Nouvelles annales de mathématiques

Question d'examen sur la sinussoïde

Nouvelles annales de mathématiques 1^{re} série, tome 7 (1848), p. 436-437

http://www.numdam.org/item?id=NAM 1848 1 7 436 1>

© Nouvelles annales de mathématiques, 1848, tous droits réservés.

L'accès aux archives de la revue « Nouvelles annales de mathématiques » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

QUESTION D'EXAMEN

sur la sinussoïde.

Problème. Trouver l'aire d'une sinussoïde.

Solution. Soit $y = \sin x$ l'équation donnée, axes rectangles; cherchons l'aire comprise entre les deux ordonnées y_1, y_2 , correspondant aux abscisses x_1, x_2 ; divisons l'inter-

valle x_1 — x_1 en n+1 parties égales, et faisons x_2 — x_4 —(n+1)h; l'aire cherchée est évidemment la limite de la suite :

$$h[\sin x_i + \sin(x_i + h) + \sin(x_i + h) + \dots \sin(x_i + nh)]$$

$$= \frac{h \sin\left(x_i + \frac{nh}{2}\right) \sin\frac{h}{2}(n+1)}{\sin\frac{h}{2}} \quad (V. \text{ t. III, p. 523}).$$

$$\int_{0}^{nh} \frac{x_i - x_i - h}{n} \cdot \text{substituent actte valeur, et faisant and } \frac{h}{nh} = \frac{x_i - h}{nh} \cdot \text{substituent actte valeur, et faisant and } \frac{h}{nh} = \frac{x_i - h}{nh} \cdot \text{substituent actte valeur.}$$

Or, $\frac{nh}{2} = \frac{x_3 - x_1 - h}{2}$; substituant cette valeur, et faisant ensuite h = 0 et $\frac{h}{\sin \frac{h}{2}} = 2$, il vient pour l'aire cherchée:

 $2\sin\frac{1}{2}(x_1+x_1)\sin\frac{1}{2}(x_2-x_1)$; et lorsque $x_1=0$, l'aire devient $1-\cos x_2$; c'est ce que donne immédiatement le calcul intégral.