Nouvelles annales de mathématiques

Questions

Nouvelles annales de mathématiques 3^e série, tome 19 (1900), p. 239-240

http://www.numdam.org/item?id=NAM 1900 3 19 239 1>

© Nouvelles annales de mathématiques, 1900, tous droits réservés.

L'accès aux archives de la revue « Nouvelles annales de mathématiques » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

QUESTIONS. 1850. Soient, dans la circonférence circonscrite au triangle ABC, α, β, γ les points diamétralement opposés aux sommets A, B, C:

 $\beta \gamma$ coupe AC et AB en l et l'; $\alpha \gamma$ coupe BA et BC en m et m'; $\alpha \beta$ coupe CB et GA en n et n'.

On mène lO_1 , mO_1 , nO_1 respectivement perpendiculaires à CO, AO, BO, de même l_1O_2 , m_1O_2 , n_1O_2 respectivement perpendiculaires à BO, CO, AO.

Démontrer que :

1° Les trois droites lO_1 , mO_1 , nO_1 se coupent en un même point O_1 ;

 2^{o} Les trois droites l_1O_2 , m_1O_2 , n_1O_2 se coupent en un même point O_2 ;

3º Les trois points O1, O, O2 sont en ligne droite et

$$00_1 = 00_2$$
;

4° La droite O₁O₂ est parallèle à la droite de Brocard du triangle ABG. (A. Droz-FARNY.)

1851. Soient ABC un triangle et Σ une conique circonscrite donnés.

Les bissectrices intérieure et extérieure de l'angle A rencontrent, pour la seconde fois, Σ en α et α' . Les cordes $\alpha\alpha'$, $\beta\beta'$, $\gamma\gamma'$ se coupent en un même point P.

Si la conique Σ passe par un quatrième point fixe D, quel sera le lieu de P pour toutes les coniques du faisceau ABCD?

(A. Droz-Farny.)