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ON BINARY TREES AND PERMUTATIONS

A. PANAYOTOPOULOS and A. SAPOUNAKIS1

RÉSUMÉ 2014 Sur les arbres binaires et les permutations.
Chaque arbre binaire est associé à une permutation avec des répétitions qui le détermine uniquement. Deux
opérations sont introduites construire l’ensemble de tous les arbres binaires. L’ensemble de toutes les

permutations qui correspondent à un arbre binaire donné est déterminé et son nombre cardinal est évalué.

SUMMARY 2014 Every binary tree is associated to a permutation with repetitions, which determines it
uniquely. Two operations are introduced and used for the construction of the set of all binary trees. The set of all
permutations which correspond to a given binary tree is determined and its cardinal number is evaluated.

1. INTRODUCTION

The connection between the set ~ of rooted unlabelled binary trees with n vertices and the set
Sn of permutations on [n] = {1,2,...,n} is well known. This connection is based on the labelling
of the n vertices of a binary tree T, from the elements of [n] and the various traversals [1], [3],
[4].

It is assumed that the labelling is consistent with the partial order of T, the root is labelled by
1, and the corresponding permutation a= o(l)o(2)...o(n) is obtained by the inorder traversal of
T (i.e. by visiting the left subtree first, then the root, and then the right subtree, see fig. 1).

Figure 1. The permutation o = 547 81263 and its tree
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The set of all permutations ci of S. obtained by a labelling of the tree T in the inorder
traversal is denoted by S.(T).

In this paper each tree T is associated to a permutation with repetitions (p.r.)
ç = q&#x3E; (1)q&#x3E; (2)...q&#x3E; (n) which satisfies certain properties and determines the tree T uniquely.
These p.r. are used as a main tool for the construction of ~ and some of its subsets. Further the
relation between the sets ~ and Sn is examined. Given a tree Te fl§ the associated p.r. is used
for the determination of the elements of Sn(T) and the evaluation of its cardinal number.

For the study of the above notions the following symbols are used. For every permutation
Cr E Sn we denote 

-

where ( (1) (resp. r(J(i)) is the first element on the left (resp. right) of the position, which is
smaller than cr (i). If 4(i) or/and does not exist we assume that 4(i) or/and is equal to
zero (see also [3], p. 339).

For every p.r. ~ the definitions of (,(i), r,~(i), ~1,~(i) are given similarly.

For example for the permutations OE = 54781263 and ç = 32341243 we have
À G (6) = max(1,0) = 1 and À.,(7) = max(2,3) = 3.

2. BINARY TREES

Let T be a binary tree with n vertices which belong to m levels (mn). If the vertices are
enumerated according to the inorder of T then a p.r. ~ = ~(1)~(2)... ~(n) is defined as follows :
ç (1) = p iff the ith vertex of T belongs to the pth level.

For example the corresponding p.r. of the tree T of fig. 2 is = 32341243.

Figure 2. The binary tree of ~=32341243

It follows that ~ satisfies the following two properties :
(i) For every i ~ j E [n] and p E [m] : ç (1) = ç Q) = p there exists k between i and j such that

~(k)  p.
(ii) For every i E [n] we have ~1,~ (i) _ ~p (i)-1

The first property is true for p = 1 and it is extended by induction for every pE [m]. Indeed if
it is true for p and 1 # j e [n] = p+l, let ii ,j i E [n] such that the ih vertex is the
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father of the ith vertex and the jr vertex is the father of thej th vertex. If il = jl then the property
holds for k = il, while if there exists k between il and jl such that ~(k)  p and the

property also holds since k lies also between i and j. For the second property let i &#x3E; 1 and assume
that the j th vertex is the father of the i~ vertex, À 9 (i) -

From the above discussion we deduce that each binary tree T is associated to a p.r. which
satisfies the properties (i) and (ii). The set of these p.r. is denoted by 1’n.

Moreover every ç OE 1’n generates the associated binary tree T as follows :

If we plot all the points (i, ç (1)), i E [n] on the plane we define T to be a tree with these
points as vertices. The root of T is defined to be the point (r, 1) where r is the unique element of
[n], with q (r) = 1. Further the father of each vertex (i, ’1 {i)), i E [n]Bl r 1 is defined to be the
vertex ~, ~» where j is the first element of [n], on the left (resp. right) of i such that  q (1),

&#x3E; r, (i) (resp. i, (1)  r, (1)).
If we summarize the above results we have the following proposition.

PROPOSITION 2.1. There exists a one to one correspondence between the sets rrn and 

The binary tree T may be constructed from the up-down diagram of the associated 
For example the binary tree T of fig. 2 is obtained from the up-down diagram of the associated

= 32341243 (see fig. 3) by substituting the line segments with end points lying on levels
p,q with Ip-ql &#x3E; 1.

Figure 3. The up-down diagram of ~=32341243

The above correspondence is used for the definition of two operations in T~ which will be
applied for the determination of its elements.

Operation mirror. If T e tTn and ç is the associated p.r. we denote by (p the transpose of y
derived by ç(1) = .,(n+1-i), i E [n].

It is easy to check that cp E J’n and by proposition 2.1 it is associated to a binary tree T,
which we call the mirror of T. The mirror operation is used for simplifying the construction of

. Indeed it is enough to construct the set J4 of all binary trees T rooted at (r,1 ) with r ,
_ _ 

2
because then T’n = &#x3E;1 U &#x3E;1where &#x3E;1 denotes the set of all mirror trees T, for T E &#x3E;1.
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Operation join. Given two binary trees Tl, T2 with nl,n2 vertices respectively we construct a
binary tree T with n = nl+n2+1 vertices as follows :

If 1, Y 2 are the p.r. associated to T1,T2 respectively, we ’91 by ’9t(i) = 
’9 ;(i) = 1+~(~)’ It is easy to check that the concatenation ’9 = ~p 11 ~ 2 ~p 2 is a p.r. in Fn
and by proposition 2.1 it is associated to a binary tree T = Tl V T2 which we will call the join of
T1 and T2. We remark that the construction of Tl V T2 remains valid when either of ni or n2 is
equal to zero. In this case we use the concatenations 

The join operation is used for the generation of every element of ~’n from binary trees with
less vertices. Indeed if T is any binary tree with n vertices rooted at the vertex (r,i), ni=r- 1 and
n2=n-r we write the associated p.r. ~=~il~2 and we denote by Tl and T2 the binary trees
associated to "1 and respectively. It is easy to check that T2E T n2 and T=T,VT2.

The above discussion suggests the following result.

PROPOSITION 2.2. For the set Tn we have

From the previous propositions we may construct the set qn from the elements of the sets ~’k,
0  k n. Indeed if

we first use the join operation for the construction of the sets Bo,Bl,...Bt, 2 2
and then we construct the sets by applying the mirror operation to each élément
of the above sets.

It is well known that the cardinality of T. is equal to the number of Catalan 1 2n , Thisy n q n+1 n
result is a straightforward corollary of proposition 2.2.

Indeed since the family ( Bk 1 k = 0,1,...,n-1 forms a partition of T~ we have that

and using a well known generating function ([2J p. 388) we deduce the desired equality.

We now consider the following problem.

Problem. Given a finite sequence v 1, of positive integers such that :

determine the set of all T in Tn such that the pth level of T contains
exactly vp vertices, for every p e [m].
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If we select a finite sequence of sets Q¡,...,Qm such that :

for

we construct a p.r. ~= ~(1)~(2)...~(n) as follows :

First we define by induction a finite sequence of words ul,u2,...,um of the alphabet
{ 0 } U [m] with the following properties :

(i) u 1= 010
(ü) For every p E [m] the number of occurences of zero in the word up is

equal to 2vp.
(iii) For every p E [m] the word u is arising from the word by deleting the

kth zero for every k e and substituting the k~ zero by OpO for
every k e Qp.

By deleting all the zeros of the word um the p.r..p is obtained. It is shown that .p e 5i~ .

Indeed we can easily show by induction that for every two nonzero and equal letters of up,
p = 2,3,...,m there exists a smaller non-zero letter of up which lies between them and
consequently ~ satisfies the first property.

On the other hand if we assume that the second property of ~ is false there exists p E [m]
such that ç (1) = p,  p-1 and r,(1)  p-1. It follows from the construction of the sequence
ul,u2,...um that ~(i) and r,(1) belong to up_2 and there exists at least one zero element of up_2
which lies between them. Moreover, since this zero letter is substituted in by 0(p-1 )0 we
obtain that the letter p-1 lies in between f, (i) and r,~ (i). Thus if 1, (1) = ç ( ) and r, (1) = ç (k) ,
where j  i  k, there exists t e [n] such that j  t  k and ~ (t) = p-1, which contradicts the
definitions of L(i) and r,(1).

Now, using proposition 2.1, we obtain a binary tree T with levels L2,..., L m such that

I Lpl = = IQPI = vp for each p E [m]. It follows that T e A..

Example. Let and V5-= 8. We consider the sets
Q1 = {1},
have

and Qs= {2,3,4,6,7,8,9,10} then we

It is plain to see that each element of An may be obtained by the above construction from a
finite sequence of sets Ql,Q2,,-,,Q., where Q1= {1}, Qp g and IQPI = vp, p = 2,3,...,m.

This suggests the following result.
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PROPOSITION 2.3. For the set An we have

3. PERMUTATIONS

Given a binary tree T e 2’n a relation "  
" 

on [n] is defined by k  j iff there exists an increasing
path of T from the kth vertex to the jth vertex. This relation is characterized with the aid of the
associated p.r. ~ as follows.

LEMMA 3.1. such that  f (j) then kj iff &#x3E; f (k) for every t which lies
between j and k.

Without loss of generality we may assume that j  k. If k j there exists a finite sequence
vo,vl,...,vm of vertices of T such vo = (k,.,(k)), vrn = (j~(j)) and is the father of vi for

every i E [m].

It is shown by induction that ~(t) &#x3E; ~(k) for every j  t  k. Indeed the result is true for m =

1, since in this case the vertex (k, y (k» is the father of the vertex (j,.,0)). Now, if the result is
true for m-1 it is also true for m. Indeed if we assume that (z,.,(z)) is the father of ~, ~ ü» then
by applying the hypothesis of the induction for the sequence V,,vl,...,v.-j where vo = 
and (z,.,(z)) we deduce that ~ (t) &#x3E; ~(k) for every t E [n] which lies between z and k.

Moreover, since the vertex (z, y (z» is the father of the vertex (j, ~ (j)) we have that

for every t e [n] which lies between z and j. Thus we conclude that ~(t) &#x3E; y (k) for every t E [n]
with j  t  k.

Conversely, assuming that ç (t) &#x3E; y (k) for every t e [n] with j  t  k it is proved that k  j.
Indeed since ~(k)  ~ ~) there exists a number ~ such that §  i and .p(~) = .p(k). It is enough to
show that ~ = k. Clearly if ~ ~ k there exists a number r) which lies between ~ and k and satisfies
the lies between ~ and j, since ~  i, we have that &#x3E; ’P(ç).
On the other hand if ’1 lies between k and j, we have by the hypothesis that &#x3E; (k). Thus in
both cases the desired condradiction is obtained.

The set S.(T) is defined to be the set of all permutations o of S. which satisfy the following
two conditions :

(i) cr(r) = 1, where (r,1 ) is the root of the tree T.
(ii) cr (k)  Q(j) for every k,j E [n] with k  j.

In other words the set Sn(T) is the set of all different labellings consistent with the partial
order of T.

The aim of this section is the determination of the elements of Sn(T) and the evaluation of
ISn(T)I.

Before this we give a usefull characterization of the elements of S,(T).
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For every cr r= S. we define a function 8 on [n] by the relations 8 (0) = 0, 0 (a (i» =
l+8(Â~(i)), i e [n] and by setting the values of 8 in their natural positions we obtain a p.r. ~~
as follows :

For example, for the permutation a = 54781263 we have ~p~= 32341243.

The following procedure suggests a practjcal method for the construction of ’Pa.

PROPOSITION 3.2. We have CT e Sn(T) 

If a E Sn(T) and ~~ ~ let p be the least positive integer such that OE (1) = p and ç~ (1) # ç (1).
Let j,k e [n] such = (9 (i), ~ (k) = r, (1) and .p(t) &#x3E; ç (1) for every t e [n]v{i} which lies
between j and k. Without loss of generality we may assume that 1, (1) &#x3E; r,~(i).

Then by lemma 3.1 follows that k j, j  i and i - t for every t E [n]B{i} with j  t  k.

It follows that 6(k)  a(j)  a (i)  a(t) for every t [n]Bf i 1 with j  t  k. This shows that

À~(1) and .pa(j) = = 8 (OE (1))- 1 = ~,, (i)- 1 #(i)- 1 = .p(j) through a(j)  OE(1) = p.

Conversely if a E S.(T) and i,j e [n] : j  i it is shown that a(j)  a(i). This is enough to be
proved only in the case that ~, y ~» is the father of (1,ç (1)).
Further without loss of generality we may assume that 6(k) _ ( (1) = Àa (i) &#x3E; ra(i) = 6(z).
Then,

It follows from the definition of ç Q) = 1,(1) that k  j  z. Now, if k # j we may assume
without loss of generality that k  j  i.

Then there exists a finite sequence a(t¡), a(t2),...,a(ty) of elements of a such that, t, = j, 4 =
1 and o(tp) = ~1~(tp_1) for every p E [v]. It follows that

which is a contradiction. Thus j = k and o(j) = OE (k)  

For the détermination of the set S.(T) we consider the following sets :

We note that the elements of each non-empty Li (resp. Ri) are consecutive integers.

Moreover by Lemma 3.1 we deduce easily the following result.
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COROLLARY 3.3. We have cr e Sn(T) iff 

The inequality of the previous proposition shows that the element i precedes j in a n for
every j E Ai. This enables us to determine the elements of Sn(T) with the aid of their inverses
using the sets Ai, i E [n].

- 

Indeed first we construct a finite sequence E&#x3E;1,E&#x3E;2,...E&#x3E;n of sets such that :

(iii) Each element of [n-1] is arising from an element of 0 k by inserting
the number k+1 in the following way :

If (k+1) E Av(resp. v rm vue [k] then v (resp. k+1) precedes k+1 (resp. v).

It follows that

Example. For the binary tree T with associated p.r. ~ = 231342 we have

el = {1}
0 2 = { 12 } because 1 precedes 2
e 3 = { 312 } because 3 precedes 1 and 2
0 4 = { 3412, 3142, 3124 } because 3 precedes 4
0 5 = { 34512, 34152, 34125, 31452, 31425, 31245) because 3 and 4 precede 5
0 6 - { 364512, 364152, 364125, 361452, 316452, 316425, 361425, 361245, 316245,

312645 } because 3 precedes 6 and 6 precedes 4 and 5.
Then S6(T) = {231564, 241563, 251463, 261453, 341562, 351462, 361452, 451362,

461352, 561342 }

The elements of Sn(T) are also generated by the associated p.r.., using a quicksort type
procedure. Indeed firstly a finite sequence Mkl,Mk2,---,Mk2 k-1, k E [m] of sets is constructed
such that each of them contains consecutive elements of [n] and satisfy the following properties :
M11 = [n]

M(k+I)(2À-I)U UM(k+I)(2À) and i  mkÀ  j for every i e M(k+I)(2À-I), j e M(k+I)(2À)
where mk is the unique element of Mk such that ç = min { y (i) : i e 

It follows easily that

and

Next by selecting a finite sequence of subsets of [n] with

PkX= ( pj ) U P(k+1 )(2A ) and I = IMkÀl where pw = min 
we define a permutation cr e Sn by « (mj) = pj.
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It follows easily that cr E Sn(T)-

Example. For the p.r. ,,= 32341243 (see fig. 2) we have :

If we select the sets Pj as follows :

we obtain
and 1

We note that each S.(T) contains exactly one scaffold permutation and one Catalan
permutation.

According to Rosenstiehl [3], if the vertices of T are labelled in the shelling order, the
permutation defined by taking the labels in the inorder of the vertices is called a scaffold
permutation of order n.

The scaffold permutation of Sn(T) may be constructed easily by the following formula
= where :

In other words OE (1) is equal to the number of all terms of ~ which are either less than ç (1), or
equal to ç (1) but on the left side of ~(i+1). For example for the binary tree T with associated p.r
~ = 32341243 (see fig. 2) we have the scaffold permutation = 42571386.

A permutation a E S n is called Catalan iff there are no indices ijk such that
 a (k)  a(i) (see [2], p. 239). The Catalan permutation of Sn(T) may be constructed

easily by selecting the finite sequence in the previous quicksort procedure with the
following property :

For example for the binary tree T with associated p.r. ~ = 32341243 (see fig. 2) we have the
Catalan permutation o = 32451687.

Finally for the cardinal number of Sn(T) we have the following proposition.

PROPOSITION 3.4. For the set Sn(T) we have

From the quicksort procedure we note that each element of Sn(T) depends on the choice of
the finite sequence Thus the cardinality of S.(T) is equal to the number of all possible
choices of 
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Moreover since the sets A(k+l)(2À-l) and ~k+1 »2~ &#x3E; are chosen from the set A~ in

ways we deduce that

Moreover by the relations

and

we conclude that
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