PUBLICATIONS DU DÉPARTEMENT DE MATHÉMATIQUES DE LYON

OLIVIER MARGUIN

Une démonstration du théorème de Riemann-Roch

Publications du Département de Mathématiques de Lyon, 1972, tome 9, fascicule 4, p. 1-10

http://www.numdam.org/item?id=PDML_1972__9_4_1_0

© Université de Lyon, 1972, tous droits réservés.

L'accès aux archives de la série « Publications du Département de mathématiques de Lyon » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

UNE DEMONSTRATION DU THEOREME DE RIEMANN-ROCH

par Olivier MARGUIN

Ce qui suit concerne le théorème de Riemann-Roch sous sa forme élémentaire et pour une courbe projective non singulière ; la démonstration "géométrique" qu'on en donne est une adaptation du raisonnement de Brill et Noether [1] qu'on peut trouver dans [2].

On utilise le langage des k-schémas [3], où k est un corps commutatif et algèbriquement clos; en particulier, on entend par courbe un k-schéma de type fini, irréductible, réduit, séparé (i.e. une k-variété), de dimension 1. Pour tout k-schéma, S, on note S l'ensemble des points fermés de S.

O. LES DONNEES DU PROBLEME.

- (0.1) Dans tout ce qui suit, X est une courbe projective et non singulière, et K est le corps k(X) des fonctions rationnelles sur X. Pour tout $x \in X_x$, on note ord $_X^X$ la fonction "ordre": $K \rightarrow Z \cup \{+\infty\}$ correspondant à l'anneau de valuation discrète $\theta_{X \setminus X}$.
- (0.2) Un diviseur (sur X) est un élément du groupe abélien libre engendré par X, Si D = $\sum_{x} n_{x} x$ est un diviseur, le degré de D est l'entier deg(D) = $\sum_{x} n_{x} x$.

A tout $z \in K^* = K - \{0\}$, on peut associer le diviseur div $(z) = \sum_{x} \operatorname{crd}_{x}^{X}(z)x$; c'est un diviseur de degré 0.

(0.3) Soient $D = \sum_{X} x$ et $D' = \sum_{X} n'x$ deux diviseurs. S'il existe $z \in K'$ tel que d-p-D' = div(z), D et D' sont dits *linéairement équivalents*; on définit ainsi une relation d'équivalence dans l'ensemble des diviseurs sur X. D'autre part, on notera D > D' la relation $n_x > n'$ pour tout $x \in X$, on définit ainsi une relation d'ordre.

- (0.4) Pour tout diviseur D, soit $\ell(D)$ la dimension du k-espace vectoriel L(D) formé de 0 et des $z \in K^{\#}$ tels que $\operatorname{div}(z) + D > 0$. Si D et D' sont deux diviseurs vérifiant D > D', on montre facilement, par récurrence sur $\operatorname{deg}(D-D')$, que L(D)/L(D') est de dimension finie $\langle \operatorname{deg}(D-D') \rangle$ sur k. Par suite, pour tout diviseur D, $\ell(D)$ est finie : on a $\ell(D) \langle \operatorname{deg}(D) + 1 \rangle$ si $\operatorname{deg}(D)$ est $\langle \operatorname{deg}(D) \rangle$ sinon (0.2).
- (0.5) Il existe un entier s tel que $\ell(d) \ge \deg(D)+1-s$ pour tout diviseur D (théorème de Riemann). Si g est le plus petit entier s ayant la propriété précédente, on a $\ell(D) = \deg(D)+1-g$ pour tout diviseur D de degré assez grand; g s'appelle le genre dde X.

Notre but est de préciser l'inégalité $\ell(D) \ge \deg(D)+1-g$ valable pour tout diviseur D. On procède en plusieurs étapes.

1. OU L'ON TROUVE UNE COURBE PROJECTIVE PLANE F BIRATIONNELLEMENT EQUIVALENTE A X.

(1.1) On notera \mathbb{A}^2 (resp. \mathbb{P}^2) le plan affine (resp. projectif) sur k. Une courbe affine plane (resp. courbe projective plane est un sous-schéma fermé de \mathbb{A}^2 (resp (resp. \mathbb{P}^2) de la forme V((f)), i.e. défini par un idéal (f) de $\mathbb{E}[X_1, X_2]$ (resp. $\mathbb{E}[X_0, X_1, X_2]$) engendré par un polynôme (resp. polynôme homogène) f de degré $\mathbb{E}[X_0, X_1, X_2]$ ce degré est par définition le degré de V((f)) (s'il est égal à 1, on parle de droite affine plane (resp. droite projective plane)).

Remarquons qu'une courbe affine plane (resp. courbe projective plane) V((f)) est irréductible et réduite, i.e. une courbe, si et seulement si f est irréductible.

(1.2) PROPOSITION. - Il existe une courbe projective plane F irréductible, réduite et birationnellement équivalente à X.

En effet, si $\{x_1\}$ est une base de transcendance séparante de K sur k, K est une extension algèbrique, séparable et de type fini de $k(x_1)$; donc il existe

 $\mathbf{x}_2 \in K$ tel que $K = k(\mathbf{x}_1, \mathbf{x}_2)$. Soit $\mathbf{f}' \in k[X_1, X_2]$ un pôlynôme irréductible tel qu'on ait la suite exacte de k-morphismes

$$0 \longrightarrow (f') \longleftrightarrow k[x_1,x_2] \stackrel{q}{\rightarrow} k[x_1,x_2] \rightarrow 0 ,$$

où σ vérifie $\sigma(X_i) = x_i$ pour i = 1, 2. En homogénéisant convenablement f', on obtient une courbe projective plane irréductible et réduite F = V((f)) telle que k(F) soit k-isomorphe à K.

(1.3) Comme X est non singulière, ce k-isomorphisme, au moyen duquel on identifiera $\mathbf{k}(F)$ et K, est induit par un morphisme surjectif, fini et birationnel $\phi: X \to F$; autrement dit, le couple (X,ϕ) est un modèle non singulier de F [4];

(1.4) On désignera par j l'immersion fermée $F \rightarrow \mathbb{P}^2$ et, pour i = 0, 1, 2, par U_i l'ouvert $\mathbb{P}^2 - V((X_i))$ et par α_i le k-morphisme surjectif $k[X_0, X_1, X_2] \rightarrow \theta_{\mathbb{P}^2}(U_i) = k[X_0/X_i, X_1/X_i, X_2/X_i]$ qui a h associe $h(X_0/X_i, X_1/X_i, X_2/X_i)$.

A toute courbe projective plane H = V((f)) on peut associer le diviseur $\operatorname{div}(H) = \sum_{\mathbf{x}} \operatorname{ord}_{\mathbf{x}}^{X}(H)\mathbf{x}$, où $\operatorname{ord}_{\mathbf{x}}^{X}(H) = \operatorname{ord}_{\mathbf{x}}^{X}(\mathbf{j}_{U_{\mathbf{i}}}^{\cancel{+}}(\alpha_{\mathbf{i}}((h)))$ avec $\mathbf{i} = 0$, 1 ou 2.

2. OU L'ON RESOUD LES SINGULARITES ESSENTIELLES DE F.

(2.1) Soit H = V((h)) une courbe affine plane contenant l'origine $\Phi = (0,0)$ de \mathbb{A}^2 . Soit h^* le composant homogène de plus bas degré de h. La multiplicité de \mathbb{R}^2 en Φ , notée $m_{\Phi}(H)$, est par définition le degré de h^* .

PROPOSITION. - Supposons que H soit irréductible et réduite.

Alors \mathbb{O} est un point non singulier de H si et seulement si $m_{\mathbb{O}}$ (H) = 1.

Soit M l'idéal maximal de l'anneau local $\theta_{H,\mathbb{C}}$. Il est clair qu'on a un isomorphisme de k-espaces vectoriels

$$V = (X_1, X_2)/(X_k, X_2)^2 + (h^*) \longrightarrow M/M^2$$
;

V est de dimension 1 sur k si et seulement si h* est de degré 1; M/M^2 est de dimension 1 sur k si et seulement si $\theta_{H,0}$ est régulier, i.e. si 0 est un point non singulier de H; d'où la proposition.

(2.2) Comme h est homogène à deux indéterminées, il s'écrit $\frac{m}{m}$ $\binom{i}{i}$, où les $\binom{i}{i}$ é $k[X_1,X_2]$ sont homogènes de degré 1 et deux à deux non proportionnels, et m, r_i sont > 1. Les droites affines planes $V(\binom{i}{i})$ sont par définition les droites tangentes à H en 0.

Supposons que H soit irréductible et réduite et que O soit un point singulier de H. Si r_i = 1 pour tout i, autrement dit s'il y a $m_0(H)$ droites distinctes tangentes à H en 0, on dit que 0 est un point singulier ordinaire de H; dans le cas contraire, 0 est dit point singulier essentiel.

- (2.3) Les définitions et propriétés précédentes s'étendent à un point fermé quelconque de H, par translation. Si $y \in \mathbb{P}^2$ et $y \notin H$, on pose $m_{v}(H) = 0$.
- (2.4) Les définitions et propriétés (2.1) à (2.3), de nature locale, s'étendent de façon évidente aux courbes projectives planes.
- (2.5) PROPOSITION. Il existe une courbe projective plane irréductible, réduite, birationnellement équivalente à F et n'ayant que des points singuliers ordinaires; en outre, cette courbe peut être choisie de degré arbitrairement grand.

Il suffit d'appliquer à F un nombre suffisant de transformations quadratiques convenables. Une transformation quadratique [2] consiste à associer à une courbe projective plane irréductible et réduite H, d'abord une courbe projective plane H' = V((h')) obtenue par un changement de coordonnées projectives, puis la courbe projective plane H'' = V((h'')), où h'' est le polynôme homogène défini par $h'_0 = X_0 - X_1 + X_2 + X_2 + X_3 + X_4 + X_5 + X_5$

démonstration, voir mon rapport de D.E.A. "introduction à la théorie des courbes algébriques", dans lequel tout ce qu'on expose ici est d'ailleurs largement détaillé).

- (2.6) D'après (2.5), on voit qu'on peut désormais supposer que F n'a que des points singuliers ordinaires et est de degré n≥4.
- 3. OU L'ON DECRIT LOCALEMENT LE MORPHISME ϕ : $X \rightarrow F$ (1.3).
- (3.1) Soit \mathbb{B}_2 la k-variété obtenue à partir de \mathbb{A}^2 par éclatement de $\mathbb{Q}[4]$. Rappelons que \mathbb{B}_2 est définie par recollement des plans affines $\mathbb{B}_2^{(i)} = \operatorname{spec}(\mathbb{K}[X_i,X_1/X_i,X_2/X_i])$, i = 1, 2, le long des ouverts $(\mathbb{B}_2^{(i)})_{X_i,X_i} = \operatorname{spec}(\mathbb{K}[X_i,X_1/X_i,X_2/X_i,X_i/X_i'])$, i, i' = 1,2, au moyen des isomorphismes déduits des applications identiques.

Soient H = V((h)) une courbe affine plane irréductible et réduite contenant 0, h^* le composant homogène de plus bas degré de h, r le degré de h^* et, pour i = 1, 2, $h_i = h/X_i^r \in k[X_i, X_1/X_i, X_2/X_i]$. La courbe $B_0(H)$ obtenue à partir de P par éclatement de P est par définition la sous-variété fermée de P définie par les idéaux P et P protons P la sous-variété fermée P P de P la sous-variété fermée P P de P la sous-variété fermée P la sous-variété fermée P P la sous-variété fermée P la sous-variété

On a un morphisme birationnel évident q : $B_0(H) \rightarrow H$.

(3.2) Supposons que la droite affine plane $V((X_1))$ ne soit pas tangente à H en \mathbb{O} (2.2); en reprenant les notations de (2.1), on peut supposer que, pour tout \mathbb{I}_{\bullet} , $\mathbb{I}_{\bullet} = X_2 - \lambda_1 X_1$, où $\lambda_1 \in \mathbb{R}$.

PROPOSITION. - Avec ces hypothèses :

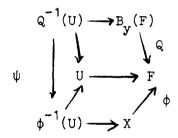
- (i) $q^{-1}(\{0\}) = \{x_1, \dots, x_m\}$, où x_i est le point fermé $(0, \lambda_i)$ du plan affine $B_2^{(1)}$;
- (ii) Dans le plan affine $\mathbb{B}_2^{(1)}$, on a $\mathbb{E}_{\mathbf{x}_i}^{(H_1)} \leqslant \mathbb{F}_i$ pour tout i.

C'est immédiat,. En particulier, d'après (2.1) :

COROLLAIRE. - Si 0 est un point singulier ordinaire (2.2) de H, les x_i sont des points non singuliers de $B_0(H)$.

(3.3) Revenons à F, et soit $y \in F_y$. Soient $B_y(F)$ la courbe obtenue à partir de F par éclatement de y et $Q: B_y(F) \to F$ le morphisme birationnel associé [4].

PROPOSITION. - Il existe un voisinage ouvert U de y dans F tel qu'on ait le diagramme commutatif de morphisme de schémas :



où les flèches horizontales sont les immersions ouvertes canoniques, et $\boldsymbol{\psi}$ est un isomorphisme.

Cela résulte du corollaire (3.2) et de la propriété d'unicité d'un modèle non singulier.

En résumé, ϕ est localement du type "éclatement".

- 4. OU L'ON UTILISE LES COURBES PROJECTIVES PLANES ADJOINTES A F.
- (4.1) Soit E le diviseur $\sum_{x} (m_{\phi(x)}(F)-1)x$; d'après (3.3) et la propriété (3.2)
- (i) de l'éclatement, E est de degré $\sum_{y \in F_{\star}} m_{y}(F)(m_{y}(F)-1)$.

Une courbe projective plane H est dite adjointe à F si div(H) > E (1.4) (0.3); pour cela, d'après (3.3) et les propriétés de l'éclatement, il faut et il suffit que $m_y(H) > m_y(F)-1$ pour tout $y \in F_x$.

(4.2) Quitte à effectuer un changement de coordonnées projectives, on supposera désormais que $v((x_2)) \cap F = \{y_1, \dots, y_n\}$, où les y_i sont tous distincts (donc des points non singuliers de F d'après le théorème de Bezout); pour $i = 1, \dots, n$, soit $x_i = \phi^{-1}(y_i)$.

Pour m > 0, soit E_m le diviseur m > 1, soit V_m le k-espace vectoriel des polynômes homogènes $h \in k[X_0, X_1, X_2]$ de degré m et tels que V((h)) soit adjointe à F.

(4.3) PROPOSITION. -

(i) On a: $\dim_{\mathbb{R}}(\mathbb{V}_{\mathbb{M}}) \ge 1/2 [(m+1)(m+2) - \sum_{\mathbf{y} \in \mathbb{F}_{\mathbf{y}}} m_{\mathbf{y}}(\mathbb{F})(m_{\mathbf{y}}(\mathbb{F})-1)]$, avec égalité si m est assez grand.

(ii) On a la suite exacte d'applications k-linéaires :

$$0 \longrightarrow A_{m-n} \xrightarrow{\beta} V_{m} \xrightarrow{\gamma} L(E_{m}) \longrightarrow 0$$

où A_m-n est le k-espace vectoriel des polynômes homogènes de degré m-n si m-n est $\geqslant 0$, $\{0\}$ sinon, β est définie par $\beta(a)$ = fa et γ est la restriction à V_m de $j_{U_2}^{\#} \circ \alpha_2$ (1.4).

On passe sous silence la démonstration (qui n'est pas facile).

(4.4) On en déduit, en appliquant le théorème de Riemann (0.5) au diviseur F_m , pour m assez grand :

COROLLAIRE. - (i) Le genre de X est donné par la formule :

$$g = 1/2 ['n-1)(n-2) - \sum_{y \in F_{*}} m_{y}(F)(m_{y}(F)-1)]$$
; par suite :
(ii) $g \le l(E_{n-3})$;
(iii) $deg(E_{n-3}) = 2g-2$.

5. ON DEMONTRE LE

(5.1) THEOREME. - Pour tout diviseur D sur X, on a :

$$\ell(D) = \deg(D) + 1 - g + \ell(E_{n-3} - D).$$

Tout repose sur le lemme suivant, qu'on est maintenant en mesure de prouver :

- (5.2) LEMME (Noether). Soient D un diviseur et $x \in X_*$. On suppose l(D)>0 et $l(E_{n-3}-D-x) \neq l(E_{n-3}-D). \ Alors \ l(D+x) = l(D).$
- (a) Quitte à effectuer une transformation quadratique (2.5), on peut supposer que $\phi(x)$ est un point non singulier de F. D'autre part, quitte à remplacer D par un diviseur linéairement équivalent (0.3), on peut supposer que D est > 0.
- b) Soit $t \in L(E_{n-3}-D)$ tel que $t \notin L(E_{n-3}-D-x)$. D'après (4.3) (ii), il y a une courbe projective plane H = V((h)) de degré n-3, adjointe à F et telle que $t = j_{U_2}^\#(\alpha_2(h))$; on a div(H) = D+E+A, où A est diviseur > 0 tel que A $\not\rightarrow x$.
- c) Soit L = V((1)) une droite projective plane telle que $L \cap F = \{\phi(x), z_2, \ldots, z_n\}$, où les $z_i \in F$ sont deux à deux distincts et distincts de $\phi(x)$, donc des points non singuliers de F d'après le théorème de Bezout (quitte à effectuer une transformation quadratique, on peut supposer qu'il y a une infinité de telles droites). Soit LH la courbe projective plane V((1h)). On a div(LH) = D+x+E+A+B, où B est le diviseur $\sum_{i=2}^{n} \phi^{-1}(z_i)$.
- d) Soient $z \in L(D+x)$ et D' = div(z)+D. Il suffit de montrer que $z \in L(D)$, i.e. D' > 0.

D+x et D'+x sont > 0 et linéairement équivalents : soient P=V((p)) et F' = V((p')) deux courbes projectives planes de même degré et telles que D+div D+div(P) = D'+div(P') ; soit LHP la courbe projective plane V((1hp)) ; on a div(LHP) - div(P') > E, ce qui prouve, compte tenu de (3.3) et des propriétés de $1'\text{éclatement, que pour tout } y \in F \cap P' \text{ et tout } i = 0; \text{ 1 ou 2 tel que } y \in U_i, \text{ on a }$ $\alpha_i(1hp) \in (\alpha_i(f), \alpha_i(p')) \cdot \theta_{U_i, y} \text{ ; par homogénéisation, on en déduit que } 1hp=f'f+g'p',$ où $f', g' \in k[X_0, X_1, X_2] \text{ sont homogènes et } g' \text{ est de degré } n-2. \text{ Alors, en posant}$ $G'=V((g')), \text{ on a div}(G')=D'+x+E+A+B \text{ ; d'après le théorème de Bezout, on a } L \subset G',$ $\text{donc } \phi(x) \in G', \text{ d'où } D'+x > x, \text{ i.e. } D'>0; \text{ q.e.d.}$

- (5.3) Pour tout diviseur D, posons s(D) = $deg(D)+1-g+l(E_{n-3}-D)$. On démontre (5.1) par récurrence sur $l(E_{n-3}-D)$.
- a) Soit D un diviseur tel que $\ell(E_{n-3}-D)=0$. Montrons que $\ell(D)=s(D)$. Comme $g\leqslant \ell(E_{n-3})\leqslant \ell(E_{n-3}-D)+\deg(D)$ (4.4)(ii), (0.4), on a $g\leqslant \deg(D)$; donc (0.5) $\ell(D)\geqslant \deg(D)+1-g\geqslant 1$; soit $x\in X_*$ tel que $\ell(D-x)=\ell(D)-1>0$ 'il y en a une infinité); d'après (5.2), $\ell(E_{n-3}-D)=\ell(E_{n-3}-D+x)=0$, et on est ramené à prouver que $\ell(D-x)=s(D-x)$, d'où le résultat par récurrence.
- b) Supposons que $\ell(D') = s(D')$ pour tout diviseur D' tel que $\ell(E_{n-3}^{-D'}) = r \ge 0$, et soit D un diviseur tel que $\ell(E_{n-3}^{-D}) = r+1$. Soit $x \in X_*$ tel que $\ell(E_{n-3}^{-D}) = r+1$. Soit $x \in X_*$ tel que $\ell(E_{n-3}^{-D}) = r+1$. Soit $\ell(D) = r+1$

6. OU L'ON INTERPRETE E_{n-3} .

- (6.1) Soit Ω le K-espace vectoriel des k-différentielles de K et d : K + Ω la dérivation canonique. Si $x \in X_*$ et u est une uniformisante dans $\theta_{X,x'}$ du est une base de Ω sur K ; tout $\omega \in \Omega$ s'écrit z du, où z \in K ; l'entier $\operatorname{ord}_X^X(z)$, qui ne dépend que de ω , s'appelle l'ordre de ω en x et se note $\operatorname{ord}_Y^X(\omega)$.
- (6.2) Quitte à effectuer un changement de coordonnées projectives, on peut supposer que le point de coordonnées homogènes (1,0,0) & F et qu'aucune droite projective plane tangente à F en un point singulier (2.2) ne passe par (1,0,0).

PROPOSITION. - Avec ces hypothèses, on a :

$$\mathbf{E}_{\mathbf{n}-\mathbf{3}} = \mathbf{\Sigma}(\mathrm{ord}_{\mathbf{x}}^{\mathbf{X}}(\mathbf{d}(\mathbf{j}_{\mathbf{U}_{2}}^{\mathbf{\#}}(\mathbf{X}_{0}/\mathbf{X}_{2}))) - \mathrm{ord}_{\mathbf{x}}^{\mathbf{X}}(\mathbf{j}_{\mathbf{U}_{2}}^{\mathbf{\#}}(\alpha_{2}(\mathbf{\partial f}/\mathbf{\partial X}_{1}))))\mathbf{x}.$$

C'est encore une conséquence de (3.3) et des propriétés de l'éclatement.

- (6.3) En particulier, la famille $(\operatorname{ord}_{\mathbf{X}}^{\mathbf{X}}(\operatorname{d}(\mathbf{j}_{\mathbf{U}_{2}}^{\mathbf{Y}}(\mathbf{X}_{0}/\mathbf{X}_{2}))))_{\mathbf{X}\in\mathbf{X}_{\mathbf{X}}}$ est à support fini, et il en est donc de même pour $(\operatorname{ord}_{\mathbf{X}}^{\mathbf{X}}(\omega))_{\mathbf{X}\in\mathbf{X}_{\mathbf{X}}}$ quel que soit $\omega\in\Omega$, $\omega\neq0$ (6.1); à tout $\omega\in\Omega$ non nul, on peut donc associer le diviseur $\operatorname{div}(\omega)=\sum_{\mathbf{X}}\operatorname{ord}_{\mathbf{X}}^{\mathbf{X}}(\omega)\mathbf{X}$, et on obtient ainsi les diviseurs canoniques, qui forment une classe d'équivalence pour la relation d'équivalence linéaire.
- (6.4) D'après (6.2), E_{n-3} est linéairement équivalent à $\operatorname{div}(\operatorname{d}(j_{U_2}^{\sharp}(X_0/X_2)))$, donc canonique. Par conséquent, on peut remplacer dans (5.1) E_{n-3} par un diviseur canonique quelconque. En définitive, on a démontré le

THEOREME (Riemann-Roch). - Soit W un diviseur canonique sur X. Pour tout diviseur D sur X, on a l(D) = deg(D)+1-g+l(W-D).

Remarque. Soit D un divisœur. Soit $\delta(D)$ la dimension du k-espace vectoriel $\Omega(D)$ formé de O et des $\omega \in \Omega$ non nuls tels que $\operatorname{div}(\omega) > D$ ($\omega \in \Omega(O)$ est dit différentielle de première espèce); Si $\omega \in \Omega$, $\omega \neq 0$ et W = $\operatorname{div}(\omega)$, l'application $z \mapsto z\omega$ est un isomorphisme de L(W-D) sur $\Omega(D)$; donc $\ell(W-D) = \delta(D)$; en particulier $g = \delta(O)$.

BIBLIOGRAPHIE.

- [1] A. BRILL und M. NOETHER, *Ueber algebraische funktionen*, Math. Ann. t. VII, p. 269-310, 1874.
- [2] W. FULTON, Algebraic curves, Benjamin, 1969.
- [3] A. GROTHENDIECK et J.A. DIEUDONNE, Eléments de géométrie algèbrique, Springer-Verlag, Berlin, 1971.
- $m{m{\mu}}$ D. MUMFORD, Introduction to algebraic geometry, Harvard notes, 1967.