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AN OBJECTIVE AND PRACTICAL METHOD FOR DESCRIBING

AND UNDERSTANDING RATIOS

D.H. FOWLER1

RÉSUMÉ 2014 Méthode objective et pratique pour décrire et comprendre les rapports
Cet article explore l’utilisation de l’algorithme euclidien comme moyen très utile pour manipuler les rapports,
surtout dans les cas où de bonnes approximations rationnelles sont nécessaires. Cette discussion est illustrée à
partir d’une analyse de l’architecture grecque par JJ. Coulton. Cet article veut être un compte-rendu pratique, mais
il comprend aussi une discussion de certains aspects théoriques, ainsi que de la relation de cette procédure à une
nouvelle interprétation des mathématiques grecques de l’époque de Platon.

SUMMARY 2014 This article explores the use of the Euclidian algorithm as a most useful way of handling
ratios, especially when good rational approximations are required. Illustrations are takenfrom a discussion of the
analysis of Greek architecture by J.J Coulton. Although this is intended as a practical account, some discussions
of theoretical aspects are included, and also of the relationship of this procedure to a new interpretation of early
Greek mathematics.

This note2 was prompted by a reading of J.J. Coulton, ’Towards Understanding Greek
Temple Design: General Considerations’3, and I shall preface each section with a quotation
from his article4.

1 Mathematics Institute, University of Warwick, Coventry CV4 7AL, England.
2 This article was written in 1982 and circulated in limited way, but never published. Since then, Louis Frey
has made great use of some of the techniques described hère in a series of increasingly detailed and penetrating
analyses; see, for example, ’Médiétés et approximations chez Vitruve’, ’Pour un modèle du chapiteau ionique
vitruvien’, and ’La transmission d’un canon: les temples ioniques’. (Detailed references are given in the
bibliography.) It is with his encouragement, and because I think the techniques described here have more general
interest and scope, that I am now publishing it hère.
3 1 would like to thank Dr. Coulton for his comments on an early draft of this article, which led to significant

extensions and clarifications of my proposals.In this first quotation, I have altemated the ratios so that they appear as 2:1 etc., rather than 1:2 etc. This

avoids a distracting preliminary step in the procedure, to be explained in Section 3, below. Thereafter the ratios
are given as they occur in Coulton’s article.
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1. THE METHOD

"If two parts of a building are found to be related to each other as 21-:1, the architect might have
2

visualised this ratio simply as 21:1; but he might also have visualised it as 15:6 or as 131-:.51-
, 233

-- or as an approximation to 6:1 or 3n:4 ; but it is at least highly unhkely that he
visualised it in all of these ways" (p. b 1 ).

The basic problem is to compare two lengths in a way that is independent of any measurement
system, or choice of unit, or even to carry out the comparison in a purely geometrical way that
does not introduce any intermediate system of units; to find those ratios of small numbers which
approximate the number particularly closely; and to identify at what point the approximation
procedure becomes more accurate than the tolerances in the original measurements.

The method is based on the Euclidean algorithm. Suppose we wish to compare two lines or
numbers ao and al, that is to describe the ratio ao:al. (In the Erst example above ao = 21,2-
a, = 1, etc.) Subtract al from ao as many times as possible to leave a remainder a2, 

z

(I recommend that the reader to whom these operations are unfamiliar carries out the procedure
on two strips of paper, tearing them into successively smaller and smaller pieces.) Record the
number no, which gives approximate information about ao:al, and retain only a, and a2;
this involves no loss of information. If a2 is zéro, then ao:al = no:l; otherwise ao:al will
be greater than no: 1, and more precise information will depend on knowing something about
that first remainder a2. So repeat the operation with al and a2 :

record nI’ and retain only a2 and a3. If a3 is zero, then we can calculate that a, = n la2
and ao = nOn1a2 + a2, so ao:a 1 = (non 1 + 1 ):n 1; otherwise ao:a 1 will be less than

(non l + 1 ):n 1. Yet closer information can be obtained by continuing the procedure, and
decoding the results. 1 shall describe a simple and systematic way of evaluating these
approximations no:1, (non 1 + 1 ):n 1, ... in Section 3, below.

The sequence of numbers no, nl, n2,... will then completely and objectively describe the
ratio ~0:~1 and, for convenience, 1 shall write aO:a1 = [no, nI’ n2, ...]. Here are
Coulton’s examples.

1- 2 x 1= 0, and the procedure terminates.
2

So 21:1= [2, 2] . This same pattern will arise from 15:6, or 131:51.
2 3 3

(b) ~6: 1. These calculations can be performed in a variety of ways. To begin with, let us use
decimal expansions, writing ~6:1 as 2~4495... :l.



7

This particular evaluation becomes more suggestive if we rescale line by line: in line 2, instead
of comparing 1 and 0.4495..., compare (0-4495...)-l = 2.2247... and 1; and then do a similar
rescaling on each subsequent line. We then get

and now the numbers in the second and third lines seem to repeat indefinitely, so that we seem
to get ~6:1 = [2, 2, 4, 2, 4, 2, 4, ...] . We can prove that this sequence is indeed periodic by
performing this same calculation in the following fonn :

and now the last two steps will repeat indefinitely.

In the rescaled form, the procedure is well adapted for the simplest of pocket calculating
machines, especially programmable machines (but further refinements, to be described below,
are more easily set up as spreadsheets on personal computers). Perform the following steps:
enter a number; read out its integer part and reciprocate its fractional part; read out the integer
part of this new number and reciprocate its fractional part; etc. If this operation is performed on
x=~ we get

4

2. HANDLING APPROXIMATION DATA

"We can, however, suppose that the dimensions of each part of a building were
govemed by a system of proportion, but defined by being rounded out to the nearest
convenient dimension" (p.64).
"In so far as Greek temple design is indeed based on proportion and dimension, then
within the limits of accuracy current for the building concerned, every member of a
Greek building must have been defined either as a convenient number of feet or parts of
a foot, or as a convenient and/or desirable proportion of a part of the building which
had itself already been defined" (p.65).
"A question which continually recurs is what degree of accuracy are we to expect in the
design" (p.89).

For a variety of reasons, we must treat our data as only approximate, and so significant only to
within tolerances that are either built in as part of the process of design and construction, or arise
from the state of the remains of the building or the inaccuracies in the measurement process.
There is no point, therefore, in pursuing our exploration beyond this degree of accuracy. The
simplest way of doing this is to stop as soon as one of the remainders a2, a3, a4, ... becomes
less than the tolerance in the data, if this is known, or, at the least, to take note of the size of
these remainders. Note that this information is lost if we use the rescaled process of Section
1 (b); the original form of the algorithm is the most satisfactory for serious use. Another more
elaborate way of handling tolerances is given in the next section.
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3. FINDING SIMPLE APPROXIMATIONS

"The difficulty is that some quite simple vulgar fractions are hard to recognise when
expressed decimally; thus 0-426 may not be recognised as approximately 1. , nor 0-0775

7

as approximately 1 " (p.75). .13 .

A small remainder at any step in this procedure will immediately manifest itself in a large
suceeding integer nk ; then ignoring such a small remainder should give rise to a particularly
good approximation, and this will correspond to ignoring the large nk and all subsequent terms.
Most of the nk, in a randomly chosen ratio, will be 1 or 2; in practical contexts, 4 or above in
the third coefficient or beyond (i.e. in n2, n3, n4, etc.) can be considered as large. Take, for
example the case of ~6:1= [2, 2, 4, 2, 4, ...]. By this argument, we would expect this to be
close to [2, 2] = 5:2 = 21.:1, and this explains one of the examples in the opening quotation of

2

Section 1. Moreover we see that the last example in this first quotation, 31C:l = [2, 2, 1, 4, 5,
4

...], is less close to [2, 2] = 2l.:1, and is in fact much closer to [2, 2,1 ] = 21:15 ; while the
~ 

2 3
first approximation in the passage above, again taken the greater to the lesser, 1: 0.426 = [2, 2,
1, 7, ...] , is also very close to [2, 2, 1] = 7:3, and therefore also close to 3:1. The second4

example above gives 0.0775:1 = [0, 12, 1, 9, 3], which is close to [0, 12, 1] = 1:13.

Ail of these examples have been simple to evaluate, but it is clear that we shall need a quick and
systematic way of working out these expressions [no, nl, n2, ... nk] = pk:qk if they get
any more complicated; try, for example, to evaluate the approximation [2, 2, 4, 2, 4] to ~i6:1.
Here is such a method; 1 shall first describe il, and then give a brief explanation of what is going
on.

First write down 0 1 ; then, starting above the next column write down the values of no, nl,1 0 g o 1

n2, ... , and calculate p and q, using at each stage their values in the previous two columns, as
in the following example of ~6:1 :

Here, in the no column, po = 2 x 1 + 0 = 2, qo = 2 x 0 + 1=1; then pl = 2 x 2 + 1= 5,
and so on up to p4 = 4 x 49 + 22 = 218, q4 = 4 x 20 + 9 = 81. This process generates the
ratios [2] = 2:1 ; [2, 2] = 5:2 ; [2, 2, 4] = 22:9 ; [2, 2, 4, 2] = 49:20 ; etc., and we find that
they form a rapidly improving sequence of approximations to the ratio ~6:1 by ratios of integers,
and, as indicated in the bottom row, these approximations altemate round the given ratio :

5 Louis Frey bas pointed out to me that ~:1 = [2, 1, 1, 18, 2, 1, 366, 3, ...] is much closer to [2, 1, 1 ] =

[2, 2] = 2l.:1, as we now can clearly see, and is very close to [2, 1,1, 18, 2, 1] = 284:113, an approximation
that deri~s from the excellent approximation 355:113 to ~:1. Perhaps Coulton originally intended to write
4~:5.
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These approximations p:q are, in fact, the best possible using numbers of up to that size.
For example ~6:1 = 2.449489... while [2, 2, 4, 2, 4] = 49:20 = 2.45, and no ratio involving
denominators up to 20 (and, in fact, considerably larger than that) will give a closer
approximation.

These examples and this procedure illustrate two features worth noting. First, the effect of
taking ratios the lesser to the greater, rather than the greater to the lesser, is to introduce an initial
term of 0, and so to reverse the roles of ao and ul and to replace p:q by its reciprocal;
evaluate the approximations to 1:~6 to see what 1 mean. Secondly, there is an ambiguous
representation of terminating ratios, that we can sometimes use to simplify their evaluation. For
example, [0, 2, 2, 1] = [0, 2, 3], which is the reciprocal of [2, 3] = 21:1; or, in général, [no,

3

n 1, ..., 9 nkl = [no, n 1, ..., nk - 1, 11 if nt 2. We see this as follows: in the last stages
of the subtraction process, we can have either something like

and the process terminates,

or, altematively,

12 - 2 x 4= 4, that is ak - (nk - 1) x ak+ 1 = aux+1, and then

4 - 1 x 4= 0, that is ak+~ -1 x ak+1 = 0, and the process terminâtes one step later.

In addition to the very good approximations that arise by truncating the expansion, there are
other good approximations that arise by decreasing a final large term. An example that arose in
an actual analysis of some data will illustrate and explain this: 5-943 : 2.409 = [2, 2, 7,13, ...].
Our theory so far tells us that if we neglect the large term 7 and beyond, this will generate a good
approximation [2, 2] = 5:2, an overestimate; and neglecting the next and even bigger term 12
and beyond will generate an excellent approximation, [2, 2, 7] = 37:15, an underestimate. But
also, in addition, the terms [2, 2, 6] = 32:13, [2, 2, 5] = 27:11, and [2, 2, 4] = 22:9 will be
good approximations; and so indeed will be [2, 2, 3] = 17:7, [2, 2, 2] = 12:5, and [2, 2, 1] =
[2, 3] = 7:3, though these will be poorer absolute underestimates that [2, 2] was an
overestimate. The situation is illustrated in Figure 1; the change-over occurs at the half-way
point, here between 4 (greater than half of 7) and 3 (less than half); and when the final term is
even, the half-way value can be either better or worse6. Finally there is the issue of the
accuracy of the data, which was here given to 3 decimal places. In the absence of any other
information, we can only interpret the number 5.943, for example, as denoting anything in the
interval from 5-9425 to 5.9435; so this ratio denotes anything in the interval from 5-925 :
2.4095 = 2.4663... :1 = [2, 2, 6, 1, 10,...] to 5.9435 : 2.4085 = 2.4677...:1 = [2, 2, 7,
4, 10, ...]. Hence all points inside the interval from [2, 2, 6, 1] (= [2,2, 7]) to [2, 2, 7, 4]
are, in effect, indistinguishable from each other and from the given ratio. Figure 1 gives some
impression of just how rapidly these approximations converge to this ratio.

These two kinds of approximations - now generally called the ’convergents’ and the
’intermediate convergents’ of the given ratio - are the best approximations using numbers of a
specified size, where the details of this statement, like the precise meanings of ’best
approximation’, etc., can be precisely defined in a variety of different ways . 

z

6 There is an arcane test to détermine if [no, n 1, ... 1 nk] will be a better absolute approximation than
[no, n 1, n2, ... nk-11: Is [nk-1’ nk-2, ... n 1 ] less than [~k+ 1, nk+2, .-I ?
7 For more détails, see my book The Mathematics of Plato’s Academy: A New Reconstruction, Chapter 9.
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Figure 1. Approximations to

Here is a brief explanation of what is happening8. We have

Now substitute each expression in the expression above it, starting at the top:

that is

a so-called continued fraction, for which we again employ the abbreviation [no, nl, n2,...J. If
we ignore a remainder in this process, this will correspond to truncating this expression, which
will yield the corresponding convergent [no, nl, ..., nk] = Pk:qk. If we then think carefully
how these fractions behave (see the next section), we see that

and that

where po = q-, = 1, p_1= qo - 0. Finally, the intermediate convergents fit between the

convergents in these inequalities.

8 Readers who do not like mathematics or its history should skip the rest of this section!



11

It is worth describing a completely different and general procedure which generates all the
apparatus of this kind of expansion and its associated approximations, both the convergents and
the intermediate convergents. We shall use the following propositions :

(This has the homely interpretation that the average speed of a day’s journey will always lie
between the averages of morning and aftemoon; or that a cricketer’s seasonal average will lie
between the half-seasonal averages). So, to approximate a given ratio a :b, start with initial
under- and over-estimates p:q and r:s ; generate the new estimate (p+r): (q+s) and
check whether it is less than, equal to, or greater than a:b; replace the appropriate initial
estimate by it; and then continue. The process can be started with the universal estimates 0:1 
a:b  1:0. Here is an illustration of its operation on the ratio ~6:1, where we use the test that
p:q is less than, equal to, or greater than ~6:1 according as p2 is less than, equal to, or
greater than 6q2.

The approximations in column 3 occur in improving runs of under- and overestimates and the
pattern of these runs gives the expansion: here 2 under-estimates, 2 over-estimates, 4 under-
under estimates, ... corresponds to the expansion 6:1 = [2, 2, 4, ...]. The run-end
approximations just before the estimate changes side will be the convergents, the best at any
stage; these here are the underlined ratios 2:1, 5:2, 22:9. The other approximations will be
intermediate convergents that 1 have just described. (This is also illustrated by Figure 1.)
Observe also that the third column of new estimates can be built up from a knowledge of only
the last column ; and this is precisely what the calculation of the approximations in Section 1 is
doing. Many of the other properties of these expansions can also be described in terms of this
algorithm.

This method can be used to generate good (indeed the best possible) approximations to a wide
variety of ratios (roots, logarithms, etc.) in a way that does not involve having recourse to
calculating machines or mathematical tables9.

4. INEQUALITIES AND ARITHMETIC

"It is hard to say at once in which order such terms as 5 ,12 and 13 should be placed,17 37 42 p
let alone whether the difference between the largest and the middle value is more or less
than the difference between the middle and the smallest value" (p.74).

9 A very clear discussion of the technique, with copious examples, is given in Fletcher, ‘Approximating by
vectors’ .
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Look now at the effect of varying the successive terms nx. As no increases, so surely does the
corresponding ratio ao:ai. Then ni measures the size of the first remainder a2 against al; so
as ni increases, a2 descreases, so the ratio ao:al decreases, since a2 is a subinterval of
ao. Next, n2 measures the size of the second remainder a3’ a subinterval of a,, against a2;
so as n2 increases, a3 decreases, so ai decreases, and ao:a¡ increases. This pattern
continues: increasing an even-indexed term no, n2, n4, ... will increase the corresponding
ratio ao:ai, while increasing an odd-indexed term ni, n3, n5, ... will decrease ao:al.

The expansions of the three examples above are as follows:

These ratios differ first in their even-indexed terms n2, and increasing this term will correspond
to increasing the ratio. Hence 5:17 is the smallest ratio, 13:42 is the middle, and 12:37 the
largest.

This rule needs to be extended to deal with the case of terminating ratios, as follows: express the
ratios using the alternative that does not end with a term equal to 1 and then adjoin a nominal
term of oo at the end (corresponding to performing the subtraction process with a zero
remainder). Then, to compare two ratios, look at the first place at which they differ; if it is even-
indexed, the ratios will be in standard ’dictionary’ order; if odd-indexed, in reversed dictionary
order. It was not necessary to invoke this rule in the examples above, but it explains why
[2,1 J = [3]  [3, 2], neither of which relationship seems to satisfy the rule as stated.

5. ETIC WITH RATIOS

Thé [so-called] Egyptian system of fractions is normally used throughout thèse works
[Hero’s Stereometrica and De Mensuris], and the handling of this cumbersome method
is most impressive to a novice in the art (e.g. lp41 1 1 1 _ 211 1 1 ’ g21 1 1 "p 2- -7 1-4 -i 1- 2312 2384

(pp.81-2).

It is worth noting that descriptions of arithmetic with ratios of numbers (corresponding to our
fractional arithmetic) are notoriously absent from Euclid’s Elements and from Greek
mathematics in general, while even everyday calculations, and perhaps even the arithmetic of
mathematicians, was performed in a way that seems strange and complicated to us. In fact, the
evidence for a Greek use of anything corresponding to our way of manipulating fractions is very
slight, almost non-existent, despite what is confidently asserted in many histories of Greek
mathematics; instead, Greek calculations seem to have been carried out Egyptian-style, using
sums of unit fractions. In this note 1 am describing practical applications of a method of
describing ratios that may have been in use by pre-Euclidean mathematicians, though 1 think that
this historical aspect is incidental to my proposal here. More details of thèse historical matters
will be given in Section 8, below.

l0 See, for example, Heath, History of Greek Mathematics i, pp4l-45; the section called ’The ordinary Greek
form, variously written’ is, at best, highly misleading. An excellent summary of some of the evidence is given
by Coulton on pp74-84, and 1 discuss the topic in detail in Chapter 7 of my The Mathematics of Plato’s
Academy, where I argue that early Greek fractional calculations (excluding some astronomical calculations, as
noted in Section 7, below) may have been carried out using unit fractions. A brief summary of this proposal is
given in my article, ’Logistic and fractions’, in the general survey Histoire de Fractions, Fractions d’Histoire.
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These continued fraction expansions have the curious feature that the procedures for performing
arithmetic on them are very difficult to find: common informed mathematical opinion today is
that it is just about possible but is computationally unwieldy. In fact, a simple procedure has,
been described by R.W. Gosperll. Even with this, however, it is not easy to see quickly
whether the difference, in the example of Section 4, above, between 13:42 and 5:17 is greater
or less than the difference between 12:37 and 13:42. One might guess at first from the
variation in the n2 terms, from 2 to 4 to 12, that it is less; in fact it is greater. In general, a small
change in a small value of some index k has a much greater effect than quite a large change in a
large value of this same index or a small change in a higher index; here, the change from 2 to 4
in n2 has a greater effect than the change from 4 to 12. (Once again, Figure 1 illustrates what is
happening). A similar phenomenon can be seen in the behaviour of the denominators of simple
fractions: the difference between 1 and 1 is greater than the difference between 1 and 1 .2 4 g 4 12

6. INCOMMENSURABLE RATIOS

"The assumption has been ... that the proportional systems used in Greek architecture
were based on commensurable ratios, ... [but] many of the general remarks above apply
equally to systems based on incommensurable ratios" (p.73).

The theory of these expansions (known now to mathematicians under the name of the theory
of continued fractions) is supremely well adapted to two topics: finding information about good
rational approximations, and finding certain kinds of properties of the solutions of quadratic
equations. (The two solutions of the quadratic equation ax2 + bx + c = 0 are

numbers of the form p+ r , which 1 shall hereafter call ’quadratic surds’; ’
and I will pass freely between these numbers and the corresponding ratios, Q : 1 or

( p +.¡q) : r.) Consider first the expansion of the simplest kind of such an incommensurable
ratio, p: q, corresponding to the positive solution of qx2 - p = 0, where p is not a

q

perfect square. The astonishing result here is that the continued fraction expansion of these
ratios will always exhibit the striking form

in which the first term no is followed by an indefinitely repeating period comprising a
palindromic block terminated by 2no. (The palindromic block may be reduced to a single term,
or be missing from certain simple ratios.) Table 2 sets out all ratios ’~p:’~q for 1 _ q  p 
10; in the first column, two repetitions of the period are given and the commensurable ratios
~4:1 and ~9:1 are not expanded; elsewhere only one period is given, or the ratio is identified
as a ratio that has already been calculated. It will be evident to anybody who explores this table
that some general patterns appear to be emerging for some kinds of ratios:

11 This algorithm is described in my Mathematics of Plato’s Academy, pp354-60.



14

0
".4

VI
CL,
v
0’
VI
"-4

c"

- M4
r-
4-4
0
cn

r.0
’K
r.C3
0
oc
a

0.
ci
eu

4-4

a

m

0
ci

E-.4
2:
w

.
E--4



15

The characteristic form of the ratios makes them instantly recognisable. Conversely,
given any expansion of this periodic palindromic form [no, nl, n2, ..., n2, nl, 2no, nl,
n2, ..., n2, nl, 2no, ...], the ratio of which this is the expansion can be calculated as
follows:

In general, if x = [no, ...], this means that x = no + 00 where 0  9 0 _ 1 ;

= xl = nl+ 81, etc. Substituting each expression into the one preceding it, we get

as was described in Section 3, above. In the case when x has the palindromic periodic form,
we then write

- r~1 I1__ -- - 7_

the period now starts with the first term, and the expansion got by omitting the first complete
period is again identical to x + no. Hence

When this expansion is simpliiled, it gives rise to a quadratic equation of the special simple form
qx2 -P = 0.

The expansion of a general quadratic surd, ~ r : 1, will eventually be periodic, of the form,
[mu, m 1, ..., m k, n 1, n 2, ..., n , n 1, n 2, ..., n, ...], but little more can be said in
advance. (This behaviour is analogous to this displayed by the decimal expansion of a fraction;
for example  = 1’36027 027027....) One particular quadratic surd has come to fascinate3770

those who seek interesting ratios, for reasons not unconnected with its expansion: the ratio x: 1

whose expansion is [1, 1, 1, 1,...] will satisfy x =1 + 1 , so x2 - x - 1 = 0, so x =p x

2 5). The positive root x = -(1 + 5) = 1.6180... gives the ratio of the notorious2 p 2 g

‘golden section’; and, from what I have described here, it can be seen that, since it has no tenns
larger than 1 in its expansion, it cannot be specially well-approximated by any ratio of integers.
Now calculate the approximations:
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and we see that they are, as is well known, the ratios of the successive Fibonacci numbers. We
can read off from Table 1 other kinds of approximation to the golden ratio, for example,
~8:~3 = [1, 1, 1, 1, 2, ...]; this ratio ~8:~3 will give a slightly poorer overestimate than the

ratio [ 1,1,1, l,1,1] = 13:8. (In décimal numbers !(1 + ~5) = 1.6180..., 13:8 = 1.625...,
and ~8:~3 = 1-6330...). 

2

Vast and unfounded claims are often made for the golden sectionl2. At the very least, one
virtue of this theory is that, by providing an explanation of many of the mathematical properties
of this ratio, it provides a procedure which enables us to set most of these remarkable properties
in a more revealing context; and perhaps this objective test for the presence of this ratio may help
to put some of the more extravagant claims where they belong.

Among other incommensurable ratios, it is worth knowing that 7C:1 = [3, 7, 15, 1, 292, 1, 1,
1,...] ; this explains why [3, 7] = 22:7 and [3, 7, 15, 1] = 355:113 are particularly good
approximations to x, both overestimates. But there are few general results about any other
incommensurable ratios other than quadratic surds, though sometimes merely looking at an
expansion suggests some observation. For example V2+V3): 1 (this is not a quadratic surd)
has the expansion [3, 6, 1, 5, 7, ...] so [3, 6, 1] wil be a good approximation; but this is the
same as [3, 7], the standard approximation to ~t. Hence we should expect ’~2+~Î3 to be close
to and bigger than x = 3~ 14159..., and it is: ~2+~3 = 3~ 14626.... Once again, an explanation
cannot but help us understand more about this coincidence: here, an octagon inscribed in the
circle with unit radius has area 2~2; a hexagon circumscribed around has area 2~3; and their
average will be close to the area of the circle, which is ~.

7. DECIMAL FRACTIONS

"... proportional relationships must be expressed as decimal fractions initially in any
investigation of their significance ... however no ancient architect could have designed in
decimal fractions. In so far as he conceived his design in terms of arithmetic
proportions, he must have used expressions equivalent to vulgar fractions" (pp.74-5).

Decimal fractions were not introduced in the West until the late sixteenth century, when they
were popularised by Viete, Stevin, and others. Greek astronomers did use a Babylonian
sexagesimal system (i.e., to base 60, just as, under the same Babylonian influence, we still
measure angles and time), but not before the time of Hipparchus in the second century B.C.,
and then only for scientific, in particular astronomical, calculations.

12 A detailed history of the mathematics involved, from antiquity up to the 18th century, can be found in Herz-
Fischler, A Mathematical History of Division in Extreme and Mean Ratio. A mathematical explanation of
some of the evidence for the golden section that some people induitably find is given in Herz-Fischler, ’How to
find the golden number without really trying’, and 1 have written a less technical description of this in another
article of the same name in a journal, The Mathematical Review, intended for schools. In a nutsbell, the

explanation is as follows: Suppose we are presented with data in the form of pairs of numbers whose ratio is
random. Write a typical pair as m ~. M, where m is the smaller and, more precisely, suppose that the
numbers mlM (i.e. smaller to larger) are uniformly distributed between 0 &#x26; 1. But if we now analyse
MI(m+M) (i.e. larger to whole), instead of mlM, we will find that the data lies within the interval from
to 1, and are, in fact, compressed around ~b180... _ ~ (~5 -1), the reciprocal of the golden section! t (Note that
mlM = Ml(m+M) if and only if mIM = .6180... ; the map~ defined by flx) = (1 + x) - 1 which sends

ml M to M/(m+M) is a contraction of [0,1 ] with fixed point Z (~Î5 - 1).) And if the numbers m l M in

fact lie in some smaller interval (for example, if m and M are different but not too different, so mIM keeps
away from 0 &#x26; 1), then this compression effect in will be even more exagerated.
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It is worth describing a subtraction algorithm for generating decimal ratios, similar to the
anthyphairetic procedure of Section 1. We start with a choice of basic length b, e.g. a metre,
and a base, e.g. 10. Then, to measure a given line ao, we perform the following subtractions:

with

with

with

and the ’length’ of ao corresponds to the ratio ao:b, now characterised by the séquence of
numbers mo, Ml, m2, m3, ... which are conventionally written 

These numbers mo, Ml, m2,... have certain properties and can be manipulated in certain
ways; we learn about these slowly, and sometimes painfully, and then this knowledge forms the
basis of our understanding of numerical phenomena. Similarly the numbers [no, n l, n2, ...]
associated with the continued fraction expansion have certain, completely different, properties
and they also can be manipulated in other, completely different ways. It is beyond doubt that
some features of ratios are only clearly revealed in the continued fraction description of ratios,
and it is those features that 1 am describing and exploiting here.

7. FURTHER HISTORICAL REMARKS

"Plato expressed the ratiol3 256:243 without reducing it to a fraction." (p.75).

The technique described here is presented with the intention of helping those, today, who need
to analyse data, to facilitate their search for different kinds of rules of proportion that may be
contained therein, and it stands or falls on this criterion. However it may be of interest to
conclude with some incidental remarks on the role of these kinds of expansions in a speculative
reconstruction of pre-Euclidean Greek mathematics.

It is a curious and remarkable fact that although ratios are frequently referred to by Plato,
Aristotle, and even Euclid, the idea of ratio, as opposed to proportion (i.e. a meaning for ’a :b’,
rather than ‘a:b::c:d’) is not clearly defined, either in Euclid’s Elements or anywhere else in
the surviving corpus of Greek mathematics, and the techniques that we use to handle ratios -
fractions, and decimal or sexagesimal numbers - may not have been available to them at that
time. All that we have is a vague description of the word at Elements V, Def. 3: "A ratio is a
sort of relation in respect of size between two magnitudes of the same kind", and a further hint
of what an early définition might have been in Aristotle, Topics 158b29ff: "For the areas and
the bases have the same antanairesis; such is the defmition of the same ratio [or proportion?]".
Instead, most of our surviving evidence refers to the celebrated later Eudoxan définition of
proportion, in Elements V, Def. 5, which is believed to date from c.350 B.C. Now this word
antanairesis used by Aristotle is closely related to, and may even be synonymous with, the
word anthyphairesis found in Euclid’s Elements to describe the so-called Euclidean
algorithml4. In my book, The Mathematics of Plato’s Academy: A New Reconstruction, I
develop in detail the proposal that there were several fundamentally different though equivalent
13 Coulton uses the word ‘proportion’ here but, in strict mathematical usage, ‘rado’ is perhaps more correct (see
Euclid Elements V, Defs. 3 and 6), though everyday usage is far from consistent; we ask ’what proportion of A
is B?’, and the usual Latin translation of logos is proportio. An analogy may illustrate the difference between
the words: to define a ratio is like defining a human being; a proportion is like defining twins, where we compare
appropriate characteristics to verfy they are identical. Such an analogy is of course, itself, a proportion
(analogon): ratio:proportion::human being:twin.
14 The Greek verb anthuphairein occurs in Euclids Elements VII 1 (twice) and 2, and X 2 (twice) and 3. The
process it describes can be rendered into English as ’reciprocal subtraction’.
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ways of defining ratio before the development of the Eudoxan proportion theory, of which the
most highly developed was the ’anthyphairetic’ or continued fraction expansion 1 have been
discussing here, and 1 show that a substantial amount of the Elements and other fourth century
mathematical references can be interpreted in this light; for example, 1 suggest that Plato’s
mathematical logistikê may have been the study of these different kinds of ratio.

However, even if my new interpretation were to be accepted, 1 do not think that it would have
any significant bearing on practical questions of the design and construction of Greek buildings.
As Plato observes, at Philebus 56D-57A:

SOCRATES: Are there not two kinds of arithmetic (arithmêikê) that of the people and
that of the philosophers?... And how about the arts of reckoning (logistikê) and
measuring as they are used in building and trade when comparing with philosophical
geometry and elaborate computations (logismos katameletomenos) - shall we speak of
each as one or two?
PROTARCHUS: 1 should say that each of them was two.
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