Nouvelles annales de mathématiques

MARCEL DUBOIS

Concours général de 1902. Solution du problème de mathématiques spéciales

Nouvelles annales de mathématiques 4^e *série*, tome 2 (1902), p. 501-510

http://www.numdam.org/item?id=NAM_1902_4_2_501_1

© Nouvelles annales de mathématiques, 1902, tous droits réservés.

L'accès aux archives de la revue « Nouvelles annales de mathématiques » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

CONCOURS GÉNÉRAL DE 1902. SOLUTION DU PROBLÈME DE MATHÉMATIQUES SPÉCIALES;

PAR M. MARCEL DUBOIS, Élève de Mathématiques spéciales au lycée Carnot.

Soient (Γ) et (Γ_4) les traces d'un ellipsoïde (E) et de son cône asymptote (E_4) sur le plan (T) qui passe par les extrémités A, B, C de trois diamètres conjugués ωA , ωB , ωC de cet ellipsoïde.

- 1° On sait que ces traces sont des coniques homothétiques et concentriques; démontrer que le rapport de similitude ne change pas quand on fait varier soit les trois diamètres conjugués ωA, ωB, ωC, soit l'ellipsoïde (E).
- 2° Cela étant, on donne trois points A, B, C non en ligne droite et l'on considère tous les ellipsoïdes (E) dont les points A, B, C sont les extrémités de trois diamètres conjugués.

Démontrer que tous ces ellipsoïdes (E) et leurs cônes asymptotes (E_4) sont coupés suivant des coniques fixes (Γ) et (Γ_4) .

3° On prend pour axes de coordonnées les axes de symétrie Ox, Oy de (Γ) et la perpendiculaire Oz à (Γ) .

Trouver l'équation de celui des ellipsoïdes (E) qui a pour centre un point ω de coordonnées x_1, y_1, z_1 .

4° Soient P, Q, R les traces sur (T) des axes de symétrie de cet ellipsoïde (E), ay ant pour centre ω . Montrer que PQR est conjugué par rapport à (Γ_4) . Déterminer le cercle (C_4) conjugué au même triangle PQR.

5° Montrer que P, Q, R peuvent être obtenus par l'intersection d'un cercle (C_2) et d'une hyperbole équilatère (H) ayant ses asymptotes parallèles aux axes de symétrie de (Γ_1) .

Le cercle (C_2) coupe l'hyperbole (H) en un quatrième point S que l'on construira. Déterminer les puissances par rapport à (C_2) de l'origine O des coordonnées et du point de rencontre des hauteurs du triangle PQR. Construire (C_2) .

- 6° Examiner le cas particulier où (Γ) est un cercle.
- 1. Prenons ωA , ωB , ωC comme axes des x, y, z et soient a, b, c les longueurs respectives de ces trois segments.

Pour abréger, nous substituerons aux coordonnées courantes les coordonnées

$$X = \frac{x}{a}, \qquad Y = \frac{y}{b}, \qquad Z = \frac{z}{c}.$$

(E) a pour équation

$$X^2 + Y^2 + Z^2 - 1 = 0$$
:

(E,) a pour équation

$$X^2 + Y^2 + Z^2 = 0$$
:

(T) a pour équation

$$X + Y + Z - 1 = 0.$$

Le centre O des moyennes distances des trois points A, B et C a pour coordonnées

$$X' = Y' = Z' = \frac{1}{3}$$

Transportons les axes parallèlement à eux-mêmes en O.

L'équation de (E) devient

$$\left(X + \frac{1}{3}\right)^2 + \left(Y + \frac{1}{3}\right)^2 + \left(Z + \frac{1}{3}\right)^2 - 1 = 0;$$

l'équation de (E1) devient

$$\left(X + \frac{1}{3}\right)^2 + \left(Y + \frac{1}{3}\right)^2 + \left(Z + \frac{1}{3}\right)^2 = o;$$

l'équation de (T) devient

$$X + Y + Z = 0$$
.

En tenant compte de la troisième équation dans chacune des deux premières, on voit que (Γ) et (Γ_i) peuvent être définies comme sections par (T) des deux quadriques dont les équations sont

$$X^2 + Y^2 + Z^2 - \frac{2}{3} = o \qquad \text{et} \qquad X^2 + Y^2 + Z^2 + \frac{1}{3} = o,$$

quadriques homothétiques et concentriques, le centre commun étant O et le rapport de similitude $i\sqrt{2}$.

 (Γ) et (Γ_1) sont elles-mêmes homothétiques et concentriques. Leur centre commun est le centre de gra-

vité O du triangle ABC et le rapport de similitude est constant et égal à $i\sqrt{2}$.

II. Si l'on se donne A, B et C non en ligne droite, (Γ) est déterminé par son centre et trois de ses points. (Γ_1) s'en déduit par homothétie, le centre et le rapport d'homothétie étant connus.

Si l'on se donne en outre le centre ω de l'ellipsoïde (E), celui-ci est complètement déterminé par son cône asymptote (E₁) et un point quelconque de (Γ), (E₁) étant défini par son sommet ω et sa base (Γ ₁). (E) ne dépend donc que de (Γ) et ω : les sommets d'un triangle quelconque inscrit à (Γ) et dont le centre de gravité est en O sont les extrémités de trois diamètres conjugués de (E).

III. Supposons (Γ) donné par ses axes de longueurs 2α et 2β . L'équation de (Γ) dans le plan (T), rapportée au système d'axes stipulé dans l'énoncé, est

$$\frac{x^2}{\alpha^2} + \frac{\mathcal{I}^2}{\beta^2} - 1 = 0;$$

on en déduit celle de (Γ₁)

$$\frac{\mathcal{I}^2}{\alpha^2} + \frac{\mathcal{I}^2}{\beta^2} + \frac{\mathfrak{I}}{2} = 0.$$

On obtiendrait facilement l'équation de (E1):

$$\frac{(xz_1-zx_1)^2}{\alpha^2}+\frac{(yz_1-zy_1)^2}{\beta^2}+\frac{(z-z_1)^2}{2}=0.$$

Celle de (E), qui n'en diffère que par un terme constant que l'on détermine immédiatement, est :

$$\frac{-zz_1-zx_1)^2}{\alpha^2}+\frac{(yz_1-zy_1)^2}{\beta^2}+\frac{(z-z_1)^2}{2}-\frac{3z_1^2}{2}=0.$$

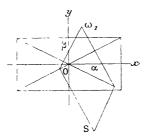
- IV. Le trièdre des axes de (E) etant un système de trois diamètres conjugués est conjugué au cône asymptote (E_t) ; étant trirectangle, il est conjugué au cône isotrope de même sommet ω . C'est donc le trièdre conjugué commun à ces deux cônes. (T) le coupe suivant le triangle PQR conjugué commun aux sections (Γ_t) et (C_t) des deux cônes. (C_t) est le cercle de centre ω_t , projection de ω sur (T), et de rayon $i.\overline{\omega}\omega_t=iz_t$.
- V. Les diamètres conjugués d'une même direction dans (Γ_4) et (C_4) , c'est-à-dire les polaires par rapport à ces coniques d'un même point à l'infini du plan (T), décrivent deux faisceaux homographiques dont les sommets sont les centres O et ω_4 de (Γ_4) et (C_4) ; leur point de rencontre décrit une conique (H) passant par O et ω_4 .

Si la direction devient celle d'un des côtés du triangle conjugué commun à (Γ_1) et (C_1) , le point correspondant de (H) est évidemment le sommet opposé. (H) est donc circonscrit à PQR.

Soit M un des points de rencontre de (H) avec (Γ_4) . La direction de la tangente en M à (Γ_4) est la direction conjuguée de OM dans (Γ_4) ; par suite du mode de génération de (H) elle est aussi conjuguée de ω_4 M dans (C_4) , c'est-à-dire qu'elle lui est perpendiculaire. ω_4 M est donc normale à (Γ_4) . (H) passant par O et les pieds des normales de ω_4 sur (Γ_4) coïncide avec l'hyperbole d'Apollonius de ω_4 par rapport à (Γ_4) .

Le centre de (H), circonscrite à PQR, est sur le cercle des neuf points de ce triangle, cercle qui passe par le milieu des segments des hauteurs compris entre leur point de rencontre ω_1 et chaque sommet. L'homothétique dans le rapport 2, le centre d'homothétie étant ω_1 , est le cercle (C_2) circonscrit à PQR. Le point symétrique de ω_1 par rapport au centre de (H) est donc le quatrième point commun S à (C_2) et à (H).

La construction de S se déduit de celle du centre de l'hyperbole d'Apollonius (H). De ω, abaissons sur chacun des diamètres conjugués égaux de l'ellipse une per-



pendiculaire que nous prolongeons jusqu'à son point de rencontre avec l'autre diamètre. Le quatrième sommet du parallélogramme ainsi commencé sera S.

 (C_2) est circonscrit au triangle conjugué commun à (Γ_1) et (C_1) . Étant harmoniquément circonscrit à ces deux coniques, il est orthogonal à leurs cercles de Monge, c'est-à-dire que les carrés des puissances de O et ω_1 par rapport à (C_2) sont

$$-\frac{\alpha^2+\beta^2}{2} \quad \text{et} \quad -2z_1^2.$$

On en déduit les seconds points de rencontre de (C_2) avec OS et $\omega_1 S$, soient S' et S'', et (C_2) est déterminé par trois points : S, S', S''.

VI. ω ABC étant un système de trois diamètres conjugués de (E) est un trièdre conjugué à (E₄). Le triangle ABC est donc conjugué à (Γ_4). Si (Γ) est un cercle, (Γ_4) est un cercle concentrique et ABC inscrit au premier et conjugué au second est évidemment

équilatéral. Tous les triangles équilatéraux inscrits dans (Γ) ont pour sommets les extrémités de trois diamètres conjugués de (E).

L'un des sommets du triangle PQR conjugué commun aux deux cercles (Γ_i) et (C_i) est à l'infini sur leur axe radical. Les deux autres sont les points doubles de l'involution déterminée par ces deux cercles sur la ligne des centres. On construit facilement ces points doubles réels en définissant l'involution par deux cercles réels rencontrant $O\omega_i$ aux mèmes points imaginaires que (Γ_i) et (C_i) .

(H) et (C_2) se réduisent tous deux à $O\omega_1$ et la droite de l'infini de (T).

Nous pouvons reprendre par le calcul les parties traitées geométriquement :

IV. Soient x', y', o et x'', y'', o les coordonnées de Q et R. L'équation du plan diamétral conjugué, dans E, de la direction ωQ est

$$\begin{split} &(x'-x_1)\,\frac{z_1(xz_1-z\,x_1)}{\alpha^2}+(y'-y_1)\frac{z_1(y\,z_1-z\,y_1)}{\beta^2}\\ &-z_1\bigg(\!-\frac{x_1(xz_1-z\,x_1)}{\sigma^2}-\frac{y_1(y\,z_1-z\,y_1)}{\beta^2}+\frac{z-z_1}{2}\bigg)=\mathbf{0}. \end{split}$$

R y étant contenu on a

$$z_1^2\left(\frac{x'x''}{\alpha^2}+\frac{y'y''}{\beta^2}-\frac{1}{p}\right)=0.$$

Comme nous supposons $z_i \neq 0$, ceci exprime que Q et R sont conjugués par rapport à (Γ_i) . On démontrerait qu'il en est de même de R et P et de P et Q.

ωQ et ωR étant rectangulaires, on a

$$(x-x_1)(x''-x_1)+(y'-y_1)(y''-y_1)+z_1^2=0$$

ce qui exprime que Q et R sont conjugués par rapport

au cercle (C1), dont l'équation est

$$(x-x_1)^2+(y-y_1)^2+z_1^2=0.$$

On démontrerait qu'il en est de même de R et P, P et Q.

V. On obtient les coordonnées x, y, o des traces sur (T) des axes de (E) en exprimant que la direction d'un axe est perpendiculaire au plan diamétral conjugué: $\varphi(x, y, z)$ désignant l'ensemble des termes du second degré de E, on doit avoir

$$\frac{\varphi_{1-x_{1}}'}{x-x_{1}} - \frac{\varphi_{1-x_{1}}'}{y-y_{1}} = \frac{\varphi_{-x_{1}}'}{-z_{1}},$$

c'est-à-dire

$$\frac{\frac{xz_1^2}{\alpha^2}}{x-x_1} = \frac{\frac{yz_1^2}{\beta^2}}{y-y_1} = \frac{-\frac{x_1xz_1}{\alpha^2} - \frac{y_1yz_1}{\beta^2} - \frac{z_1}{2}}{-z_1},$$

équations qui peuvent être remplacées par le système des équations (1) et (2)

(1)
$$\frac{\frac{x}{x^2}}{x - x_1} = \frac{\frac{y}{\beta^2}}{y - y_1},$$

$$(2) \qquad \frac{z_1^2 \left(\frac{r}{x_1} - \frac{\mathcal{Y}}{\mathcal{Y}_1}\right)}{\left(\frac{x}{x_1} - 1\right) \alpha^2 - \left(\frac{\mathcal{Y}}{\mathcal{Y}_1} - 1\right) \beta^2} = \frac{x x_1}{\alpha^2} + \frac{\mathcal{Y}_1 \mathcal{Y}_1}{\beta^2} + \frac{1}{2},$$

en supposant $z_1 \neq o$.

Nous introduisons d'ailleurs une solution étrangère définie par (3) et (4):

$$\frac{x}{x_1} + \frac{y}{y_1} = 0,$$

$$\frac{x-x_1}{\frac{x_1}{\alpha_2}} + \frac{y-y_1}{\frac{y'_1}{\beta^2}} = 0.$$

En développant l'équation (2) on a

(5)
$$\begin{cases} x^{2} + y^{2} + xy \left(\frac{\alpha^{2} y_{1}}{\beta^{2} x_{1}} + \frac{\beta^{2} x_{1}}{\alpha^{2} y_{1}} \right) \\ - (\alpha^{2} + \beta^{2}) \left(\frac{xx_{1}}{\alpha^{2}} + \frac{yy_{1}}{\beta^{2}} \right) \\ + \frac{1}{2} \left(\alpha^{2} \frac{x}{x_{1}} + \beta^{2} \frac{y}{y_{1}} \right) \\ - z_{1}^{2} \left(\frac{x}{x_{1}} + \frac{y}{y_{1}} \right) - \frac{\alpha^{2} + \beta^{2}}{2} = 0. \end{cases}$$

En supposant $\alpha^2 - \beta^2 \neq 0$, de (1), on tire

$$xy = \frac{\alpha^2 x_1 y - \beta^2 y_1 x}{\alpha^2 - \beta^2},$$

et, en portant dans (5), on a l'équation d'un cercle (C2)

$$\begin{split} x^2 + y^2 + \frac{\alpha^2 x y_1 - \beta^2 y_1 x}{\alpha^2 - \beta^2} \left(\frac{\alpha^2 y_1}{\beta^2 x_1} + \frac{\beta^2 x_1}{\alpha^2 y_1} \right) \\ - (\alpha^2 + \beta^2) \left(\frac{x x_1}{\alpha^2} + \frac{y_1 y_1}{\beta^2} \right) \\ + \frac{1}{2} \left(\frac{\alpha^2 x}{x_1} + \frac{\beta^2 y}{y_1} \right) - z_1^2 \left(\frac{x}{x_1} + \frac{y}{y_1} \right) - \frac{\alpha^2 + \beta^2}{2} = 0. \end{split}$$

- (1) est l'équation de l'hyperbole (H) d'Apollonius par rapport à (Γ) du point de coordonnées x_i , y_i , o, centre de (C_i), par conséquent point de rencontre ω_i des hauteurs du triangle PQR.
- (H) et (C_2) se coupent en P, Q, R et un quatrième point S correspondant à la solution étrangère désinie par (3) et (4). On vérisse immédiatement que S est symétrique de ω_i par rapport au centre de (H) et l'on en déduit la construction déjà donnée pour le point S.

Il suffit de substituer aux coordonnées courantes celles de O et ω, dans l'équation de (C₂) pour constater que les puissances de ces points par rapport à (C₂) ont

pour carrés

$$-\frac{\alpha^2+\beta^2}{2}$$
 et $-2z_1^2$.

VI. Comme pour PQR, nous montrerions que ABC est conjugué à (Γ_4) . Si (Γ) est un cercle $\alpha = \beta = \rho$. Soient x', y', o et x'', y'', o les coordonnées de B et C. On a, puisque B et C sont sur (Γ) ,

$$x'^2 + y'^2 = x''^2 + y''^2 = \rho^2$$

et, puisqu'ils sont conjugués par rapport à (Γ₄),

$$2x'x'' + 2y'y'' - 9^2 = 0.$$

En portant dans l'expression de \overline{BC}^2 on trouve pour \overline{BC} la valeur $\rho \sqrt{3}$, évidemment la même pour \overline{CA} et \overline{AB} ; ABC est équilatéral.

Comme $\alpha^2 - \beta^2 = 0$, les équations de (C_2) et (H) qui se réduisent toutes deux à celle de $O\omega_4$ ne peuvent plus définir PQR.

P et Q sont définis par (1) et (5) et sont donc sur $O\omega_1$.

R est passé à l'infini.

S est à l'infini sur la droite $\frac{x}{x_1} + \frac{y}{y_1} = 0$.