Nouvelles annales de mathématiques

Solutions de questions proposées

Nouvelles annales de mathématiques 3^e série, tome 15 (1896), p. 576-582

http://www.numdam.org/item?id=NAM 1896 3 15 576 1>

© Nouvelles annales de mathématiques, 1896, tous droits réservés.

L'accès aux archives de la revue « Nouvelles annales de mathématiques » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

SOLUTIONS DE QUESTIONS PROPOSÉES.

Question 1706.

(1896, p. 55).

Par chaque point M d'une ellipse, on mène deux droites qui rencontrent le grand axe sous l'angle d'anomalie excentrique relatif au poin? M.

Chacune de ces droites enveloppe une hypocycloïde à quatre rebroussements. (E.-N. Barisien).

SOLUTION

Par M. AUDIBERT.

Soient t l'angle d'anomalie relatif à M, α et b les demi-axes de l'ellipse. Les deux droites menées de M

$$y\cos t - x\sin t + (a - b)\sin t\cos t = 0,$$

$$y\cos t + x\sin t - (a + b)\sin t\cos t = 0$$

déterminent, par leur rencontre avec les axes quand M se déplace, des segments de longueurs constantes a-b et a+b.

On sait que les courbes qu'elles enveloppent sont représentées par les équations

$$x^{\frac{2}{3}} + y^{\frac{2}{3}} = (a - b)^{\frac{2}{3}}$$
 ou $(a + b)^{\frac{2}{3}}$,

qui représentent aussi deux hypocycloïdes à quatre rebroussements, tracées à l'intérieur des cercles fixes de rayons a-b et a+b.

Question 1709.

(1896, p. 56.)

On donne sur un plan les circonférences de cercles C₁, C₂. C₃. On trace une circonférence O tangente à G₁ et C₂. On demande:

1° Quelle est l'enveloppe de l'axe radical de C_3 et de O, lorsque cette dernière courbe varie en restant tangente à C_1 et C_2 ?

2° Quel est le lieu du point de rencontre de cet axe radical et de la droite qui joint les points de contact de O avec C_1 et C_2 ? (Mannheim.)

SOLUTION

Par M. E.-N. BARISIEN.

Cette question, traitée directement, ne serait pas aisée à résoudre. En s'appuyant sur des propriétés connues, elle devient facile.

On sait, en effet, que le lieu des centres des circonférences O tangentes à deux circonférences fixes C_1 et C_2 se compose de deux coniques ayant pour foyers les centres de C_1 et C_2 .

Quand les cercles C_1 et C_2 sont intérieurs l'un à l'autre, les coniques sont des ellipses; lorsque les cercles C_1 et C_2 sont extérieurs l'un à l'autre, les coniques sont des hyperboles.

Nous allons donc envisager successivement ces deux cas.

I. - Les cercles C₁ et C₂ sont intérieurs l'un à l'autre.

Admettons que le cercle C_2 soit à l'intérieur du cercle C_1 . Soient R_1 , R_2 , R_3 les rayons des trois cercles C_1 , C_2 , C_3 ; ρ le rayon du cercle O.

Le cercle O peut être placé de telle sorte que

Alors $\overline{OC_1} = R_1 - \rho, \qquad \overline{OC_2} = R_2 + \rho.$ $\overline{OC_1} + \overline{OC_2} = R_1 + R_2.$

Le cercle O peut être situé de telle façon que

Alors $\overline{OC_1} = R_1 + \rho, \qquad \overline{OC_2} = \rho - R_2.$ $\overline{OC_1} + \overline{OC_2} = R_1 - R_2.$

Le point O, centre du cercle O, décrit donc deux ellipses ayant leurs foyers en C_1 et C_2 et dont les grands axes respectifs sont $R_1 + R_2$ et $R_1 - R_2$.

Supposons donc d'abord que le centre O parcoure l'ellipse de grand axe $(R_1 + R_2)$.

Prenons des axes rectangulaires, l'axe des x_1 étant la ligne des centres de C_1 et C_2 , et l'origine des coordonnées étant au milieu de C_1 C_2 .

Désignons par 2c la distance des centres C_1 , C_2 . Les axes 2a et 2b de l'ellipse en question ont pour expressions

(1)
$$2a = R_1 + R_2, \quad 4b^2 = (R_1 + R_2)^2 - 4c^2.$$

Soient (x_1, y_1) les coordonnées de O. Alors

$$(2) b^2 x_1^2 + a^2 y_1^2 = a^2 b^2.$$

On a donc

(3)
$$\overline{\mathrm{OC}_1} = a - \frac{cx_1}{a}, \quad \overline{\mathrm{OC}_2} = a - \frac{cx_1}{a},$$

et comme $\overline{OC_1} = R_1 - \rho$, il en résulte

$$R_1 - \rho = a + \frac{cx_1}{a}$$

ou

(4)
$$\rho = R_1 - a - \frac{cx_1}{a} = \frac{R_1 - R_2}{2} - \frac{cx_1}{a}.$$

L'équation du cercle O est donc

$$(x-x_1)^2+(y-y_1)^2=\left(\frac{R_1-R_2}{2}-\frac{cx_1}{a}\right)^2$$

Cette équation développée devient, en tenant compte des relations (2) et (1),

(5)
$$x^2 + y^2 - 2xx_1 - 2yy_1 + R_1R_2 - c^2 + (R_1 - R_2)\frac{cx_1}{a} = 0.$$

Si (α, β) sont les coordonnées du centre du cercle C₃, l'équation de cocercle est

(6)
$$(x-\alpha)^2 + (y-\beta)^2 - R_3^2 = 0.$$

Alors:

1° L'équation de l'axe radical des cercles (5) et (6) s'écrit, en retranchant (5) et (6), et ordonnant par rapport à x_1 et y_1 ,

(7)
$$\begin{cases} x_1 \left[2x - (R_1 - R_2) \frac{c}{a} \right] + 2yy_1 - 2\alpha x - 2\beta y + c^2 - R_1 R_2 - R_3^2 + \alpha^2 + \beta^2 = 0. \end{cases}$$

On peut poser $x_1=a\cos\varphi$, $y_1=b\sin\varphi$. L'équation (7) est donc de la forme

$$A \cos \varphi + B \sin \varphi + C = 0$$
.

L'enveloppe d'une telle équation, \u03c4 étant le paramètre variable, s'écrit

 $A^2 + B^2 = C^2.$

L'enveloppe de l'axe radical (7) est donc la conique

(8)
$$\begin{cases} a^{2} \left[2x - (R_{1} - R_{2}) \frac{c}{a} \right]^{2} + 4b^{2}y^{2} \\ = (2\alpha x + 2\beta y + R_{1}R_{2} + R_{3}^{2} - c^{2} - \alpha^{2} - \beta^{2})^{2}. \end{cases}$$

 2° Soient M_1 et M_2 les points de contact respectifs du cercle O avec les cercles C_1 et C_2 . On sait que les droites M_1M_2 passent par le centre de similitude interne de C_1 et C_2 , ayant pour coordonnées

$$x = \frac{c(R_1 - R_2)}{R_1 + R_2} = \frac{c(R_1 - R_2)}{2a}, \quad y = 0.$$

La droite M_1M_2 est perpendiculaire à la tangente à l'ellipse au point O, de sorte que l'équation de M_1M_2 est

(9)
$$y = \left[x - \frac{c}{2a}(R_1 - R_2)\right] \frac{a^2 y_1}{b^2 x_1}$$

Au moyen de l'angle excentrique φ , les équations (7) et (9) deviennent

(10)
$$\begin{cases} a \cos \varphi \left[2x - (R_1 - R_2) \frac{c}{a} \right] \\ + 2by \sin \varphi - 2\alpha x - 2\beta y \\ + c^2 - R_1 R_2 - R_3^2 + \alpha^2 + \beta^2 = 0, \end{cases}$$

(11)
$$\tan \varphi = \frac{2by}{a\left[2x - (R_1 - R_2)\frac{c}{a}\right]}.$$

En éliminant \(\varphi \) entre (10) et (11), on trouve pour le lieu du point de rencontre de la droite MM' avec l'axe radical (7), la conique (8).

Il en résulte donc que la droite MM' rencontre l'axe radical au point où cette dernière droite touche son enveloppe.

Supposons maintenant que le centre O parcoure l'ellipse de grand axe (R₁ - R₂). Il suffit de changer, dans ce qui a été exposé précédemment, R2 en - R2. On obtient ainsi la co-

(12)
$$\begin{cases} a^2 \left[2x - (R_1 + R_2) \frac{c}{a} \right]^2 + 4b^2 y^2 \\ = (2\alpha x + 2\beta y - R_1 R_2 + R_3^2 - C^2 - \alpha^2 - \beta^2)^2, \end{cases}$$

pour laquelle

$$2a = R_1 - R_2$$
, $4b^2 = (R_1 - R_2)^2 - 4c^2$.

Donc, l'enveloppe totale se compose des deux coniques (8) et (12) qui s'écrivent encore

$$\begin{array}{l} \text{(13)} & \left. \begin{array}{l} \left[x(R_1+R_2)-c(R_1-R_2)\right]^2+\left[(R_1+R_2)^2-4c^2\right]\mathcal{Y}^2 \\ =(2\,\alpha x+2\,\beta \mathcal{Y}+R_1\,R_2+R_3^2-c^2-\alpha^2-\beta^2)^2, \end{array} \right. \\ \text{(14)} & \left. \begin{array}{l} \left[x(R_1-R_2)-c(R_1+R_2)\right]^2+\left[(R_1-R_2)^2-4c^2\right]\mathcal{Y}^2 \\ =(2\,\alpha x+2\,\beta \mathcal{Y}-R_1\,R_2+R_3^2-c^2-\alpha^2-\beta^2)^2. \end{array} \right. \end{array}$$

$$\begin{cases} [x(R_1 - R_2) - c(R_1 + R_2)]^2 + [(R_1 - R_2)^2 - 4c^2]y^2 \\ = (2\alpha x + 2\beta y - R_1R_2 + R_3^2 - c^2 - \alpha^2 - \beta^2)^2. \end{cases}$$

II. - Les cercles C1 et C2 sont extérieurs l'un à l'autre.

Supposons R₁ > R₂. En traitant la question de la même manière que dans le cas précédent, on voit que le point O décrit l'une ou l'autre des hyperboles de foyers C₁ et C₂ ayant pour longueurs de l'axe transverse soit (R₁ - R₂), soit $(R_1 + R_2).$

Dans le cas où l'hyperbole a pour axe transverse (R1 - R2), on a

$$2a = R_1 - R_2, \quad 4b^2 = 4c^2 - (R_1 - R_2)^2.$$

Les coordonnées (x_1, y_1) de O satisfont à l'équation

Alors
$$\begin{aligned} b^2x_1^2 - a^2y_1^2 &= a^2b^2.\\ \overline{OC_1} &= \frac{cx_1}{a} + a, \qquad \overline{OC_2} &= \frac{cx_1}{a} - a.\\ \rho &= \frac{cx_1}{a} - \frac{(R_1 + R_2)}{2}.\end{aligned}$$

L'équation du cercle O est donc

$$(x-x_1)^2+(y-y_1)^2=\left[\frac{cx_1}{a}-\frac{(R_1+R_2)}{2}\right]^2.$$

En retranchant cette équation de l'équation (6), on aura, pour l'équation de l'axe radical des cercles O et C₃,

$$\begin{split} x_1 \bigg[2x - \frac{c}{a} (R_1 + R_2) \bigg] \\ + 2yy_1 - 2\alpha x - 2\beta y + \alpha^2 + \beta^2 + c^2 - R_3^2 + R_1 R_2 &= 0. \end{split}$$

En posant $x_1=a$ séc φ , $y_1=b$ tang φ , l'équation dont on veut l'enveloppe est de la forme

A séc
$$\phi$$
 + B tang ϕ = C.

L'équation de l'enveloppe est

$$A^2 - B^2 = C^2$$
.

L'axe radical de O et C₃ enveloppe donc la conique

$$\begin{split} a^2 \bigg[2x - \frac{c}{a} (R_1 + R_2) \bigg]^2 - 4b^2 y^2 \\ = (2\alpha x + 2\beta y - \alpha^2 - \beta^2 - c^2 + R_3^2 + R_1 R_2)^2, \end{split}$$

ou bien

$$\begin{array}{l} (15) \quad \left\{ \begin{array}{l} \left[(\,{\rm R}_1 - {\rm R}_2) \, x - c \, (\,{\rm R}_1 + {\rm R}_2) \,\right]^2 - \left[\, \, i \, c^2 - (\,{\rm R}_1 - {\rm R}_2)^2 \,\right] \mathcal{Y}^2 \\ = (\,2 \,\alpha x + 2 \,\beta \mathcal{Y} - \alpha^2 - \beta^2 - c^2 + {\rm R}_3^2 + {\rm R}_1 \,{\rm R}_2)^2. \end{array} \right. \end{array}$$

Si le point O parcourt l'hyperbole d'ave transverse ($R_1 + R_2$), l'ave radical enveloppe alors la conique

$$\begin{cases} (16) & \begin{cases} [(R_1 + R_2)x - c(R_1 - R_2)]^2 - [4c^2 - (R_1 + R_2)^2]y^2 \\ = (2\alpha x + 2\beta y - \alpha^2 - \beta^2 - c^2 + R_3^2 + R_1R_2)^2. \end{cases}$$

Il est à remarquer que 2b n'est autre chose que la longueur de la tangente commune extérieure aux cercles C_1 et C_2 dans le cas de la conique (15), et la longueur de la tangente commune intérieure dans le cas de la conique (16).

On voit d'ailleurs que la conique (13) est identique à la conique (16); il en est de même de (14) et (15).

Remarques. — 1° Lorsque le rayon R_2 du cercle C_2 devient infini et que ce cercle devient une droite Δ , le lieu des centres des cercles O tangents à la fois à C_1 et à Δ se compose de deux paraboles. La question peut alors se traiter directement d'une

manière analogue à l'analyse précédente. On trouve encore que les axes radicaux de C₃ et O enveloppent deux coniques.

2° On trouverait aussi que, dans le cas tout à fait général de l'énoncé, le lieu du centre de similitude externe des cercles O et C₁ se compose de deux coniques; le lieu du centre de similitude interne des mêmes cercles se compose aussi de deux coniques.

Indication de la solution géométrique (1).

1° Soient Δ₁ et Δ₂ les axes radicaux de C₁ et C₃, d'une part, de C2 et C3 d'autre part. Appelons p1 et p2 les points de contact respectifs du cercle O avec les cercles C1 et C2, a1 et a2 les points de rencontre respectifs de Δ_1 et de Δ_2 avec l'axe radical des deux cercles O et C_3 . Le point a_1 est le centre radical des trois cercles O, C_1 , C_3 ; pareillement, le point a_2 est le centre radical des trois cercles O, C2, C3; enfin, la droite p1 p2 passe par l'un des centres de similitude des cercles C1 et C2. Il suit de là que si les contacts du cercle O avec C₁ et C₂ sont d'espèce déterminée (interne ou externe), à tout point a_1 correspond une position et une seule de a_2 , et inversement. Autrement dit, les points a_1 et a_2 tracent deux divisions homographiques sur Δ_1 et sur Δ_2 ; donc la droite α_1 α_2 enveloppe une conique. L'enveloppe demandée est donc un système de deux coniques, dont l'une correspond au cas où les contacts sont de même espèce, et l'autre, au cas où les contacts sont d'espèces différentes.

2° Soient O et O_1 deux positions infiniment voisines du cercle mobile, I le point de rencontre des axes radicaux de chacun de ces cercles et du cercle C_3 . La position limite du point I est le point de contact de $a_1 a_2$ avec son enveloppe. Or, le point I est le centre radical des trois circonférences O, O_1 , C_3 ; il est donc sur l'axe radical de O et de O_1 . D'autre part, si la circonférence O_1 se rapproche indéfiniment de la circonférence O, supposée fixe, l'axe radical des circonférences O et O_1 a pour limite la ligne p_1 p_2 . Il en résulte que le point I a pour position limite l'intersection de p_1p_2 avec a_1a_2 et, par conséquent, que le second lieu coïncide avec l'enveloppe des axes radicaux. X. A.