Nouvelles annales de mathématiques

Questions

Nouvelles annales de mathématiques 2^e *série*, tome 11 (1872), p. 48

http://www.numdam.org/item?id=NAM 1872 2 11 48 0>

© Nouvelles annales de mathématiques, 1872, tous droits réservés.

L'accès aux archives de la revue « Nouvelles annales de mathématiques » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

QUESTIONS.

1055. L'équation indéterminée $t^2 - Dn^2 = 4$, dans laquelle D est de la forme $(4n + 2)^2 + 1$, n désignant un nombre entier positif quelconque 1, 2, 3, ..., n a aucune solution formée de deux nombres impairs, et la solution constituée par les deux nombres entiers positifs les plus petits est

$$t = 16(2n + 1)^2 + 2$$
, $u = 8(2n + 1)$.
(F. Didon.)

1056. Soit une fonction f(x) quelconque, finie et continue dans l'intervalle de a à x. Insérons, entre a et x, n-1 moyens géométriques $a\sqrt[n]{\frac{x}{a}}$, $a\sqrt[n]{\left(\frac{x}{a}\right)^2}$, ..., $a\sqrt[n]{\left(\frac{x}{a}\right)^{n-1}}$, et désignons par Mg la moyenne arithmétique des valeurs

$$f(a), f\left(a\sqrt[n]{\frac{x}{a}}\right)\cdots, f\left[a\sqrt[n]{\left(\frac{x}{a}\right)^{n-1}}\right], f(x).$$

D'un autre côté, insérons n-1 moyens arithmétiques $a+\frac{x-a}{n}, a+\frac{2(x-a)}{n}, ..., a+\frac{(n-1)(x-a)}{n}$, entre a et x, et désignons par Ma la moyenne arithmétique des valeurs

$$\frac{f(a)}{a}, \frac{f\left(a+\frac{x-a}{n}\right)}{a+\frac{x-a}{n}}, \dots, \frac{f\left(a+\frac{(n-1)(x-a)}{n}\right)}{a+\frac{(n-1)(x-a)}{n}}, \frac{f(x)}{x}.$$

Lorsque n tend vers l'infini, le rapport $\frac{Ma}{Mg}$ tend vers une limite complétement indépendante de la fonction f;

cette limite est
$$\frac{\log \frac{x}{a}}{x-a}$$
. (F. Didon.)