Nouvelles annales de mathématiques

ALLÉGRET

Remarques sur une famille de courbes planes

Nouvelles annales de mathématiques 2^e *série*, tome 11 (1872), p. 162-167

http://www.numdam.org/item?id=NAM_1872_2_11__162_0

© Nouvelles annales de mathématiques, 1872, tous droits réservés.

L'accès aux archives de la revue « Nouvelles annales de mathématiques » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

REMARQUES SUR UNE FAMILLE DE COURBES PLANES;

PAR M. ALLÉGRET,

Professeur de Mathematiques à la Faculte des Sciences de Clermont.

Le théoreme énoncé dans les Nouvelles Annales (t. IX, 2° série, p. 31) vient de donner lieu à quelques recherches de M. Nicolaïdès, insérées dans la seconde et la troisième livraison de ses Analectes, ouvrage qu'il publie à l'imprimerie nationale d'Athènes. Ce travail, après avoir rappelé mon attention sur le même sujet, me fournit l'occasion de présenter quelques observations qu'on ne trouvera peut-être pas dénuées de tout intérêt.

J'ai fait voir, dans l'article cité, que le cercle osculateur en un point de la courbe

$$r^m = a^m \cos m \theta$$

intercepte, sur le ray on mené du pôle au point de contact, une corde qui est toujours avec ce ray on dans le rapport constant de 2 à 1 + m, et j'ai ajouté que cette propriété ne convient qu'aux courbes précédentes. On obtient, en effet, pour l'équation dissérentielle qui détermine en coordonnées polaires toutes les courbes qui y satisfont (loc. cit.),

(2)
$$\frac{r^2 + \left(\frac{dr}{d\theta}\right)^2}{r^2 + 2\left(\frac{dr}{d\theta}\right)^2 - r\frac{d^2r}{d\theta^2}} = \frac{2}{1+m}.$$

Cette équation, après avoir été mise sous la forme

$$\frac{d}{d\theta}\left(\frac{dr}{r\,d\theta}\right) + m\left[1 + \left(\frac{dr}{r\,d\theta}\right)^2\right] = 0,$$

s'intègre sans difficulté en prenant pour variable auxiliaire $\frac{dr}{r d\theta}$, et l'on trouve pour intégrale générale, en désignant par g et h deux constantes arbitraires,

(3)
$$r^m = g \cos(m\theta - h),$$

qui est identique avec (1), sauf un changement insignifiant dans la direction de l'axe polaire et dans l'unité de longueur.

M. Nicolaïdès, après avoir fait remarquer dans ses Analectes (p. 65) que la spirale logarithmique jouit aussi de la propriété précédente, pense que son équation ne rentre pas dans la forme (1) ou dans la forme équivalente (3). On peut néanmoins démontrer que cela a lieu pour les valeurs infiniment petites de l'exposant m. On aura en effet alors, en négligeant les infiniment petits du second ordre par rapport à m,

$$r = [g\cos(m\theta - h)]^{\frac{1}{m}} = (g\cos h + mg\sin h\theta)^{\frac{1}{m}},$$

et, en prenant pour unité de longueur $g \cos h$ et remarquant que, d'après un théorème connu,

$$(1+km)^{\frac{1}{m}}=e^k,$$

il vient, pour équation de la courbe (3), $r = e^{\tan h\theta}$, qui est celle de la spirale logarithmique.

Au reste, l'exception signalée par M. Nicolaïdès se rapporte évidemment au cas tout particulier de m=0, et, comme l'équation (2) a pour intégrale la spirale logarithmique et que l'intégrale (3) prend alors la forme $r=1^{\infty}$, il est naturel de considérer la courbe (3) comme renfermant encore cette spirale à la limite, suivant l'usage ordinaire, et c'est une remarque que j'ai faite dans mon cours, il y a deux ans, pour prévenir l'objection précédente, qui est d'ailleurs fort naturelle.

Cette explication donnée, en même temps que la méthode même qui m'afait découvrir le théorème en question, je dois maintenant faire un aveu que l'équité exige, c'est que ce théorème n'est point nouveau, comme je l'ai cru tout d'abord. Il a été énoncé sous une forme très-peu différente par le célèbre Colin Maclaurin, dans le premier volume de son Traité des fluxions, édité à Édimbourg, en 1740 (prop. XXXIV du chap. XI). Le même savant a aussi fait connaître et a appliqué dans plusieurs endroits du même ouvrage la méthode ingénicuse qui consiste à faire correspondre les points M et L de deux courbes planes AM, AL (*), en établissant entre les rayons vecteurs SM = r, $SL = r_1$, menés d'un pôle S, et les angles $MSA = \theta$ et $LSA = \theta_1$, formés avec le même axe polaire, les deux relations

$$r_1 = r^m, \quad \theta_1 = m\theta,$$

en prenant pour m un nombre quelconque. Si l'on désigne par ρ et ρ_1 les rayons de courbure en M et L, par n et n_1 les normales MV et LV₁, déterminées par les perpendiculaires SV et SV₁ élevées en S aux rayons vecteurs SM et SL, et qu'on retranche du premier rayon de courbure $\frac{\rho-n}{m}=h$, Maclaurin démontre qu'on aura la proportion

$$\frac{n_1}{\rho_1} = \frac{h}{\rho} \quad \text{ou} \quad \frac{n_1}{\rho_1} = \frac{\rho - \frac{1}{m}(\rho - n)}{\rho} = 1 - \frac{1}{m}\left(1 - \frac{n}{\rho}\right),$$

qui, mise sous cette forme

$$\frac{n}{\rho}-1=m\left(1-\frac{n_1}{\rho_1}\right),$$

^(*) Le lecteur est prie de se reporter à la figure 173 de l'ouvrage de Maclaurin ou de tracer lui-même la figure, ce qui n'offre aucune difficulté.

coincide avec l'équation trouvée de son côté par M. Nicolaïdès, à la page 59 de ses Analectes. On en déduit sans difficulté, comme M. Nicolaïdès l'a fait, en prenant pour la première courbe AM un cercle passant par le pôle S, le théorème que j'ai donné dans les Nouvelles Annales, et qui forme le corollaire IV de la proposition citée de Maclaurin.

Je ferai une autre observation sur les courbes (ι). La lemniscate de Jacques Bernoulli (qui y rentre dans le cas de m=2) a été imaginée par ce géomètre pour représenter par l'arc de cette courbe l'une ou l'autre des deux transcendantes

$$\int \frac{a^2 dz}{\sqrt{a^4 - z^4}} \quad \text{on} \quad \int \frac{a^2 dz}{\sqrt{z^4 - a^4}},$$

en prenant pour variable z le rayon vecteur de la lemniscate ou son inverse (voir Opera Jac. Bernoulli, t. I, p. 611). Les efforts de ce géomètre et de ses successeurs ne me paraissent pas avoir été aussi heureux dans la représentation analogue de la transcendante

$$\int \frac{z^2 dz}{\sqrt{a^4 - z^4}},$$

qui exprime, comme on sait, l'ordonnée de la courbe élastique dont l'abscisse serait z.

Maclaurin a démontré, dans son Traité des fluxions (t. II, chap. v, n° 927), que si l'on abaisse du centre d'une hyperbole équilatère une perpendiculaire sur les tangentes, et qu'on mesure ensuite la distance interceptée sur la tangente, depuis le pied de la perpendiculaire jusqu'au point de contact, ainsi que l'arc d'hyperbole du sommet au même point, on aura la courbe élastique, en prenant pour abscisse la perpendiculaire précédente, et pour ordonnée l'excès de la tangente sur

l'arc considéré. Cette construction ne me semble pas apporter un perfectionnement important à celle que Jacques Bernoulli avait proposée lui-même (Opera, t. I, p. 612), en faisant dépendre l'ordonnée de la courbe élastique de la rectification d'une ellipse et de celle de la lemniscate. Car on peut considérer la portion de la tangente à l'hyperbole, dans le théorème de Maclaurin, comme équivalente, en réalité, à l'arc indéfini d'une courbe algébrique rectifiable, en sorte que l'ordonnée de la courbe élastique dépend de deux rectifications différentes dans l'une et l'autre des deux méthodes.

On peut faire servir la rectification de la courbe

$$r^2 = a^2 \left(\cos\frac{2\theta}{3}\right)^3,$$

appartenant à la famille (1) $(m = \frac{2}{3})$ pour résoudre le même problème. On obtient en effet, pour la différentielle de l'arc s de cette courbe en fonction du rayon vecteur r,

$$ds = \frac{a^{\frac{2}{3}} dr}{\sqrt{a^{\frac{4}{3}} - r^{\frac{4}{3}}}}:$$

si l'on fait ensuite $r = \frac{z^3}{a^2}$, en prenant z pour variable auxiliaire, il viendra

$$ds = \frac{3z^2 dz}{\sqrt{a^4 - z^4}};$$

donc, en prenant pour abscisse $3z = 3a\cos\frac{2\theta}{3}$, et pour ordonnée l'arc s correspondant à l'angle θ de la courbe précédente, on obtiendra la courbe élastique.

Ce théorème se rattache à un ensemble de recherches que j'espère pouvoir publier bientôt, au moins en partie, dans un Mémoire spécial. En abordant certains cas assez étendus du problème de la rectification inverse, je suis parvenu à démontrer qu'en transformant une épicycloïde quelconque par les rayons réciproques menés du centre du cercle fixe, on obtient une courbe dont l'arc indéfini représente exactement la fonction elliptique de troisième espèce, à deux paramètres arbitraires (savoir le module et le paramètre proprement dit). Dans quelques cas particuliers, cet arc est égal à un arc de cercle, ou à un arc d'hyperbole, ou encore à la fonction elliptique de première espèce. On retrouve ainsi, dans le dernier cas, les courbes étudiées autrefois par M. J.-A. Serret, et dont ce géomètre a donné une construction moins simple, reproduite à la page 272 de son récent Traité de Calcul intégral. Mes propres résultats vont d'ailleurs bien au delà de ceux qui sont consignés dans les divers Mémoires du savant académicien sur cette matière; car ils montrent la possibilité de construire une infinité de courbes algébriques différentes dont l'arc représente exactement la fonction elliptique de première espèce et de module donné égal à la racine carrée d'un nombre commensurable quelconque. Ces théorèmes, ainsi que beaucoup d'autres, sont démontrés dans le Mémoire que j'annonce, et dont j'ai adressé la première partie au ministère de l'Instruction publique, en attendant un éditeur qui veuille bien se charger de l'impression.