Nouvelles annales de mathématiques

H. LAURENT

Sur un théorème relatif à la théorie des enveloppes

Nouvelles annales de mathématiques 2^e *série*, tome 13 (1874), p. 273-278

http://www.numdam.org/item?id=NAM_1874_2_13__273_0

© Nouvelles annales de mathématiques, 1874, tous droits réservés.

L'accès aux archives de la revue « Nouvelles annales de mathématiques » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

SUR UN THÉORÈME RELATIF A LA THÉORIE DES ENVELOPPES

PAR M. H. LAURENT.

Supposons que p_1, p_2, p_3, \ldots désignent les distances normales d'un plan P_* à des surfaces fixes S_1, S_2, S_3, \ldots et que l'on ait, entre les quantités p_1, p_2, \ldots la relation

(1)
$$f(p_1, p_2, p_3, ...) = 0;$$

en vertu de cette relation, le plan P enveloppera généralement une surface. Proposons-nous de trouver le point M où le plan P touche son enveloppe.

Soit

(2)
$$P = ax + by + cz - \delta = 0$$
 $(a^2 + b^2 + c^2 = 1)$

l'équation du plan P. Soient, en général, x_i , y_i , z_i les coordonnées du point où la normale commune au plan P et à la surface S_i rencontre le plan P, et ξ_i , η_i , ζ_i les coordonnées du point où la même droite rencontre la surface S_i , on aura

(3)
$$p_i = a\xi_i + b\eta_i + c\zeta_i - \delta;$$

 ξ_i , η_i , ζ_i doivent être considérés comme fonctions de a, b, c, δ , ainsi que p_i , et, par suite, la fonction $f(p_1, p_2,...)$ pourra être considérée comme fonction des variables a, b, c, δ .

Pour trouver l'enveloppe du plan P, nous observerons que ce plan ne dépend en définitive que de deux variables s et t par exemple, dont a, b, c, d sont fonctions. Nous pourrions supposer que a et b sont variables indépendantes; mais, pour la symétrie des calculs, nous aimons mieux laisser les variables indépendantes indéterminées; il est clair alors que les formules

$$P = 0$$
, $\frac{dP}{ds} = 0$, $\frac{dP}{dt} = 0$

feront connaître le point où le plan P touche son enveloppe. Toute la question se réduit alors à former ces deux dernières équations. Les formules (2) et (3) donnent, en les différentiant,

(4)
$$\begin{cases} \frac{dP}{ds} = x \frac{da}{ds} + y \frac{db}{ds} + z \frac{dc}{ds} - \frac{d\delta}{ds} = 0, \\ a \frac{da}{ds} + b \frac{db}{ds} + c \frac{dc}{ds} = 0, \end{cases}$$

$$\begin{cases} \frac{dp_i}{ds} = a \frac{d\xi_i}{ds} + \xi_i \frac{da}{ds} + b \frac{d\eta_i}{ds} + \eta_i \frac{db}{ds} \\ + c \frac{d\zeta_i}{ds} + \zeta_i \frac{dc}{ds} - \frac{d\delta}{ds}. \end{cases}$$

Or la direction a, b, c est normale à la direction $\frac{d\xi_i}{ds}$, $\frac{d\eta_i}{ds}$, $\frac{d\zeta_i}{ds}$, qui est celle d'une tangente à la surface S_i ; donc l'équation (5) se simplifiera et donnera

(6)
$$\frac{dp_i}{ds} = \xi_i \frac{da}{ds} + \eta_i \frac{db}{ds} + \zeta_i \frac{dc}{ds} - \frac{d\delta}{ds}.$$

Enfin l'équation (1), différentiée à son tour, deviendra

$$\frac{df}{dp_1}\frac{dp_1}{ds} + \frac{df}{dp_2}\frac{dp_2}{ds} + \ldots = 0,$$

ou, en vertu de (6),

(7)
$$\begin{cases} \frac{da}{ds} \left(\xi_1 \frac{df}{dp_1} + \xi_2 \frac{df}{dp_2} \cdots \right) \\ + \frac{db}{ds} \left(\eta_1 \frac{df}{dp_1} + \cdots \right) \\ + \frac{dc}{ds} \left(\zeta_1 \frac{df}{dp_1} + \cdots \right) = \frac{d\delta}{ds} \left(\frac{df}{dp_1} + \frac{df}{dp_2} \cdots \right). \end{cases}$$

On aurait des formules analogues en différentiant par rapport à t, et $\frac{dP}{ds}$ sera connu dès que l'on se sera donné les relations qui expriment a, b, c, d en fonction de s.

Cela posé, prenons le plan P pour plan des xy, nous aurons

 $x_i = \xi_i$, $y_i = \eta_i$, a = 0, b = 0, c = 0, $z_i = 0$, et, par suite, les formules (4) et (7) donneront

$$x \frac{da}{ds} + y \frac{db}{ds} - \frac{d\delta}{ds} = 0, \quad \frac{dc}{ds} = 0,$$

$$\left(x_1 \frac{df}{dp_1} + x_2 \frac{df}{dp_2} \cdots \right) \frac{da}{ds} + \left(y_1 \frac{df}{dp_1} + y_2 \frac{df}{dp_2} \cdots \right) \frac{db}{ds} - \left(\frac{df}{dp_1} + \frac{df}{dp_2} \cdots \right) \frac{d\delta}{ds} = 0.$$

Supposons maintenant que les variables a et b aient été choisies comme variables indépendantes; ces équations donneront tour à tour

$$x - \frac{d\delta}{da} = 0$$
, $y - \frac{d\delta}{db} = 0$, $\sum x_i \frac{df}{dp_i} - x \sum \frac{df}{dp_i} = 0$, $\sum y_i \frac{df}{dp_i} - y \sum \frac{df}{dp_i} = 0$.

Les dernières équations expriment que le point (x, y), qui est le point de contact du point P avec son enveloppe, est le centre de gravité des masses $\frac{df}{dp_1}$, $\frac{df}{dp_2}$, $\frac{df}{dp_3}$, ... appliquées en (x_1, y_1) , en (x_2, y_2) , ... respectivement; on peut donc énoncer le théorème suivant:

Théorème. — Si $p_1, p_2,...$ désignent les distances normales d'un plan mobile P à des surfaces fixes $S_1, S_2,...$ et si ces distances sont liées entre elles par une relation telle que

 $f(p_1,p_2,\ldots)=0,$

le plan P enveloppe une certaine surface, qu'il touche

en un point qui est le centre de gravité des masses $\frac{df}{dp_1}$, $\frac{df}{dp_2}$, \cdots appliquées aux points où les droites p_1 , p_2 , \cdots rencontrent le plan mobile.

Corollaire I. — Les surfaces S₁, S₂,... peuvent se réduire à des courbes ou à des points, et le théorème est encore vrai.

Corollaire II. — Les surfaces S₁, S₂,... peuvent se réduire à des cylindres à génératrices parallèles et, dans ce cas, on obtient un théorème de Géométrie plane, que l'on peut énoncer ainsi:

 $Sip_1, p_2,...$ désignent les distances normales d'une droite mobile à des courbes fixes $S_1, S_2,...$, et s'il existe une relation

$$f(p_1,p_2,\ldots)=0$$

la droite mobile enveloppe une courbe, qui la touche au centre de gravité des masses $\frac{df}{dp_1}$, $\frac{df}{dp_2}$, ... appliquées aux points où les droites p_1 , p_2 ,... rencontrent la droite mobile.

Corollaire III. - Si l'équation

$$f(p_1, p_2, \ldots) = 0$$

était une identité, ou, pour parler plus exactement, avait lieu pour tous les plans de l'espace, des forces $\frac{df}{dp_1}$, $\frac{df}{dp_2}$, ... parallèles, appliquées suivant les droites p_1 , p_2 ,..., se feraient équilibre; elles se réduiraient à un couple, dans le cas où il n'y aurait pas d'enveloppe.

Pour montrer l'importance des théorèmes précédents, je vais en présenter quelques applications :

Problème I. — Quelle est la courbe telle que le produit des distances de deux points fixes P₁ P₂ à ses tangentes soit constant?

En appelant p_1 , p_2 les distances en question, on a

$$p_1p_2 = \text{const.} = k^2$$
.

Soient Q_1 , Q_2 les pieds des perpendiculaires abaissées de P_1 , P_2 sur la tangente Q_1 Q_2 ; le point M, où cette droite touche son enveloppe, est le centre de gravité de deux masses p_2 et p_1 , respectivement appliquées en Q_1 et Q_2 ; donc

$$\frac{MQ_1}{p_1} = \frac{MQ_2}{p_2}, \quad \text{ou} \quad \frac{MQ_1}{P_1Q_1} = \frac{MQ_2}{P_2Q_2}.$$

Ces rapports sont les cotangentes des angles P₁MQ₁ et P₂MQ₂, qui sont, par suite, égaux ou supplémentaires. Prolongeons P₁M jusqu'au point R, où elle rencontre P₂Q₂, on a évidemment

$$\overline{P_1 R}^2 = (P_1 M + M P_2)^2 = \overline{P_1 P_2}^2 + 4p_2^2 - 4p_2 \cos P_1 P_2 R,$$

$$(P_1 M + M P_2)^2 = \overline{P_1 P_2}^2 + 4p_1^2 + 4p_1 \cos P_1 P_2 R,$$

et, par suite, en ajoutant ces formules respectivement multipliées par p_1 et p_2 ,

$$(P_1M + MP_2)^2 (p_1 + p_2) = \overline{P_1P_2}^2 (p_1 + p_2) + 4 k^2 (p_1 + p_2),$$
 d'où l'on tire

$$P_1M + MP_2 = const.$$

et le point M décrit une ellipse. Il est clair que, si l'on avait raisonné sur une figure dans laquelle les angles Q₁MP₁ et Q₂MP₂ auraient été supplémentaires, on aurait trouvé une hyperbole.

Problème II. — Quelle est la courbe dont la tangente est à des distances p_1 et p_2 de deux points fixes P_1 et P_2 , telles qu'on ait

$$ap_1 + bp_2 = \text{const.}$$

Il est facile de voir que la normale à la courbe rencontre la droite P₁P₂ en un point fixe, qui est le centre de gravité de deux masses a et b placées en P₁ et P₂, d'où l'on peut conclure que la courbe cherchée est un cercle.

Nous ne ferons pas d'autres applications de notre théorème; nous ferons simplement observer en terminant que les coordonnées tangentielles homogènes fourniront souvent l'occasion d'en faire usage. Nous ferons encore observer que le théorème en question est en quelque sorte un corrélatif de ce beau théorème de Poinsot:

Quand p₁, p₂,... désignent les distances d'un point mobile à des surfaces fixes, la normale à la surface représentée par l'équation

$$f(p_1, p_2, \ldots) = 0$$

est la résultante des longueurs $\frac{df}{dp_1}$, $\frac{df}{dp_2}$, ... appliquées suivant les rayons p_1 , p_2 ,....

L'importance de ce théorème est telle, qu'à lui seul il embrasse toute la théorie des tangentes des plans tangents et en quelque sorte toute la Statique. On sait, en effet, que Poinsot en a déduit le principe des vitesses virtuelles.