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APPROXIMATION 

BY BOUNDED ANALYTIC FONCTIONS 
By M. J . L. W A L S H , 

Harvard University. 

PREFACE. 

In the past twenty years (since io,38) there has been developed^ as 
a sequel to the theory of approximation by polynomials and by other 
rational functions of one complex variable, a theory of approximation 
by functions analytic and bounded in a given région. This new 
theory thus stuaîes approximation by functions which may be 
regarded as the most useful non-trivial functions, analytic in a given 
région which is not merely the plane with one or more points deleted. 
This new theory has application to the study of approximation by 
polynomials and by more gênerai rational functions, but applies also 
to topics in numerical analysis, and indeed is of significance whenever 
a séquence of functions analytic in a région D converges in a subregion 
ofD. 

The purpose of the présent essay is to set forth both in broad outline 
and in détail some of the principal results of the new theory, inclu-
ding some previously unpublished methods and results, and to indi-
cate promising directions for future research. This essay can be read 
independently of any other treatment of approximation, although 
naturally occasional proofs are merely sketched or omitted. There 
is included much of the pertinent theory of approximation by poly
nomials and other rational functions, although the new theory is not 
intended in any way to supersede the old. 

While the theory hère described, including the related theory of 
approximation by rational functions, has been unfolding in récent 
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years, it has been the présent writer's privilège to be personally asso-
ciated with other workers in the field, notably H. G. Russell, J . L. Doob, 
J. H. Curtiss, W . E. Sevvell, Y. G. Shen, E. N. Nilson, A. Spitzbart, 
H. M. Elliott, P. Davis, J. P . Evans and A. Sinclair. 

The writing of this essay has been sponsored in part by the United 
States Air Force, Office of Scientific Research of the Air Research and 
Development Command. 

J. L. WALSH. 

INTRODUCTION. 

APPROXIMATION TO f(z) ON A CLOSFD SET E BY FUNCTIONS ANALYTIC 

\ND BOUNDED IN A REGION D CONTUNING E . 

Reyond the study of the possibility of uni forai approximation to 
real functions by polynomials or by trigonométrie polynomials 
(Weierstrass), there has been developed in the past half-century a 
theory relating order (degree) of approximation by polynomials or 
by trigonométrie polynomials of given degree to the continuity 
properties of the functions approximated (de la Vallée Poussin, 
Lebesgue, D. Jackson, S. Rernstein, Montel). 

An analogue of this theory has later been developed, study of 
approximation on a closed point set E in the plane of the complex 
variable z, to a function f (z) given on E, by polynomials or more 
gênerai rational functions of z\ hère the main problem is as before to 
relate degree of approximation on E on the one hand to continuity 
properties (includinganalyticity, existence of derivatives on the boun-
dary of E, Lipschitz conditions on such derivatives, etc.) of / (z) 
on E on the other hand (1). Analyticity of /(z) on E is related to 
géométrie degree of approximation, weaker continuity properties to 
weaker degree of approximation. 

(1) We shall not need to use gênerai results on the possibility of uniform approxi 
mation by bounded anal) tic functions, but mention by waj of background the folio 
wing [1935, chap. II, theorem 15; chap. I, theorem 8] : Let the closed point set E 
be bounded by a finite number of mutually disjoint Jordan curves and let f (z) 
be analytic in the interior points of E and continuons on E, or let E be an arbi 
trary closed set and f (z) analytic on E. Let points zk be given, at least one in 
each of the régions into which E séparâtes the plane. Then on E the function f {z) 
can be approximated as closely as desired by a rational function whose pôles lie 
in the zk 

Dates in square brackets refer to works mentioned in the Bibliography. 
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Similar problems arise in the plane of the complex variable if E 
lies interior to a région D and f {z) is approximated on E by func
tions cpn (z) required merely to be analytic and bounded : | yn(z) \ ^Mn 

in D. Thus we relate degree of approximation lof(z) onE expressed 
in ternis of asymptotic properties of M,t on the one hand to continuity 
properties of f (z) on E on the other hand. This problem (in the 
continued notation already introduced) is the primary topic of the 
présent essay; the theory hère set forth essentially includes many 
phases of the problem of approximation even by polynomials and 
rational functions. The theory is by no means complète in the sensé 
that no further open questions exist ; nevertheless the main outline 
of a complète theory now seems to be taking shape, and appropriate 
indications for continued research seem clear. 

Our study is divided into several parts : Problem A deals with a 
function/ (z) analytic on E, and with géométrie degree of conver
gence as measured in terms of M,, ; Problem a deals with weaker 
properties than analyticity (e. g. existence of derivatives and Lipschitz 
conditions) of /(z) on E and slower than géométrie degree of conver
gence ; Problem (3 deals with such weaker properties o f / (z) not 
on E but on a closed set E t containing E and contained in D, where 
/ ( z) is analytic on E but not throughout Ei, and degree of convergence 
on E is géométrie but expressed with various refinements depending 
upon the properties o f / ( s ) on E t . This gênerai topic of approxi
mation by bounded anah tic functions has been treated in a number 
of separate papers (see Ribliography), but no combined exposition 
has hitherto been available, even in outline. 

Chapter I deals with Problem A, chapters II and III with Problems a 
and 6, in each case giving the main features of the theory with some 
detailed proofs. Chapter IV is devoted to a summary of further 
related results, mainly without proofs. 

CHAPTER I. 

PROBLEM A : f(z) ANALYTIC ON E. 

1.1. E the unit dise, D a concentric dise. — The Taylor deve-
lopment is both a principal tool in the study of analytic functions 
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and a model for other séries expansions, especially those defined by 
interpolation. So we présent first a relatively simple géométrie 
situation [1946], for the purpose of indicating to the reader our 
gênerai problems and methods without topological complications. 

For convenient référence we state some well known properties of 
the Taylor development 

( 1.l.i) / ( * ) = ao-+- a\z •+• «'.s2 + . • • 

of a function f {z) analytic in the dise | s | < p , but analytic 
throughout no larger concentric dise (1). Then we hâve (Cauchy-
Hadamard) 

\_ 
( 1 . 1 . 2 ) H m sup I an \n= -? 

« •>• * p 

whenceif we set 

( 1 . 1 . 3 ) S„(.z) s= a0-+- a^z - h . . .-¥- anzn, 

we hâve also 

(1.1.4) ; i | i m o o S u p [ m a x | / ( ^ ) - S n ( ^ ) | , f o r | z | ^ r ] « = ^ ( r < p ) , 

1 

( 1 . 1 . 5 ) Km sup [max| S „ ( * ) | , for \z\^rf= - ( r ^ p ) . 

The fact that the first member of (1 .1 .4) *s n o t greater than the 
second member is an immédiate conséquence of ( 1 . 1 . 2) ; if the first 
member of ( 1 . 1 . 4 ) is less than the second member, we hâve for n 
sufficiently large and for | z | = r 

| / ( , ) _ S n ( r ) | - £ ^ ( r i < r ) , 

S„{z)-Sn_i{z)\=-\an\r>> ^ ^ + ^ = - , rn-\ A r n 

in contradiction to ( 1 . 1 . 2 ) . Equation ( 1 . 1 . 5 ) may be established 
similarly. Thèse équations are to be used in proving : 

THEOREM 1 . 1 . 1 . — Let the function f {z) be analytic in the dise 
\z | < p ( > 1 ) but not continuable so as to be analytic throughout 

( l ) A function is analytic on a point set if it is single valued there and if in some 
neighborhood of each point of the set it can be represented by a convergent power 
séries. 
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any larger concentric dise. For each M ( > o ) let <jpM(*) dénote 
the (or a) function analytic and in modulus not greater than M 
in the dise D : | z \ ^L R ( > p) for which 

(1.1.6) mM=[max \f(z) — ?M(-Z)|, Z on E], E: | s | ^ i , 

is least. Then we hâve 

( i . 1 .7 ) ^ m s u p ^ = e x p [ l o - ^ o J . 

The existence of the extremal function <pM(^) follows readily by 
the use of the Montel theory of normal families. The uniqueness 
has been established in this case by Agmon (unpublished). To 
study the asymptotic relationship between M and raM we use the Sn (z) 
as comparison approximating functions. 

If pi (<C p) is arbitrary, we hâve from ( 1 . 1 . 4 ) 

(1.1.8) | / ( « ) _ S | | ( * ) | ^ ^ < | * | ^ i ) , 
Pi 

and from ( 1 . 1 . 5 ) 

(1-1.9) \Sa(z)\^àl^l ( | * | ^ R ) ; 
Pt 

hère and in the sequel the numbers A with or without subscripts 
usually represent constants independent of n and z, constants which 
may vary from one formula to another. The functions Sn(z) forai 
a séquence whereas the functions cpM(<s) dépend on a continuous 
parameter; in order to use the Sn(z) for comparison we now relate M 
and n by the inequalities 

/A M , A2R« ^ . . A2R"+i 

so it follows from ( 1 . 1 . 9 ) that for M sufficiently large S„(.s) is one 
of the competing functions in the class whose extremal function 
is ¥ M ( * ) - Then we hâve by ( 1 . 1 . 6 ) and ( 1 . 1 . 8 ) and by the first 
of inequalities ( 1 . 1 . 10) 
/A 1 \ ^ A t AiM 

From the second of inequalities ( 1 . 1 . 1 0 ) we may write 

logM-logA-, 
l o g R - l o g p , < , l + I > 
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so the extrême inequality of (1 .1 .11 ) implies 

. ™ I (logM — logA2)logR~] 
m. ^ A3M exp [ - g

l o g R _ * l o g p i j > 

forMsufficientlylarge. WhenM-> oo and then p4->-pwenowdeduce 

(1.1.12) Jim sup/n^MZexp L — °g.p— • 

To complète the proof of ( 1 . 1 . 7) we use Hadamard's three-circle 
theorem, to the effect that for an analytic function <D(s), the function 
log [max | <& (z) |, for | z \ = r] is a convex function of log r. It turns 
out that the stronginequality in ( 1 . 1 . 12) would imply the uniform 
convergence of a séquence of the functions cpM(*) throughout a 
région | s | < r ( > p ) , which contradicts the définition of p. W e 
choose the spécifie values M = en(n = i, 2, . . . ) , and dénote the 
corresponding extremal functions cpM(z) by <bn(z) respectively. The 
(Fatou) boundary values of ¢^(^) on the circumference | -3 | = R 
exist, and for those values we hâve 

( ' "' ' ( \<!>n+i(z)-$n(z)\^2e»+i. 

W e assume the strong inequality in (1 .1 .12 ) , whence for suitably 
chosen Ri(p < R i < R) and for n sufficiently large 

i _ 

„l»3M . r - logR, n 

^ [ l o g R - l o g R . J ' 

so by ( 1.1.6) for M = en and M = e'1^ on the circle | z | = 1 we hâve 

(.1.1.14) i $ ^ ( * ) - * » ( * ) i ^ a e x p [ ï ^ 5 Z T K | k ; ] ' 

The last inequality of ( 1 . 1 . i3) , together with ( 1 . 1 . i4) , yields by 
the three circle theorem (which indeed applies not only to the 
maximum of the modulus of an analytic function on three circumfe-
rences, but also to the supérieur limit of the maximum modulus of a 
séquence on thèse circumferences) 

Hm sup [max | * n + 1 (*) - *„(*) |, for | z \ = rf ^ exp [ ^ R Z ^ R , ] 

( i ^ r ^ R ) ; 
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this last member is less than unity for every / i < R i , hence is less 
than unity for some r0 ( p <. r0 *< Ri ) • The séquence ®n (z ) converges 
uniformly in \z | ̂  /'0, and by ( 1 . 1 . 12) converges 10 / (3 ) in \z\^Li, 
so f (z) can be continued so as to be analytic throughout | z | < r0 

(>> p), contrary to hypothesis. 
As an immédiate application of theorem l . 1.1 we prove : 

THEOREM 1.1.2. — Under the conditions of theorem 1.1.1 lot 
4*M(^) vepresent a set of arbitrary functions analytic in D and 
satisfying there the respective inequalities | tyM (z) | ^ M. If we set 

H M = [max \f(z) — <J>M(*) | , Z on E ] , 

we hâve 

(1.1.,5) j™ sup # ^ e x p [ | o - ^ o g p ] . 

From the définition ôf the cpM(*) follows |jLM^/nM, so (1 .1 .15) 
follows from ( 1.1.7 ). 

We emphasize the facl that the conditions on the ^M(*) are very light; 
the conclusion applies to very many sets 4*M(^) converging uniformly 
in a circle. Theorem 1.1.2 and its analogues (wrhich for the most 
part are henceforth left to the reader for formulation) are among the* 
most interesting results set forth in the présent essay, due to the light 
hypothesis and the frequency with wrhich the situation occurs in ana-
lysis. Although in iheorems 1.1.1 and 1.1.2 we hâve required M 
to become continuously infinité, it is in fact sufficient if M becomes 
monotonically infinité through a séquence of values Mn such that the 

quotients * n approach unity; the original form of ( 1 . 1 . 7 ) 

follows if we set <pM(^) = cpMft(^), M „ ^ M < MII+1. 
Further use of the three circle theorem (détails are similar to those 

above) establishes : 

COROLLARY 1 .1 .1 . — Let the functions cpM(s) (extremal or not) 
for every M sufficiently large be analytic and in modulus not 
greater than M in the région \ z | < R ( > T), let f(z) be defined 
onTL: \ z \ = i, and let raM be defined by (1 .1 .6) . If we hâve 

(1.1.,6) jinj. sup , ^ e x P [,0 ~ ' - f o g p ] ' 
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then we hâve 

(1.1.17) j j f e » p [ » « i / w - * « « \ ^ \ ^ \ ^ u ^ ^ ] ^ ^ 
[ ( i ^ r < p ) , 

H ^ s u p t m a x l ^ ) ^ ^ 
(1.1.18) 

( p ^ r ^ R ) ; 

consequently f(z) can be extended from E so as to be analytic 
throughout | 3 | < p. / /«£ w known that f(z) cannot be extended 
from JL so as to be analytic throughout any | s | < p' ( p '> p)> Mew 
the equality signs hold in (1.1.16), (1 .1 .17) and (1.1.18). 

Many results in the sequel admit analogues of corollary 1 .1 .1 , 
which refer to the convergence of a given set of functions which are 
not necessarily extremal ; henceforth also thèse analogues, which are 
readily stated and proved, are ordinarily left to the reader. 

1.2. Analyticity in an annulus. — In theorem 1.1.1 we hâve 
required both f(z) and the <PM(^) to be analytic throughout suitable 
dises, even though the détails of the conclusion are concerned pri-
marily with the annulus 1 < |^ | < R . A resuit related to theorem 1.1.1 
can be established, as we now show, w h e n / ( ^ ) and the <PM(^) are 
analytic merely in suitable annuli. 

A function f(z) analytic in an annulus 1 < | z | < p is expressed 
there by Gauchy's intégral formula 

(1.2.1) f{z)=M*)+M*) ( K l * l < p ) , 

(1.2.2) / l ( , ) s a J L f Ù£iÉ! ( | I | < M < I < P - I ) , 
27ZI c / . 1 | = 0 _ = * — Z 

(1.2.3) / , ( . ) = - ^ f 4 ^ (I^l>1)5 

the function fi(z) defined by (1 .2 .2 ) is analytic throughout the 
dise | z | < p, where the intégral is taken in the counterclockwise 
sensé, o < £ < p — | s | ; the function fi(z) defined by (1 .2 .3 ) is 
analytic throughout | ^ | ^ > i , where the intégral is taken in the 
clockwise sensé, £ < | z |— 1. We consider fi(z) and /2 (2) as 
the components of f(z). If f(z) is continuous (i. e. in the tvvo-
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dimensional sensé) on | z | == i, so also i s / 2 ( z ) as defined on | z \ = i 
by (1 .2 .1) or by continuity from ( 1 . 2 . 3 ) ; likewise if f(z) is 
continuous on | z\ = p, so also i s / i (^ ) . An analogue of theorem 1.1.1 
now suggests itself : 

THEOREM 1 .2 .1 . — Let the function f°(z) be analytic in the 
annulus i < | z | < p but not continuable so as to be analytic 
throughout any annulus i < | z | < p' ( p ' > p), and let f°(z) be 
continuous on \z\ = i. For each M ( > o ) let cpi(^) dénote the 
(or a) function analytic and in modulus not greater than M in 
the annulus î < | z | < R ( > p) for which 

(1.2.4) m J I = [ m a x | / 0 ( a ) - ç 5 ( O | , - 5 o n E ] > E : | s | = i , 

is least. Then ( 1 . 1 .7 ) is valid. 

Set f°(z)=fi(z)-\-f2(z) as in ( 1 . 2 . 1 ) , where the compo-
nents fi(z) and f*(z) are defined by the analogues of ( 1 .2 .2 ) 
and ( 1 . 2 . 3 ) , and / 2 ( s ) is continuous on E, analytic in | * | > i . 
Then f± (z) is analytic in | z | < p, and by theorem 1.1.1 there exist 
functions %(z) analytic with | 0N(s) | ̂ N in | z\ < R such that 

(1.2.5) l im^suP[max| / l (s)-^^^ 

W e now set cpM(s) == 8N(*) + / * ( * ) in 1 ^ | z \ < R, whence 

f(z)-^(z)^fo(z)-^(z) onE, 

and for suitably chosen N0 we hâve 

| ? M ( * ) | ^ M = NH-NO in i - £ | * | < R , 

where N0 ŝ independent of M and z. From (1.2.5) follows (1.1.12), 
with the notation ( 1 . 2 . 4 ) , a n d the equality sign follows precisely as 
in the proof of theorem 1 .1 .1 . Theorem 1.2.1 is established. 

W e remark however that proof of the existence of the extremal 
function <pî(s) minimizing (1 .2 -4) requires additional discussion. 
W e need not assume f°(z) continuous on E, but do assume f°(z) 
bounded in a neighborhood of E, and in (1 .2 -4) w ^ use the least 
upper bound and (Fatou) boundary values o f / 0 ( s ) and <p£(z) almost 
e very where on E. For fixed M suppose we hâve <\>n(z) analytic 
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and 14^(3)1^*1 in i < | * | < R , with 

Kn= [sup|/°(*) —<M*)I> Z o n E]^™M> 

where raM is the greatest lower bound of the expression 

[sup|/»(*)-<K*)| , .*oiiE] 

for ail ty(z) analytic with |v|/(*)|^:M in i < | z | < R. Let p4 be 
fixed, i < pt < p. For some Aj we hâve 

| / Q ( « ) - M » ) I^A t on |* | = P l , 

where Ai is independent of ra, and on | z \ = i we hâve 

\f»(z)-ttn(z)\^n. 

If ^o(^) is a limit function of the séquence $n(z) in i < | * ] < R , 
we hâve 

|<|/o(*)|-£M in K h | < R , 

and in i < | z | < p4 the function log | / ° (^) — +o(*) | is dominated 
by the harmonie function whose value on | z \ = p4 is logA4 and 
whose value on | z | = i is log/nM. Consequently (1 .2 -4) , involving 
boundary values of the functions on E, is valid with cpS(^) = 1^0(̂ )-

A new resuit for an arbitrary annulus A can be found from 
theorem 1.2.1 by mapping A onto an annulus 1 < | z \ <Z R : 

THEOREM 1 .2 .2 . —Let A be an annulus bounded by two Jordan 
curves C0 and Ci, with C0 interior to d , let u(z) be harmonie 
in A, continuous in A + CoH-Ci, and equal to zéro and unity 
on C0 and G4 respectively. Let C^ dénote generically the Jordan 
curve u(z) = cr (o < X 1) in A, and let Y<j dénote the annulus 
bounded by C0 and Ca. 

Let f(z) be analytic throughout Tp but not continuable so as to 
be analytic throughout any YG (a >> p), and let f(z) be continuous 
on C0. For each M ( > o ) let <pM(s) dénote the (or a) function 
analytic and in modulus not greater than M in A such that 

( 1 . 2 . 6 ) / ^ = [ m a x | / ( s ) - ? M ( £ ) | , * ™ C o ] 

is least. Then we hâve 
1 p 

( 1 . 2 . 7 ) lim sup/?i ,osM = <??•-' 
M>ao 
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If A is the annulus i < | z | < R, we hâve u (z) = | p > and u (z) 

is invariant under conformai mapping. 
The analogue of corollary 1.1.1 is of course valid, and indeed is 

a conséquence of corollary 1 .1 .1 . We prefer to formulate for later 
use a more gênerai resuit : 

COROLLARY 1.2.2. — Let D be a région containing a closed 
set E, and let D — E be connected. Let u(z) exist, harmonie 
in D — E, continuous and equal to zéro and unity on the boun-
daries of E and D respectively'. Let G* dénote generically the 
locus u(z) = <j ( o ^ < 7 ^ i ) in the closure of D—E, and let Ya 

dénote the set o <C u(z) <o" inD — E. Let f(z) be defined on C0, 
and for each M ( > o ) let <pM(<s) extremal or not be analytic 
witn ! ?M(*) I — ^ in D —E' V tne first member °f (1 -2.7) is 
not greater than the second member, and mM is given by ( 1 . 2 . 6 ) , 
we hâve 

1 P—g 

(1.2.8) lim sup[max ( / (* ) — ¥ M ( * ) | , z on C^]10*81 ^ eP"1 (o^'<r<p) , 

1 p—(j 

(1.2.9) lim sup|"max|<pM(*)|, z on C^f^^e^1 ( p ^ c r ^ i ) ; 

consequently f(z) can be extended from E so as to be analytic 
throughout Tp. If it is known that f(z) cannot be extended 
from E so as to be analytic throughout any r p / ( p ' > p), then the 
equality signs hold in ( 1 . 2 . 7 ) , ( 1 . 2 . 8 ) and ( 1 . 2 . 9 ) . 

Corollary 1 .2 .2 remains valid if we allow M to become infinité 
merely through a monotonie séquence of values M„ such that the 

quotients .g ^I+1 approach unity. 

The proof of corollary 1 .2 .2 can be given at once by use of the 
Nevanlinna two-constant theorem, a generalization of the three-circle 
theorem, which for the présent purposes merely expresses the fact 
that a suitable upper bound for cpM(s) (M = e11) i a D — E is readily 
calculated in terms of eu^, thanks to our hypothesis concerning <pM(s) 
on Go and Ci. Indeed the two-constant theorem applies directly to 
the superior limit of the maximum modulus of a séquence of 
functions tyn(z) analytic and bounded in A, on three level loci of u(z) ; 
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we deduce 
i 

lim sup [max | tyn(z) |, z on C9]
n^ efl-H*—*)<*, 

where we assume 
i 

lim sup [max | tyn(z) |, z on Co]"^ e«, 
î 

lim sup [max | *\>n(z) |, z on C i ] " ^ e6. 

The harmonie function a -f- ( 6 — a)u(z) dominâtes 

lim sup log ( [max | tyn(z) |, z on C(j]* ) for every J ( O ^ J ^ I ) . 

Inequalities ( 1 . 2 . 8 ) and ( 1 . 2 . 9 ) thus proved [as in 1940] 
for M = en, hold also for functions $ M ( s ) defined as yen(z) 
for en^ M < e , l+1, and combine with the hypothesis on the <pM(̂ ) to 
prove the corollary, 

The functions <pM(̂ ) need not be continuous on C0, but if not we 
use the (Fatou) boundary values on Co and the least upper bound 
in ( 1 . 2 . 6 ) . An inequality similar to ( 1 . 1 . i4) shows that the 
séquence <PM(*) (M. = en) converges uniformly in a neighborhood 
of Co, and the limit function f(z) is bounded in such a neighborhood, 
and possesses the given f(z) as boundary values almost everywhere 
on Go. 

To complète the analogy with the case that C0 and C4 are concen
tra circles, one may inquire whether in theorem 1 .2 .2 the <PM(̂ ) 
can be chosen analytic throughout the closed interior of Ci if f(z) 
is given analytic throughout the interior of Cp. We prove 

THEOREM 1 .2 .3 — Under the conditions of theorem 1 .2 .2 
let f(z) be analytic throughout the interior o / C p ; then the 9M(*) 
of theorem 1 .2 .2 can be chosen analytic (and in modulus not 
greater than M) throughout the closed interior of C4. 

If <pM(s) is the function already defined and used in theorem 1 .2 .2 , 

we consider its components 'fM1(*) and <pMt)(s) analytic respectively 

interior to Ci and exterior to CoJ in A we hâve 
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For z on C0 we hâve (o < s <C p) 

(1.2.,0) / ( 0 - ^ ( - ) - ^ -
'c * - a 

2KÏJ 
C. 

çp ( f ) 

in fact, for z on C 0 the intégral of — — over Ce equals the intégral 
CD V t} 

of -^-— over a circle of variable radius r containing C£, and the latter 

(constant) intégral approaches zéro as r -> oo by virtue of <p (ao)= o. 
W e may now write from ( 1 . 2 . 1 0 ) 

[max \f(z) — ?M1 (z) |, z on C0] ^ Ai [max \f(z) — cpM(*) |, z on Ge], 

whence by ( 1 . 2 . 8 ) 

( 1 . 2 . u ) lim sup[max | / (* ) — <pMl(*)|, s o n C0] lo«M^ e^ -1 , 

and £ ->o yields the fact that the first member of ( 1 . 2 . 1 1 ) is not 
greater than the second member of ( 1 . 2 . 7 ) . 

To be sure, although the functions ?M 1(s) are analytic interior 

to Ci , they hâve not been shown to satisfy |<pM ( * ) | ^ M there. 

Nevertheless we hâve for z in the neighborhood of C4 

| çMl(a) | ̂  A2M, | 9m(z) | ^ | ? M (*) | HH | 9m(z) | ̂  (1 + A2)M. 

Since (1 + A 2 )M is a bound for | <?m(z) | in the neighborhood of C 4 , 

it is also such a bound throughout the interior of C 4 . W e also hâve 
as M - > c» 

log(i-h A2)M _ log(i-f- A2) -t-logM 
logM ÏÔ̂ M M ' 

from which it follows that the first member of ( 1 . 2 . 1 1 ) is not 
greater than the second member of ( 1 . 2 . 7 ) , where M now indicates 
a bound on the modulus of om(z) interior to Ci- However, the 
strong inequality is not possible (compare corollary 1 . 2 . 2 ) , so the 
proof of theorem 1 . 2 . 3 is complète. 

MÉMORIAL DES SC. MATH. — N« 1 4 4 . 2 
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A proposition weaker in some respects than theorems 1.2.2 
and 1.2.3 and corollary 1.2.2 is still of interest : 

COROLLARY 1 .2 .3 . — Let d be a Jordan curve, and let f{z) be 
continuous on G. A necessary and sufficient condition that f(z) 
be the boundary value of a function analytic in an annular 
région of which C is one of the two boundaries, is that there 
exist a séquence of functions fn(z) continuous on G and analytic 
in an annular région A of which C is one of the two boundaries, 
such that 

lim sup [max \f(z) —fn(z) \, z on C]n< i, 

1 

lim sup [max \fn(z) |, z in A]n<<x>. 

A necessary and sufficient condition that f(z) be analytic on C 
is that there exist a séquence of functions fn(z) analytic in an 
annular région A containing G (which séparâtes the two boundary 
components of A) and satisfying thèse inequalities. 

If f(z) is given, analytic respectively in an annular région of 
\vhich*C is one of the two bounding curves or in an annular région 
containing C, the annular région A may be chosen arbitrarily, 
satisfying the topological conditions mentioned. 

The direct parts of corollary 1 .2 .3 may be proved by approximating 
separately the two components of the given/(s), using theorem 1.2 .3; 
the indirect parts may be proved by applying the two-constant 
theorem to the séquence fn(z)—fn-±(z) in A; in the first case the 
application is made but once, using the annular région A; in the 
second case the application is made to the two annular régions into 
which C séparâtes A. 

The topological situation of theorem 1 .2 .2 can be generalized so 
that for instance G0 is replaced by a Jordan arc. 

THEOREM 1.2.4. — Let D be a simply connected région whose 
boundary contains more than one point, and let JLbea continuum 
containing more than one point, interior to D. Let A dénote the 
annular région D — E, and let u(z) be harmonie interior to A, 
continuous in the closure A of A, equal to zéro and unity on the 



APPROXIMATION BY BOUNDED ANALYTIC FUNCTIONS. 15 

boundaries of E and D respectively. Let G<T dénote generically 

the Jordan curve a (2 ) = o - ( o < o - < i ) m A, and let Ya dénote the 

locus o < u (z) <C o- in A. 

Z>2 / ( * ) ^ analytic throughout rp-f- E, but not continuable so 

as to be analytic throughout any TCT (o*> p). For each M ( > o) 

/e/ cp (z) dénote the (or a) function analytic and in modulus not 

greater than M in D such that 

( 1 . 2 . 1 2 ) m M = [ m a x | / ( 3 ) — <p M (s ) | , z on E ] 

is least. Then we hâve 
i P 

( 1 . 2 . i 3 ) lim supm'" ;M = e*~". 

Let s ( o < £ < p ) b e arbitrary, and let us set 

(1.2.i4) i»M(e) = [max \f(z) — <pMs(«) |, * on G£], 

where ?M.(^) dénotes the (or a) function analytic and in modulus 
not greater than M in D such that ( 1 . 2 . i4) is least. Since E lies 
interior to Ce we obviously hâve 

( 1 . 2 . 1 5 ) m M ^ m M ( e ) . 

It is no loss of generality to assume D the interior of a Jordan 
curve Ci. The function harmonie in the annulus bounded by CÊ 

and Ci, continuous in the closure ôf the annulus and equal to zéro 

and unity on Cgand C4 respectively is uz(z) = ^ > which takes 

the value p __ on Cp. Ry theorem 1.2.3 we hâve 

limsuprmM(£)],,J*M = eP-1; 

use of ( 1 . 2 . i5) and approach of e to zéro implies that the first 
member of ( 1 . 2 . i3) is not greater than the second member. 
However, by corollary 1.2.2, the strong inequality is impossible, so 
theorem I .2 .4 follows. 

1 .3 . Approximation by polynomials. — The discussion of 
Problem A (relation of régions of analyticity to géométrie degree of 
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convergence), culminating in theorems 1.2.2, 1.2.3 and 1.2.4, is 
entirely satisfactory so far as concerns approximation on a set E 
consisting of a single continuum by functions <pM(<s) analytic and 
bounded in a simply connected région D containing E. The 
direct theorems [proof of the existence of the <pM(<s)] are based on 
the Taylor development, and the indirect theorems (proof of the 
analyticity properties of the approximated function when order of 
approximation is given) are based on the threë-circle theorem. W e 
now engage in the study of more complicated topological situations, 
notably point sets E consisting of several continua and régions D that 
are not simply connected. The two constant theorem (as in the proof 
of corollary 1.2.2) is adéquate for the indirect theorems, but the 
Taylor development is not adéquate for the direct theorems, and 
less familiar expansions are to be used. 

A limiting case of a région D bounded by a continum not a single 
point is that of the plane of finite points; boundedness of the 
approximating functions in D is then no longer feasible, but it is 
appropriate to study approximation by polynomials, as we now 
proceed to do ( l ) . 

The discussion of paragraph 1.2 is significant in the study of 
approximation by polynomials ; we prove 

THEOREM 1 . 3 .1 . — Let E be a closed bounded set whose 
complément K is connected and possesses a Green1 s function g(z) 
with pôle at infmity. Let E R ( R > i ) dénote generically the 
locus g(z) = logR in K. Iff(z) is defined on E, and if\pn(z)} 
is a séquence of polynomials of respective degrees n, then the 
relation 

(1.3.1) j lim^up^ = ? (P>I)' 
( jjtn= m a x [ | / ( * ) — Pn(z)\, z on E ] , 

implies that f(z) can be continued analytically from E so as 
to be analytic throughout the interior of Ep. Indeed, the 
séquence \pn(z) ) converges uniformly on every closed set interior 
to Ep. 

( l ) A polynomial of degree n is a function of the fonn aQzn-h axz"-l-+-.. .H- an 

whether or not a0 = o. A rational function of degree n is a rational function havin| 
pôles whose total order is not greater than n. 
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A point z is considered to be interior to Ep (which may consist 
of a finite number of Jordan curves, mutually exterior except that 
each of a finite number of points may belong to several such curves) 
if z is separated by Ep from the point at infinity. 

An important tool is a lemma due to S. Bernstein in the case 
that E is a finite line segment ; we use [ 1935, § 4.6] a method of proof 
first published by M. Riesz, independently found by M. Montel. 

GENERALIZED BERNSTEIN LEMMA. — Let E and ER satisfy the 
conditions of theorem 1 . 3 .1 . If P«(*) is a polynomial of 
degree n which satisfies the inequality | P / i ( - 3 ) | ^ M 0 on E, th 
we hâve 

(1.3.2) | P i i ( * ) | ^ M . R « 

throughout the closed interior o /E R . 

Green's function g(z) is defined by the propert] 
harmonie at every finite point of K, of being continuou 
zéro on the boundary of R, and of having the form 

#(j5) = log| z\-+- g^(z) for large | * | , 

where gi (z) is harmonie at infinity. If h (z) is a function conjugate 
P ( z} 

to g(z) in R, the function g{"+lh\~\-\n *s analytic although perhaps 
not single valued throughout R, and its modulus is single valued 
there. This function has a modulus which is continuous and not 
greater than M0 on the boundary of R, hence which is not greater 
than Mo throughout R. Then for z on ER we hâve ( 1 . 3 . 2 ) , 
so (1 .3 .2 ) is valid throughout the closed interior of ER. 

W e are now in a position to prove theorem 1 .3 .1 . Équa
tion (1 .3 .1 ) yields by elementary algebraic inequalities 

lim supfmax \pn(z) — pn-i(z) \, z on E ] " ^ - , 

i .R 

whence by the generalized Bernstein lemma, 

lim sup[max \pn(z) -pn-1(z)\, z on E R f ^ - (R > i). 
«•> » L " J p 

The séquence pn (z) converges uniformly on every ER ( 1 < R < p), so 
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theorem 1.3.1 follows. It is worth noting too that for an alternate 
proof we may choose a fixed R ( > p), may write from ( 1 . 3 . 2 ) 

J R 

lim sup [max \pn(z) | , z on E R ~|"^ — 

and apply corollary 1 .2 .2 with D the interior of ER (which may 
g( z) 

consist of several mutually disjoint régions) and with u(z) = ^ '-

Green's function, of fundamental importance in the (indirect) 
theorem 1.3 .1 on approximation by polynomials, is also of funda
mental importance in direct theorems. 

THEOREM 1 .3 .2. — Let B dénote a finite number of mutually 
exterior analytic Jordan curves, R the infinité région bounded 
by B, and g(z) Green's function for R with pôle at infinity. 
Suppose for large \z\ we hâve 

g(z) = log| z | -+- gi(z), where ^i(oo) = — go-

Then for z in R we hâve 

(1.3.3) g{z) + g^j*y{s)\osrds, 9(s)^±àJ-, 

where v dénotes inner normal for R and r=\z — t \, t on B ; we 
also hâve 

(1.3.4) fy(s)ds = i. 

Consequently, if for n = i, 2, . . . the points Ç1/0, ff\ . . . , Ç^ are 

equally spaced on B with respect to the parameter o-0= / cp(s) ds, 

we hâve 

(1.3.5) j J i m l w ^ O r » ^ ^ ^ , 
( ^ ( . ) ^ ( ^ - ^ ) ) ( ^ - ^ ) ) . . . ( ^ - 5 8 - ) ) , 

uniformly on any closed bounded set in R. 
Thanks to the spécial properties of g(z) at infinity and the 

relation # ( 3 ) = 0 on B, Green's formula 

'o-iîjCO-'ï-'4*-')*. 
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where B' is B together with a large circle whose center is z, reduces 
to ( 1 . 3 . 3 ) , and (1 .3 .4 ) follows by g(z) = l o g | ^ | -f-gi(z)* Equa
tion (1 .3 .5 ) expresses the exponential of the Riemann sums for thg 
intégral in ( 1 . 3 . 3 ) , where the points t = ^n) of subdivision of B are 

equally spaced with respect to <J0 = (y(s)ds, and uniformity of 

convergence results from equicontinuity. Equation ( 1 . 3 . 5 ) was 
first used by Hilbert in the case that B is a single curve, and by 
Faber in the more gênerai case. The full use of ( 1 . 3 . 5 ) in relation 
to géométrie degree of convergence by polynomials is due to Walsh 
and Russell [1934] '• 

THEOREM 1 .3 .3 . — Let E and ER satisfy the conditions of 
theorem 1 .3 .1 . Let f(z) be analytic throughout the interior 
o / E p but not throughout the interior of any Ep. (p' > p). 

If tn(z) dénotes the polynomial of degree n of best approxi
mation tof(z) on E in the sensé of Tchebycheff, then we hâve 

1 

(1.3.6) lim sup[max \f(z) — tn(z)\, z on E f = - • 
«>« P 

Of course tn(z) is the polynomial of degree n which minimizes 
the square bracket in ( 1 . 3 . 6 ) ; this polynomial is known to exist 
and be unique. By the method of proof of theorem 1.2.4, it is 
sufficient hère to suppose E bounded by a finite number of mutually 
exterior analytic Jordan curves B. For z interior to Ep_e ( o < 2 £ < p ) 
we use Hermite's interpolation formula 

(1.3.7) / W - M ^ - è j f 
<*>n-hi(z)f(t)dt 

where <àn+i(z) is defined by ( 1 . 3 . 5 ) and pn(z) is the polynomial 
of degree n which interpolâtes to f(z) in the points Çl

;"
+1) on B. 

There follows 

[max 1/00 — tn(z) |, son E] ^ [max \f(z) — pn(z) |, son E] 
^ [max \f(z)— pn(z)\, z on E,+.£], 

and the superior limit of the nth root of this last member is by (1.3.5) 

not greater than ^ - ^ ; thus ( E - > O ) the first member of(l .3.6) is not 

greater than the second member; equality follows by theorem 1.3.1. 
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Any séquence of polynomials tn(z) of respective degrees n 
satisfying ( 1 . 3 . 6 ) is said to converge maximally to f(z) on E. 
Theorem 1.3.3 is due to S. Bernstein if E is a line segment. 

Theorems 1.3.1 and 1.3.3 form a satisfactory solution of Problem A 
for approximation by polynomials. They include the spécial case 
of Theorem 1.2.3 in which Ci is a level locus of Green's function 
for the exterior of C0 with pôle at infinity. In order to prove a 
direct theorem concerning Problem A for approximation by bounded 
analytic functions in gênerai régions, we establish such a theorem 
for approximation by rational functions, of which theorem 1.3 .3 is 
a limiting case. 

1.4 . Approximation by rational functions ; applications. — 
Theorems 1.3.1 and 1.3.2 are limiting cases of results to be proved 
by similar methods [io,35]. 

THEOREM 1 .4 .1 . — Let D interior to d be a région whose 
boundary consists of mutually disjoint analytic Jordan curves B4, 
Ba, . . ., B^; Ci, C2, . . . , Gv, and let u(z%) be harmonie in D, equal 
to zéro on B = ^ 7 B / ; and equal to unity on C = ^ 0 / , . Then 
for z in D we hâve 

u(z) —i == / <p(s) \ogrds — / y (s) \ogrds, 
(1.4.1) { J* Jc 

i I au I 

where N dénotes inner normal for D and r=\z — t \, t on B or G ; 
we set 

(1.4.2) fy(s)ds = -z. 

Jh 

Consequently, if for n = i, 2, . . . the points (3*/0, (3^, . . . , (3̂ ° are 

equally spaced on B with respect to the parameter 0-0==/ 9 (s) ds 

and the x{"\ a{£\ . . . , a ^ similarly spaced on G, we hâve 

(1.4.3) Km | »„(«)!» = « T , 

( 1 - 4 - 4 ) w « ( z ) = ( 3 _ a <«>) . . . ( * -«< ;<>) ' 
uniformly on any closed set in D. 

file:///ogrds
file:///ogrds
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Equation ( 1 . 4 . i) is merely Green's formula for the function u(z) 
and the région D ; the logarithm of the two members of équa
tion ( 1 . 4 . 3 ) expresses the convergence of the Riemann sums for the 
intégrais in (1 .4 . i) , where the points t = (3^ and <x(

y'
l) subdividing B 

and C are chosen equally spaced with respect to the parameter 

ffo = / ? ( * ) « 

uniformity of convergence follows from the uni forai continuity of 
the harmonie functions involved. 

For purposes of interpolation by rational functions it is convenient 
to modify (1 .4 -4 ) by setting 

( 1 . 4 . 5 ) « „ ( * ) = ( * _ a V , . ) . . . ( j _ a i i « 0 ' 

where now for each n there are chosen n-\-\ points fi(n} on B; 
équation ( 1 . 4 . 3 ) persists uniformly on any closed set in D. 

THEOREM 1.4.2. — Under the conditions of theorem 1.4.1 let Ya 

dénote generically the locus u(z) = cr (o < <r < i) in D, and let D a 

dénote the point set o << u(z) < a in D. Let the function f(z) be 
analytic throughout Dp plus the closed interiors of the curves B. 
Then there exists a séquence of rational functions rn(z) of 
respective de grées n, whose pôles a™ lie on a locus rlH_e, determined 
by interpolation to f(z) in points (3(

y
Ai) on B, satisfying 

i - p + e 

(1.4.6) lim sup[max \f(z) — rn(z) \, z on B]7l^e ~ , 
« • > 00 

1 1 —p-+-£ 

(1.4.7) lim sup [max | rn(z) \, z on C]n^ e T 

/ / > 00 

The function u(z) can be extended harmonically across C so 
that u (z) remains harmonie in the région bounded by B and some 
locus r 1 + e : u(z) = i + £ (e]> o), consisting of v analytic Jordan 
curves exterior to D near to the respective C7. W e set for z interior 

to rp_e (e < £) 

(1.4.8), /{3)-rn(z)^-L-. f »*<»/(*)* 
x o—t 
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where ww(^) is defined by ( 1 . 4 . 5 ) and (1 .4 .3 ) is valid with u(z) 

replaced by —!-— and T replaced by —^—. For z on T(J(a < p — s) 

by ( 1 . 4 . 3 ) as modified, the superior limit of the n[h root of the 

second member of ( 1 . 4 . 8 ) is not greater than exp - — - — - L 

whence (CT-> o) we hâve ( 1 . 4 . 6 ) . 
To establish ( 1 . 4 . 7 ) we use ( 1 . 4 . 8 ) together with Gauchy's 

intégral formula f o r / ( 3 ) ; for z interior to rp_e we hâve 

(1.4.9) l | l U ^ _ j ^ _ _ _ _ _ _ , 

and since the integrand has no singularity in z on rp_E, this formula 
is valid for z on C. Inequality ( 1 . 4 . 7 ) follows. 

Theorem 1.4.2 applies [i938] to approximation by bounded 
analytic functions : 

THEOREM 1 .4.3. — Assume the géométrie conditions and 
notations of theorems 1.4.1 and 1 .4.2. Let the function f(z) 
be analytic throughout Dp and also throughout the closed 
interiors of the By, but not analytic throughout any Dp/ ( p ' > p). 
Let <pM(*) dénote the (or a) function analytic and in modulus 
not greater than M in D plus the closed interiors of the By, for 
which 

( 1 . 4 . 1 0 ) m M = [max ( / ( * ) —<PM<*)|, z on BJ 

is least. Tlten we hâve 
1 P _ 

(1.4.11) lim sup/MÏJsM = e 1 _P. 

Our hypothesis that each of the Jordan curves Gy is analytic 
involves no loss of generality; any given D can be mapped so that 
it lies interior to an analytic Jordan curve, the image of d ; further 
conformai maps can be made onto régions D so that the images ofCi 
and C2 are analytic, then the images of Ci, C2 and CA are analytic, etc. 

If B is composed of analjtic Jordan curves, the method used 
in theorem 1.1.1 based on ( 1 . 1 . 4 ) and ( 1 . 1 . 5 ) but now based 
on (1.4.6) and (1.4.7) shows that the first member of (1.4.11) is not 
less than the second member (of course s -> o). Equality in (1 .4 . 11) 
follows from corollary 1.2.2. 
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If B is not composed of analytic Jordan curves [indeed, it is suffit 
cient if B is composed of a finite or infinité number of components, 
provided u(z) exists], the method of theorem 1.2.4 complètes the 
proof. 

THEOREM 1.4.4. — With the topological hypothesis and notation 
of theorem 1 .4 .3 , let f(z) be analytic in Dp and continuousjon B 
but not analytic throughout any Dp/ (o < p <C p' < i ) ; let <pM(^) 
dénote the (or a) function analytic in D, and in modulus not 
greater than M in D, for which ( 1 . 4 . io) is least. Then (1 .4 .11) 
is valid. 

Theorem 1.4.4 is to be proved by use of the components oîf(z). 
For z in D, say o < £ < ^ ( ^ ) < p — e» we hâve 

(1.4.12) f(z)== , / *~—- 1 : / -——̂  , 

where the intégrais are taken over the loci indicated, in the positive 
sensé with respect to the point set e<Cu(z) < p — e. The second 
intégral in ( 1 . 4 . 12) represents a function analytic in Dp plus the 
interiors of the By satisfying the hypothesis of theorem 1.4 .3 , 
and the first intégral represents a function analytic throughout D, 
continuous on B. Détails of the proof of theorem 1.4.4 are left 
to the reader, and are entirely analogous to those of the proof of 
theorem 1 . 2 . 1 ; it is convenient to apply corollary 1.2.2, which 
indeed may be regarded as a converse of theorem 1.4.4. 

CHAPTER II. 

PRQBLEM a : f(z) NOT ANALYTIC ON E. 

2 .1 . Approximation by bounded analytic functions. — Chapter I 
represents in broad outlines a relatively complète treatment of Pro
blem A; we turn now to Problem a, i. e. degree of approximation on 
a point set E to a function whose properties (less than analyticity) 
are given on E. W e are in a position to make large use of the theory 
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of trigonométrie approximation in the real domain, in the form given 
it by de la Vallée Poussin [ 1919], namely : 

THEOREM 2 . 1 . 1 . — Iff(®) ls a function with period m whose pth 

dérivâtive satisfies a Lipschitz condition of order a ( o < <x < 1 ), 
then there exist trigonométrie polynomials 

n 

Tw(0) = ^ ( a ^ c o s k 6 •+- bnk sin k6) 
0 

of order s n = i, 2, .. ., such that for ail 0 

(2.1.1) 1/(6)-^(6)1^^-

Conversely, if the T„(ô) exist such that ( 2 . 1 . 1 ) holds for ail 8, 
then / ( 0 ) has a pth derivative which satisfies a Lipschitz condition 
of order et.: 

Our fundamental theorem hère concerning approximation by 
bounded analytic functions is [compare 195 Ï , 1952c and 1939 e]. • 

THEOREM 2 . 1 . 2 . — Let the function f (z) defined on the ana
lytic Jordan curve C possess a pth derivative on C which satisfies 
a Lipschitz condition of order a(o < a < 1), with respect to arc 
length on G. Then there exists a région D containing C and a 
séquence of functions fn(z) analytic in D satisfying 

(2.1.2) | / „ ( s ) | ^ A R " , zinD, 
A, 

nP+** 
(2.1.3) 1 / ( 3 ) - ^ ( , ) 1 ^ ^ - , zonC. 

Conversely, iff(z) is defined on C, and the functions fn(z) ana
lytic in some région D containing C satisfy ( 2 . 1 . 2 ) and ( 2 . 1 . 3 ) , 
thenf{f(z) exists and satisfies a Lipschitz condition of order a 
oh C. 

W e establish the first part of theorem 2 . 1 . 2 when C is the unit 
circle by the use of theorem 2 . 1 . 1 . A trigonométrie polyno
mial T„(ô) may be expressed on T : \z \ = 1, by the Euler formulas 

z" = cos n 6 -h i sin n 6, z~n = cos n 6 — i sin «6, 
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as a polynomial P„ (z,-)inz and - of degree n, and if ( 2 . 1 . i ) is 

I / i \ l , . Pn(Z'z) satisfied wemav write \*P»(z,- )L^A 2 onr . The functions \ \ z/\ — zn 

and ^"P^ ( z, - j are analytic respectively in the closed régions | z | ̂  i 

and \z\^i, and are in modulus not greater than A2 on T and in 

those régions. Thus we hâve P„(^ , - ) ^ A 2 R " on the two 

circles | s | = R ( > i ) and | z \ = ~ » so that same inequality persists 

in the annulus D : ^ < | z | < R. 

The first part of theorem 2 . 1 . 2 , thus established when G is T, fol
lows in the gênerai case by a conformai map of C onto T, so that 
a neighborhood of G is carried into a neighborhood of T. The 
property of a function that it has a pth derivative satisfying a Lips
chitz condition of order a is invariant [ 1942, § 5 . 2 ] under conformai 
transformation. 

To prove the second part of theorem 2 . 1 . 2 we may assume that 

C is T and D contains a closed annulus D0 : -, ^ | z | ^ p ( > 1 ). 

For z interior to D0 we write 

fn (Z)=fni(z)-+-fn*(z), 

(2.1.4) { 2 * 1 - V I = P ' - • » 
Mt)dt 

1*1=? 

where fni (z) and fn*(z) are analytic in | z \^L p and | s | ^ respec

tively with fn2 (00) = 0. We set further 
00 — œ 

(2.1.5) /„,(s)=2a«***' /«(*)= 2 ank3i' 

and the Cauchy inequalities on thèse coefficients, computed 

from intégrais of ' ^ T o v e r I z \ = P an(* I s I = " respectively, are 

\<^nh\^z "TiTT' Then on T we bave for the partial sums Sn^(z) and 

!'-<*>-à/ ; 
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T«,N(-s) of order N of the respective séries in ( 2 . 1 . 5 ) 

AR» A3R" 
p* 

* = N+1 

| / « I ( * ) - S „ , N ( » ) | ^ 2 

(2.1.6) 

I f (r\ T (r\\ / V A R " A t ' R " 

A = N + l 

Let us choose the positive integer X so that p ' > R, whence we 
deduce from ( 2 . 1 . 6 ) , ( 2 .1 .4 ) and (2 .1 .3 ) 

1 / ( 3 ) - SnM*) - T,*,A„(S) | ^ ^ , 3 on T. 

OnT the polynomial Sn,ui(^) + T , , ^ , ^ ) in z and - is also a trigono

métrie polynomial of order In. To be sure, thèse trigonométrie 

polynomials are not defined for ail orders, but wemay set on T 

TA(6) ^ S„,u(3) -t- TnMi*) [À w ^ A < X ( /n- 1 )]. 

Then the trigonométrie polynomials T/,(ô) are defined for ail À"(> o) 
and satisfy on T 

l / ( « ) - T x ( 6 ) | ^ ^ , 

and the second part of theorem 2 . 1 . 2 is a conséquence of the second 
part of theorem 2 . 1 . 1 . 

Theorem 2 . 1 . 2 is to be contrasted with corollary 1 .2 .3 . A less 
gênerai situation than that of theorem 2 . 1 . 2 deserves explicit 
statement : 

THEOREM 2 . 1 . 3 . — L e t the function f (z) defined on the analytic 
Jordan curve C, analytic interior to G, and continuous in the 
closed interior of O, possess a pth derivative on C which satisfies a 
Lipschitz condition of order a ( o < a < i ) , with respect to arc 
length on C. Then there exists a région D containing C and its 
interior, and a séquence of functions fn(z) analytic in D satis
fying ( 2 . 1 . 2 ) and ( 2 . 1 . 3 ) . 

Conversely, iff(z) defined on G and the functions fi(z) ana
lytic in some région D containing C and its interior satisfy (2.1.2) 
and ( 2 . 1 . 3 ) , thenf(z) is analytic interior to C, continuous in the 
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corresponding closed région, and fp)(z) exists and satisfies a 
Lipschitz condition of order OL on C. 

In the first part of theorem 2 . 1 . 1 the séquence Tn(0) arises by 
summation of the Fourier development of / (0) by the melhod of 
D. Jackson, so if / (0) is the set of continuous boundary values of a 
function analytic in | z | << i, with z = £'6 on T : \ z \ •= i , the trigo
nométrie polynomial T„(Q) in ( 2 . 1 . i ) is also on T a polynomial mz 
of degree n. Thus if C in the first part of theorem 2 . 1 . 3 is T, 
the fn(z) satisfying (2 .1 .3 ) can be chosen as polynomials in z of 
degree n, and ( 2 . 1 . 2) in the closed interior of JTR follows by the gene-
ralyzed Bernstein lemma. Consequently, if G in theorem 2 . 1 . 3 is 
arbitrary, a conformai map of the interior of C onto the interior of T 
yields the existence of D and the f,t(z). The second part of theo
rem 2 . 1 . 3 follows from the second part of theorem 2 . 1 . 2 . 

2 .2 . Approximation by polynomials. — Both for its intrinsic inte-
rest and for later application we proceed to consider Problem a for 
approximation by polynomials. Hère the fundamental theorem 
is [ ig36, 1937]. 

THEOREM 2 . 2 . 1 . — Let B t , B2, . . . , B^ be mutually exterior 

analytic Jordan curves, and let E dénote the sum of their closed 

interiors. Iff(z) is analytic in the interior points o / E and conti

nuous on E, and iff(p)(z) exists and satisfies a Lipschitz condi

tion of order a ( o < a < i ) on ^ B y , then there exist polyno

mials pn(z) of respective de grées /i = 1, 2, . . . such that 

( 2 - 2 -0 | / ( s ) - / > „ ( * ) | ^ - - A _ , zonE. 

Conversely, if f(z) is defined on E and ( 2 . 2 . 1) holds for a 
séquence of polynomials pn(z) of respective degrees n, then f(z) 
is analytic in the interior points of E, continuous on E, and 

onJ^Bj possesses aplh derivative satisfying a Lipschitz condition 

of order a (o < a < 1 ). 

The second part of theorem 2 . 2 . 1 is readily proved from the second 
part of theorem 2.1 . 3 , if we identify the given pn(z) with t h e / „ ( * ) . 
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It follows from ( 2 . 2 . i ) that the Pn(z) are uniformly bounded on 
each By, and ( 2 . 1 . 2 ) follows in an arbitrary bounded région D 
containing E from the generalized Bernstein lemma ( § 1 . 3 ) ; conse-
quently the second part of theorem 2 . 1 . 3 is applicable. 

In proving the first part of theorem 2 . 2 . 1 (the gênerai method is 
due to J. H. Gurtiss) we apply the first part of theorem 2 . 1 . 3 to 
each By( i ^Lj ^- p.), making use of the functions fn (z) and the ine
qualities ( 2 . 1 . 2 ) and ( 2 . 1 . 3 ) ; we assume, as we may do, that (2 .1 .2) 
and (2 .1 .3 ) hold for ail the functions fn(z) independently of/, and 
we choose p(>> 1 ) in such a way that the régions D of theorem 2 . 1 . 2 
for the various By in their totality contain the locus Ep (notation of 
theorem 1.3.1) which consists of f/. mutually exterior analytic Jordan 
curves containing the respective By. For each n the function fn(z) 
shall hence forth indicate the aggregate of the previous/ / ï(^) defined 
for / = 1 , 2 , . . ., p , so the new/„ (z) is analytic throughout the closed 
interior of Ep and satisfies 

(2.2.2) \fn(z) | ^AR'S *inEp , 

(2.2.3) ( / ( 3 ) - / , , ( , ) 1 ^ ^ 1 *onE. 

W e proceed to use the method of proof of theorem 1 .3 .3 . and in 
particuiar we use Hermite's interpolation formula ( 1 . 3 . 7 ) , now in 
the form ( 1 < i -f- e < p) 

( , . , . 4 , / . ( , ) - ^ ( - ) - ^ / ¾ ¾ ¾ ^ . ,oBE1+, 

From the relation ( 1 . 3 . 5 ) and from ( 2 . 2 . 2 ) and ( 2 . 2 . 4 ) follows 
for z on Ei+ £ and hence for z on E 

(2.2.5) l / n ( * ) - / > » * ( * ) | ^ ^ > 
Pi 

where A2 is independent of n and N and where pi ( 1 <; pi < p) is sui-
tably chosen. As in the discussion o f (2 .1 .6 )we choose the integer X 
so that p* > R, whence by ( 2 . 2 . 5 ) and ( 2 . 2 . 3 ) 

l / ( * ) - / * . > ( * ) 1 ^ ^ ' *°nE. 

Hèrepn , \n( z) YS a polynomial in z of degree X n, and is not defined 
for ail degrees ; however we may set 

pk(z) =zpn}in(z) [ X n - £ * < X ( n - * - i ) ] , 
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so the pu(z) are defined for k = i, 2, . . . , and (2 ,2 .1 ) follows. 
Theorem 2 . 2 . 1 is established. 

A somewhat analogous resuit [1932], involving a function given 
merely on a single Jordan curve, is 

THEOREM 2 . 2 . 2 . — Let C be an analytic Jordan curve contai
ning the origin in its interior. If f(z) defined on G has a pth 

derivative which satisfies a Lipschitz condition of order 

a (o < a < i)onC, then there exist polynomials P,J *, - j of degree n 

in z and - such that 
z 

/ T \ A 

z on C. 
(2-2.6) | / ( 5 ) _ P | 1 ^ , I ) | 

71P+-* 

Conversely, if f(z) is defined on G and if there exist polyno

mials P n ( z, - ) of degree n in z and - such that ( 2 .2 .6 ) is satis-

fiied, then f[p) (z) exists on G and satisfies there a Lipschitz condi
tion of order <x. 

If f(p)(z) exists on G and satjsfies there a Lipschitz condition of 
order <x, we use the first part of theorem 2 . 1 . 2 , and assume the func
tions fn(z) analytic in the closure of the région D, whose boundary 
consists of analytic Jordan curves C0 (interior to C) and C t (contai
ning G in its interior). As in (2.1.4) weset/„(3) =fni(z) -\-f#12(^), 

f , . x _ I ffn(t)dt I ffn(t)dt 

where fni(z) and/„ 2( .s) are analytic respectively interior to Ci and 
exterior to C0. From ( 2 . 1 . 2 ) we deduce \fa(z) | ̂  A2R" on any 
closed set interior to d and \fni(z) | ̂  A2R" on any closed set exte
rior to C0. Use of équation (2.2.4) , where fn(z) is replaced byfni(z) 
and where the intégral is taken over a Jordan curve interior to d but 
containing C in its interior, proves (pi > 1 ) 

\fni(z) —pn,y(z) | ^ - \ - , i; on G, 
Pi 

for polynomials pn^(z) in z of respective degrees N, and similar rea-
soning proves a corresponding resuit involving fni(z) and polynô-

MBMORIAL DBS SC. MATH. — N» 1 4 4 . 3 
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mials P„N ( - j in - of respective degrees N. As in the discussion 

of ( 2 .1 .6 ) and (2 .2 .5 )we choose the integerX so that p\ > R, whence 
by ( 2 . 1 . 3 ) 

/(«)-^»(*)+p«^(i)]|^s^; *onC* 
If we now set 

?k(z, M =pn>ln (Z) •+• Pn,ln (jA [ln^k<X(n + l ) ] , 

the PA ( z, -j are defined for ail degrees k, and (2 .2 .6 ) follows. 

To prove the converse we note by (2 .2 .6 ) that the T?n (z, - \ are 

uniformly bounded on C : Vn(z, - j ^ A t . If g (z) dénotes Green's 

function for the exterior of G with pôle at infinity and h (z) the conju-
gate function, we hâve 

' • ( ' • ; ) 
en(t?+i/f) 

;At 

on G and exterior to G even at infinity ; in particular on the 
locus GR : g(z) = log R ( > o) exterior to G we hâve 

(2.2.7) ••(-•D : A,R". 

If go(z) dénotes Green's function for the interior of C with pôle in 
the origin we prove similarly ( 2 .2 .7 ) on the locus CR : go ( z ) = log R. 
Then (2 .2 .7 ) n°lds in the annular région bounded by CR and CR, 
so the conclusion of the second part of theorem 2 . 2 . 2 is a conséquence 
of theorem 2 . 1 . 2 . 

Such a property as ( 2 . 2 . 6 ) is [igSge] intrinsically invariant 
under conformai transformation. 

2 . 3 . Compléments, 
are of interest. 

Some compléments to the preceding results 

THEOREM 2 . 3 . 1 . — Let G be an analytic Jordan arc, let D be a 
région containing G, tel f(z) be defined on G, and let func-
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tions ftt(z) analytic in D satisfy ( 2 . 1 . 2 ) and ( 2 . 1 . 3 ) . Then on 
any closed subarc ofC containing no endpoint fw(z) exists and 
satisfies a Lipschitz condition of order a ( o < a < i ) . 

Let the transformation z = y(w) map C onto the line segment 
S : — i ^ w ^. i, the map being conformai and one to one in sui
table neighborhoods of G and S; inequalities (2 .1 .2 ) and ( 2 . 1 . 3 ) 
in suitably modified forai persist. Green's function g(w) for the 
iv-plane slit along S with pôle at infinity admits a représentation ana-
logous to ( 1 . 3 . 3 ) , where the intégral is taken over S1+*(e > o) and 
the analogue of ( 1 . 3 . 5 ) persists exterior to S1+c . The method of 
proof of the first part of theorem 2 . 2 . 1 is valid, and shows the exis
tence of polynomials pti(w) in w of respective degrees n satisfying 

(2,3.1) | / [ 9 (w)]-pn(w)\^-±2-} „,0nS. 

The classical transformation ii' = cosô maps S onto the axis 
— oo<Ô<-f-oo, transforms f[y(w)] into a periodic function of 0 
and pn(w) into a trigonométrie polynomial in 0 of order n. Theo
rem 2 . 1 . 1 now applies, and yields the conclusion. 

W e hâve essentially proved the first part of : If D is suitably 
chosen, a necessary and sufficient condition for the existence of 
the fn(z) satisfying ( 2 . 1 .2 ) and ( 2 . 1 . 3 ) is that f[y (cos ti)]pos-
sess a plh derivative with respect to 0 which satisfies a Lipschitz 
condition of order <x with respect to 0. 

If / [ ? ( c o s 0 ) ] satisfies this latter condition with Z = e'8, there 

exist by theorem 2 . 1 . 1 polynomials pn / z , l-\ of degree n in Z 

and ^ satisfying on T : | Z | = i the inequality 

/ [ ? (cos 6 ) 1 - / , , , ^ , 0 1 * A 
/Z/>-H* 

Since/[<p(cos0)] as a function of Z is symmetric in the axis of reals, 
there follow on T 

fll(co*H)]-Pn(L9z} 

| / [ , ( c o s e ) ] - I ^ ( z 5 l ) _ I ^ ( l , z ) | 

A 

— nfi+* 
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The transformation w = - ( Z + ^ j now yields ( 2 . 3 . i) and (2 .1 .3) , 

also ( 2 . 1 . 2 ) b y ( 2 . 3 . i ) and the generalized Bernstein lemma. 
If the functions fn(z) of theorem 2 . 3 . 1 are given as polynomials 

in z of respective degrees n, inequality (2.1.2) in a suitable région D 
is a conséquence of ( 2 . 1 . 3 ) , by the generalized Bernstein lemma. 
Moreover, the methods that we hâve developed (compare the proof 
of the first part of theorem 2 . 2 . 1 ) show that if/[<p(cos0)] possesses 
a/?th derivalive with respect to 0 which satisfies a Lipschitz condition 
of order a with respect to 0, then the functions fn(z) in ( 2 .1 .3 ) can 
be chosen as polynomials of degree n in z. Thus if D is an arbitrary 
bounded région containing C, and if/[cp(cos0)] satisfies the condi
tion just mentioned, the functions fn{z) of theorem 2 . 3 . 1 exist, as 
polynomials of degree n in z. 

The second part of theorem 2 . 1 . 2 follows from theorem 2 . 3 . 1 , for 
we may apply the latter to two subarcs of the Jordan curve C of 
theorem 2 . 1 . 2 overlapping each other at both ends. 

Thus far in chapter II we hâve considered, concerning approxi
mation by bounded analytic functions, séquences rather than families 
depending on continuous parameters. W e now treat briefly extremal 
functions [ ig51 ] , for definiteness in the situation of theorem 2.1 . 2 ; 
but it is clear that a similar discussion applies also in numerous other 
situations. 

THEOREM 2 . 3 . 2 . — 'Le t T) be a bounded annular région and let 
the analytic Jordan curve G separate the two bounding curves o / D . 
Let the function f(z) be defined on C, and for each M ( > o) 
let yM(z) dénote the (or a) function analytic and of modulus not 
greater than M in D such that 

(2.3.2) mM = [max (/(«) — ?n(«)|, * on G] 

is least. Then a necessary and sufficient condition that f(z) pos-
sess apth derivative with respect to arc length onC which satisfies 
there a Lipschitz condition of order a (o < a << 1 ), is that 

1 

(2.3.3) logM.m£+a 

be bounded as M->oo. 
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If ( 2 .3 .3 ) is bounded, we choose the séquence M = e", whence 

» + « s At __ ^ A> 
mP^^Ll, mi 

and the conclusion follows from theorem 2 . 1 . 2 . In theorem 2 . 3 . 2 
it is sufficient if ( 2 .3 .3 ) is bounded for a monotonie séquence M„ 

with . g "+- bounded ; boundedness of the original form of (2 .3 .3 ) 

follows if we set cpM(*) = çpMji(*), M* ^ M < M / l+1. 
To prove the converse, we note that in the first part of theorem 2.2.2, 

the polynomials Vn(z. M satisfy (2 .2 .7 ) f° r suitably chosen R in 

an;\ bounded région D containing C but whose closure does not 
contain the origin ; this fact appears in the proof of the second part 
of theorem 2 . 2 . 2 . Gonsequently in the first part of theorem 2 . 1 . 2 
the région D may be chosen as an arbitrary annular région 
whose two boundary curves are separated by C, the position of the 
origin being unessential. W e now compare raM defined by (2 .3 .2 ) 
with the measure of approximation to f (z) on G of the fn(z) of 
theorem 2 . 1 . 2 . Let n be defined as a function of M by the 
inequalities A R " ^ M < AR"-*"1, in the notation of ( 2 . 1 . 2 ) ; we 

Ai 
hâve mM ̂  - ^ in the notation of (2 .1 .3 ), whence 

1 

_ i _ A ' + a 

mP^*^—L—, log M < log A -f-(/i 4-1) log R, 

from which the boundedness of ( 2 .3 .3 ) follows. 
It is merely for convenience in exposition that we hâve supposedD 

in theorem 2 .3 -2 to be an annular région (i. e. bounded by two 
Jordan curves); it is sufficient, as is shown by a suitable conformai 
map, if D has at least one boundary component not a single point 
interior to C and at least one such boundary component exterior to C. 

2 .4 . Approximation by rational functions. — An extension [1956 a ] 
of theorem 2 . 2 . 1 to a more gênerai topological situation turns out to 
be useful in the sequel : 

THEOREM 2.4?. 1. — Let E be a bounded open set whose boundary 
J consists of a finite number of mutually disjoint analytic Jordan 
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cuives ij, J = V i . . Let / ( s ) be analytic on E, continuous 

0/1E + J, a«d possess on 5 a plh derivative which satisfies a Lip
schitz condition there of order a (o < a < i). In the extended 
plane, let the set complementary / o E + J consist of the mutually 
disjoint régions E4, E2, . . ., Ev, let a point a/, be given in each E*, 
ÛS/M£/or eac/? « = v, v + i , v - ( - 2 , . . . let positive integers mnfi be 

V 

given witn2,m>nk=n- Suppose the numbers are bounded 
A = l 

/ o r a// k and n. Then there exist rational functions R,*<3) of 
respective degrees n whose pôles (of respective multiplicities not 
greater than m,^) lie in the points a* such that we hâve 

(2.4.1) | / ( s ) _ R „ ( 3 , | ^ - A _ , zon E + J. 

For z in E we hâve 

<*.*..> /(*)-y— f4^> 
V ' ^ V ' ^ J 2 7C * /j / — Z 

where the intégrais are taken over ail J7 in the positive sensé with 
respect to the régions which compose E. Although the function 

(2.4.3) -L, cm* 
Wj^ t-Z 

is defined and analytic at ail points of the plane (including by conti
nuity the point at infinitj ) except on 3j, it is not defined on J7 ; we 
hereby define ( 2 . 4 . 3 ) on J7 by équation ( 2 . 4 . 2 ) , of which ail ternis 
but the one (2 .4 .3) are previously defined. Then (2 .4 .3 ) iî> conti
nuous on E, and on J, has a/?1'1 derivative which satisfies there a 
Lipschitz condition of order y; the function (2 .4 .3 ) is analytic 
throughout that one of the two régions bounded by ij which contains 
a subregion of E adjacent to 5j, and is continuous in the corresponding 
closed région. 

Each curve Jy belongs to the boundary of precisely one région E*. 
For every k ( i ^.k ^ v), we define the function 

y *i 

where the intégrais are extended over the complète boundary of E/r, 



APPROXIMATION BY BOUNDED ANALYTIC FUNCTIONS. 35 

over each 5j of this boundary in the same sensé as in ( 2 . 4 . 2 ) ; this 
function Fk(z) is analytic in the interior points of the complé
ment C(E /k) of E/t (the complément contains E + J ) , continuous 
on C (EA), and on the boundary of EA has a p{b derivative satisfying 
a Lipschitz condition of order a, by our définition of ( 2 . 4 . 3 ) on J7. 

The e q u a t i o n / ( ^ ) ==SF',x(z) follows from ( 2 . 4 . 2 ) , for z on E + J. 

By theorem 2 . 2 . i there exists a rational function R^ Â (^) of 
degree mntç whose pôles lie in aA such that we hâve 

(2.4.5) | Fk(z) - R ^ ( S ) | ̂  - ^ , z on G (E,). 

If we assume ^ A0 for ail k and n, we hâve 

A* AAAÇ+" 

V 

consequently J\.n(z) = / ^ ^ , ( ^ ) is a rational function of the kind 

required, which satisfies ( 2 . 4 . i ) . Theorem 2 . 4 . 1 is established. 
W e shall later apply : 

COROLURY 2 . 4 . 1 . — Theorem 2 . 4 . 1 remains valid if the total 
number of given points OLJ is greater than v, provided each E* 

contains at least one otj, the équation J? mnj= n persists, and the 

quotients are bounded for ail j and n. 

W e make use of but a single point aA in each EA in establis-
V 

hing(2.4.5)asbefore; thenR„(^) = V RiîV(^)is a rational function, 

of degree n but also perhaps of smaller degree, w hich satisfies ( 2 . 4 . i ). 
In theorem 2 . 4 . 1 it is essential to place at least one point aA in 

each EA ; if no <xk lies in a particular EA, the function/ (z) = —^r> 

where (3 is a finite point in EA (assumed bounded), cannot be uni
formly approximated on J by rational functions R«(*) whose pôles 
lie in the a/. A séquence of such rational functions R«(s), conver-
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ging uniformly on J to the funct ion/(*) , wouldyield for the intégrais 
over the boundary of EA 

°=*\™fï{n(z)dz==j*f(z)dz, 

whereas the intégral oîf(z) is2ni. 
For a precisely similar reason, in approximation on a set E bounded 

by a finite number of mutually disjoint analytic Jordan curves by 
functions analytic and bounded in a région D containing E, it is 
cssential that every one of the subregions into which E séparâtes the 
plane should contain an infinité number of boundary points of D. 
For instance, theorem 2 . 3 . 2 is false if D is allowed to be merely a 
simply connected région containing E ; under such conditions if D is 

bounded and we choose f (z) = - ^ - , where (3 lies interior to C, 
z — {J 

the relation mM->o is not possible as M->oo. 
The functions R„(s) of theorem 2 . 4 . 1 satisfy an inequaliî} 

(2.4.6) |Ri . (OI^A 0 R", 

in a suitably chosen région containing E- t - J . Indeed, if gu(z) 
dénotes Green's function for the regionEA with pôle in «/„ and hk(z) 

the function conjugate to gdz) inEA, the function¢,,/(z) = R * ( z ) 

is analytic in EA even at aA, and \®„h(z) | is single valued and conti
nuous in EA. From ( 2 . 4 . i ) we deduce | R„(*) | ̂  A0 on J, whence 
\®nk(z) | ^ A0 on the boundary of EA, and | Rn(z) | ^ A0R" on the 
locus hk:gh(z) = log R ( > o) in EA. Consequently (2 .4 .6 ) is valid 
in the région DR bounded by thèse v loci LA ; the LA may be chosen 
as close to the points aA as desired, merely by choosing R sufficiently 
large. In any subregion of DR, as in DK itself, the functions R*(s) 
are analytic and satisfy ( 2 . 4 . 6 ) . 

W e hâve now at hand a converse of theorem 2 . 4 . 1 : if rational 
functions Rn(z) of the prescribed kind exist satisfying (2 .4 . i ) , 
thenf(z) is analytic on E, continuous O / Î E + J , and has a deri
vative fp)(z) on J which satisfies there a Lipschitz condition of 
order <x. W e merely apply the second part of theorem 2 . 1 . 2 . 

Since the points aA of theorem 2 . 4 . 1 are entirely arbitrary in the 
respective EA, and since any simply connected région whose boundary 
is a continuum (not a single point) can be mapped onto the interior 
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or exterior of a circle, there follows b> the method of proof of 
theorem 2 . 3 . 2 : 

THEOREM 2 . 4 . 2 . — Let F be a bounded open set whose boun
dary J consists of a finite number of mutually disjoint analytic 

Jordan curves Jy, J = 2 J/- Let D be a région containing E -f- J 

such that each of the régions E4, E2, . . . , Ev composing the 
complément of E -f- J contains at least one component of the boun
dary of D which is a continuum not a single point. Let the 
function f(z) be analytic on E, continuous on E- f -J , and for 
each M (> o) let cpM(^) dénote the (or a) function analytic and in 
modulus not greater than M in D such that 

(2.4.7) " * M = [max \f(z) — cpM(z) | , z o n E + J] 

is least. Then a necessary and sufficient condition that f(z) 
possess a pth derivative on J which satisfies there a Lipschitz 
condition of order a (o < a < i ) is that 

i 

log M • w1^ x 

be bounded as M-> oo . 

Thanks to a possible succession of conformai transformations, we 
may assume that the région D of theorem 2 . 4 . 2 is such that each E* 
contains points not in the closure of D, so the points aA in EA exterior 
to D exist for application of theorem 2 . 4 . 1 . 

Theorems 2 .4 .1 and 2 . 4 . 2 both extend to the case t h a t E - | - J is 
replaced In an arbitrary closed set E whose boundary consists of a 
finite number of mutually disjoint analj tic Jordan curves; the new 
set may contain a Jordan curve which does not bound (wholly or in 
part) a région belonging to the new set E ; compare [1956 a ] . 

CHAPTER I1L 

PltOBLEM 3 : f(z) ANALYTIC ON E , MORE REFINED DEGREE OF CONVERGENCE ON E . 

If the Taylor development about the origin of a function/ (z) has 
the radius of convergence p ( > 1 ), the précise degree of convergence 
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to/(>s) of the Taylor development on E : \z\^.i dépends on the 
kinds of singularities of / (z) on \z \ = p, whether for instance f(z) 
has a pôle of order 17 or is relatively smooth there. Degree of 
convergence t o / ( ^ ) on E of best approximating analytic functions 
of prescribed norm dépends likewise on the behavior of the function 
on the boundary of its région of analyticity, and we proceed to 
study this relationship. The Taylor development is adéquate for 
such a study in the simplest cases, but our program involves géométrie 
situations which seem to require more powerful tools, so we first 
consider a gênerai conformai map and then a spécial séries of rational 
functions. W e frequently use the plane of finite points extended 
by the adjunction of the point at infinity. 

3 . 1 . Conformai map of multiply connected régions. — Hère our 
fundamental theorem is 

THEOREM 3.1.1.—Let D be a région of the z-plane whose boundary 
consists of mutually disjoint Jordan curves Bi, B2, . . ., B^ ; Ci, 
Ca, . . . , Cv. Then D can be mapped conformally onto a région A 
of the Z-plane, one-to-one and continuously in the closures of the 
two régions, where A is defined by 

( 3 . 1 . 1 ) 

A ( Z - q 1 ) > » . ( Z - a 2 ) M 8 . . . ( Z - a a ) ^ | \ 
(Z — 6 i ) N (Z — 6 j ) N « . . . ( Z — 6v)N* | < e ' 

M7>o, N,>o, V j M / ^ N / ^ 1 -

The images of the By and Gy separate the aj and bj respectively 
from A. 

W e outline the proof, whose methods are due in part to de la 
Vallée Poussin (who treats the case v = 1 ) and to Julia ; détails may 
be found in [ig56]. 

W e omit the classical case /JL = v = 1, which in fact is easily 
treated by the same methods, and assume p ^ 2, which may require 
interchange of the rôles of the By and C7. By a preliminarv trans
formation we may assume the curves By and Cy anal}tic; compare 
the proof of theorem 1.4.3. W e assume D interior to C4. The 
function u(z) defined and used in theorem 1.4.1 is invariant under 
conformai transformation, and is central in the présent proof. 
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The function u(z) is harmonie in the closure D of D, and can be 
extended harmonically across each of the bounding curves of D, so 
as to be harmonie in a closed région D' containing D whose boun
dary B ' : u(z)= — ô \ ( < o ) , C' : u(z) = d=r i -f- di, consists of/ut-f-v 
analytic Jordan curves B^and G',, near the By and Gy. If v(z) dénotes 
the conjugate of u(z), Green's formula corresponding to ( 1 . 4 . i ) 
for z interior to D' becomes 

u(z)=l log | z — 11 drs — f Jog | z — 11 da n- o, 

(3.1.-2) { J{> • 
l dv l r . r , 

da == J L , ? sa I rf? =s f ^ x . 0 j 
2?ï t / B , J ^ 

the first and second intégrais in (3 .1 .2) are taken over B' and G\ 

The derivative of u(z) -\-iv(z) does not vanish on B = > By or 

C = j K Gy, for near each point say of B the locus u(z) = o consists 

of a single analytic Jordan arc. W e assume too that the derivative 
of u(z)-{- iv(z) does not vanish on B ' 4 - C or between B' and B, 
and G' and C. 

If the a i , a2, . . . , a« and j34> j32, . . ., (3„(depending on n) divide 
B' and Gf respectively into n equal parts with respect to the para-
metero-, we hâve uniformly in D : 

n n 

Un ( Z ) EEE -1 2 l<>g | S — «A | - ^ ^ »Og | Z — p* [ -h S -^ M 5 ). 
1 I 

For /i sufficient!) large D is approximated hy D,è : o < un(z) < i, a 
région whose boundary consists of JA + v Jordan curves near the By 
and Cy. Each point of D lies in D„ for n sufficiently large ; each 
point exterior to Dlies in at most a finite numfcer of the D„. The 
région D„ can be expressed 

n?J n n^zl-fii'^ 
K | R „ ( * ) | < f f T , Kn(z)^e*Tf * - « * 

U z-[lk 
^e * 

The transformation w = Rn(z) of the ~-plane onio an «-sLeeled 
Rîemann surface cr0 over the w-plane maps D„ onto a connected set 

n 

i < | w | < ez whos^ l>oundarr consists of pt crreumferences of radius i 
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n 

of respective multiplicities ray and v circumferences of radius exoî 
respective multiplicities «y ; hère the ray and ray are the numbers of 
a* and (3A on the B'y and Gy. The p + v closed régions of the ^-plane 
complementary to D;i are mapped into /JL -f- v simply connected closed 

n 

régions of <T0 covering \w\^i and ,| w | ̂ . ex respectively nij and iij 
times. W e define a new Riemann surface <7i over the «'-plane by 
replacing continuously each of thèse p. -+- v closed régions b> a sub-

région of the Riemann surface for z = wm> ovz = wn> likewise cove-
n 

ring \w\^\ or | w | ̂  eT precisely /ny or /iy times ; thèse new sub-
regions of cri hâve each a single branch point, at w = o or w = oo, 
where ail ntj or /fcy sheels meet. Then cri is also the topological image 
of the extended ^-plane* and (Schwarz) can be mapped conformally 
onto the extended Z-plane ; the transformation is of the form 

A J I ( Z - a { )»».(Z-a', ) « . . . . ( Z - a ' ^ ) ' ^ 
w==Sn(Z)== 

(z - b\ )«i(z - 6'2 )». . . . (z — A;)** 

Hère the a'7 and b1. (depending on n) are distinct, and lie exterior 
n 

to the image An : i < | Stl(Z) | < e7 of D / t . The transforma
tion R / t(^) = Sn(Z)ofD„ can b e w r i t t e n Z = Z7l(^). W e choose a\, 
a'2, fe', as distinct points independent of n, as is possible by a linear 
transformation of the Z-plane. 

As n tends to infinity, there exists a séquence of indices n such 
i 

that ail the A*, a'y, 6'y approach limits A, ay, 6y; we define My and N/ 

by the équations 

?-NX*-M* ?«>=«/. 2>=2>=<-
Thus the inequalities defining A„ take the limiting form ( 3 . 1 . i), 
inequalities which define some région A. 

The functions 7un(z) admit in D the exceptional values a4, a2 , è i , 
hence form a normal family there. Henceforth we consider only 
a subsequence of the subsequence of indices n already chosen, such 
that the Z„(s) approach a limit Z0(^) in J), uniformly on every 
closed subset of D. The assumption 2JQ(Z) = g, a constant, leads 
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to a contradiction, for by a suitable linear transformation of the 
Z-plane we may choose g^éco, # 2 ^ o o , and if necessary by a 
change of notation we take g^a*. If T is a Jordan curve in D 
near B2 and containing B2 in its interior, the image of T under 
the transformation Z=zZn(z) contains a2 in its interior, whence 
arg[Z r t(s) — a 2 ] | r = 2 7r, which contradicts Zn(z)-+g uniformly 
on r. 

A slight modification of classical reasoning concerning the 
conformai mapping of variable régions now shows that the func
tion Z = Z0(z), univalent in D, maps D onto A. The methods of 
Garathéodory or of Montel show that the map is one-to-one and 
continuous in the corresponding closed régions. 

3 .2 . A séries of interpolation [1953a] . — To prépare for our 
further study of approximation we shall prove two lemmas. 

LEMMA 3 . 2 . 1 . — / / the positive number s m±, m2, . . ., m^ are 

given with2^mj=i, there exist positive integers Nnj- for j = 1, 

2, . . ., p; n = i, 2, . . . which satisfy the relations 

(3.2.1) 2 N " ' - = " ' 

( 3 . 2 . 2 ) N w / ^ N / 1 + 1 , y ^ N w / - M , 

( 3 . 2 . 3 ) | N n / — # i / n y | ^ A (y = 1 , 2, . . . , jx; n = 1, 2, . . . ). 

In the case jx = 2 it is sufficient to set N / I t = [nm±], the largest 
integer not greater than nmx, and JN„2= /i — [nm^. For p. > 2 it 
is sufficient to iterate this process. 

LEMMA 3 .2 .2 . — Let the finite points aA, a2, . . ., a^ be given, 

and relative positive weights mu m2, . . ., m^, V m, = 1. Set 

\J(Z) = (z — ai)'»i(z — a2)
mi... (z — a^)711^ 

Then there exists a séquence of points OLX, OL2, . . . each of which 
is some aj, such that on every compact set E containing no aj we 
hâve 

(3.2.4) o < A 1 < ( j — a, )(z — < * , ) . . . ( * — « „ ) 

[U(z)]n < A 2 
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We define the c*, according to the properties established in 
lemma 3 . 2 . 1 , namely so that among the points <xi, at9, .. ., an there 
are precisely N„y which coincide with aj. Then for each n we hâve 

n \i. 

xi(*-Œ/)sri^-a/)N-y-
From ( 3 . 2 . 3 ) follows for z on E and for/ = i, a, . . . , ^ 

[ N„/ tog | z — a/1 — nmj log | z — a/1 | ^ Ai, 

2 log | a — a/ |N«/— w ^ log [ * — a,-
/ = i / - i 

^ A s 

and (3 .2 -4 ) follows. The set E may be taken as a compact set of 
the extended ^-plane. 

We are now in a position to consider our séries develop
ment [1955 a], a gêneralization of the Taylor development : 

THEOREM 3 . 2 . 1 . —Suppose given the finite points ai, a2, . . ., a^; 
fci, 60, . . ., bn and the positive relative weights m Y, m2, . . ., m^\ 

iii, /Î2 , . . ., «v, 2 | / w y = ^ / ï y = 1. We set 

and for every a ( > o) dénote by Ea the set \u(z)\<^cr. A 
function f(z) analytic on E? but not analytic throughout 
any Ep/ (p'>> p), can be expanded on Ep in a séries 

(3.8.6) ^ ( * ) s = 2 , e « M * > , " o ( a ) s i , ^ ( ^ = ^ ^ ^ ^ , 

which converges uniformly on every E f f ( ( r < p ) . The <xn, each of 
which is an aj, are to be chosen to satisfy ( 3 . 2 . 4 ) , and the $n, 
each of which is some bJT are to be chosen to satisfy the analogue 
of ( 3 . 2 - 4 ) ; ronsequently on every compact set containing* no Uj 
or bj we hâve 

["<*)]" 
< A t . 
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The coefficients cn in ( 3 . 2 . 6 ) satisfy 

i 

(3.2.8) lim sup 1 ^ = i , 

and for every cr ( < p) we hâve 

i 

lim sup [max \f(z) — S,^*) |, z on Ea]
n= - , 

(3.2.9) 
I Sn(z)=^ckuk(z). 
\ 0 

Inequality (3 .2 .7 ) is quite powerful, and a weaker inequality 
although sufficient for Problem A would not suffice for our later uses 
of theorem 3 .2 .1 in Problem /3. With (3 .2 -7) t h e s e r i e s ( 3 . 2 . 6 ) 
possesses most of the important properties (i. e. for présent purposes) 
of Taylor's series. Series (3 .2 .6 ) has the well-known form of a 
series of interpolation (Newton's series) ; the cn can be found formally 
from ( 3 . 2 . 6 ) by setting successively z = (xt, z = a2, . . . , with 
diflerentiation a suitable number of times when the a4, a2, . . . , 
an, are not ail distinct. The series ( 3 . 2 . 6 ) has a meaning even if 
one of the points aj or 6y is infinité; in ( 3 . 2 . 5 ) and (3.2.6) a linear 
factor of un(z) corresponding to an infinité value of a y or (3y is simply 
to be omitted. 

As we hâve said, choose ail the ay and j3y finite, and Ep bounded, 
with cr < < /< p. If ra dénotes generically the locus | u(z) | = cr, we 
hâve for z in Ea, 

(3 .2 . io) f{z)-.Sn(z) ^-1-. f «n(z)f(t)dt 

(3-2.11) o>n(z) = un(z) (z — a,l+1 ). 

As a conséquence of ( 3 . 2 . 7 ) there follows 

( 3 . 2 . 1 2 ) o < A 5 < <»n(z) 
[U(Z)Y < A6 

on any compact set containing no aj nor 6y. It is now clear 
from (3 .2 .10) , by allowing cr' to approach p, that the first member 
of ( 3 . 2 . 9 ) *s n<>t greater than the second member. 

The coefficients cn are readily estimated from (3.2.9) and (3.2.7) , 
since Sn(z) — Sn__i (z) = cnun(z). It follows that the first member 
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of ( 3 . 2 . 8 ) is not greater than the second member. If the first 

member of ( 3 . 2 . 8 ) or ( 3 . 2 - 9 ) is less than the second member, 

that is true of both ( 3 . 2 . 8 ) and ( 3 . 2 . 9 ) , whence by ( 3 . 2 - 7 ) l h e 

séquence Sn(z) converges uniformly throughout the interior of 

some Ep/(p';>p) contrary toour hypothesis on f(z). Theorem 3 . 2 . 1 

is established. The case p = oc is not excluded hère. 

W e add the remark that ( 3 . 2 . 8 ) and ( 3 . 2 . 7 ) y i e l d 

(3.2. i3) lim sup[max|S, , (*) | , z on Ea]
a = - ( * > p ) . 

W e hâve at hand in theorems 3 . 2 . 1 and 3 . 1 . 1 a new method for 
the proof of theorems 1 . 4 . 3 and 1 . 4 . 4 , namely precisely the method 
of use of theorem 1 . 1 . 1 to establish theorems 1 . 2 . 2 and 1 . 2 . 3 , as 
the reader may verify. W e hâve preferred to base theorems 1 . 4 . 3 
and 1 . 4 . 4 on the simpler expansion properties expressed in 
theorem 1 . 4 . 2 , which is much more elementary in the sensé that it 
does not in volve theorem 3 . 1 . 1 . 

The method of proof of the generalized Bernstein lemma ( § 1 . 3 ) 

gives hère too a useful resuit : 

LEMMA 3 . 2 . 3 . — Let J\.n(z) be a rational function of degree n 

whose pôles lie in the points (34, (32, . . . , (3„, and suppose \Kn(z) | ^ M 
on I V Then for T > cr we hâve 

( 3 . 2 . 1 4 ) | R „ ( * ) | ^ - 2 ^ , zonT,, 

where the constant A0 does not dépend on n, z, cr, T, or R„ (^) , 

except that cr and x are to hâve spécifie finite upper and lower 

(positive) bounds. 

The function n) \ is analytic on the set | u(z) | ^ c r , even in the 

points (3y; on rCT we hâve in the notation of ( 3 . 2 . 7 ) 

Rn(z) 
un(z) 

M » ) [*(*)]" 
[ii(z)]» un(z) 

M 
As?"' 

This inequality, valid on TG, is also valid on the set | M ( S ) | ^ c r ; 
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and in particular on TT we hâve again by ( 3 . 2 . 7 ) 

A I M T " 
| R « ( * ) 

which is (3 .2 .14) . 

M*) "«(*) [rt/:)1. 
A3<i" 

3 .3 . Problem (3. — W e now introduce the notation that a func
tion f(z) analytic in a one-sided neighborhood of an analytic Jordan 
curve C, continuous on C, is of class L(p, a) on C, where p ( ^ o) 
is intégral and o < a < i, if f(z) has a one-dimensionalpth deri
vative on C which satisfies there a Lipschitz condition of order a. 
It is immaterial hère [1949«, theorem 2 .4 ] whether f(p)(z) is 
taken on C as a one-dimensional derivative with respect to z or to 
arc-length, or indeed a two-dimensional derivative with respect to z. 

For négative intégral values of p and o < a < 1, we sfiy that f(z) 
is of class h(p, a) on the analytic Jordan curve C prov ided / (^ ) is 
analytic in a one-sided neighborhood of C, and C can be expressed 
as the level locus u(z) = 1 of a non-constant function u(z) harmonie 
and without critical points in an annulus containing G, and where 
in the one-sided neighborhood of C we hâve \f(z) | ^A(i—p)^"*"aon 
the locus w( : ) = p ( p 0 < p < i ) ; this condition is [ig5o, theorem 5.3] 
independent of any particular u(z). To be sure, this requirement 
is a restriction on the behavior of f(z) not on G but in a one-sided 
neighborhood of C. Nevertheless, as Hardy and Littlewood hâve 
shown if C is the unit circle, and as also is true if C is an arbitrary 
analytic Jordan curve [194^ §5 .2 ] , whenever / (s ) is of class L(/>, a ) 
o n C ( o < a < i ) , the derivative and intégral (if single valued) oîf(z) 
are of respective classes L(p — 1, a) and L(/? + i, a) on C when 
suitably defined on G if necessary; so even in the case p <. o the 
class L(p, a) is closely related to behavior on C. The class L(p, a) 
is invariant under a one-to-one conformai map of a région containing C 
[compare igoo, § S], 

Our main theorem on Problem (3 is [1968] : 

THEOREM 3 . 3 . 1 . — Let D be a finite région whose boundary 
consists of mutually disjoint Jordan curves B4 , B2 , . . . . B^; 
Ci, C2, . . . , Cv, and let U(z) be the function harmonie in D, 
continuons in the closure of D, and equal to zéro and unity 
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on B = T],By and G = ] V Cy respectively. For every <J ( o < u < i ), 

/e£ Ta dénote the locus U(-s)==o- in D a/irf Ze£ D^ dénote the 
subregion o < U(z) < cr o / D, whose boundary is B -t- IV 

/ / T p Aas no multiple point, and if the function f (z) is analytic 
in Dp, continuous on B, and of class L(/?, a ) o « r p ( o < a < ï ) , then 
there exist functions fn(z) analytic in D and continuous on B 
such that ( n = i, 2, 3, . . . ) 

_ ^ p 

(3.3.1) |/(«) - / „ ( , ) | ̂  ^ ^ - , * on B, 

w( i -p) 

(3.3.2) • \fn(z) | ^ A , ^ J , z in D, 

where 27TT W £/ze total variation along Y ? of the function conjugate 
toXJ(z). 

Reciprocally, if f(z) is defined on B, if the fn(z) are analytic 
in D, and if (3 .3 .1 ) and ( 3 . 3 . 2 ) are valid for the boundary 
values of the fn(z) on B and C, where p is an integer and o << a < 1, 
Me/i / ( - s ) o/i B represents the boundary values of a function 
analytic in Dp and of class L(/> — 1, a) on Tp. 

Thanks to a conformai map (theorem 3 .1 .1 ) it is no loss of gene-
rality to suppose D interior to Ct and defined by d0 < log | u (z) | < di, 
where u(z) is defined by ( 3 . 2 . 5 ) and the a/ and 6y are finite. We 
use the series ( 3 . 2 . 6 ) of theorem 3 . 2 . 1 . 

For z in Dp, the function f(z) can be expressed 

f(z)=zyi(z) + yi(z), ?i(a)s^çin(^), <p2(z)==^ç*2(s), 

, , \ r f(t)dt . . \ r f(t)dt 

where y* (depending on z) is a suitably chosen rectifiable Jordan 
curve in Dp near Tp, precisely one such curve near each component 
of Tp, z interior to the régions bounded by B and the ^k, and where 
the intégrais are taken in the positive sensé with respect to those 
régions. The function <pi(^) is analytic throughout the set D'0 : 
\u(z)\<i edt, and can be represented there by a series ( 3 . 2 . 6 ) . 
Moreover cp2(s) is analytic on Tp, so yi(z) is of class L(yo, a) there. 
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The pôles (3y of un(z) are to be found among the bk, so lie exterior 
to D'0. Suppose now /> ̂  o. If Sn(z) is the sum of the first n -h i 
terms of the development ( 3 . 2 . 6 ) , we hâve for z in D'0 the 
interpolation formula 

( / N Q / v l C^,,(z)^i(t)dt ^ 

(3.3.3) " W - 8 " 1 ^ ^ ^ ) ^ - ) ' T = l ^ ' 
( w „ ( z) = (z — a „ + , ) « „ ( s ) ; 

hère S^-s) is the unique rational function of degree n whose pôles 
lie in the set (3f, (3*, . . . , (B* and which coincides with <pi(s) in the 
points a4, a2, . . . , a/l+1. A particular case of ( 3 . 3 . 3 ) occurs 
if cpi (z) is replaced by an arbitrary rational function R,»(^) of degree n 
whose pôles lie in the set (3t, (32, . . ., |3M 

(3.3. î ) o = . / —i--^ ^ - , s m D0. 

We shall use a combination of ( 3 . 3 . 3 ) and (3 .3 -4) : 

Under the présent circumstances (p^o) the intégral ïn ( 3 . 3 . 5 ) 
may be taken over Dp, and it follows from corollary 2 .4 .1 that 
functions R,i(s) exist such that (n > o) 

(3-3.6) | ç T ( 3 ) _ R „ ( s ) | ^ _ A _ , s o n i y 

When we note the equalions 

II, -\ - l Q g l ? / ( g ) l — ^o I • 
u ^ „ ; = _ , ^ = -7 -3-) 

f/, — rf,> dx — do 

the inequality 

(3.3.7) | ? 1 ( z ) - S „ ( s ) | ^ ^ ^ , ^onB,' 

follows from ( 3 . 3 . 6 ) , ( 3 .3 .5 ) and ( 3 . 2 . 12). W e now set 

S / H - I ( S ) — S , | ( 3 ) = 0 / , + 1 1 / . , , + , ( 3 ) , 

whence from ( 3 . 3 . - ) 

| O * + I M / I + I ( * ) ! = ; * * ' > s o n B , 
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and by ( 3 . 2 . 7 ) 
# 1 ( 1 - 0 ) 

|Cn+lMn+l(«) 1 ^ 
k*e 

nP+* 

Purely algebraic inequalities now show 
n[\ — p) 

(3.3.8) l ( ^ ) | : nP+* 

z on G. 

z on G. 

Since f(z) is continuous on B, so also is (pa(s) ==/ (*) — ?i(*)i s o 

if we set/ , i ( -»)=sSn(«)H-ça(-») ,we deduce (3 .3 .1) and ( 3 . 3 . 2 ) 
from ( 3 . 3 . 7 ) and ( 3 . 3 . 8 ) . 

In the case p < o we use ( 3 . 3 . 3 ) where y is chosen as T,., 

r = rn= p( 1 — ^ ) • For * on B and n> o we hâve by (3 .2 .7 ) 

Ae ' 
| ç i ( * ) - S n ( * ) | ^ nP+* 

which in form is identical with (3 .3 -7 ) . As in the previous 
treatment of (3 .3 -7) w e deduce (3 .3 .1) and ( 3 . 3 . 2 ) . 

The proof of the first part of theorem 3 .3 .1 is complète; we 
proceed to discuss the second part. With p ^ 1 (o < a < 1) and 
with (3 .3 .1) and ( 3 . 3 . 2 ) as hypothesis, we write for n sufficiently 
large 

/ i p . 

(3.3.9). | / » + i ( * ) - / » ( * ) l ^ 

( 3 . 3 . 1 0 ) | / n + i ( « ) - / » ( * ) 1=; 

A3 e 
nP+* 

w(i-p) 
A4 g T 

nP+* 3 

i on B, 

z on G, 

where the boundary values are used on C; thèse exist for almost ail 
values of the conjugate of U(z). If we set 

Mn = [max | /„+i(*) - fn(z) \, z on rp], 

the two-constant theorem applied to the function fn+i(s)—fn(z) 
for the respective loci U(s) = o, p, 1, is 

log A3— — —(/>-+- «) log n o 1 

log A/, 

IogMn 

/1(1 — p ) — (jo -+-a)logrt 1 I 
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Subtraction of the first row from the third row yields 

A, 
Mn^ 

nP+<* 

The séquence fn(z) converges uniformly throughout the closure 
of Dp, by ( 3 . 3 . i) to a function coinciding with f(z) on B, because 
we hâve for z on Tp 

(3.3.11) | / ( S ) - / n ( * ) | ^ | / „ + , ( 0 - / » ( * ) I + I / I H - Î ( * ) - / » + i ( * ) | -H... 

It follows from ( 3 . 3 . n ) and (3 .3 .2 ) , by virtue of theorem 2 . 1 . 2 
and of theorem 2 .3 .1 if Tp has multiple points, that f(z) is of 
class L(/> — i, a) on Tp. 

In the case p < i w e again use the two-constant theorem, now to 
détermine a bound for 

M„(r) = [max | / „ + 1 (z) —fn(z) \, z on I\.] (o < r < p), 

by means of ( 3 . 3 . 9 ) and (3 .3 .10) . We obtain 

n(p-r) 

Mn(r)^±c'e 

/i/9+a 

where A6 is independent of r near p. For z on Tr we iind (for 
instance by comparing the series with an improper definite intégral) 

tn{0 — r) 

\f{z)\^ A, J B
 ml>la ^A8(p-r)/-^-S 

m — 2 

where A8 is independent of r, so f(z) is of class L(/> — 1, a) on Tp, 
and theorem 3 .3 .1 is established. There is a discrepancy of 
unity in the classes of functions in the first and second parts of 
theorem 3 . 3 . 1 , but that is inhérent in the problem itself, as 
examples show [1949 a ] . 

In the second part of theorem 3 .3 .1 we may replace (3 .3 .1) and 
( 3 . 3 . 2 ) as hypothesis by (3 .3 .9 ) and (3 .3 .10) , and define f(z) 
on B as the limit of the convergent séquence fn(z). 

Theorem 1.4 .4 is not included in theorem 3 . 3 . 1 , but may be 
proved by the same method. 
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3 .4 . Problem (3r continued. — In the second part of theorem 3.3. i 
we hâve assumed ( 3 . 3 . i) and (3 .3 .2) without restriction on T, but 
in the first part of theorem 3 .3 .1 we hâve written those inequalities 
where 27TT dénotes the total variation of the conjugate of U(^) 
along TpT and for the discrète values n= t, 2, . . . . The form may 
be readily changed; if we set fn(z)=fn(z) for n^x <T n-\- i, 
( 3 . 3 . 0 and ( 3 . 3 . 2 ) yield (x_^ 1) 

xp 

l / ( * ) - / x ( » ) l ^ ^ ï ^ » *<>nB, 
x(1-p) 

and a change of variable X = -? with a change in notation of/x(-s) 

and a possible auxiliary définition of the new f\(z) for small 1, 
yields ( 00 > X_^ 1) 

(3.4.,) | / ( 3 ) _ / A ( s ) | ^ ^ £ I ^ y *ODtf, 

A " /»Alt—p) 

(3.^.2) I A ( « ) f ^ \*+« » ^ i t t D -

Of course (3 .3 .1 ) and ( 3 . 3 . 2 ) follow for arbitrary T from (3 .4 .1 ) 
and ( 3 . 4 . 2 ) . 

It is sufficient in the second part of theorem 3 .3 .1 so far as 
concerns ( 3 . 3 . i) and ( 3 . 3 . 2 ) if (3 .4 .1) and ( 3 . 4 . 2 ) are satisfied 
for a monotonie séquence of values ln with ln+i-r—^n bounded; the 
original forms of ( 3 . 4 . 1) and (3 . 4.2) follow if we set f\(z) =fin(z), 

In theorem 3 . 3 . 1 the functions f(z) and fn(z) may be analytic 
on larger point sets : 

THEOREM 3.4.1. —If the hypothesis of theorem 3.3.1 is modified 
so that the Jordan curves By are analytic, and that f(z) is ana
lytic on and within each By, then the functions fn(z) can also be 
chosen analytic on and within each By. 

The map of D onto a canonical région used in the proof of 
theorem 3 .3 .1 is one-lo-one and conformai not merely in D-fc-B but 
also in the closure of a suitably chosen set D _ £ ; — 6 < U ( . 2 ) < o 
consisting of p régions. The functions f(z) and fn(z) in ( 3 . 3 . i ) 
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and ( 3 . 3 . 2 ) are analytic throughout the closure of D_£, and (as 
follows from the proof of theorem 3 . 3 . 1 ) for arbitrary ô*(>o) we 
hâve in the s-plane of, theorem 3 .4 .1 

iM5+p__S) 

(3.4.3) [max \f(z) -fn(z) \, z on r_£] ̂ kye
 T . 

We spl i t / (^) and the fn(z) into their components by integraling 
over a locus Ta, where TG is in D near T?, and integrating also over B 
or T_£ indifférently. For z in DCT we ha\e f„(z) == fnl(z) -+- fn2(z), 
with 

ITZl Jy C Z 'ITZl^fy t — Z 

miJr_& t—Z1 JU*K J lT.lJr t—Z 

(3.4.4) /..(.)'=—. f 1/(0-/^(01^7 

Equation ( 3 . 4 . 4 ) is valid throughout the closure of D, so by virtue 
of (3 .4 .4 ) and ( 3 . 4 . 3 ) we may now replace fn(z) in ( 3 . 3 . i) 
and ( 3 . 3 . 2 ) by fn\.(z), with suitable modifications of A4 and A2 if 
necessary, which complètes the proof of theorem 3 . 4 . 1 . 

We hâve phrased both theorems 3 .3 .1 and 3 .4 .1 to deal merely 
with suitably chosen séquences / , , ( * ) , not necessarily extremal, but 
it is clear that for functions of best approximation, analytic and of 
modulus not greater than sufficientlv large M in D, the analogues 
of ( 3 . 4 . i ) and ( 3 . 4 . 2 ) hold. 

In various cases included under the second part of theorem 3 . 3 . 1 , 
inequality ( 3 . 3 . 2 ) is a conséquence of ( 3 . 3 . i). For example let B 
consist of a finite number of mutually exterior Jordan curv*c tt ^A 
suppose polynomials / „ ( * ) of respective degrees n = \ 
given such that 

(3.4.5) 1 / ( , ) - / , ( , ) ^ ½ ^ . , o n B , 
nP+* 

is valid, o < « < , , d > 0 . Then we hâve for n s u f f i c i e n 1 t l ^ i e M , i t M M l Q ' / w 
* * \ ! MES / * ' 

(»-*-6) 1 / ^ , ( , ) - / , ( , ) 1 ^ ½ ^ . ^ 

a n d /»+*(*)—fn(z) is a polynomial of degree n + i. Let g(z) 
dénote Green's function with pôle at infinity for the infinité région D' 
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bounded by B, and let ^ d é n o t e generically the locusg(z) = a(>o) 
in D'. From the generalized Bernstein lemma (§ 1.3) follows 
by (3 .4 .6) for n sufficiently large 

(3.4.7) \fn+,(z)-fn(z)\^^-°^\ zongv 

Inequalities ( 3 . 4 . 6 ) and (3 .4 .7 ) , provided y >> 3, can be identified 
with ( 3 . 3 . 9 ) ana* ( 3 . 3 . i o ) , which are sufficient for the application 
of the second part of theorem 3 . 3 . 1 . Hère D is bounded by B 
and ^ , (y > ô ) , with 

u(* ) = — ^ - , T = = Y ' V T — 8 = —7-' 

whence T? of theorem 3 .3 .1 is gi, namely the locus g(z) = "\'p = à. 
The conclusion [1937], a conséquence merely of (3.4.5), is that f(z) 
is of class L(p— 1, a) on g-g provided (if p> o)g§ has no multiple 
points; this conclusion is independent of the auxiliary number y (]>ô). 

Theorem 3 .3 .1 thus applies under suitable conditions to approxi
mation by polynomials; it may apply also to approximation by more 
gênerai rational functions. As an illustration, suppose with the 
conditions and notation of theorem 3.2.1 [other than the hypothesis 
on / ( j ? ) ] that for a function/(5) defined merely on B : | u(z) \ = ed° 
we hâve d> dQ(o < a << 1) for n'= 1, 2, 3, . . . 

(3.4.8) | / ( , ) -fn(z) | ̂  k'6~X*d^ z o n B > 

where fn(z) is a rational function of degree n whose pôles lie in the 
set(3d ,p2 , . . . , ( 3 , , ; of course fn(z) need not be delermined by 
interpolation, but may be for instance the rational function of the 
prescribed type of best approximation to f(z) on B in the sensé of 
Tchebichef with continuous norm function. From ( 3 . 4 . 8 ) we 
hâve for n sufficiently large 

(3.4.9) 1/w. (*)- /»(*) U ^ ^ S r - ^ ' * o n B -

From lemma 3.2.3 there follows {di> d, G:\u(z)\ = ed') for « 
sufficiently large 

(3.4.10) lfn+t(z)-fnis)l^±lî^!l, ,0nC. 
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In the notation of theorem 3 . 3 . i for U ( s ) we hâve 

U ( « ) 
_ logl u(j)|—rfn 

dQ di -

so (3.4.9) and (3.4.10) can be identified with (3.3.9) an (* (3.3.10), 
whence it follows merely as a conséquence of ( 3 . 4 . 8 ) that f(z) 
can be extended from B so as to be analytic in \u(z)\<Z ed, and 
of class L(p — 1, <x) on the locus \ u(z) \ = ed. 

A remark is appropriate hère regarding choice of approximating 
functions in gênerai. In the géométrie situation of theorem 3 . 3 . 1 , 
it is apparent that so far as concerns degree of approximation and 
norm of approximating functions as we hâve measured them, the 
rational functions of theorem 3.2. 1 are as effective for approximation 
as are any possible family of analytic functions. Likewise in the 
géométrie situation of theorem 1.3.3 pohnomials in z are as effective 
as any set of anal\tic functions can be. 

CHAPTER IV. 

GENERALIZATIONS AND EXTENSIONS. OPEN PROBLEMS. 

W e hâve given in the foregoing chapters a présentation in détail 
of some of the most striking results to date of the theory of approxi
mation by bounded analytic functions. W e shall now indicate 
without proof some of the wider ramifications, for the known results 
are by no means limited to those set forth above. 

4 .1 . Géométrie situations. — Although theorems 1 .4 .1-1 .4 .4 
admit rather gênerai géométrie configurations, other inleresting 
configurations are not included. For instance if D is an annular 
région and if E is either a Jordan curve or an annular région in D 
which séparâtes the two boundary components of D, it is appropriate 
to consider approximation on E by functions analytic and bounded 
in D to a function analytic on E but not analytic throughout D. This 
configuration, and others much more gênerai, hâve been studieà 
[1944] in connection with Problem A (relation of régions of analyti-
city to géométrie degree of convergence), hâve been studied in 
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connection with Problem a in theorem 2.1.2 and elsewhere [ig^6 a], 
and can be studied by similar methods in connection with Problem (3, 
though that has not as }ret been done except [1942, § 8.1] when the 
boundaries of the sets involved are concentric circles and [19596] 
in a few other cases. 

In chapter II we hâve limited ourselves to approximation on 
analytic Jordan curves and sets bounded by such curves. Although 
some slight progress has been made, Problem a is on the whole still 
open for more gênerai curves. In particular, if G is a Bernoullian 
lemniscate or other analytic curve with but a single double point, no 
précise analogue of theorem 2 . 1 . 2 is known. Naturally, if G 
together with the finite régions which it bounds lies in a région D, 
and if functions fn(z) analytic in D satisfy ( 2 . 1 . 2 ) and ( 2 . 1 . 3 ) , 
theorem 2 . 3 . 1 can be applied to each subarc of C, and shows that 
f(z) is of class L(/?, a) on C; but this remark is far from supplying 
a necessary and sufficient condition for ( 2 . 1 . 2) and ( 2 . 1 . 3 ) . As a 
conséquence of this lack, Problem (3 as discussed in chapter III 
(e. g. theorem 3 .3 .1 ) is satisfactorily treated provided Tp has no 
multiple points, but not if Tp has multiple points; although we hâve 
not emphasized the fact, use of class L(/?, a) for/? < o présents no 
difficulty if Tp has multiple points, but this is not true f o r / > ^ o. 

Likewise Problem [3 deserves deeper study concerning more 
gênerai s.ets; can theorems 3 .3 .1 and 3 .4 .1 be extended to include 
measure of approximation ( 3 . 3 . 1) on an arbitrary continuum or on 
several continua? Results are available [ 1942, § 8 . 2 ] for approxi
mation by polynomials and [1939] by bounded analytic functions 
on a line segment. 

Hitherto we hâve interpreted Problem A as approximation on a 
set E by functions fn(z) analytic and bounded in a région D contai
ning E. A possible extension is to admit common boundary points 
of D and E, with suitable behavior of the fn(z) in such points. 
Under suitable conditions the results of chapter I can be extended to 
include this situation, for both direct and indirect theorems [1954]. 

4 .2 . Continuity classes. — In chapters II and III we hâve for 
simplicity restricted ourselves to the use of classes LQp, a ) ( o < a < i ) î 
this is to some extent a reflection of the fact that theorem 2 . 1 . 1 is 
élégant and satisfying for such classes with / ? ^ o , but does not 
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extend to the class L(/>, a) with a = i. Indeed, for a = i, the first 
part of theorem 2 . 1 . 1 is valid but the second part is false. To fill 
this gap, Zygmund [1948] introduced into the theory of degree of 
trigonométrie approximation the condition 

(1.2.1) 1/(6-+-A) - 4 - / ( 6 - A ) - 2 / ( 6 ) 1 ^ A \h\, 

which for a continuous function/(0) of period 27: is necessary and 
sufficient for approximation t o / ( 8 ) by trigonométrie polynomials of 

order n with error not greater than — ; a necessary and sufficient 

c3ndition for approximation to / ( 9 ) by trigonométrie polynomials 
A 

of order n with error not greater than —^ is t h a t / ^ ) ( 8 ) exist and be 
continuous, and satisfy the analogue of (4 .2 .1 ) . This same 
condition, interpreted on an analytic Jordan curve G in terms of 
arc length, say that f(z) is of class Zp, where o lies interior to C, 
is necessary and sufficient [igSo, § 4] that a function f(z) can be 

approximated on G by polynomials of degree n in z and - with error 
A 

not greater than —^7; if polynomials of degree n in z are used, f(z) 
mus t also be the continuous set of boundary values on C of a function 
analytic interior to C. Throughout the discussion of chapters II 
and III, ail results remain valid if the class L(p, a) is replaced by 
class Zp, and if the exponent p + a of n is replaced by p -f- 1. 

Also for négative p(y£ — 1) the class L(/>, a) already introduced 
( § 3 . 3 ) can be replaced by a similarly defined class Zp, and the 
results of chapter III persist for the new class if p + a is replaced 
ky P + t • But p =— 1 is genuinely exceptional, in that a suitable 
class L ( — 1 , 1) is otherwise defined and studied [1950, 1957] yet 
with analogous conclusions. 

Gondition (4.2.1) is not the expression of a modulus of continuity, 
although any function which satisfies a Lipschitz condition of order 
unity also satisfies (4 .2 .1) . For a function / ( 0 ) with given 
modulus of continuity o>(3) and period 27T, de la Vallée Poussin [1919] 
following D. Jackson shows that there exist trigonométrie polyno
mials of respective orders n=i, 2, . . . approximating / ( 8 ) with 
error not greater than AcofiY Conversely, if there exist such poly
nomials approximating / ( 8 ) with error not greater than Q(n), he 
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dérives an expression for a modulus of continuity o f / ( 8 ) , under 
suitable conditions on Q(n). Both thèse results hâve précise 
analogues in approximation by polynomials in z and by bounded 
analytic functions; every resuit proved in chapters II and III concer-
ning Lipschitz conditions admits a corresponding generalization 
[1949a, igoia]. 

The behavior of continuity classes as such under conformai 
mapping is studied in [1949 a, \gSgd, 1959 e] . 

4 . 3 . Other norms. — In chapter I we hâve considered the 
Tchebichef norm and Tchebichef measure of approximation, as being 
the most fundamental. It is obviously appropriate to consider other 
norms and measures of approximation, say pih power intégrais with 
or without weight function. Such a theory can be developed [1949], 
and it is notnecessarj to use simullaneously the same kinds of norms 
and measures of approximation. The results are wholly analogous to 
those already set forth (chapter I) on Problem A. 

The theory just mentioned is of particular élégance and interest if 
the intégrais of squares are used. For instance, if D is the région 

\z | < r i ( > i )and E is the set | z | ̂  r 0 ( < i)> suppose f(z) = ^akz
k 

0 

given, wrhere the series has unit radius of convergence. The extremal 

function / M (* ) E = V 6AsA of norm | | /M | | in D, 
0 

oc 

(4.3.1) H/M ||« = ^ f | / n ( * ) N « f c | = y I & A M S 

which shall be not greater than a prescribed M, while the measure ot 
approximation #iM of / M ( s ) to f(z) on E, 

(4.3.2) ™M=-î- f i / (*) - /n(*) i ï ir f* i s =yi«*-**i , ' - js 

is least, is given explicitly bj 

akn 
rlk+\r\k 

file:///gSgd
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where / is determined by the équation 

and the measure of approximation satisfies 

It follows t ha t / M ( ^ ) is analytic not merely throughout D but even 

A* 2 

throughout the larger région | ,s |<<-y- In fact the singularities 
of fn(z) are closely related in position and character to those 
oîf(z) — this relation deserves further investigation for the norms 
just used as well as others. 

Whether or not D and E are more gênerai, there is a close relation 
between norms and measures of approximation defined by intégrais 
of squares such as ( 4 . 3 . i ) and (4 .3 .2 ) , and on the other hand a 
séquence of functions introduced by S. Bergman, functions that are 
mutually orthogonal not merely in D but also in E. This relation, 
and its connection with certain Fredholm intégral équations, hâve 
been investigated by P. Davis [1952 d]. 

Although the study of approximation by functions of minimum 
(non-Tchebichef) norm has been carried to a certain point, inves
tigation of boundary behavior (Problems a and (3) has not yet been 
undertaken on a broad scale. Other questions, such as behavior of 
zéros of approximating functions near the boundary of a région of 
convergence, and ovcrconvergence in the sensé of Ostrowski, and 
even lacunary series, hâve been broadly treated [1946 a ] but thus 
far without application as spécifie as is possible. Compare [1939 / ] . 

Spécifie détermination of the numerical constants involved in the 
conclusions throughout the theory would désirable. 

4 . i . Interpolation by functions of least norm. — A problem 
complementary to the one we hâve been studying throughout the 
présent essay is the following [1938] : 

PROBLEM I. — Given a région D, a point set E in D, and a func
tion f(z) analytic on E but not throughout D ; for each m(> o) 
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let Vm(z) dénote the (or a) function analytic in D such that 
\f(z) — ¥in(z)\^.m on E and for which [1. u. b. | F m ( s ) | , 
z inï)] = Mm is least. To study the convergence of Fm(z). Our 
previous results are clearly of significance hère, and yield also opti
mum results. 

Related to approximation bv functions of least norm is a problem 
of interpolation [ 1938], which we formulate as 

PROBLEM IL — Given a région D, points 

( 4 . 4 . 1 ) < . . . . 
p.., 

in D, and a function f(z) not analytic throughout D but ana
lytic in each point (3,,/,; let fn(z) be the function of least norm 
in D which coinùides withf(z) in the points (3#li, (3/l2, . . . , $nn) to 
study the convergence of the séquence fn(z). 

Perhaps the simplest non-trivial illustration of Problem II is that 
in which the points (4 .4 .1 ) are ail identical; we prove 

THEOREM 4 . 4 . 1 . — Let f(z) be analytic in the région \z\ < p -
but not analytic throughout any région \ z j < p' (p7> p). Leifn (z) 
be the function analytic m D : | : | < B.(>> p) which coincides with 
f(z) in the origin counted of multiplie ity n, the least upper bound 
of whose modulus in D is a minimum. Then we hâve 

(4.4.2) lim supfmax | / ( 3 ) - / n ( « ) | , for \z\é,rf =- ( r < p ) , 
n^» p 

i_ 

(4.4.3) lim sup[l. u. h.\fn(z)\, for \z\^r]"=- ( ? ^ r ^ R ) . 
« > * P 

The existence and uniqueness of the fn{z) are known [ig35, 
§10 .3 , theorem 8 ] . 

With the notation (1.1.1) and (1 .1 .3) we hâve (1.1-4) a n ( i (1 .1 .5) , 
the extremal property of the fn(z) yields 

(4.4.4) [1. u. b. \fn(z) I, for | z | ^ R] ^[max | Sw_t( z) \, for ] z | = R], 
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whence by ( 1 . 1 . 5 ) 
1 / R 

(4.4.5) Jim sup[l.u.b. \fn(z)-Sn^(z)\, for | z | ^ R]« ^ " • 

The function fn(z) — Sn_i(z) has a zéro of multiplicity at least nin 
the origin, so by an obvious extension of Schwarz's lemma we hâve 

i 

(4.4.6) lim sup[max|/„(s) — S„_,(*)|, for | * | ^ r]" ^ - (r^ R). 
n > * P 

Equation ( 1 . 1 . 4 ) a n d inequality ( 4 . 4 . 6 ) show that the first 
member of ( 4 .4 .2 ) is not greater than the second member; équa
tion (1 .1 .5 ) and inequality (4 .4 .6 ) show that the first member of 
( 4 . 4 . 3 ) is not greater than the second member. Equality in 
( 4 . 4 . 2 ) and ( 4 . 4 . 3 ) follows from corollary 1 .1 .1 . 

Let theorem 4 . 4 . 1 be modified by requiring that fn(z) shall be 
the function analytic in D which coincides with f{z) in the origin 
counted of multiplicity n, whose norm is least, where now for an 

arbitrary cp(s) =j?cnz
n we define the norm of y(z) by 

0 

n?(*)ii2=2^i2R2,/-

Then for every n we hâve fn(z) = Sn-i(z), and the convergence 
properties of Sn (z) are known (compare § 1 . 1 ) . Since fn (z) coin
cides with f(z) == a0 -f- a{ z + . . . in the origin counted of multipli
city n, we hâve 

/ „ ( 2 ) s f l , + a 1 ^ + . . 1 + ttrt_iS"-l-h CnZ"-h ^ 4 - , 5 ^ + . . . , 

where the coefficients cn, c/H_4, . . ., to be determined so as to mini-
m i z e II/«(*) II? m u s t ail vanish ; consequently 

fn(z) £= Sn-t(z). 

Theorem 4 . 4 . 1 admits of large extensions [1939, 1955] to other 
régions D, to other norms, and to sets of points (4-4 .1) which are 
given with certain asymptotic conditions. 

Investigations of Problem II hâve thus far been primarily concerned 
with régions of analyticity and of convergence (Problem A) ; the more 
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délicate questions of boundary behavior (Problems a and (3) remain 
open. 

One further phase of Problem II deserves mention if the points 
( 4 . 4 . i) are independent of n. To détermine or to study the func
tion f(z) analytic and of minimum norm (according to any classical 
définition) in D, taking on prescribed'values B^ in the points (3* : 

(4.4.7) /(P*) = B* (A-= i , 2 , . . . ) , 

one may consider first the finite problem, that of studying the fonc
t i o n / , ^ ) analytic and of minimum norm, satisfying 

(4.4.8) /„(P*) = BA (^ = I , 2 , . . . , « ) 

and then allowing n to become infinité. This method is entirely 
effective if [|/(-s)|| satisfies simple requirements, for instance if 

H / ( * ) | | = [ l . u . b . | / 0 0 | i n D ] or if | | / ( * ) | | * = f | / ( = ) | * d S ; 

compare [ig35, 1954 a ] . 

4 . 5 . Extremal problems. — If a closed point set E lies interior to 
a région D, and 'df(z) is given on E whelher analytic there or not, 
it is appropriate to study best approximation to f(z) on E as nieasu-
red in.any one of a variety of ways by functions <fu(z) anahtic and 
of norm (in some sensé) on D not greater than M. As M becomes 
infinité, the séquence <fu(z) may well converge on E to some extre
mal function. In addition the <fn(z) may be required to satisfy 
conditions of interpolation in D, conditions which may or may not 
vary with M and which may or may not require equality of <$M(Z) 

to f(z) in certain points [compare 1935, § 11.3-11.5] . It is not 
to be expected that such a gênerai problem can be fully trealed. 
But progress has been made especiallv in the cases where norm and 
measure of approximation are taken in the sensé of Tchebichef 
[1935, § 11.7, 11.8] , and where norm and measure of approxima
tion are expressed by intégrais of squares of moduli [ig5o a ] . In 
the latter case, orthogonality conditions enter naturally and are 
highly convenient as a tool. Interesting open questions remain as 
to other norms and measures of approximation (Problem A), and 
even in the cases hitherto treated as to behavior on the boundary of 
régions of convergence (Problems a and (3). 
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By way of historical perspective, it is of interest to note that 
C. Runge's theorem on polynomial approximation was published 
seventy-five years ago (i885), P . MontePs book on series of polyno
mials appeared fifty years ago (191 o), and the présent writers's book 
on interpolation and approximation dates from twenty-five years 
ago [i935]. 

This essay should not be concluded without some mention of pro
blems for harmonie functions analogous to tnose hère treated for 
analytic functions. This topic has received some treatment [ig44> 
ip49 a-> !95o, 1954 b, i960], but for it numerous open problems 
also remain. 
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