Nouvelles annales de mathématiques

Questions

Nouvelles annales de mathématiques 1^{re} série, tome 13 (1854), p. 314-316

http://www.numdam.org/item?id=NAM 1854 1 13 314 1>

© Nouvelles annales de mathématiques, 1854, tous droits réservés.

L'accès aux archives de la revue « Nouvelles annales de mathématiques » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

QUESTIONS.

293. Soient p un nombre premier et X un polynôme tel que

$$X = a_1 + a_2 x + a_3 x^2 + \ldots + a_n x^{n-1}$$
.

En donnant à chaque coefficient a toutes les valeurs

$$0, 1, 2, 3, \ldots, p-1,$$

on aura p^n valeurs de X, dont l'une sera zéro. Si l'on élève toutes les valeurs de X à la puissance m, et qu'on représente la somme des résultats par $\sum X^m$, on aura

$$\sum X^m = \text{ un multiple de } p,$$

si $m < p^n - 1$; mais l'égalité précédente n'aura pas lieu si $m = p^n - 1$. (J. A. Serret.)

294. Soient P_1 , P_2 , P_3 ,..., P_n , n points matériels d'égales masses; G_2 le centre de gravité de P_1 , P_2 ; G_3 le centre de gravité de P_3 et de la masse $P_1 + P_2$ posée en G_2 ; G_4 le centre de gravité de P_4 et de G_3 , et ainsi de suite; de sorte que G_n est le centre de gravité de P_n et de G_{n-1} ; G_n est indépendant de la manière dont on prend les masses; désignons par $A_{(i)}$ la distance de G_{i-1} à P_i , la quantité

$$\frac{1}{2}(A_2)^2 + \frac{2}{3}(A_3)^2 + \left(\frac{3}{4}\right)(A_4)^2 + \ldots + \left(\frac{n-1}{n}\right)A_n^2$$

est constante, dans quelque ordre qu'on prenne les masses.

Observation. G₁ est la même chose que P₁: ainsi A₂ est la distance de P₁ à P₂. (STEINER.)

295. Par un point P pris dans le plan d'une courbe algébrique M, on mène des normales à cette courbe, qui la rencontrent aux points $A_1, A_2, ..., A_n$. On suppose que la somme des carrés de ces normales est égale à p^2 , quantité constante. Le point P engendre une nouvelle courbe M_1 ; la normale à cette courbe menée par le point P passe par le centre de gravité des points A_1, A_2 , etc.

Cherchons un point Q tel, que l'on ait

$$(QA_1)^2 + (QA_2)^2 + ... + QA_n = p^2.$$

Le lieu du point Q est une courbe M, touchant la courbe M, au point P.

Il en sera de même pour une relation quelconque entre les normales; dans la relation donnée, M₂ est un cercle.