfying Condition A. We then tackle the problem‘of those T
which satisfy Condition B, and show that if T does satisfy Con-
dition B, then T must be a P-space. However, all those non-discrete
P-spaces we know do not satisfy Condition B, and it remains unanswer-
ed whether or not any non-discrete ones exist. We end Section 2 by
studying those T which satisfy Condition C. In particular we show
that if T is denumerable, or if T is discrete except for one
element, then it satisfies Condition C, while if T contains no
isolated points and either is non-meager satisfying the second
countability axiom or is locally compact, then T does not satisfy
Condition C,

In Section 3 we discuss Condition C in a locally convex space
setting. If CB(T) denotes the space of real-valued continuous
functions on T, endowed with the simple convergence topology, then
we show that T satisfies Condition C precisely when the bidual
Ca(T) of Cs(T) is identified with R® as a locally convex space.
We also delve into various properties of CQ(T) and C;(T), includ-

ing when they are barreled or when they are bormolegical.

We conclude the paper by collecting together some open questions.
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The present paper has grown out of our recent article [5], in
which we concentrated on the duality theory for CS(T). At the
Conference in Bordeaux we discussed [5], and our attempt to render
that taik in a somewhat more general context for these Proceedings
resulted in the present paper, The overlap between the two articles
resides primarily in the early part of Section 3 of the present
paper, where we merely outline certain of the duality properties
of CS(T). Nevertheless, it is our intention that the two papers
can be read independently, and that they should serve as companions
of one another.

Before we begin the paper proper we describe our notational
conventions. Throughout the paper T stands for a completely

regular Hausdorff space., If S and ©S' are subsets of T , then

S\S' = {tes : t¢s'} , while kg denotes the characteristic
function of S in T . We recell from [4] that T is extremally
di sconnected if every open set in T has an open closure in T ,
and. T 1is a P-space provided that countable intersections of open
gets in T are always open (and P-points are described accordingly).
As in [h], BT 1is the Stone-Cech compactification of T , while

T 1is the repletion (or the Hewitt real-compactification) of T .
We write h>0 for the strictly positive héRT, meaning that
h(t)>0 for all te€T . If neN (with N the set of positive

integers), then the nth truncating funection 9n is defined on the
reals by

{r , 1if Irlgn
Qn(r) =
nr/lr( , if |rl>n

For compact T <the space M(T) is the collection of all real-valued
bounded Radon measures on T , and the point mass at t ¢T 1is St .

If E is a locally convex space and ACE , then co bal A is
shorthand for the convex balanced hull of A , and

co bal A‘{icnfn: fné- A, 2\en\sl , 8nd me N}.

nej nef
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The collection of all real-valued continuous linear forms on E is
the dual E' of E , and we clothe E' in the dual topology, which
is the topology of uniform convergence on the bounded subsets of E

The bidual of E is E" , and by definition E" 1is the dual of R*

4

with its dual topology. If A<E , then the polar A in E' of A

is given by the formula

K

={(peE' t [@(£) 21, for all fealb.
If BCE' , then the polar BY in E of B is given by the formula
B = §£€E: [¢(£)| <1, for all ¢eBY .

Finally, in our presentation we employ "iff" for the more

cumbersome "if and only if".
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2., Analysis of Conditions A, B, and C

In order to discuss Condition A, we first recall that a set T
is measurable ("non-modéré" in French [2]) iff there exists a non-
trivial countably additive measure M on the power set of T which
assumes only the values O and 1 and such that 4 @{{D =0 for
all teT (see [4]). A cardinal is called measurable iff there
exists a measureble set T with the same cardinality. The following
theorem presents several statements equivalent to the statement that
the set T is measurable, and results in part from a discussion with
M. Haddad, to whom we would like to express our appreciation. We
note before stating Theorem 1 that certain of the statements in it

are already known to be equivalent (see Chapter 12 of [NJ).

THEOREM 1. Let T ©be a set, let Td be the set T with the dis-
crete topology, and let T, = TUftg, with ty € T. Then the fol-

lowing statements are equivalent:

a. There exists a non-discrete topology T on TO such that

TO satisfies Condition A.
b. There exists a non-discrete topology ¥ on TO such that T is
discrete for ¥ , and such that if (U )2, is any partition

of T, then n-.Un is a deleted neighborhood of to, for some m.

c. There exists a non-discrete topology 7 on TO such that T is
discrete for ¥ , and such that if (U )7, 1is any partition
of T, then Um is a deleted neighborhood of to, for some m.

d. There exists a non-discrete topology on TO which renders T

0
an extremally disconnected P-space.

e. A free ultrafilter closed under countable intersections exists
on T.
f. T is measurable.

g. -de * Tdo
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Proof. Toprove that (a)=>(b), let (Un);l":l be a partition of T,
and equip TO with the topology of (a). Define h on TO by
n, ell teU,, all neN
h(t) =

0, t =1,

By (a) there exists an fe¢ C(To) such that f>h. Since f 1is
continuous at to , we know that f<m on some neighborhood of to .
By the definition of h, ,,C)., Un is therefore a deleted neighborhood
of to , so that the topology ¥ of (a) is the topology we sought
in order to prove (b). Now assume (b) and let o% be the neigh-
borhood filter of t, in ¥. If & = {F\{tg}: Fe &}, then let
o, be an ultrafilter in T containing the filter S . Let T,
denote the topology on ‘I‘O derived from 7 by substituting the
neighborhood filter ' = iFuﬂto}: Fe 3{1} of %3 in Y for i .
Let (Un);::l be a partition of T. By (b) there is an m such
that '.L':)‘ U, ek < 97 . Since 9', is an ultrafilter, one of these
sets in (Un)§=l » say U, , is in :;7; . Thus with respect to %, we
have (c). To prove that (c¢)=>(d), let U ©be open in the non-

discrete topology on T, of (c). If toé U, then U=U. If

0
ty¢U, then {U, T~ U} is a partition of T , so that by (c)

either U or T\U is a deleted neighborhood of to « Either way
U is open in T, » whereupon T, is extremally disconnected. To
show that To' is a P-space, it suffices to show that to is a
P-point. To that end, let (Un);;l be a decreasing sequence of deleted
neighborhoods of to , each minus the point to , and let Ul =T .
Then the collection {'C\‘ U, » {Un\ Un+l} :’:ﬁ forms a partition of

T, so must by (c) contain a deleted neighborhood of to. Evidently
the only possibility is that ’/"'\‘ U, be this deleted neighborhood,
proving that to is a P-point. Next we prove that (d)=>(e). For
that we let T, be that of (d), and let :,‘% be the neighborhood
filter of t, in T, end let & = {F\{tg}: Fe}}. Then & is

a filter on T, and since T is a P-space, o is closed under
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countable intersections. Next we show that 97 is an ultrafilter.

Let SEST. Then T, = SUTN'S , so assume that toe§ . Since T

is extremally disconnected, and since S 1is open in To » We know

0

that S =S u{to} is open in T, , which means that Se k. By
construction & is free (see [W]). Thus (e) holds. We assume
next the existence on T of the ultrafilter & of (e) and we
define/u. on the power set of T Dy

1, if Se S

S) =
74 (8) {o, if S¢S

By the properties of < it is immediate that A~ is the desired
measure giving us (£f). The equivalence of (f) and (g) 1is pre-
cisely the content of Theorem 12.2 in [4]. A somewhat different
proof that (f)=>(g) goes as follows. Let s be the measure on
T @asgsociated with the measurability of T. Let he RT let peN,

’

and define Unp = {téT : (n-l)/2pé h(t) < n/2p;, for 8ll nel

(where Z denotes the collection of all integers). Then (Unp)neZ

partitions T, and by the definition of 4 we see that for each

pe N there exists an n_¢ Z such that /"(Un ) = 1. Because /. is

p pP
countably additive, 1lim h(U_ ) exists, so we define ¢ on RY by
n_p
p¥eo p
¢ (B) = lim n(U, ) , ell neRT .
p—o P
Surely ¢ 1is well-defined, and after a little computation we see

that ¢ 1s a positive linear form on RT. By Hewitt's Theorem

[7, Theorem 22], ¢ corresponds to & measure supported on & compact
subset K of de . DBecause the only compact subsets of 'I‘d are
finite, and because our original Y2 annihilates all finite subsets
of T, we know that K$T . Thus vy % T4 » Which proves (g).
FPinally we show that (g)=>(a). To do it, let toev‘l‘d\‘l‘d , and
let T, = Tu{tO} have the topology induced from vT;. If h is
defined on T, , then g = h|, 1is in C(T4) , s0 g has a contin-
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uous extension g defined on Ty . Letting 4 =8|+ \h(to” , we
observe that ?é-C(TO) and ?ﬁy(hl, completing the proof that
(g)=>(a). |}

We remark at this point that there are equivalent ways of say-
ing that T 1is measurable other than those mentioned in Theorem 13
see for instance [2]. However the ones staeted here are the ones
which play a role in the present article. The following two corol-
laries tell us definitively when there exist T satisfying Con-

dition A.

COROLLARY 2. There exists a non-discrete T satisfying Condition A

iff there exists a measurable cardinal.

Proof. If T is non-discrete and satisfies Condition A, then with
any stronger non-discrete topology it satisfies condition A. So

take any stronger non-discrete topology om T for which all but

one point of T 1is isolated. That space is the Ty of statement (a)
in Theorem 1. OSince (a)==>(f), there exists a measurable cardinal.

On the other hand, (f)=>(a) in Theorem 1 yields the converse.]

COROLLARY 3. It is consistent with the Zermelo-Fraenkel axioms to

assume that no T exists satisfying Condition A.

Proof. Corollary 2, together with Theorem 12.5 and the remarks in
12.6 of [4], yields the result.l

In contrast to Corollaries 2 and 3, it is not known (at least
to us) if it is consistent to assume that a T satisfying Condi-
tion A -- or equivalently a T of measurable cardinal -- does
exist. If we assume that such a cardinal exists, it must be huge.
Such a cardinal « must be extremely ultra-super-giant inaccessible,
and indeed there must exist « inaccessible cardinals less than « ,

by a theorem of Tarski [12]. In addition, if we assume that such

a cardinal exists, then curious phenomena occur in set theory [10].
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On the other hand, more recently J. Silver proved that if the
Zermelo-Fraenkel axioms, together with the axiom of choice and

the axiom of the existence of a measurable cardinal, are consistent,
then it is consistent to assume in addition that the generalized
continuum hypothesis holds [ll].

We turn our attention to Condition B, and begin with a prelim-

inary result.

LEMMA 4. Let A denote the ordinals less than some infinite limit

ordinal, and let toe T . Assume that there exists a collection
(UA),\s,A. of open neighborhoods of to such that
(i) II/‘Q.U) for all pre A with <},
(ii) Whenever V is a neighborhood of t, there is a x\vé-A-
such that for each )))V an meN exists for which

Then T does not satisfy Condition B .

Proof. For any non-limit ordinal )e A, let n,e N such that n, - n

is a limit ordinal (or 0), and let J\_b= %As./t_: n, = 1%. Define g by

Zi'y’u \ﬂU .

I\G-A. n=j + Mma|
If ), ) €A, with Y<)!, then U Cﬁ Uy,m » 80 We have easily that
g(t) = , for all téUA'+n and all neN . Thus g is real-

bcd
valued. Because .QUA+m is always closed in T and U, == alveys

is open, we know that g LSC(T). Let V ‘pe a neighborhood of to,
let ) s A, with »»y , and let neN . By hypothesis there exists a

t € (VAUA,+H)\(VAU),,+n+m) for some m&EN . Then g(t)>n , so
that g 1s unbounded on every such neighborhood V of to , Which

is true of no fe C(T). Thus T does not satisfy Condition B .}

THEOREM 5. If T satisfies Condition B, then T is a P-space.

Proof. Assume that toeT is not a P-point. Then there exists a
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[ d
aa . <
sequence (Un) =1 of open neighborhoods of to such that A-}Un is
not a neighborhood of to , and we can as well assume that 'ﬁ;+ISEUn

for all n . Since fﬂ U

n 18 not a neighborhood of to , it is clear
h=

that for any neighborhood V of to and any n , there exists an
m >n such that VAU 4 Vr\Umn. Thus the hypotheses of Lemma 4
are satisfied, and we can derive the desired conclusion. |

Unfortunately the converse to Theorem 5 is false. Indeed, let
T be the non-limit ordinals less than the first uncountable w,,
with w, adjoined, and clothe T in the order topology. Then T is
a P-space. It is easy to see that w, fulfills the hypotheses on
to in Lemma 4, where A = [l»“h)- Consequently T does not satis-
fy Condition B.

That Condition A implies Condition B means that if we assume
the existence of measurable cerdinals, then we know that there exist
T's which satisfy Condition B. However, without the existenceof
measurable cardinals we do not know any T which satisfy Condition B,
and evidently none exists which has but one non-isolated point (like
the TO in Theorem 1). Conceivably no such T exists without the
existence of measurable cardinals. This possibility becomes plausible
when we note that every P-space is basically disconnected (Problem 4K
of Pﬂ), whereas a non-discrete extremally diéconnected space exists
only if measurable cardinals exist (Problem 12H of [k]) —- 8 slightly
stronger result than (4)=>(f) of our Theorem 1. In other words,
to find a non-discrete space which satisfies Condition B but which
has non-measurable cardinality, one must locate a T of reasonable
cardinality which is more disconnected than basically disconnected
but which is not quite extremally disconnected. That job may not be
80 easy. Another way of looking at the situation is as follows.

If we assume that all cardinals are non-measurable, then a non-dis-
crete space T satisfies Condition B only if every pointwise bounded

family in C(T) is dominated by a continuous function but there ex-
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Domination in Analysis
ists a family (£,), 4 € €(T) such that g\tpjdf)l ¢ C(T) (see
Problem 3N in [4]).

A non-discrete compact T cannot satisfy Condition B because
a compact P-space is necessarily finite, by Problem WK of [h]
But a non-discrete replete T satisfying Condition B is not ruled

out a priori. What we know is the following result.

PROPOSITION 6., If T satisfies Condition B, then vT also satis-

fies Condition B.

Proof. Let EeLSC(T). If g=&|y , then geLSC(T), so that
by hypothesis there exists an f€C(T) with f>g . Now let

toe VINT . For each €>0 , there exists a neighborhood Ug of
to on which g > g(to) -~ £ . Thne continuous extension f of ¢

on VT gives f(tO) > g(to) . Thus f>% .1

From now on we concentrate on Condition C. Unlike the problems
confronting us in finding non-discrete T satisfying either Con-
dition A or Condition B , it is trivial to find non-discrete T
satisfying Condition c , and we can describe with no effort two
types of such T .

In the first place, if T is denumerable, with any completely
regular Hausdorff topology whatever, then T satisfies Condition C.
To see this, just let T = (tn);’:__l and let heRS . Merely define
g on T by g(t)) = max{lh(tm)lz m = l,...,n} , for each neN .
Then ge¢ LSC(T) and g>h .

For the second type, we note that there are non-discrete T of
arbitrarily large cardinality which satisfy Condition C. For if T

is any space which contains but one non-isolated element ¢ then

O ’
any he¢ RT is lower semi-continuous except possibly at to , 8O
such an h can be majorized by a suitable ge€ LSC(T).
On the other hand, if T = [0,1], then T does not satisfy

Condition C , as we saw at the outset of the paper. Because in some
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sense in any space satisfying Condition C there seem to be lower
semi-continuous functions which oscillate arbitrarily wildly, let

us make the following slightly pictorial definition (as in effect
we did in [5]).

DEFINITION 7. The space T 1is wildly oscillatory iff T satisfies

Condition ¢ (i.e., if for each he RT, there exists a ge LSC(T)

such that g >h ). If T is not wildly oscillatory, we say that
T is mildly osecillatory.

In analyzing which T are wildly (or mildly) oscillatory, we
will refer to what we call everywhere unbounded functions. We say
that he RT is everywhere unbounded iff h 1is unbounded on each
non-empty open subset of T. After & moment's reflection you will
agree that T is mildly oscillatory if on the one hand LSC(T)
contains no positive everywhere unbounded funciion while on the
other hand RT does contain an everywhere unbounded function.
(Perhaps the converse is valid too, for those T which contain
no isolated points.)

What type of T admit no positive everywhere unbounded func-
tion in LSC(T)? Recall that T is non-meager iff T is not the

countable union of closed nowhere dense subsets [8, p. 215]. Then

we can state and prove the following proposition.,

PROPOSITION 8. T is non-meager iff LSC(T) admits no positive

everywhere unbounded function.
Proof. If T is non-meager and if ge LSC(T) is positive, let

Sn = {teT : g(t) < n} , for each neN,

Then each S, 1is closed in T and an =T, Because T is
non-meager, there is an integer n such that Sn contains a non-empty
open subset. For the converse, assume that LSC(T) admits no

positive everywhere unbounded function. Let (Sn);;l be an increas-
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ing sequence of closed subsets with union T, and for each neN

let g(t) =n for all teS \S _; (where 5, =g ). Then

g€ LSC(T) and is positive, and consequently by hypothesis there
exists an meN and an open subset UCT such that g(t)<«m for
all te¢U . Thus UL ,,U:Sn « Now the regularity of T yields a
non-empty open subset V of T such that VEU and also a pg<h

such that V§_Sp |

Since all Baire spaces, and in particular all locally compact
spaces, are non-meager, Proposition 8 attests that for any such T,
the space LSC(T) contains no positive everywhere unbounded function.

If T contains no non-isolated points, then the non-existence
of an everywhere unbounded function on T is closely related to
Condition (b) of Theorem 1. In fact, T admits no everywhere
unbounded function precisely when for each partition (Un);il of
T <there exists a non-isolated te¢T and an mte-N such that s; Un
is a deleted neighborhood of t . As is evident, this latter condi-
tion is a modestly weakened version of condition (b), and is exactly
condition (b) in the event that T has exactly one non-isolated
element.

Remember that Theorem 1 and Corollary 3 tell us in effect that
it is consistent with the usual axioms of set theory to assume that
any T with one non-isolated point (and indeed any non-discrete T)
does not satisfy condition (b). Therefore, with a little of the
pollyanna in us we conjecture that it is consistent with the usual
axioms of set theory to assume that every T which contains no
isolated points admits an everywhere unbounded function. If our
conjecture happens to be true, then at least for those T without
isolated points a criterion for T +to be mildly oscillatory (or to
not satisfy Condition C) would evolve: such a space would be mildly

oscillatory if T were non-meager.
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Without a proof of the conjecture, we can in any case prove that
many T admit everywhere unbounded functions. We begin with the

following simple observation.

PROPOSITION 9. If T is separable, then T admits an everywhere

unbounded function.

Proof., If (%, ;;l is dense in T , then let h(tn) = n, for all

'néeN , and let h(t) =0 for all other te€T.}

As a result of Proposition 9, if T 1is separable and non-
meager~-like the reals--then T is mildly oscillatory. Moreover,
by using Hamel bases we can easily show that any topological vector
space T over the reals admits an everywhere unbounded function,
and moreover such a T is also mildly oscillatory.

Next we will show that each locally compact space without
isolated points admits an everywhere unbounded function. We will
utilize the notion of what might be called "homocardinality". We
say that a space T 1is homocardinal iff card U = card T for any
non-empty open U in T (where '"card" stands for "cardinality").
We are then ready to state and prove Proposition 10, the basic idea

for whose proof is due to J. Saint-Raymond.

PROPOSITION 10. Let T have no isolated points, and let S<T with

S=T. Let (TAlKJL be a pairwise disjoint collection of homo-

cardinal open subsets of T .such that

(a) UT, =1
A6 A

(b) For each AcA, there exists a base U = (U of open

.\r)re[;
subsets for T, such that card U, < card (U,;n S), for all
¥el, , and such that if card (Uyyn 8) =M,

,» then we have

card (karsS) = card U,y .

Then S (and hence T ) supports an everywhere unbounded function.
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Proof. Fix ),¢éA and let ’L(A = (UA K)nr' satisfy property (b).
o ° ‘\O

Designate by « the ordinal such that we may (and will) identify
M, W®ith the ordinals less than « . If card (U, , MNS) = N, for
©
some Yef, , then by assumption (b) we know that card U, . = W, .
] o %o °
But TA is homocardinal, so this means that card Tko =N, Con-

sequently we can define hk on T) as in Proposition 9. Hence-

forth we can therefore assume that card (U“,f\ S)> N, for each
(-4

¥¢l, , and for the moment we fix ¥, ¢ f, « Then
[+ ©
card ¥, < « = card U, < card (Uy M8
(- - >

Utilizing these inequalities, we can by transfinite induction find

a distinct sequence (tnio*. n=1 & UAJO(WS such that

tnl\c.‘o % tm&x , for all rer; such that s<y,, and all m,n<¢N,

Define h), on TA. by
n, if t = tn'\o‘fc’ for some neN and Y,e¢ I"Ao .

h),,(t) =

0, all other +t¢T, .
Ap

Since (Uao\‘ )Féfi,, comprises a base for open sets in T)O , this

means that ha is evidently unbounded on all non-empty open sub-

sets of TAor\ S (and hence on all those non-empty open subsets of
Tzo)' Pinally, utilizing the fact that the T,'s are pairwise

disjoint, we can let h ©be defined on T by

h,(t), all teT, , all AcA.
h(t) =

O, @all other +1e€T.

Then h inherits the required propertiy from the hA's, since

U (1, NS) =85="T .1}
A

The S which appears in Proposition 10 is not needed in order
to derive the following proposition, but it will appear in Example 12
and will play an essential role in Proposition 17 in Section 3.

The next result is essentially due to J. Saint-Raymond.
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PROPOSITION 11. If T 1is locally compact and contains no isolated
points, then T supports an everywhere unbounded function--and

thus T is mildly oscillatory.

Proof. PFirst, by Zorn's Lemma let (T,),., be a maximal collection
of pairwise disjoint open homocardinal subsets of T . If by chance
UT, # T , then there would exist an open VS (T\UT,) with

AeA ASA

minimal cardinality. This V would be homocardinal, contradicting
the maximality of (TA)Ae./L . Thus ‘\L‘,j_A_TA =T . Fix Ae A, and for a
pair s,teT, , let UsthA be relatively compact and open, and
such that seU,, but t¢ Ugt » To show that /2,(_)‘= (Ust)s,te T)‘
is a basis for open sets of I, , let U Dbe any non-empty open

subset of T, , let seU , and let ty€ Ty} Then 'ﬁ;to\U is

compact. Either ﬁ;t CU or else there exists an 1n such that
0

Q2T )2 (ONCAN Stn) 2 T S0,

which means that

m m
T, ~/NU =NUu, cU
8ty"" ne Bt ,Q st, = °

confirming that ’Z/,) is a base for open sets of TA « Moreover,
card U, = card T, , so that by letting S = T in Proposition 10,
we demonstirate the existence of an everywhere unbounded function
on T ., That T is therefore mildly oscillatory now follows from

Proposition 8. §

In preparation for Proposition 17,which appears later on, we
give now an example of a T which admits an everywhere unbounded

function on a special, non-trivial dense subset S .

EXAMPLE 12, ILet T = @AN\N and let S denote the collection of
all P-points of T. If we assume the continuum hypothesis, then
S 1is dense in T by Problem 6V of [h] We will show that S
admits an everywhere unbounded function. To that end, let U be
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non-empty and open in T , so that UnS 4+ ¢ . If (UNnS) < (8 )1

then let s8¢ UnS , and for all n=x2 let V,&U be a neighborhood
of s; such that s ¢V . Then V = n/:jvn is a non-empty Gy
containing 8,€ S , so V 1is a neighborhood of 8 - But VA S ={sﬁ
and 81 is not isolated, which means that S cannot be dense in T,
contradicting our previous assertion. Thus for every non-empty U

in T , we know that card (UN S)z?@‘ « ©Since N is locally compact,
the space T is compact by 6.9d of (4], so that by the proof of
Proposition 11 there exists a collection (?ALGJL of peirwise dis-
joint, homocardinal, open subsets of T such that E;Zi; =T .
Problem 6S of [4] tells us that there is a basis of open sets in T
(and hence in each T) ) of cardinality hh . Then Proposition 10

finishes the proof that there exists an everywhere unbounded function

on S.

In showing that a given T 1is wildly or mildly oscillatory,
we have had to lean heavily on the hypothesis that T contain no
isolated points. As yet we have found no method for circumventing
this hypothesis, even when T 1is locally compact and very down to
earth. For example, if T is the ordinals less than the first
uncountable «; (or less than any ) >w,), then T 1is locally compact
and is moreover eminently structured. Is T wildly oscillatory?
It seems to us that whatever be the reply, its proof cannot be

constructive, Could the answer conceivably entail a new axiom?
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3. Wildly oscillatory spaces and locally convex spaces

In this section we determine which T are wildly (or mildly)
oscillatory in the context of locally convex spaces. To begin with,
we let CS(T) denote the space C(T) with the topology of simple
convergence on the elements of T. It is the analysis in [1] of
various special locally convex space properties of CS(T) which
originally drew our attention to CS(T).

Certain characteristics of CS(T) are evident. In the first

place, CS(T) is always dense in R when R°

carries its product
topology. Moreover, CS(T) = RT iff T 4is discrete, as we men-
tioned at the outset of the article. Because the supremum of a

set of continuous functions is always lower semi-continuous (though
possibly infinite-valued), the collection (Bg)geLSC(T), g>0
forms a base for the bounded sets of CS(T), where by definition

B, = {fecs('r) : Ifl<g} .

The duality theory for C_(T) is by and large known (see [5])3
we mention a few pertinent properties of Cé(T) at this point. As
a vector space the dual Cé(T) is identified with the set of all
finite linear combinations of point masses St , te€T , and evident-

$ : :
ly (Bg)gé LSC(T), &> 0 forms a basis for neighborhoods of 0 in
Cé(T) in the dual topology, where in the identification we obtain

Bg = co bal{d /g(t) : te 1}

[5, Lemma 2]. As a result, the only subsets of Cé(T) which are
bounded in the dual topology of Cé(T) are those contained in
finite-dimensional subspaces [5, Corollary &]. An immediate conse-
quence of this is the fact that Cé(T) is always a semi-Montel
space.

Primarily because the (weak) completion of CS(T) is RT,

the bidual C;(T) of CS(T) admits the following identification:
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cn(T) = {he R': g3 |h) for some ge€ LSC(T)} .

The bidual topology on C;(T) turns out to be the topology of
simple convergence, sSince the bounded subsets of CQ(T) are con-
tained in finite dimensional subspaces. Now the form that C;(T)
takes as a vector space may remind you of our original Condition C.
The relationship will be spelled out directly in Theorem 16.

From the characterization of Cg(T), we observe that C;(T)
lies between CS(T) and RT, 80 that C;(T) is always dense in RT.
The fact that C;(T) contains all functions bounded on T plays &

decisive role in the structure of C;(T), as we begin to see in the

following lemms.

LEMMA 13, The collection (Dh)hé RT, h> 0 forms a base for the
vounded subsets of CL(T), where Dy = {k €C3(T) : [kl <h]. More-
over, if (tn)fll=l < T , then there exists a ke Dh such that

k(tn) = h(tn) , for n=1,...,m.

Proof. That the collection forms a base for the bounded sets is

trivial, since the topology on Cg(T) is the topology of simple

T m

convergence, If heR™ with h>0, and if (tn)nalgT , then

define keR' by

h(tn) » n = l’.oo’m
k(t) =
0, all other te€T

Since C'S'(T) contains all the bounded functions defined on T

we know that keé& C;(T) and hence that k& Dy . |

PROPOSITION 14 a. C(T) = (RY)' for each T .

b. C'é'(T) is a Montel space, for each T .

Proof. Part (b) follows from (a) since (RT)' is a Montel space
for all T. Consequently we only need prove (a). However, as a
vector space, Cé(T) = (RT)', and in addition, C's(T) is a semi-

Montel space, which means that C"s'(T) = (RT)' as a vector space.
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Thus we only have to make certain that c;‘(T) has the right topo-
logy. It is easy to check that sets of the form co bal{$, /n(t):teT},

where he RT

and h>0 , form a base of neighborhoods of 0 in
(RT)'. But via Lemma 13 the collection (Dg)heRT’ h> 0 forms
a2 base of neighborhoods of O in C'g('l‘). It therefore suffices

to prove that for each he RT with h>0, we have

Dg = co bal {St/h(t) : teT}' .

On the one hand, clearly Dg 2 co bal {St/h(t) : teT}. On the
other hand, if jee CY(T) but i ¢ co bal {St/h(t) : t€T} , then

= ;cn Stn /h(tn) ’

where the (c_)B and the (tn)§=l are appropriate, where S,lcnbl,

n’ n=1 n=

and where ]cn\> 0, for n=1,...,m . Now let k¢ Cg(T) be
defined by

( lcn‘/cn ) h(tn) y fOI‘ t = t Iy n= l,ooo'm

k(t) = n

0, all other t€ 7T

Then keDh while (k) = z{cn|>l « Thus /u.q‘iBg . As a result

MNs|
136 C co bal 3§, /n(t) : teT, and the proof is complete.}
h t

As an immediate consequence of Proposition 14 we have

T

COROLLARY 15. C;“(T) =R for each T .

It is apparent by virtue of Corollary 15 that although CS(T)
is reflexive only when T is discrete, on the other hand, C;"(T)
is always reflexive.

For each T , the inclusions
C4(T) € CH(T) € Ci' (D) = B

hold. In addition, CS(T) = C'S'(T) iff T is discrete. It is
therefore very natural to ask when Cg(T) = RT (which it turns out

is the same as asking when Cg(T) is reflexivet!). The answer is

54



Domination in Analysis

contained in Theorem 16, which is closely related to Theorem 9 in [5],
Before we state Theorem 16 we recall that a locally convex space for
which all weak™ compact subsets in its dual are equicontinuous is

called a strictly Mackey space (see [3]).

THEOREM 16. For an arbitrary T, the following statements are
equivalent:

T
8. C;(T) = R .

b. T is wildly oscillatory (i.e., T satisfies Condition C ).

Ce. Cé(T) is bornological.

d. Cé(T) is ultrabornological.

e. Cé(T) is infrabarreled.

f. Cé(T) is a Montel space.

£ Cé(T) is barreled.

h. Cé(T) is a strong Mackey space.

i. There exists a completely regular Hausdorff space U and &
homeomorphism ¢ ¢ C;(T}—%CS(U) which is onto and which pre-
serves either the natural order or the natural pointwise

maltiplication of both spaces.

Proof. The fact that (a)&>(b) is obvious. Assume that (b)
holds, and let Bé;Cé(T) be convex and balanced and absorb all
bounded subsets of CL(T). Then B2 co bal {§,/h(t) : teT} for

some h¢ RY with h>0 . By (b) we know that there is a strictly

positive g€ LSC(T) such that h<g , so that
. 8
B 2 co bal {St/g(t) : te T} = B .

Consequently B 1is a neighborhood of 0 in C;(T) , verifying that
Cé(T) is bornological. Thus (c¢) holds. Because the bounded
subsets of C.(T) are relatively compact in C;(T), we have
(c)$&>(d) and also (e)e=>(f}X=>(g) (see [8, p. 23@]). In eny
locally convex space, (d)==>(e) and (g)=>(h) . Now to show
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that (h)==>(a) , assume that (a) is false. Let he RT

\ oy
and let D = {0JU{n()p; = te T} . Note that D is compact
(thus automatically weak™® compect) in C;(T) since any neighborhood
of 0 in C;(T) contains all but finitely many elements of D,
However, if D were equicontinuous, then there would necessarily

be a ge LSC(T) such that g>0 and such that

$
g

But then |h|< g , which is false since h¢cg(’l‘) . Thus CL(T)

92 B0 = co bal §§,/8(t) : ten} .

is not a strong Mackey space, which completes the proof that
(h)=>(a) « That (a)=>»(i) comes from letting U be T with

the discrete topology, so that CS(U) = rU = RT. Then ¢ is merely
the identity function. Finally, to prove that (i)==>(a) , we
observe that if ¢ (g) = 1 , then <p(Dg) = B, . However, Dg is
compact in C;(T) , while B1 is compact in Cs(U) iff U 1is
discrete. Thus CS(U) is reflexive, and consequently C;(T) is
also reflexive, so by Corollary 15, we obtain Cg(T) = RT, which

proves (a) .}

Several comments are in order with respect to Theorem 16.
First of all, the equivalence of (a) and (b) fulfills our
promise to characterize in locally convex space terms those T
which are wildly oscillatory. Secondly, the ¢ of (i) need
not be linear. However, if ¢ happens to be a linear homeomorphism
onto Cs(U) » then we conjecture that ¢ need not preserve either
the order or the multiplication of the spaces entailed in order
for (i) to be equivalent to (a) .

Finally, the condition "CQ(T) is a Mackey space" is con-
spicuously absent from the array of statements in Theorem 16, and
for a very good reason. We simply do not know for what T +the
space Cé(T) is a Mackey space., Conceivably Cé(T) is a Mackey
space iff T is wildly oscillatory, but to prove it one would in
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all likelihood need a much more penetrating understanding of the
convex compact subsets of C;(T) than we now have. In fact, for
us to find even one T for which Cé(T) is not a Mackey space has

been no trivial task. We present the example as Proposition 17.

PROPOSITION 17. If 7T = pN\N and if we assume the continuun
hypothesis, then Cé(T) is not a Mackey space.

Proof. Let S ©be the set of P-points in T . By Example 12 we
know that S is dense in T, and that there exists a (positive)
hoeRT which is everywhere unbounded on S . Since T is compact,
Proposition 8 tells us that no positive gé&LSC(T) is everywhere
unbounded. Therefore, if h = hyLg on T, then h is not major-
ized by any g€ LSC(T). Now let

A= {h(t))(,{t} : teTt,

T
so that ACCY(T) , and let D = Co bal A ' . Bvidently D is

compact in RT. Using the fact that each point of S 1is & P-point
in T , we will show that DEC;(T) o With an argument similar to
one found in Exemple 11 of [6], we will first show that if keD ,
then k(t) # 0 for at most countably many t €T (which such t

of course must be in S ). In that direction, let ke RY and
assume that k(s) # 0 for uncountably many s8e€ S . For each r>0,

let

S, = {seS: h(s)sr} ’

so that .l-‘,JoSr = S . Then there necessarily exists an €>0 and
r*'>0 such that |k(t)]>¢ for uncountably many (and hence countably
many) elements of S, . Next, let peN. such that pe/2 >
and let (sm)i.-.l gsr. such that \k(sm)b ¢, for all meN .
Finally, let

V = {jeRT : JiCeg)<€/2 , m = 1,...,p},

so that V is a neighborhood of 0 in R'. Now if J€eV, then
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[(k+j)(sy)| >€/2 , for all m =1,...,P, whereupon

2 [(k+3) ()| > pe/2 >x'.

ma|
On the other hand, if j'e co bal A , then
' = ic h(t )x ’
< "n ' {tng
for appropriate (t )n 1 <T and (c, ) y Where ':z\c { <1, and
=

where without loss of generality we can assume that (% )n l-— (s )m 1

Since h(sm) £ r' for all m = l,..+yp, We have
i [it(ap)| < i|cn|r' <r' .
msy h=/

Thus (k+V)/ co bal A =g , so that kgD . Consequently if keD,
then k(t) # 0 for at most countably many t&€T . Now we can

easily prove that DECH(T) . For if keD , then T\ k~1(0) 1is
contained in some countable set (w ) > ; &S , and since S consists
entirely of elements which are P-points in T , this means that there
exists a sequence (Un);l"=l of pairwise disjoint open subsets of T

such that u, € Un , for all neN . If we let

[ ]

g =2 [ely

n={ n
then geLSC(T), while g > k| , so that keC's'(T) « This proves
that Dgcg(T) . By the definition of the Mackey topology, the
set D? is a neighborhood of O in the Mackey topology of CL(T).
On the other hand, if o? were a neighborhood of 0 in Cé(’l‘)
with its dual topology, then there would have to be a positive

g S
forcing |b| < & , which contradicts the assertion at the beginning

g€ LSC(T) such that 84 < D? . But then ngg %> poa,

of the proof that no such g can be everywhere unbounded on S .
Thus DY is not a neighborhood of 0 in Cé(T) , which means
finally that C;(T) is not a Mackey space. |

The presence of the dense set of P-points in the T of Propo-

sition 17 was critical to our argument. If there had been no dense
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subset of P-points, then such a D might not be contained in C;(T)

and therefore could not be used to show that Cé(T) is not a Mackey

space. Witness the following example, where T = [O,i] and where
S = (8, ;;l denotes the rationals in [O,l]. Let

1 for t =8, ,8ll neN

0, for all other te¢ [0,1]

2
ho(t) =

Then hO is positive and unbounded on every open subset of S and

of T. Let h=hyls, andlet A= {n(t)Yyy t€:[0,1]}. Then
A 1is relatively compact in C;([O,LJ) , while on the other hand

. gh,I
D = 30 bal A R 4]

is not contained in C;QD,H ). The reason why is that if

hm = i(l/gn) h(sn)x{sn} » for all meN ,

n=y

then (h ), € co bal A €Dgcey(o,1]), If h' = %::n h, , then
-«

h'(sn) > 2% for each neN , S0 that consequently h' is unbounded
everywhere on [0,{] and thus by Proposition 8 we know that h'
cannot be in C;([O,l]) .

The example just cited proves nothing in regard to whether or
not C1([0,1]) is a Mackey space. In fact, we do not know if
Cé([o,lj) is a Mackey spece. Of course, if Cé(T) is a Mackey
space precisely when T is wildly oscillatory, then obviously
Cé([o,l]) would have to be & non-Mackey space.

Once one has gone this far with Cs(T)’ Cé(T), and C;(T), he
quite naturally casts a further glance toward the locally convex
space structure of C;(T) o« Without effort he finds that C;(T)
is complete iff T 1is discrete, and moreover C;(T) is semi~com-
plete iff T is discrete. In addition, he readily observes that
C;(T) is metrizable iff card T £ N, , while C;(T) is separable
iff the cardinality of T 1is no greater than that of the continuum,

In a slightly different direction he discovers that C;(T) is
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barreled for each T . We prove this result now. It will be used
in the proofs of Proposition 19 and Corollary 20, which although
concerning C;(T) , nevertheless hark back to Condition A and the

ideas occurring at the beginning of this paper.

PROPOSITION 18. Cg(T) is barreled for every T .

Proof. Assume that AQCé” (T) 1is contained in no finite dimensional
11X . L] -] <

subspace of Cs (T). Then there exist (‘l’.n)n=l c T and V"n n=l & A

such that 1 e supp s, and tncf supp 4 for all n>m . Via

Lemma 1.3 of [1] we can find (by taking a suitable subsequence if

necessary) & pairwise disjoint collection (Un);:l of open subsets

of T associated with (‘tn ;_—l such that tnéUn for all neN.

Inductively let h_= a_ X , where a_ >0 1is chosen to be so
m m UIn m

oo
large that l/‘m( ihn)‘ >m . Then h = ZhnéLSC(T) and hence

Az} n=y

llécg(T). In addition
(Ao = '/‘m( ”i'hn)‘> m , for all meN.,

Consequently A is not weak® bounded in C_."(T). The weak®™ bound-
ed subsets hence are automatically equicontinuous. This just means

that C;(T) is barreled. |

The fallout from Proposition 18 includesthe following facts.
The spa{ce C;(T) is infrabarreled, is a Mackey space, and is more-
over a strongly Mackey space. You might think that under these
circumstances C;(T) should always be bornological. That this
hunch is essentially--but not eiactly—-—accurate is the content of

the following final proposition.

PROPOSITION 19. C;(T) is bornological iff T is non-measurable.

Proof. Assume that T is non-measurable. We will prove that
Cs(T) 1is bornological. Since C}(T) 1is barreled by Proposition 18,

this means that cg(T) is a Mackey space. Thus we need only show
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that any linear form ¢ on Cg(T) which is bounded on all bounded
subsets of C;(T) is continuous--which would mean that ¢ corres-

ponds to a measure of the form 4 = ia

nst , t,¢T . Now any linear
n=| n

form ¢ which is ounded on the bounded subsets of C;(T) is

bounded on D = {he RY

: |n]< 1%, so that by the Riesz-Kakutani
Theorem ¢ corresponds on the span of Dl to a /téM(PTd), where
Td denotes the set T with the discrete topolog. The correspond-
ence is given by

¢ (h) = f 'f{d/«. = /c(ﬁ), for all h bounded on T,

£la
where h is the (unique) continuous extension of h to FTd .
Now assume that there exists an infinite sequence (tn)mlger
in the support of Yl By Lemma 1.3 of [l] , there exists a subse-
quence (tnp)p=l Q@Td , and also the sequence (Up)p=l of pairwise

disjoint open subsets of @Td , such that tn & Up for all peN.
p

Without loss of generality we will assume that /-L(Up) = bp>0 , for
o>

nJ/ -~
each p . Let h = (p/bp)LUp , let h = hplT , and let h = %,hp.
Then he RY because the Up's are pairwise disjoint. Also h>0
and hpe Dh for each p . But for each pé€éN we have

@(hy) = p(R) =p,
contradicting the fact that @ is bounded on each bounded subset,

w
. . . m
inciuding Dy . Consequently s = > a, gtn , with (%), <pTy-

he

Next we assume that 1€ P’l‘d\ Tq end &, $0 . By assumption T
is non-measurable, so that Theorem 12.2 of [’-#) tells us that
vTy = Ty , and thus by Theorem 8.4 of [4] there exists an h&RT
such that the continuous extension h to vTy glves ff(tl) = o0
and h =0 on (tn)§=2 . But then I(p(&no h)h;-)-o, rendering ¢
unbounded on Dh o This contradiction proves that tnc':T for each
n. Consequently on the span of Dl the form (10 corresponds to

M= iangtn » and each t ¢T . Finally, let he C'S'(T), and for

n=|
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each neN let h =n (h - (8,°h))€CL(T). If n' =sup (b |,
néN
T

oo . .
then h'e R and (hn)nzls;Dh, . Since ¢ is bounded on Dh'

we know that

@(h - (8 °n) = ¢(h, /n)5z>0 ,

whereupon

¢ (h) = Lin ¢(6,0h) =p(h) .

Thus ¢ corresponds to 4 on all of C'é('l‘) , meaning that @e C;“(T).
This is exactly what we needed to prove in order for C;(T) to Dbe
bornological. To prove the converse, let T be measurable. Then

de # Tq by Thearem 12.2 of [H]. For tOeDTd\.Td the measure

Sto
RT (and hence on all bounded subsets of C;(T) e But 7’ is not

describes a linear form f’ bounded on all bounded subsets of

continuous on C;(T) because it does not correspond to a measure

of the form f_angt y with t €T . Thus CZ(T) is not bomo-
n=i n

logical. §

COROLLARY 20. There exists a T satisfying Condition A iff

there exists a T such that Cg(T) is not bornological.

Proof. This follows directly from Theorem 1 and Proposition 19.1

We first observe that the cardinality of T determines more
when C;(T) is bornological than does the topology on T. This
was also the case for metrisability and separability of Cg(T).
In each of these cases the fact that CZ(T) contains all the bound-
ed functions on T played a critical part.

Although the just-proved Proposition 7 of [§] effectively gives
our Proposition 19, our proof--quite independent from that in [9]-—
might shed some light on when C;(T) is ultrabornological. Never-
theless a proof of & criterion under which Cg(T) is ultrabornologi-
cal would probably involve a deeper understanding of the convex

compact subsets of CZ(T) +than we now have,
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4, Unresolved Questions

We collect here several open questions which arose during the

course of this paper.

1. Is it consistent with the usual axioms of set theory to assume
that no non-discrete T exists which satisfies Condition B ?

2. 1Is it consistent with the usual axioms of set theory to assume
that if T contains no isolated points then there exists an
everywhere unbounded function in RT ?

3. If there exists an everywhere unbounded function in LSC(T),
then is T wildly oscillatory?

4, Is there a manageable criterion in terms of T alone which
tells precisely when T is wildly oscillatory?

5. If T consists of the ordinals less than the first uncountable
w, (or for that matter, those less than w, for any «>0 ),

~is T wildly oscillatory?

6. Can the ¢ occurring in Theorem 16 be replaced by a homeomorphism
which is merely linear and onto?%

7. 1Is Cé(T) a Mackey space iff T is wildly oscillatory®? 1In
particular, is C;([O,l]) a Mackey space?

8. 1Is C;(T) ultrabornological for all non-measurable T ?
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