Nouvelles annales de mathématiques

H. PICQUET

Sur la construction des axes d'une surface du second degré

Nouvelles annales de mathématiques 2^e *série*, tome 7 (1868), p. 456-462

http://www.numdam.org/item?id=NAM_1868_2_7__456_0

© Nouvelles annales de mathématiques, 1868, tous droits réservés.

L'accès aux archives de la revue « Nouvelles annales de mathématiques » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

SUR LA CONSTRUCTION DES AXES D'UNE SURFACE DU SECOND DEGRÉ;

PAR M. H. PICQUET, Sous-lieutenant élève du genie.

1. Dans le numéro du mois d'août des Nouvelles Annales, M. P. Serret a donné la construction des axes d'une surface du second degré. Nous allons en donner une qui, comme la sicnne, se ramène à la recherche du triangle conjugué commun à deux coniques, mais dont la démonstration, croyons-nous, est plus susceptible de faire partie d'une théorie géométrique des surfaces du second degré.

On sait qu'en adoptant une dénomination donnée par M. Poudra, l'involution plane se compose d'une série de points conjugués trois à trois, qui sont les traces sur un plan des arêtes d'une série correspondante de trièdres trirectangles ayant même sommet. Il est facile de voir que tous les triangles dont elle se compose sont conjugués par rapport à un cercle imaginaire avant pour centre la projection du sommet sur le plan et pour rayon imaginaire la longueur de la projetante de ce sommet. On peut alors, en généralisant, dire que l'involution plane est la série des points conjugués trois à trois qui sont les sommets de tous les triangles conjugués par rapport à un même cercle réel ou imaginaire. Lorsque le cercle est réel, un point quelconque du cercle est un point triple, et alors le sommet de l'involution est imaginaire, comme nous venons de le voir; le centre du cercle est le centre de l'involution: enfin l'analogie est parfaite avec l'involution linéaire; seulement elle se perspective sur un plan quelconque, suivant la série des triangles conjugués à une même conique.

Cela posé, il est facile de démontrer géométriquement que les traces de trois diamètres conjugués d'un cône sur un plan quelconque sont les sommets d'un triangle conjugué à la section du cône par le plan. Si donc nous prenons une section circulaire du cône, tous les systèmes de diamètres conjugués du cône détermineront dans son plan une involution plane dont la section du cône sera le cercle triple; si en outre on considère l'involution plane formée dans ce plan par les traces des arêtes de tous les trièdres trirectangles ayant pour sommet le sommet du cône, c'est-à-dire celle qui a pour cercle triple le cercle imaginaire avant pour centre la projection du sommet du cône et pour rayon imaginaire la longueur de la projetante, les traces des axes du cône sur le plan seront les sommets du triangle commun à ces deux involutions, triangle conjugué commun à leurs cercles triples. Ce triangle avant un point à l'infini, nous vovons qu'un axe du cône est parallèle aux plans cycliques. Pratiquement, comme on ne connaît pas les directions des sections circulaires de la surface, on devra couper le cône asymptote par un plan quelconque, et rechercher dans ce plan le triangle conjugué commun à la section du cône et à un cercle imaginaire, question élégamment résolue par M. Serret. Quoi qu'il en soit, on voit que l'analogie est parfaite avec la construction des axes d'une conique qui se ramène à celle des rayons conjugués communs à deux faisceaux en involution linéaire : l'un d'eux est formé par tous les diamètres conjugués de la conique, et l'autre par tous les angles droits qui ont pour sommet le centre de la conique. Ici ce sont les rayons conjugués communs à deux faisceaux en involution planc; l'un d'eux est

formé par les diamètres conjugués de la surface, et l'autre par tous les trièdres trirectangles qui ont pour sommet le centre de la surface.

2. Puisque nous avons parlé de théorie géométrique, nous allons faire voir comment on peut démontrer géométriquement la proposition sur laquelle nous nous sommes appuyé. Mais cette démonstration suppose la notion du plan polaire, laquelle s'appuie sur une définition, car toute théorie doit être fondée sur un axiome ou sur une définition.

Nous appellerons donc surfaces du second degré toutes les surfaces qu'un plan quelconque coupe suivant une conique: il faut commencer par en démontrer l'existence. Nous remarquerons d'abord que deux coniques situées sur une pareille surface ont nécessairçment deux points communs, car, s'il n'en était pas ainsi, le plan de l'une rencontrerait l'autre en deux points situés sur la surface en dehors de la première, ce qui est contraire à la définition.

Supposons donc qu'on nous donne deux coniques de la surface satisfaisant à cette condition: si la surface existe, un point en dehors de ces deux coniques suffira avec elles pour la déterminer, car, en faisant passer un plan quelconque par ce point, il coupera les deux coniques en quatre points, et l'on aura cinq points de l'intersection; lorsque le plan sécant variera en passant par une droite quelconque passant par le point donné, l'intersection engendrera une certaine surface bien définie, et nous allons démontrer qu'un plan quelconque la coupe suivant une conique. Pour cela, supposons que l'on ait construit la section de la surface correspondant à une position du plan sécant; le plan de cette section avec ceux des deux premières forme un trièdre sur chacune des arêtes du-

quel deux des sections viennent se rencontrer en deux points. Soient S le sommet du trièdre, α , β , γ , δ , ε , η les six points situés sur les arêtes (*); nous allons faire voir qu'un plan quelconque ABC coupera ces trois coniques en six points a, a', b, b', c, c' qui sont sur une même conique. Pour cela, considérons la section de la surface par le plan SAB, par exemple, et appliquons-lui par rapport au triangle SAB la relation fournie par le théorème de Carnot, laquelle indique que les six points γ , δ , ε , η , c, c' sont situés sur une même conique. On a alors

$$S_{\gamma}.S\delta.Ac.Ac'.B\epsilon.B\eta = S\epsilon.S\eta.Bc.Bc'.A\gamma.A\delta.$$

On aura de même, pour les triangles SAC et SBC par rapport aux coniques situées dans leurs plans respectifs,

$$S\alpha.S\beta.Cb.Cb'.A\gamma.A\delta = S\gamma.S\delta.Ab.Ab'.C\alpha.C\beta$$
,
 $S\epsilon.S\eta.Ba.Ba'.C\alpha.C\beta = S\alpha.S\beta.Ca.Ca'.B\epsilon.B\eta$.

Multipliant ces trois équations membre à membre, il vient

$$Ac.Ac'.Cb.Cb'.Ba.Ba' = Bc.Bc'.Ab.Ab'.Ca.Ca',$$

relation qui indique que les six points a, a', b, b', c, c' sont sur une même conique. C'est celle que l'on écrirait si l'on appliquait le théorème de Carnot aux points d'intersection de cette conique et des côtés du triangle ABC.

Si l'on coupe maintenant par un cinquième plan le système de ces quatre coniques, on écrira la relation fournie par le même théorème dans le cas du quadrilatère, laquelle, combinée avec celle du triangle, prouvera que les huit points d'intersection sont sur une même conique, et ainsi de suite. Donc, si pour engendrer la surface on fait passer par le point donné un nombre quelconque de sections planes, ainsi que nous l'avons dit plus haut, et si l'on coupe par un plan quelconque, tous les points d'in-

^(*) Le lecteur est prie de faire la figure.

tersection du plan avec ces courbes seront sur une même conique, qui sera l'intersection du plan et de la surface. De plus, la surface sera la même, quelle que soit la droite A passant par le point donné, car tous les plans passant par une autre droite B coupent la surface correspondante à la droite A suivant des coniques qui auraient servi à engendrer la surface correspondante à la droite B. Donc, les surfaces du second degré existent telles que nous les avons définies, et nous saurons en construire une, et une seule, toutes les fois que nous en connaîtrons deux sections planes et un point, ou, ce qui revient au même, neuf points, dont cinq soient situés dans un même plan.

Dans le cas où cela n'aurait pas lieu, nous allons seulement indiquer la construction, pour ne pas être trop long. Soient 1, 2, 3, 4, 5, 6, 7, 8, 9 les neuf points donnés. On construira les sections du plan passant par la droite 8.9 avec trois surfaces passant par les sept autres points; pour cela, il suffira de se donner à volonté deux points de chacune d'elles situés dans le plan de trois des sept premiers. Par le point 8 et les points de rencontre de ces trois coniques prises deux à deux, on fera passer trois coniques, qui auront, d'après un théorème connu, quatre points communs; par le point 9 et ces quatre points, on fera passer une conique, qui est la section de la surface par le plan considéré. Si l'on veut la section de la surface par un plan quelconque, il suffira de construire ainsi trois sections de la surface dont les intersections avec le plan donné fourniront six points de la section cherchée.

Cette construction est longue, mais n'exige que l'usage de la règle et du compas. Il n'est pas besoin en effet de connaître les points d'intersection de deux coniques pour trouver les points communs à une droite et à une conique passant par ces quatre points et un cinquième point donné.

Maintenant, il est facile de démontrer, en partant de la définition, que le cône circonscrit est du second degré. C'est la proposition corrélative de la définition, dont on déduira les théorèmes corrélatifs de ceux que nous avons déduits de la définition, par exemple, la construction par plans tangents lorsqu'on en connaîtra neuf.

En allant plus loin, nous appellerons plan polaire d'un point le lieu des points conjugués harmoniques de ce point par rapport aux points d'intersection de la surface et d'une droite quelconque passant par le point. Ce lieu est évidemment un plan, car un plan quelconque passant par le point le coupe suivant une droite. Si dans ce plan on prend un triangle conjugué par rapport à la section de la surface, ses trois sommets et le point donné seront les sommets d'un tétraèdre conjugué à la surface, car la face opposée à l'un quelconque d'entre eux renferme trois des points de son plan polaire. De la définition du plan polaire résultent tous les théorèmes relatifs aux pôles, droites et plans polaires, et en particulier celui-ci:

Si par une arête d'un tétraèdre conjugué on fait passer un plan, le pôle de cette droite par rapport à la section de la surface par le plan est l'intersection du plan avec l'arête opposée.

Si l'une des faces s'éloigne à l'infini, le sommet opposé devient le centre, car toute corde passant par ce point est partagee par lui en deux parties égales; trois droites allant de ce point aux sommets d'un triangle conjugué à la section de la surface par le plan de l'infini sont des diamètres conjugués, car si l'on applique le théorème précédent, un plan parallèle à deux d'entre elles, passant par l'intersection de leur plan et du plan de l'infini, passe par une arête du tétraèdre conjugué; donc, dans ce plan, le pôle de cette droite, c'est-à-dire le centre de la section, est l'intersection du plan avec l'arête opposée, c'est-à-dire avec le troisième diamètre: d'où la notion du centre et des diamètres conjugués. Ainsi, dans une surface du second degré, la série des diamètres conjugués trace sur le plan de l'infini des triangles conjugués à la section de la surface par ce plan. Si la surface est un cône, on peut étendre par la perspective ce théorème à une section quelconque.

D'où l'on conclut la démonstration de l'existence des axes, ainsi que nous l'avons vu, et leur construction, qui d'ailleurs ne saurait être linéaire, puisque c'est un problème du troisième degré.

Tel est notre avant-projet de théorie géométrique des surfaces du second degré. On pourra en trouver le développement dans un Mémoire dont l'insertion nous a été promise dans le Journal de l'École Polytechnique, et l'on y verra que la théorie de l'involution plane s'y applique aussi bien que celle de l'involution linéaire à la théorie des sections coniques.