Nouvelles annales de mathématiques

A. DE SAINT-GERMAIN

Solution du problème de mécanique proposé au concours d'agrégation en 1894

Nouvelles annales de mathématiques 3^e série, tome 14 (1895), p. 406-415

http://www.numdam.org/item?id=NAM_1895_3_14__406_1

© Nouvelles annales de mathématiques, 1895, tous droits réservés.

L'accès aux archives de la revue « Nouvelles annales de mathématiques » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

SOLUTION DU PROBLÈME DE MÉCANIQUE PROPOSÉ AU CONCOURS D'AGRÉGATION EN 1894;

PAR M. A. DE SAINT-GERMAIN.

Je vais indiquer pour quelques lecteurs des Nouvelles Annales, comme je l'ai fait depuis plusieurs années, une solution du problème de Mécanique proposé au dernier concours d'Agrégation des Sciences mathématiques. J'en résume l'énoncé.

Une plaque très mince, homogène et pesante, ayant la forme d'un triangle équilatéral A, A, A, se meut de telle sorte que le sommet A, glisse avec frottement sur un plan horizontal P, tandis que les sommets A2, A3 glissent sans frottement sur un plan parallèle Q et qu'une tige verticale OO', fixe et parsaitement polie, est engagée dans une très petite ouverture pratiquée au centre de gravité G de la plaque; le plan Q est mené au-dessus de P à une distance telle que la plaque fasse un angle de 45° avec l'horizon. Cela posé, on imprime à la plaque une rotation ω₀ autour de OO' et l'on demande son mouvement ultérieur ainsi que les réactions verticales N₁, N₂, N₃ exercées sur les points A₁, A₂, A₃. Montrer que, pour une certaine valeur μ de ω₀, N₄ est toujours nul; distinguer le cas où $\omega_0 < \mu$ et le cas de $\omega_0 > \mu$; chercher ce qui arriverait si le sommet A_t était simplement posé sur le plan P.

Les forces extérieures qui sollicitent la plaque sont : $_1^{\circ}$ le poids mg; $_2^{\circ}$ les réactions verticales N_4 , N_2 , N_3 que je compte positivement dans le sens contraire de la pesanteur; $_3^{\circ}$ la réaction R de la tige OO', réaction horizontale comme la force de frottement exercée sur le sommet A_4 . La vitesse de ce point est parallèle au côté opposé du triangle; je la supposerai toujours dirigée dans le sens A_3A_2 ; la force de frottement est de sens contraire et égale à $_3^{\circ}$ $_3^{\circ}$ $_3^{\circ}$ comme je le suppose d'abord, $_3^{\circ}$ $_3^{\circ}$ est positive.

Quand le point A, ne quitte pas le plan P, le centre de gravité G est fixe; la réaction R est équipollente à $-fN_1$ et l'on a

(1)
$$N_1 + N_2 + N_3 - mg = 0.$$

Nous définirons l'orientation de la plaque au moyen des angles ψ , θ et ϕ d'Euler. Je considère trois axes rec-

tangulaires de directions constantes Gx_1 , Gy_1 , Gz_1 , ce dernier en sens contraire de la pesanteur, et trois axes liés invariablement à la plaque, Gx suivant la ligne de plus grande pente GA_1 , Gy dans la direction de A_3A_2 , Gz normal à la plaque et faisant avec Gz_1 un angle aigu. L'angle ψ est l'angle x_1Gy ; l'angle θ , égal à 45° quand le point A_1 reste dans le plan P, serait variable dans le cas contraire; φ est, dans tous les cas, égal à 270° . Gx, Gy, Gz sont axes principaux en G, les moments d'inertie correspondants sont A, A, 2A;

$$\Lambda = \frac{1}{24} m\alpha^2,$$

a étant le côté du triangle A, A, A, Les coordonnées des trois sommets dans le plandu triangle sont respectivement

$$\frac{a}{\sqrt{3}}$$
, o; $-\frac{a}{2\sqrt{3}}$, $\frac{a}{2}$; $-\frac{a}{2\sqrt{3}}$, $-\frac{a}{2}$.

Si l'on remarque enfin que les composantes d'une réaction verticale N_i suivant Gx, Gy, Gz sont — $N_i \sin \theta$, o, $N_i \cos \theta$, et si l'on désigne par p,q,r les composantes de la rotation instantanée, on aura, pour déterminer le mouvement de la plaque autour du centre de gravité, trois équations de la forme

$$\begin{split} \mathbf{A}\frac{dp}{dt} + \mathbf{A}\,qr &= \frac{a}{2}(\mathbf{N}_2 - \mathbf{N}_3)\cos\theta,\\ \mathbf{A}\frac{dq}{dt} - \mathbf{A}rp &= \frac{a}{2\sqrt{3}}(\mathbf{N}_2 + \mathbf{N}_3 - 2\mathbf{N}_1)\cos\theta,\\ 2\mathbf{A}\frac{dr}{dt} &= -f\frac{a}{\sqrt{3}}\mathbf{N}_1 + \frac{a}{2}(\mathbf{N}_2 - \mathbf{N}_3)\sin\theta. \end{split}$$

Lorsque θ doit rester égal à 45°, le mouvement élémentaire de la plaque se réduira toujours à une rotation ω autour de OO' ou de Gz_1 ; on aura visiblement

$$p = -\frac{\omega}{\sqrt{2}}, \qquad q = 0, \qquad r = \frac{\omega}{\sqrt{2}},$$

et les équations d'Euler deviendront, après de légères réductions,

(2)
$$\Lambda \frac{d\omega}{dl} = \frac{a}{2} (N_3 - N_2),$$

(3)
$$\mathbf{A}\,\omega^2 = \frac{a}{\sqrt{6}}(\mathbf{N}_2 + \mathbf{N}_3 - 2\,\mathbf{N}_1),$$

(4)
$$\Lambda \frac{d\omega}{dt} = -f \frac{a N_1}{\sqrt{6}} + \frac{a}{4} (N_2 - N_3).$$

Des équations (1) et (3) je tire

$$N_1 = \frac{1}{3} \left(mg - \frac{\Lambda \sqrt{6}}{a} \omega^2 \right), \qquad N_2 - N_3 = \frac{1}{3} \left(2 mg + \frac{\Lambda \sqrt{6}}{a} \omega^2 \right);$$

de même, des équations (2) et (4),

$$\begin{split} \mathbf{N}_2 - \mathbf{N}_3 &= \frac{4f}{3\sqrt{6}} \, \mathbf{N}_1 = \frac{4f}{9\sqrt{6}} \left(mg - \frac{\mathbf{A}\sqrt{6}}{a} \, \omega^2 \right), \\ \frac{d\omega}{dt} &= -\frac{2af}{3\mathbf{A}\sqrt{6}} \, \mathbf{N}_1 = -\frac{2f}{9} \left(\frac{mga}{\mathbf{A}\sqrt{6}} - \omega^2 \right). \end{split}$$

On est conduit à poser

(5)
$$\mu^{2} = \frac{mga}{A\sqrt{6}} = \frac{4g\sqrt{6}}{a};$$

$$\frac{2}{9}f = \alpha.$$

Les équations précédentes deviennent

(6)
$$N_{1} = \frac{mg}{3} \left(\tau - \frac{\omega^{2}}{\mu^{2}} \right),$$

$$\begin{cases}
N_{2} + N_{3} = \frac{mg}{3} \left(2 + \frac{\omega^{2}}{\mu^{2}} \right), \\
N_{2} - N_{3} = \frac{mg \alpha \sqrt{6}}{3} \left(\tau - \frac{\omega^{2}}{\mu^{2}} \right),
\end{cases}$$

(8)
$$\frac{d\omega}{dt} = -\alpha(\mu^2 - \omega^2).$$

L'équation (8) montre que, si ω_0 était égal à μ , ω ne pourrait prendre une valeur différente au bout d'un temps fini quelconque : la plaque tournerait uniformément autour de OO'; les équations (6) et (7) prouvent que N_4 serait égal à zéro, N_2 et N_3 à $\frac{1}{2}$ mg.

Il faut se rappeler que, si les équations (1), (2), (3) sont légitimes quel que soit le signe de N_1 , l'équation (4), où entre la force de frottement, ne le sera que si N_1 est positif : l'équation (6), qui résulte de (1) et de (3), montre que, pour cela, il faut et il suffit que ω soit $< \mu$. Il en sera ainsi quand $\omega_0 < \mu$, ω ne pouvant que diminuer par suite du frottement; donc, en supposant $\omega_0 < \mu$, les équations (6), (7), (8) sont exactes et je puis intégrer la dernière, ce qui donne

$$\alpha t = \frac{1}{2\mu} \log \frac{(\mu - \omega)(\mu + \omega_0)}{(\mu + \omega)(\mu - \omega_0)},$$

ou, résolvant par rapport à ω,

(9)
$$\omega = \mu \frac{(\mu + \omega_0)e^{-\mu xt} - (\mu - \omega_0)e^{\mu xt}}{(\mu + \omega_0)e^{-\mu xt} + (\mu - \omega_0)e^{\mu xt}}.$$

La vitesse angulaire diminue quand t augmente, ainsi que l'indiquait l'équation (8) : elle s'annule quand on a

$$e^{2\mu\alpha t} = \frac{\mu + \omega_0}{\mu - \omega_0}, \qquad t = \frac{1}{2\mu\alpha} \log \frac{\mu + \omega_0}{\mu - \omega_0} = t_1;$$

à partir de cet instant, il est évident que la plaque va rester immobile, ω étant nulle : on ne devra plus prendre l'équation (9); l'équation (8) elle-même ne sera plus vraie, puisque la force de frottement s'annule, et devra être remplacée par $\frac{d\omega}{dt} = 0$.

L'angle dont la plaque aura tourné s'obtiendra en remplaçant ω par $\frac{d\psi}{dt}$ dans l'équation (9) et intégrant; si

l'on suppose que & s'annule avec t, on a

$$\psi = \frac{\tau}{\alpha} \log \frac{2 \, \mu}{(\mu - \omega_0) e^{-\mu \alpha t} + (\mu - \omega_0) e^{-\mu \alpha t}};$$

pour $t = t_1$,

$$\psi = \frac{1}{\alpha}\log\frac{\mu}{\sqrt{\mu^2 - \omega_0^2}} = \psi_1.$$

On peut exprimer ω et ψ à l'aide de fonctions hyperboliques : si l'on pose

$$\frac{\omega_0}{\mu}$$
 = tang hyp $\mu\alpha\tau$,

ce qui donnera $\tau = t_1$. on trouve

$$\omega = \mu \tanh hyp \mu\alpha(\tau - t), \qquad \psi = \frac{1}{\alpha} \log \frac{\cosh hyp \mu\alpha\tau}{\cosh hyp \mu\alpha(\tau - t)}.$$

Les équations (6) et (7) donnent, en fonction de ω et par suite de t, les valeurs de N_1 , N_2 , N_3 ; la discussion en est bien facile. Je remarque seulement que, lorsque t tend vers t_1 , N_1 tend vers $\frac{1}{3}mg$, N_2 et N_3 vers $\left(\frac{1}{3} \pm \frac{\alpha}{\sqrt{6}}\right)mg$; quand la plaque sera devenue immobile, N_1 , N_2 et N_3 seront évidemment toutes égales à $\frac{1}{3}mg$; N_2 et N_3 changent brusquement de valeurs quand la plaque s'arrête, aussi bien, d'ailleurs, que $\frac{d\omega}{dt}$.

N, restant positive dans le cas considéré, le sommet A, appuie toujours sur le plan P et, quand même il pourrait le quitter, il ne le ferait pas et les résultats précédents subsisteraient.

Supposons maintenant $\omega_0 > \mu$: l'équation (6), toujours vraie, prouve que N_4 sera négative tant que ω sera $> \mu$; dans les équations (4) et (8), il faudra changer f en $-f_4$ et, par suite, α en $-\alpha_4$, pour que la force de frottement figure comme dirigée en sens

contraire de la vitesse du point A₁. En mettant en évidence des quantités positives, on remplacera les équations (6), (7), (8) par les suivantes:

$$\begin{split} -N_1 &= |N_1| = \frac{mg}{3} \left(\frac{\omega^2}{\mu^2} - I \right), \\ N_2 + N_3 &= \frac{mg}{3} \left(2 + \frac{\omega^2}{\mu^2} \right), \qquad N_2 - N_3 = \frac{mg\alpha\sqrt{6}}{3} \left(\frac{\omega^2}{\mu^2} - I \right), \\ \frac{d\omega}{dt} &= -\alpha \left(\omega^2 - \mu^2 \right). \end{split}$$

La dernière montre que ω diminue constamment jusqu'à la valeur μ , qu'il atteint au bout d'un temps infini. On en tire d'ailleurs, en intégrant comme dans le premier cas,

$$\begin{split} \omega &= \mu \frac{(\omega_0 + \mu)e^{\mu \alpha t} + (\omega_0 - \mu)e^{-\mu \alpha t}}{(\omega_0 + \mu)e^{\mu \alpha t} - (\omega_0 - \mu)e^{-\mu \alpha t}}, \\ \psi &= \frac{\tau}{\alpha} \log \frac{(\omega_0 + \mu)e^{\mu \alpha t} - (\omega_0 - \mu)e^{-\mu \alpha t}}{2\mu}. \end{split}$$

Pour introduire des fonctions hyperboliques, il faudra représenter $\frac{\omega_0}{\mu}$, qui est >1, par une cotangente hyperbolique

$$\frac{\omega_0}{\mu}=\cot hyp\,\mu\alpha\rho\,;$$

on trouvera

$$\omega = \mu \cot hyp \,\mu\alpha(t+\rho), \qquad \psi = \frac{1}{\alpha} \log \frac{\sinh hyp \,\mu\alpha(t+\rho)}{\sinh hyp \,\mu\alpha\rho}.$$

Lorsque t augmentera indéfiniment, on voit que N_t tendra vers zéro, N_2 et N_3 vers $\frac{1}{2}$ mg.

Dans ce second cas, $\omega_0 > \mu$, nous avons trouvé que N_1 est toujours négative, c'est-à-dire que le sommet A_1 tend à s'élever au-dessus du plan P; s'il est simplement posé sur ce plan, il s'en séparcra et le mouvement de la plaque sera bien différent de celui que nous avons étudié ci-dessus. On pourrait le déterminer au moyen

du théorème des forces vives et de celui des aires; mais pour plus d'uniformité, et afin de pouvoir calculer les réactions exercées par le plan Q, je suivrai une marche correspondante à celle qui précède.

Les forces extérieures sont les réactions N_2 , N_3 du plan Q, la réaction R de OO' et le poids mg. Le centre de gravité restant sur OO', on voit que R est nulle; l'ordonnée ζ de ce centre, par rapport au plan fixe Q, est $-\frac{a \sin \theta}{2\sqrt{3}}$ et l'on a

(10)
$$N_2 - N_3 - mg = m \frac{d^2 \zeta}{dt^2} = \frac{ma}{2\sqrt{3}} \left(\theta^2 \sin \theta - \frac{d\theta'}{dt} \cos \theta \right).$$

Le mouvement de la plaque autour de son centre de gravité est encore déterminé par les équations d'Euler que nous avons écrites : il faut toutefois y faire $N_4 = 0$; quant à p, q, r, on les exprime aisément en fonction de θ' et ψ' , soit par des considérations géométriques directes, soit à l'aide des formules de Cinématique bien connues, dans lesquelles on fera $\varphi = 270^{\circ}$; on trouve

$$p=-\psi'\sin\theta, \qquad q=0', \qquad r=\psi'\cos\theta.$$

Substituant dans les équations d'Euler et réduisant, on a

(11)
$$-A\sin\theta \frac{d\psi'}{dt} = \frac{a}{2}(N_2 - N_3)\cos\theta,$$

(12)
$$A \frac{d\theta'}{dt} - A \psi'^2 \sin \theta \cos \theta = \frac{\alpha}{2\sqrt{3}} (N_2 + N_3) \cos \theta,$$

(13)
$$2\mathbf{A}\left(\cos\theta \frac{d\psi'}{dt} - \psi'\theta'\sin\theta\right) = \frac{\alpha}{2}(N_2 - N_3)\sin\theta.$$

Je remplacerai maintenant A par sa valeur $\frac{ma^2}{24}$ et g par $\frac{\mu^2 a}{4\sqrt{6}}$ (5); alors, les équations (11) et (13) nous

donneront

(14)
$$(1 + \cos^2 \theta) \frac{d\psi'}{dt} - 2 \psi' \theta' \sin \theta \cos \theta = 0,$$

(15)
$$(1 + \cos^2 \theta)(N_2 - N_3) = -\frac{m\alpha}{6}\theta'\psi'\sin^2 \theta.$$

De même, on tire des équations (10) et (12),

(16)
$$\begin{cases} (1+2\cos^2\theta) \frac{d\theta'}{dt} - 2\theta'^2 \sin\theta \cos\theta \\ = \frac{\mu^2 \cos\theta}{\sqrt{2}} - \psi'^2 \sin\theta \cos\theta, \\ (17) \begin{cases} (1+2\cos^2\theta) (N_2 + N_3) \\ = \frac{ma}{2\sqrt{3}} \left(\frac{\mu^2}{2\sqrt{2}} + \psi'^2 \sin\theta \cos^2\theta - \theta'^2 \sin\theta\right). \end{cases}$$

L'équation (14) s'intègre immédiatement : l'intégrale

$$(\iota - \cos^2 \theta) \psi' = \frac{3}{2} \omega_0$$

montre que ψ varie toujours dans le même sens; elle exprime que la somme des moments des quantités de mouvement, par rapport à OO', est constante. Si, dans l'équation (16), on remplace ψ' par sa valeur et si l'on multiplie tous les termes par $2\theta'$, on peut intégrer, θ' s'annulant pour $\sin\theta = \frac{1}{\sqrt{2}}$; après de simples transformations, l'intégrale peut ètre mise sous la forme

$$\theta'^2 = \left(\tau - \sqrt{2}\sin\theta\right) \frac{3\omega_0^2\left(\tau + \sqrt{2}\sin\theta\right) - 4\mu^2(2 - \sin^2\theta)}{4(\tau + 2\cos^2\theta)(\tau + \cos^2\theta)};$$

t peut s'exprimer en fonction de θ par une quadrature. Le numérateur de la fraction, qui figure dans la valeur de θ'^2 , est positif pour θ égal à 45° , négatif pour $\theta = -45^{\circ}$; on en conclut aisément que θ oscille entre 45° et une limite comprise entre 45° et -45° ; cette

limite sera négative, et la plaque pourra devenir horizontale, si ω_0^2 est $> \frac{8}{3}\mu^2$. Dans tous les cas, la plaque a un mouvement périodique, venant toucher le plan P à intervalles fixes.

Les valeurs de N_2 , N_3 se détermineront en fonction de θ , au moyen des équations (15) et (17), dans lesquelles on remplacera ψ' et θ' par les valeurs obtenues, il n'y a qu'un instant; les résultats ont une forme compliquée et leur discussion semble offrir peu d'intérêt.