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PARAMETERS IN COLLECTIVE DECISION MAKING MODELS:
ESTIMATION AND SENSITIVITY1

Tom A.B. SNIJDERS2, Evelien P.H. ZEGGELINK2
Frans N. STOKMAN2

RÉSUMÉ - Paramètres des modèles des processus de formation de décisions collectives
Les modèles de simulation des processus de formation de décisions collectives sont fondés sur des aperçus
théoriques et empiriques du processus de décision mais contiennent des paramètres dont les valeurs sont
déterminées ad hoc. Certains de ces paramètres, du modèle d’accès dynamique sont discutés et il est proposé de
compléter la fonction d’utilité par un terme aléatoire dont la variance serait un paramètre inconnu. Ces
paramètres peuvent être estimés en confrontant aux données les prévisions du modèle qui peuvent être des
décisions mais aussi des structures relationnelles générées comme un élément du processus de prise de décision.
Etant donné la nature stochastique du modèle, l’estimation de ces paramètres peut être obtenue par
l’algorithme de Robins Monro. Cet ajustement n’est pas absolument direct. Il faut choisir les statistiques sur
lesquelles se fonde l’estimation des paramètres. Il n’est pas certain a priori que l’équation d’estimation admette
une solution et que l’algorithme de Robins Monro converge. La méthode est illustrée par des données
concernant la restructuration financière d’une grande société.

SUMMARY - Simulation models for collective decision making are based on theoretical and empirical
insight in the decision making process, but still contain a number of parameters of which the values are
determined ad hoc. For the dynamic access model, some of such parameters are discussed, and it is proposed to
extend the utility functions with a random term of which the variance also is an unknown parameter. These
parameters can be estimated by fitting model predictions to data, where the predictions can refer to decision
outcomes but also to network structure generated as a part of the decision making process. Given the stochastic
nature of the model, this parameter estimation can be carried out with the Robbins Monro process. Such fitting
is not completely straightforward: statistics must be chosen on which to base the parameter estimation, it is not
certain a priori that there will be a solution to the estimating equation and that the Robbins Monro process will
converge. The method is illustrated with data from the financial restructuring of a large company.

1. INTRODUCTION

In recent years, several formal models have been developed for collective decision making.
The primary aim of these models has been to yield predictions for the decision made. Early
models were developed by Coleman (1972) and Laumann &#x26; Knoke (1987). Building on their
approaches, the idea was elaborated that the actors who participate in decision making
processes should be regarded as members of policy networks. The policy network idea was
incorporated in the Two Stage Model (2S model, Stokman &#x26; Van Den Bos, 1992; Stokman,
1994; the model also is explained in Degenne &#x26; Forsé, 1994) and the Dynamic Access Model

1 We thank Mikko Mattila and the NETMET group for their comments on earlier versions.
2 ICS, University of Groningen, The Netherlands.
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(DA model, Stokman &#x26; Zeggelink, 1996). The last-mentioned model is the focus of this
paper, and it is explained below.

The evaluation of these decision making models has focused up to now on the correctness of
the predicted decision outcome. The DA model, however, pretends not only to give a
reasonably trustworthy prediction of the decision, but also to model the relation forming
process associated with the decision making. From this point of view, it becomes important to
consider the details of the specification of the decision-making models. These models can be
regarded as translations of political insights into mathematical formulae. Diverse insights
correspond to alternative formulae and to alternative values of the crucial parameters in the
formulae. However, there always remain a number of parameters of which the specification is
not dictated by available political insights and theory. In the past, values for these parameters
have been determined ad hoc, often by trial and error. In this paper we consider the sensitivity
of the models for the values of these parameters, and a method for estimating these values so
that certain results of the inodel (e.g., network characteristics) correspond optimally to the
empirical observations. Such an estimation method was proposed for the case of one
parameter in Snijders, Stokman &#x26; Zeggelink (1996). The present paper elaborates the
simultaneous estimation of several parameters for dynamic simulation models. The estimation
method was proposed for other network models in Snijders (1996), and can also be used for
other computer simulation models. In this way, the collective decision making models obtain
a second aim: to predict and explain the influence network that is generated by the decision
making process.

The starting point for each decision making model is that one or more policy issues are given,
on each of which a decision has to be taken. The 2S model can be applied to one or more
issues; if several issues are treated, the 2S model is applied to these independently. In this
model, it is assumed that each actor has a given policy position on each issue, and that he
prefers the decision to be as close as possible to this position. The salience of the issue
indicates how important this issue is to him. The power of each actor is distinguished in three
elements: his resources, his access to other actors, and his decision or voting power. The
decision process is modeled as a process with two stages. In the first stage (influence stage),
actors try to convince other actors and influence their policy positions. Whether this is
possible depends on the access between the actors; the success of an influence attempt
depends, a.o., on the actors’ resources and on the salience of the issue for the actors. This
stage can be iterated. In the second stage, the decision stage, the actors with voting power
take the decision, voting according to the policy positions obtained during the first stage. The
decision taken depends on the voting rule; e.g., it can be the weighted mean of the final policy
positions, weights being proportional to voting power.

To apply the 2S model, it is necessary to have empirical data on the following elements:
policy positions, saliences, and voting power of actors on each issue; the resources of the
actors; and the access network. The 2S model has been tested extensively. Its explanatory
power has been investigated by predicting decision outcomes and comparing these to the real
decisions. Predictions have been made on a local level (Berveling &#x26; Roozendaal, 1992;
Berveling, 1994a), on a national level (Schonewille, 1990; Stokman &#x26; Van Den Bos, 1992;
Stokman, 1994; Berveling, 1994b) and on the European level (Van Den Bos, 1991).

When applied to decision making about several issues, the 2S model treats the issues
independently. It was extended to models for jointly taking decisions on several issues, where
"give and take" and mutual influence processes operate between the actors. Such models are
the Exchange model (Stokman &#x26; Van Oosten, 1994; not treated here) and the Dynamic
Access model.
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The access network is regarded as fixed in the 2S model. In the DA model, on the other hand,
account is taken of the fact that actors actively shape their networks, trying to increase their
influence on other actors. Stokman &#x26; Zeggelink (1996) developed dynamic simulation
models in which actors can establish as well as terminate influence relations. Actors base
their influence activities on the limited information and limited foresight they have about the
consequences of their actions. Stokman &#x26; Zeggelink specified two alternative basic models,
each corresponding to a known view on the political process. In the Control Maximization
(CM) model, actors simply try to create relations with the most powerful actors in the
network. In the Policy Maximization model, actors are more sophisticated and make a rough
estimate about the effects of their possible relations on the expected decision outcomes. The
present article presents only the Policy Maximization version of the Dynamic Access model.
This version appeared the most promising in Stokman &#x26; Zeggelink (1996) and Stokman &#x26;

Berveling ( 1996).

The structure of the paper is the following. First a basic description is given of the decision
making process with respect to the restructuring of the AVEBE company; this case is used as
an example to illustrate the proposed methods. Subsequently the DA model is specified in its
Policy Maximization version. In Section 4, some alternative specifications are mentioned.
These specifications contain parameters of which the value is not dictated by political insights
but should be made on empirical grounds. The addition of some random elements is

important in one of these alternative specifications. The Robbins Monro process can be
utilized in an algorithm for estimating the unknown parameters; this is explained in Section 5.
Finally the application to the AVEBE company is elaborated, and conclusions are drawn
about the parameter estimation method and the decision making process.

2. EXAMPLE: THE AVEBE

We illustrate the Dynamic Access model with a small empirical example, namely the
financial restructuring of a large Dutch coinpany (AVEBE). The explanation of this decision
making problem is taken from Stokman &#x26; Zeggelink (1996). The issue domain consists of
eighteen actors and three decisions. The AVEBE is a cooperative company of farmers in the
northern part of the Netherlands that produces potato derivatives. The company, already in
financial problems since the mid-Sixties, got serious financial problems in the mid-Eighties.
Its survival was of very high importance for the northem part of the Netherlands. Not only did
it employ a large number of people, but its financial bankruptcy would have serious financial
consequences for the farmers because of their unlimited liability in the cooperative firm.
Three main issues were at stake. The company’s own capital was almost completely lost and
had to be restored. Moreover, its survival required a considerable reduction of its debt.
Finally, the company was seriously polluting the environment and high investments had to be
made to adapt the pollution to the more stringent norms of the Dutch govemment. In January
1986, the company asked the Dutch government for an interest-free and redemption-free loan
to reduce its debt by Dtl 200 million. Moreover, it asked for a financial arrangement for
environmental investments of Dfl 80 million. These matters were delegated to an Advisory
Committee for Financial Restructuring, called (after its chairman) the Committee
Goudswaard. In actual practice, this Committee had the ultimate power to decide on the
matter. The Committee came with its advice in the Summer of 1986.

In our model, the Committee Goudswaard was given full voting power as it was de facto the
final decision making body. The other data were obtained by interviewing two experts. These
data concem the actors with their resources and mutual access relations, and the policy
positions and saliences of the actors regarding the three issues. The two experts generated the
same list of actors with only one exception. They agreed to a very large extent on all variables
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to be used in our models. We therefore use the mean values of the two experts on the
variables (see Tables 1 and 2). Clear differences in reports were obtained only in the access
networks. As the specific knowledge of the two experts was complementary (one had
expertise at the national, the other at the regional level), their access data were combined.
This means that we assume an access relation between two actors to exist in the empirical
network if at least one of the experts reported such a relation.

3. SPECIFICATION OF THE DYNAMIC ACCESS MODEL

From Stokman &#x26; Zeggelink (1996) we repeat the basic definitions for the DA model. Further
background motivations are to be found in the mentioned paper.

Starting point of the model is an issue domain consisting of a set of n actors (i, j, k = 1, ..., n)
and a set of m issues or decisions f g = 1,..., m). The decision process is time dependent,
with discrete time parameter (t = 1, 2, ..., Tj. The final decision is taken at time T. (Time-
dependence of variables always is indicated explicitly by the index t.) It is assumed that
decisions are made according to a given procedure characterized by the actors’ voting powers;
the voting power of actor i on issue f is denoted If 0 for some f, actor i is called a

public actor. In most cases there are only few such actors. All other actors are called private
actors (although they may be public actors in other meanings of this term). Voting powers are
normalized in the sense that for each issue f,

The possible decisions on each issue are assumed to be one-dimensional, i.e., they are
characterized by real numbers. The most extreme possibilities are represented by the numbers
0 and 1. Actors have preferences regarding the outcomes of the decisions. The preferred
outcome of a decision for an actor is called his policy position, and is a number between 0
and 1. The initial policy positions of the actors, xi f , are supposed to be given. Actors
influence each other during the decision making process, so that their preferred policy
positions are time-dependent, denoted by xi’. The final decision y f on each issue is supposed
to be the weighted mean of the final policy positions of the actors:

This also is a number between 0 and 1.

Influence activities of the actors spring from the utility they attach to the various possible
outcomes. On each issue f, actors have a single-peaked utility function, depending on the
distance between the hypothetical outcome yf and the actor’s policy position In order to
obtain comparability of the utilities for different issues, the model also includes salience
parameters sif that indicate how important issue f is to actor i. These are not time-dependent.
Saliences for each actor are restricted by

(The total salience for an actor may be less than 1, because his main interests may be outside
the issue domain under consideration.) In this article, the utility function is assumed to be
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The total utility over all m issues for actor i is assumed to be the sum of his utilities over all
issues (cf. Baron, 1991) :

The last two formulae are not used directly in the model, but indirectly via the expected
utilities defined below in Section 3.1.

The actors base their influence requests on the expected outcomes of the decisions. Access
relations are assumed to be established when one actor makes an access request, and this
request then is accepted by the other actor. It is assumed that actors are aware about the
current policy positions of all actors, and at time t ( 1 _ t _ n the expected outcome for issue
f, in accordance with (1), is given by

Actors have different capabilities to influence each other in the stage before the final vote.
One element of this capability consists of the actor’s access to other important actors and the
resources he can mobilize in these relations. The resources actor i can mobilize in the
influence stage are denoted ri (0  ri _ 1). Resources can include, e.g., information and funds.
Resources often result from long term investments, and therefore are not seen as time-
dependent. Access relations, however, are time dependent in our models. They are
purposively changed by the actors in the course of the decision process in order to exert
influence. How this is done will be explained below. The access network is defined by the
matrix At with elements with value 1 if actor i has access to j at time t, and 0

otherwise. It is assumed that actor i has full access to himself (ai) = 1). The access network
is not necessarily symmetric. The access network is assumed to be issue-independent. In
practice this means that the issue domain must be sufficiently homogeneous.

The effect of established influence relations depends on the salience of the issue for the
influencing actor as well as on his potential control (or potential influence) over the target
actor. It is assumed that the potential control of actor i over actor j depends on the relative
size of i’s resources, compared to the resources of others who have access to j :

It is assumed that within each time period, influence requests are made simultaneously. Each
actor’s policy position is the weighted mean of the positions of those influencing him
(including the actor himself), where the weights are the product of the potential control
coefficients and the saliences for the influencing actors:
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Actors, issues, voting power, initial policy positions, saliences, and resources are exogenous
elements in our models. Voting power usually is determined by investigation of the formal
decision making procedures. The other elements are usually obtained either by interviewing
experts or representatives of the actors involved in the issue domain. For this purpose special
interviewing techniques have been developed (see Bueno de Mesquita and Stokman, 1994).

Access relations among actors are generated as endogenous elements in the model. In the
present versions of the models, the actors start from scratch when requesting access relations.
This article assumes that no access relations exist at t = 0, but an interesting extension would
be to consider certain institutionalized access relations as being given at t = 0. Establishment
and shifts of access relations and their consequences for outcomes of decisions are the main
focal points in the DA model.

3.1. Decisions about access requests

In the influence stage, the actors try to realize a more favorable decision outcome by getting
access to other actors and thereby shifting, directly and indirectly, the policy positions of
public actors. Qualitatively, the process can be sketched as follows; a more precise
description is given below.

The influence stage consists of consecutive rounds (or iterations, or time periods). In
each round, some access relations may be established. Each round consists of three steps. In
the first step, actors make those access requests that would have the highest utility if accepted
and that are most likely to be accepted. Since access requests and access relations require time
and resources, actors are able to make only a limited number of access requests to other
actors. In the next step, actors evaluate the access requests they received. If the number of
requests is larger than they can handle, they accept only some of them. We assume that actors
learn through experience. Successes or failures of previous access requests are used to adapt
their estimate of the likelihood of acceptance of new requests. The third step is that actors
shift their policy positions according to formula (5).

Limitations are set to the number of access requests made, and the number of access
requests accepted. Stokman &#x26; Zeggelink (1996) gave three considerations that set limits to
these numbers: attempted influence requests and established influence should be in balance;
influence attempted as well as accepted increases with resources; and public actors must
accept more influence when their voting power is higher. To express the last effect, relative
voting power is defined as

The upper bound to the number of access requests made in time period t+1 depends on the
resources and the number of established relations in the previous round. For actor i, the sum
of already established outgoing relations and the number of new access requests may not be
higher than

Each actor is required to accept a given number of access requests, if this number of requests
is made:
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In these formulae, [x] denotes x rounded to the nearest integer. In the applications
considered, voting power is not issue-dependent, so the required number (7) does not depend
on the issue f (in spite of the f occurring as a subscript).

Of several models for the decisions about which access requests are made, the Policy
Maximization Model turned out in Stokman &#x26; Zeggelink (1996) to give the closest
correspondence between predicted and observed decision outcomes. In this specification,
actors use their knowledge on others’ policy positions and the expected outcome y’ of the
decision. Due to limitations on the information available to actors and on their capability for
predicting the effects of their influence requests, the access part of the model is based on
heuristic rules followed by the actors rather than on the assumption that they ca.rry out a
fullblown utility maximization. The set of access relations is reconstituted in each round, i.e.,
access relations that exist in round t are not automatically renewed in round t+l.

In round t+ 1, the access relations established in the previous round, given by those (ij) for

which a4 = 1, have a priority but not an absolute one. Denote by A~ the set of actors j for
which a4 = 1. This set has ai’ elements. In the first step of round t+1, access requests are
made. If the current out-degree ai’ is equal to (6) (case A), then actor i does not propose
any changes, and makes requests to the actors in A~ If ai’ is less than (6) (case B), requests
will be made to all actors in At and to some additional actors; if it is more than (6) (case C;
this is very rare), requests will be made to a subset of A j. In cases B and C, actor i makes

requests to those actors outside (for case B) or within (case C) A!, from access requests to
whom he expects the highest utility. The expected utility is given by formula (9) below, and
explained as follows.

It is assumed that actor i evaluates the direct effect of a succesful access request from i to j
on j’s policy position as y f) (x~ f - x~~. This is positive if moving x~~ into the

direction of xi’ would also move yj into the direction of xi’ , and negative otherwise. The
effect on the final decision also depends on j’s total control cjl and his voting power vjl .
These effects are combined in the factor (cjl + Further, the perceived utility of the
access request is weighted by the control cil of i over j. Together, this leads to the
perceived utility given by

There is one exception to this formula, namely for actors whose policy position is equal to the
expected outcome on all issues. If this exception were not made, such actors would not make
any access requests at all. It is assumed that these actors wish to obtain support for the
decision by obtaining access to extreme actors, hoping to moderate their preferences. This is
realized by the modification

The expected utility of an access request, is the product of the perceived utility and the
perceived likelihood of success. Actor i estimates the likelihood of acceptance of an access
request by actor j at time t = 0 as follows:
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Note that possible values of this formula are 0.1, 0.2,..., 1.0. Further it is assumed that actors
learn through experience. If an access request of actor i to actor j is not accepted by actor j,
actor i will reduce in the next iteration step by 0.1 until reaches its lower bound of

0.1. In all other cases, = p~ 1 for t &#x3E; 0.

As a conclusion of these considerations, the expected utility of an access request is perceived
by actor i to be

The rule for accepting access requests is simpler. At iteration step t+1, if the number of new

requests plus the number of incoming relations at time t is less than the norm (7), all

incoming requests are accepted. If this sum is higher than (7), the actor accepts the requests
made by those whose policy positions are closest to his own. The various issues are combined
by the function

m 1

Actor i accepts the new access requests made with the highest values on this function, up to
the number of new requests that he has to accept, (norm) - a1i .

Both in making and in accepting access requests it is possible that there occur ties in the
values (9) and (10) that determine which requests are made and accepted. If ties occur, a
random selection is made among the tied values. This gives a small degree of randomness to
the model.

4. ALTERNATIVE MODEL SPECIFICATIONS

The DA model as presented in Section 3 is based on political insights and theory, but also
contains elements that are based on ad hoc choices. This article considers the following
alternative specifications:

i. The coefficients in the bounds (6) and (7) are allowed to vary.
ii. A further random element is included in the models for making and accepting access

requests.

These specifications introduce additional parameters in the model that are a priori unknown
and have to be estimated from data about the final outcome and of intermediate outcomes of
the decision making process. The most relevant intermediate outcome is the access network
that has formed at the end of the process. The unknown parameters are denoted by 9h .

In Snijders, Stokman and Zeggelink (1996), extension (i) was elaborated, allowing only of a
one-dimensional parameter 9 . Parameters are included in (6) and (7) because the values of
the coefficients in these bounds were determined in Stokman &#x26; Zeggelink (1996) in a rather
arbitrary way. The present article allows several unknown parameters, but it is not advisable
to make their number too large. This would lead to imprecise parameter estimates and to a
risk of overfitting (i.e., of finding parameter estimates that reflect unimportant peculiarities in
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the data rather than the structure of the decision making process). In view of this restraint, one
parameter is included in each of formulae (6) and (7). The following bounds are considered:

Of course, every actor can make and accept no more than n-1 access requests. Therefore, if
the right hand sides of (11) and (12) are greater than or equal to n-1, further increase of 81 or

82 will not lead to any real changes in the specified model.

Extension (ii) is based on the idea that formulae (9) and (10) capture only incompletely the
determinants of the access process. Other, unknown factors can also play a role. These other
factors can be represented as random terms added to (9) and (10), respectively. This leads to a
model in the spirit of randoln utility inodels, cf. Maddala (1983, chapter 3). Of course, (9) and
(10) are not utilities in a strict sense, but they do guide actors’ behavior at intermediate steps
in the decision making process and therefore may be viewed as "intermediate utilities". Those
access requests are made which have the highest positive values of

up to the maximum given by (6) or (11). Here V- are random disturbances. Further, those
access requests are accepted which have the highest positive values of

up to the maximum given by (7) or (12). The W~~ also are random disturbances. If the

disturbance terms have probability distributions that can assume arbitrarily large values, the
effect of adding the disturbance term is that any of the access requests could be chosen, but
the probability of choosing them is an increasing function of the value in (9) or (10),
respectively. It will be assumed that the random terms Vi) for different i, j, and t, are

independent and identically distributed with an expected value of 0. The same is assumed for
the If the variance of or of W- is large compared to the variability of (9) or (10),
then there are important elements in the access process not captured in (9) or (10),

respectively. The precise form of the distribution of Vi) and Wit will not have very great

consequences for the modeling results. One possibility is to assume normal distributions with
means 0 and variances 83 for V~~ and 84 for Values 83 = 84 = 0 yield the original
model with access requests made and accepted according to (9) and (10). Very high values for
83 and 94 mean, respectively, that making access requests, or accepting them, happens at
random.

4.1. THE GENERATED ACCESS NETWORK

In each iteration step t from 1 to T, a new access network is generated. There are several
possibilities for defining the total network generated by the process (the stochastic "predicted"
network). One possibility is to take the last: aij Another possibility is to take the
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union of all step-dependent networks: aij = maxt This can be interpreted in the following
way. Contacts are being established during each step in the decision making process because
actors try to influence each other, and a number of these access requests are accepted. Each
time that an access request is succesfully made, this contributes to the relation between the
two actors involved. However, in order to obtain correspondence with earlier applications of
the DA model to the AVEBE data, this paper follows the first possibility.

The data collection may be formulated in such a way that the observed network is necessarily
symmetric, i.e., aij = aji .This was also the case for the AVEBE data. This can be reflected in
the model by symmetrizing the predicted network. Therefore, the final matrix generated by
the dynamic process is defined here as aij = max a -TI. It should be noted that this

symmetrization does not play a role in the modeled influence process.

5. PARAMETER ESTIMATION

The extension of the Dynamic Access model presented above has four unknown parameters.
The original specification of the DA model corresponds to 91= 82 + 0.5, 83 = 94 = 0. These
parameters can be estimated from available data; if the data is not informative enough, some
of the parameters could be given fixed values while the others are estimated. In this article we
treat moment estimation, based on a set of selected statistics. The idea is that if k parameters
are to be estimated the researcher selects k statistics observed for the decision process. These
can be outcomes on one or more issues as well as characteristics of the access network that
has been formed during the decision making process. If several decision making processes
have been observed that are so similar that it may be assumed that they are govemed by the
same parameters (note that this is indeed assumed by the original DA model), then the
statistics can be averaged over the various decision making processes. The parameters
are estimated so that a good fit between prediction and observations is obtained with respect
to these statistics. More specifically, indicate the statistics by 21 to Zk, with observed
values z, to zk . The distribution of the vector Z = (ZI, ..., Zk ) depends on the parameter
8 = ( 8ï , ..., 8k) . The choice of the vector of statistics Z will be discussed below.

One of the basic methods for constructing statistical estimators is the method of moments
(see, e.g., Bowman &#x26; Shenton, 1985). The moment estimate for 8 is the value of 8 that
solves the equation

.1%

This estimated value is denoted 8 . Under the assumption that the specified model correctly
describes the decision making process, an approximate expression for the covariance matrix
of 0 can be derived using the delta method (see, e.g., Bishop, Fienberg &#x26; Holland, 1973,
section 14.6) together with the implicit function theorem. The result is

where
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5.1. Robbins-Monro process

The problem with this moment estimator is that EgZ cannot be calculated in a

straightforward way, because Zh is the stochastic result of a simulation model. However, the
Robbins-Monro method (1951) (for an introduction see, e.g., Duflo, 1990 or Ruppert, 1991),
or variants of it, can be used to compute approximations to the moment estimates in
arbitrary precision. This was proposed for other dynamic network models by Snijders
(1996). To explain the Robbins-Monro method, first consider the case where no stochastic
element is involved. If our simulation model were a deterministic one, we could write Z(8)
for the value of Z for a given parameter value 9 , and we would have to solve the equation
Z(8) = z. This could be done by the well-known Newton-Raphson method, starting at a
suitable starting value 9 ~l~ and with iteration step

where D(8) = 3Z(0)/30 In the Robbins-Monro method, the exact value Z(8 ~N~) is

replaced by a random variable ZNf 8 (N)) which has the distribution of Z for parameter
value 8 = 8 (N). The randomness is dealt with by a factor 1 /N in the iteration step. The
iteration step is defined as

The matrix DN is a suitable matrix. The optimal choice is DN = D(6 ~N~). It is discussed
below how DN can be chosen in practice.

As a good approximation for the moment estimate, one can use 9 ~~~ for a value of N when

convergence may be assumed. Because of the random nature of the Robbins-Monro process,
a more efficient approximation is the average of 8(m) to 8(N), supposing that the iteration
process has been "circling around" the true value from at least the M’th step onwards, for a
sufficiently large value of N - M.

5.2. Selection of statistics

For the efficiency of the moment estimator and good convergence properties of the Robbins-
Monro process it is important that statistics Zh (h = 1,..., k) be chosen that carry information
about the parameters 9h (h = 1,..., k). With an incorrect choice of the statistics, it is possible
that the moment equation (15) does not even have a solution. Sufficient statistics as defined in
mathematical statistics are impossible to find in this model. Even proving, e.g., that EeZh is

an increasing function of one of the parameters 6k , when the other parameters have fixed
values, will often be next to impossible. The selection of statistics must be made in a heuristic
manner.

In this article we do not use the decision outcomes for estimating, but only the structure of the
generated access network. Two global network characteristics stand out as candidates: the
density,

’1 n
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and the variances of the in- and the out-degrees (cf. Snijders,1981 ),

(Note that the definition of the density implies that the mean in-degree as well as out-degree
is given by (n-1 )dA). However, other statistics can be used that may be closer to the roles of

the parameters 8h in the model. Formulae ( 11 ) and ( 12) indicate that parameters 81 and 82
moderate the degree to which resources ri and voting power vi set limits on influence
obtained and influence accepted. This suggests that the following covariances, or the
corresponding correlation coefficients, based on the components of (11) and (12), can be used
as statistics for estimation:

(The voting power here is assumed to be issue-independent).

With respect to 83 and 94 , the amount of "randomness" in the access network is important;
this notion of randomness refers to not being determined by the "input variables" consisting
of resources r, voting power v, saliences s, and initial policy positions x°. Except for the
density, all mentioned statistics reflect this randomness in some measure: the degree
variances and the various covariances all may be expected to become lower when the amount
of randomness in the system (measured by 83 and 94 ) increases. Other statistics that may
be viewed as reflecting randomness are the degree covariance (in view of the third term in
( 12)),

the graph autocovariance between the access network and the initial policy positions,
measured by a Geary-type statistic (cf. Sprenger and Stokman, 1989, chapter 18),

and the degree to which the powerful actors get what they want, measured by the inner
product between resources and utilities,

The available network data for the AVEBE access network are symmetric. The networks
predicted by the simulation model are therefore symmetrized, as described in Section 4.1.
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This implies that in-degrees are identical to out-degrees and that some of the statistics
mentioned above coincide. Further, only one actor has voting power, namely, the Committee
Goudswaard. The covariance between degrees and voting power therefore is of limited value,
and it will not be used in the analysis presented below. We explore the use of the following
three statistics for parameter estimation: the density dA, the degree variance VA , and the
covariance between degrees and resources, 

In Section 6.1 we will explain that preliminary simulations suggested, however, that
these statistics are not directly appropriate. Since the set of possible values for the degree
variance VA is highly related to the density dA, and since the covariance between degrees
and resources C(ai+,r) on its turn depends on the degree variance VA, normalized versions
of these statistics seem better candidates. Instead of the degree variance VA, we use
VA - EV(dA), where EV(dA) is the expected value of the degree variance in a random graph
with n vertices and density dA . Snijders (1981) shows how this value can be computed.
Similarly, we use the correlation r(al+,r) between degrees and resources instead of its
corresponding covariance.

5.3. Practical implementation of the Robbins Monro algorithm

For the practical use of the Robbins Monro method, a good starting value is important and a
good choice of the matrix DN is crucial. The derivative matrix D(8) would be the optimal
choice for DN Since this matrix, however, is unknown, DN has to be determined adaptively
on the basis of provisional knowledge.

For a preliminary and approximative reconnaissance of the function EOZ, it is advisable to

determine a region of likely values for 8 and define a grid of 8-values in this region. For
each 8-value in this grid, the simulation model is run once or several times. The outcomes of
the statistics Zh are averaged over the runs for each fixed value of 9 . These averages serve
as approximations of E8Zh and yield a preliminary impression of the behavior of EOZ as a
function of 8. Inspection of these results can indicate whether indeed a solution to the
moment equations (14) is to be expected within this region of values for 8, and whether E8Z
is a sufficiently smooth function of 8. If it is not a reasonably smooth function, then Z may
be an unsuitable statistic for the method of moments.

The matrix DN may be chosen as follows. Suppose that the reconnaisance indicated above
resulted in a k--dimensional interval

for which it is provisionally assumed that the solution to the moment equations lies in this
interval. Let eh be the h’th unit vector and define Sh = Now define the vectors 9

(0) = (9~p) and 8 (h) = 8(0)+ 6h eh for h = 1, ..., k. Run the simulation model M times for
each of the parameter values 8(h) (h = 0, ..., k) and calculate the average outcomes of the
statistics Z ; these averages are denoted (h = 0, ..., k). Then for the first steps of the
Robbins Monro algorithm, DN is chosen as the corresponding matrix of difference quotients
dhj, defined by
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With this value of DN, a number of steps of the form (17) are taken. When it may be
supposed this has led to a smaller k-dimensional interval of which it may be assumed that it
contains the solution to the moment equations, a new value of DN can be similarly
determined, and further steps of the form (17) are taken. This process is repeated a number of
times.

Implemented in this way, the Robbins Monro algorithm consists of several series of iteration
steps, each series having the same value for DN. Convergence must be determined by
monitoring moving averages of the generated values ZN ( 9~N~ ) and deciding whether these
are sufficiently close to the target (observed) value z.

This description of the implementation is admittedly not very precise. Convergence properties
of adaptive versions of the Robbins Monro algorithm are difficult to give in a way that is
completely satisfying for practical purposes (see, e.g., Pflug, 1988). The implementation still
needs some "trial and error" by the investigator. However, experience has shown that a
practical implementation is indeed possible.

6. PARAMETER ESTIMATION FOR THE AVEBE DATA

In this section, parameters are estimated for several alternative specifications of the DA
model, applied to the AVEBE example. The data were collected by Schonewille (1990), and
are summarized in Tables 1 and 2. The model was used with T = 10 iterations.

Table 1. Actors and Resources AVEBE Policy Domain
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..... - ...

a Percentage of whole capital
b Million Dfl

Table 2. Policy positions and Saliences in AVEBE Policy Domain

The empirical values of the three statistics are

The simulated values of these statistics in the standard DA model (corresponding to

This shows the standard DA model generates access networks that are less dense than the
observed network, and much more centralized in the sense that the relations are

predominantly with the actors who have voting power and/or many resources. The
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expected values of these statistics, which occur in the moment equation (15), are denoted

EgdA, E,9(VA - EV(dA)), and E8r(ai, r). First the estimation of 91 and 82 is discussed, and

next the estimation of 83 and 84 .

6.1. Bounds for making and accepting access requests

The first alternative model contains parameters 81 and 82 that play a role in the upper
bounds (11) and (12) to, respectively, the number of access requests made and accepted.

We mentioned in Section 5.2 that our initial choice of statistics was inappropriate. For
illustrative purposes we show now how we came to this conclusion, and why we decided to
take normalized versions of the statistics. To explore the possibilities of estimating the

parameters 81 and 92 , each combination of two out of the three initial statistics dA, VA ,
and C(ai+ , r) was considered as a possible basis for the moment estimators. The original DA
model has 91= 82 = 0.5. Plausible values for these parameters are considered to be values

between 0.5 and 1.5. First a rough investigation was made of the dependence on 8 of the

expected values of the three statistics. A grid of values of ( 91, 82) was considered with step
sizes 0.1 in the square with boundary values 0.5 and 1.5. For these parameter values the
model was run once, and the statistics were calculated. It tumed out that for values of 8

where the simulated density is less than 0.8, the simulated degree variance and d’egree
resource covariance are much too large, while the latter two mcan values quickly drop to 0
when the simulated density approaches 1. This implies that it is doubtful whether a solution to
the moment equations exists at all for these statistics, and if it exists it might lie in a region of
9 values where the derivative matrix D(9) has large and fast changing elements. Such an

instability of the matrix D( 8) is inauspicious for the Robbins Monro algorithm. Indeed it
appears that the algorithm does not converge when it is based on any two out of these three
statistics.

These numerical problems, however, hide conceptual and statistical problems. The degree
variance and degree-resource covariance are strongly related to the density. E.g., they tend to
0 when the density approaches 0 or 1. It seems conceptually preferable to transform the
statistics so that they are not so strongly related. This was done for the degree variance by
subtracting the expected value for a random graph with the given density, and for the degree-
resources covariance by using instead the correlation. In both cases this is only one of the
possible transformations, and other transformations will have to be studied in future research.

Accordingly, we now consider dA, VA - EV(dA), and r(ai+, r). It still appears impossible to
obtain convergence when dA and VA - EV(dA) are used as the pair of statistics. For very
small or very high values of E8 dA , Eg (VA - EV(dA)) gets close to the empirical value 6.6 of
VA - EV(dA~, but this statistic is much too large when dA approaches its empirical value of
0.50. Apparently, even when playing around with the parameter values of 81 and 82 in the
restrictions (11) and (12), the whole model is such that the simulated network, when it has a
density close to 0.50, still is much more centralized than the empirical one.

We do obtain results close to convergence, however, for the two other combinations of the
statistics. With 81 = 1 and 82 = 0.5, we obtain:
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This is about as close as we can get to the empirical values of VA - EV(dA) = 6.6 and
r(ai,, r) = 0.09. It is especially difficult to obtain small values of the correlation between
degrees and resources. The expected density with these parameter values is far below the
observed density.

With 01 = 2 and 82 = 0.7, we obtain

This is also as close as we can get to the empirical values of dA = 0.50 and r(ai+, r) = 0.09. It
is again difficult to obtain smaller values of the correlation between degrees and resources.
The expected value of Eg (VA - EV(dA)) is far above the empirical value.

Preliminary conclusion and interpretation

It is impossible to obtain the empirical values of degree variance and density simultaneously
given the specification of the restrictions (11) and (12), even when we allow the parameters
81 and 82 to vary. For a simulated network with the empirical density value, the simulated
networks are always over-centralized. Our models produce a too strong positive relationship
between voting power, resources, and the number of access relations.

The observed low correlation between degrees and resources can be reproduced rather closely
(but not perfectly), combined with the density and also combined with the degree variance but
not with both together. The reason that a better correspondence is not produced, is that our
model assumes that there is an important relationship between degrees and resources, not only
in the restrictions (11) and (12), but implicitly also in the behavioral rules determined by (8).
This might be improved upon when the assumptions on the behavioral rules are relaxed, and
random disturbances are included in (11) and ( 12) just as in (13) and (14).

6.2. Randomness in making and accepting access requests

The second alternative model contains parameters 83 and 84 in (13) and (14). These
represent the variances of random disturbances in the perceived utilities of making and
accepting access requests, respectively.

A number of unforeseen problems arise, so that more can be reported about sensitivity than
about estimation. With the introduction of a random disturbance in making access requests,
the behavior of most actors in the first rounds differs dramatically from that in the standard
DA model. In the latter model, actors do not make access requests to actors if they expect
zero utility from such a request. Since no actor initially has any control over other actors, the
only actors to which access would have any utility are those actors with voting power (see
(8)). Since in this example the Committee Goudswaard is the only actor with voting power,
this is the only actor to which actors initially like to have an access relation. This
initial situation is highly influential for the further process of the formation of access
relations. However, with the addition of a random disturbance to the expected utility of
an access relation (13), actors expect positive utility of access relations to many more actors
(on average half of the total) than just the Committee Goudswaard. As a result, the
process deviates too much from the process of the standard DA model, even for the smallest
values of 83 -

The expected values Es dA , Ee (VA - EV(dA)) , and Eer(ai,, r) increase with the

introduction of a positive 8~3 . Therefore it is even more difficult to reproduce the small
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observed value of r(ai+, r). Intuitively, one would first expect lower values of the correlation
between resources and degrees after the introduction of random disturbance in the expected
utility. However, as soon as behavior gets more random, the restrictions (11) and (12)
determine more and more strongly the structure of the resulting simulation network. By
definition, these restrictions entail high correlations between degrees and resources unless the
density is extremely low or extremely high. A similar story holds for the increasing value of

EV(dA».

With regard to the introduction of a random disturbance term 84 in the determination of
which access requests to accept, in our experience up to now, little happens to the network
parameters. This probably means that restrictions on accepting requests are less important
than restrictions on making requests. Actors whose requests are initially not accepted if
84 = 0, may now initially be accepted, but for 04=0 they might as well have become
accepted in later rounds.

Given these obstacles, it is understable that we did not obtain any convergence for the

estimation of the parameters 83 and 84 for any combination of the fitting statistics.

6.3. Conclusion

It appears feasible to modify the DA model in such a way that networks are generated that are
more realistic than the extremely centralized networks predictea by the DA model specified
in Stokman &#x26; Zeggelink (1996). However, the standard DA model appears to be so rigid, and
especially dominant in its restrictions for requesting access, that it is very difficult to produce
simulated networks that resemble the empirical access network, by the adaptation of
parameters as reported in this paper.

Future research activities shall concentrate on the relaxation of the definition of the
restrictions (11) and (12). Moreover, in the determination of the expected utility of access
relations to other actors, the initial dominant effect of voting power should be attenuated.
Finally, more empirical data should be used, in particular, decision situations with more than
one actor with voting power.

The method of moments combined with the Robbins Monro algorithm is promising for the
estimation of parameters in extensions of the DA model, but the behavior of the algorithm is
(of course) sensitive to the choice of network statistics for the fitting process. In our initial
attempts, the complicated association between the network density on one hand, and the
degree variance and degree-resource covariance on the other hand, led to non-convergence of
the algorithm. Further investigations about the choice of suitable fitting statistics are

necessary.
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