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RANDOM SAMPLING AND SOCIAL NETWORKS

A SURVEY OF VARIOUS APPROACHES

Ove FRANK1

1. GRAPH SAMPLING

In statistics, the concept of random sampling is used to describe selection procedures that are
governed by probability laws. Thus, two-stage sampling, cluster sampling, Bernoulli sampling,
and simple random sampling are examples of selection procedures where the randomness is
controlled by the design.

Random sampling is also used to describe selection schemes influenced by a series of
different causes that are considered to be either irrelevant or impossible to control, but that are
supposed to be sufficiently well described by some probabilistic model. Such selection
procedures controlled by "nature" are often assumed to produce random samples from a
probability distribution belonging to some specific parametric family of distributions.

Both design-controlled and the model-based random samples are encountered in all areas of
applied statistics. Generally speaking, statistical analysis is not confined to designs or models
but is applied to a combination thereof. The random sample consists of observations from a
probability distribution that contains controllable design parameters as well as other parameters
modelling the data.

The analysis of observations of social networks and other systems of interrelationships
between some basic units requires random graphs and statistical probability distributions on sets
of graphs. Random graph theory has developed rapidly since the appearance of the classical
papers by Erdos and Rényi (1959, 1960). The monographs by Bollobas (1985) and Palmer
(1985) give excellent accounts of this field of research.

Statistical questions related to graph sampling cannot be handled without access to parametric
or non parametric families of distributions of random graphs. Uniform probability distributions
over a set of graphs of fixed order and size are usually not appropriate for statistical applications.
A Bernoulli graph with a common edge probability assigned to independent edge occurrences is
usually not rich enough to model empirical data. A richer parametric family or an even richer
nonparametric family of probability distributions is generally needed as an appropriate statistical
graph model.

1 Department of Statistics, University of Stockholm, S-106 91 Stockholm, Sweden.
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To define a statistical graph model, simple random graphs can be used as components of
mixture distributions and parts of latent structure combinations of various kinds. Some
illustrations of this are given in the next section. More elaborate random colorations and
multigraphs are described in Section 3, and several examples illustrate the use of randomly
colored multigraphs. This model focuses interest on the simultaneous consideration of
composition and structure of a network. The idea of separating composition and structure and
distinguishing between whether or not they are random is used to classify various models.
Section 4 gives a survey of some multiparametric random graphs introduced by Holland and
Leinhardt (1981), Frank and Strauss (1986) and others. In particular, the conditional dyad
independence assumption is compared to the Markov dependence assumption at some length.
Section 5 is devoted to random graph models in which the emphasis is on sampling design. Pure
design-based inference as well as Bayesian superpopulation approaches are discussed. Finally,
Section 6 gives some concluding views on research trends and prospects in statistical graph
theory.

2. SIMPLE RANDOM GRAPHS

This section describeç some basic random graphs and gives a few illustrations of how to obtain
more elaborate models by combining such random graphs to obtain mixtures and other latent
structures.

A simple graph g on a vertex set V can be identified with its edge set, that is, a subset of the
set V2 of pairs of vertices. If loops are not allowed, g is a subset of the set V(2) of pairs of
distinct vertices. If all edges are undirected, g is symmetric in the sense that (i,j) E g implies that

’,i) E g. Undirected graphs g can also be considered as subsets of the union of V and the set (V 2 )2

of the unordered pairs of distinct vertices. If loops are not allowed, g is simply a subset of (V).2

The cardinalities of V and g are called the order and size of the graph.

Let G be a family of simple graphs defined on V. Set IVI=n. If G is the set of undirected
graphs of order n and size r having 1 loops, G contains

graphs. If G is the set of directed graphs of order n and size r having 1 loops, G contains

graphs. A random graph Y in G is a graph chosen from G according to a probability
distribution. The probability function of Y is denoted by

If p(y) = 1/IGI for y E G, Y is said to be uniform on G. For instance, a uniform random
undirected graph of order n and size r having no loops has p(y) = 1/(.) where n’ = (n), andr 2

uniform random undirected graph of order n and size r having any number of loops has p(y) =

1/(f) where n’ = (n+1),1/( r w ere n = 2
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Let m denote the maximum number of graphs in G, no two of which are isomorphic. Then
G is the disjoint union G1 U ...U Gm of m classes of isomorphic graphs. If Y has a probability
distribution on G that is invariant under isomorphism, there are probabilities pl,...,pm such that

p 1+...+pm = 1 and p(y) = Pif IGil for y E Gi and i=l,...,m. If furthermore pi = 1/m for

i=l,...,m, Y is said to be isomorphically uniform on G. For instance, an isomorphically
uniform random undirected graph of order 4 and size 3 having no loops has p(y) = 1/36 if y is a
path, and p(y) = 1/12 otherwise. The corresponding uniform random graph has p(y) = 1/20 for
the same graphs y. Table 1 illustrates this and some other comparisons between uniform and
isomorphically uniform distributions. Generally, uniform and isomorphically uniform
distributions on G are equal if and only if any two graphs in G have the same number of
isomorphisms.

Table 1. Three examples of a uniform and an isomorphically uniform distribution.
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Let g be a fixed graph on V, and let Y be obtained from g by keeping or deleting its edges
independently with probabilities p and q =1-p, respectively. Then Y is said to be a Bernoulli
(g,p) graph or a Bernoulli (p) subgraph of g. Here

(2g denotes the set of all subsets of g). In particular, a Bernoulli (p) subgraph of the complete
undirected graph g = (V 2) is one of the random graphs most frequently investigated ; with p =2)
r/(2), it is often used as an approximation to the uniform random undirected graph of order n and
size r having no loops. For p = 1/2, the Bernoulli (p) subgraph of g is a uniform random graph
on the set of subgraphs of g. The probability distribution of any Bernoulli graph is invariant
under isomorphism.

If a directed random graph Y on V = { 1,...,n } is obtained by selecting independently and

randomly at each vertex i E V a number ai of vertices in V to be joined by edges from i, then Y
is said to be a random (al,...,an) - mapping from V. Analogously, a random (bl,...,bn) -
mapping to V is defined by selecting independently and randomly at each i E V a number bi of
vertices in V to be joined by edges to i. In particular, a random ( 1,...,1 ) - mapping from V is
simply called a random mapping on V.

Let G(al,...,an) be the set of directed graphs on V having aç vertices joined by edges from i
for i=l,...,n. Thus a random (al,...,a,,,) - mapping Y from V is a uniform random graph on
G(al,...,3n) having probability function

It is a isomorphically uniform if and only if all the ai are equal. A random (al,...,an) - mapping
from V with no loops is analogously found to be a uniform random graph on the set

Go(ai,...,an) containing (n-1)...(n-1) directed graphs on V having a, vertices other than i joined0 1 al an

by edges from i for i=l,...,n.

If Y is a random (a1,...,an) - mapping, and Y’ is obtained from Y by reversing all the edges,
the intersection graph Y ri Y’ consists of all pairs of vertices that are joined both ways in Y, and
the union graph Y U Y’ consists of all pairs of vertices that are joined in at least one direction in
Y. The undirected graphs corresponding to the symmetric graphs Y fl Y’ and Y U Y’ are called
the strongly and weakly symmetrized versions of Y, respectively. In particular, a strongly
symmetrized random mapping consists of a number of isolated loops and edges corresponding
to the loops and 2-cycles in the random mapping.

Let Yl,...,Yk be random graphs in G with probability functions

where i=l,...,k. A random graph Y is said to be a mixture of Y1,...,Yk with mixing
probabilities 81 ,...,8k if the probability function of Y is given by
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Here 8~+...+8~ = 1. In particular, consider a mixture of the strongly and weakly symmetrized
versions of a random mapping on V = { 1,...,n ~ with mixing probabilities 8 and 1-8. This is a
random undirected graph consisting of connected components that are trees or single loops or

cycles with or without trees attached to them. A large value of 8 implies that isolated loops and

edges are common, while a small value of 8 implies that trees and attached trees are more
frequent. A typical realization of such a mixture is shown in Figure 1.

Figure 1. A typical realization of a mixture of the strongly and
weakly symmetrized versions of a random mapping.

Identifiability problems for general mixtures are discussed by Titterington, Smith and Makov
(1985). Frank (1986b) discusses conditions on the parameters that guarantee the identifiability
of a mixture of Bernoulli graphs.

3. RANDOMLY COLORED MULTIGRAPHS

Simple graph structures are not rich enough for many statistical applications involving relational
data. For instance, a relationship like kinship can be further specified as sibling, parent, etc. A
relationship like similarity can be further specified by some quantitative measure of the degree of
similarity or by some separation of different aspects of similarity. Communication networks may
need to have capacities or distances attached to the edges. Sociograms and other contact patterns
are often more interesting if some information about the individuals is also available.

Consider several different relationships to be studied simultaneously and in conjunction with
observations on both individual and relational variables. One or more individual attributes can be
combined into a vertex variable, and one or more relational attributes can be combined into an
edge variable. It is convenient to refer to the outcomes of these variables as colors and speak of
vertex and edge colorations. Only finitely many colors are considered here. Symmetric and
asymmetric relationships are distinguished so that the general structure is that of a colored

multigraph consisting of a complete undirected graph Ci) and a complete directed graph V(2)2

defined on a common vertex set V = 1,...,n}. For convenience, directed edges are now called
arcs. There are three random colorations : a vertex coloration that is a function X from V to A,
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an edge coloration that is a function Y from (V 2 ) to B, and an arc coloration that is a function Z2

from V(2) to C. Here A,B and C are color sets of a,b and c colors, respectively. Consequently,
the set G of all possible colored multigraphs contains

outcomes of the randomly colored multigraph (X,Y,Z) on V. Three examples of sets G are
shown in Figures 2-4. Figure 2 shows the graphs of order n=3 with a=l vertex color, b=3 edge
colors (solid, dotted, nothing), and c=l arc color (nothing). Figure 3 shows the graphs of order
n=3 with a=l, b=4 corresponding to the possible combinations of solid and dotted edges, and
c=1. Figure 4 shows the graphs of order n=3 with a=2, b=2, and c=1. The number at each
graph is the number of isomorphisms.

The probability function of (X,Y,Z) is denoted by

where x = (xi,...,x~), y = (Yij : 1  1  j  n), z = (Zij : i :1= j) are elements of An, B , and
cn(n-1), respectively. If the probability distribution is invariant under isomorphism, and if there
are m isomorphism classes G;, then there are probabilities Pi such that pi+~.+pm =1 and

Distributions that are invariant under isomorphism are of particular interest for modelling
phenomena that depend not on the identities of the vertices but only on their colors. The
combinatorial problem of counting the number m of non-isomorphic graphs can be solved by an
application of Burnside’s lemma (see Frank, 1986a) and for n=2 and n=3 the following
formulae apply : 

-

In particular, the last formula checks with the number of graphs in Figures 2-4.

Figure 2. Graphs of order 3 with three edge colors.
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Figure 3. Graphs of order 3 with four edge colors.

Figure 4. Graphs of order 3 with two vertex colors.
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Assume now that the probability distribution of (X,Y,Z) is invariant under isomorphism. Let
the colors be labeled by integers so that A = { 1,...,a }, B = { 1,...,b } and C = { 1,...,c } . Set Ni
equal to the number of vertices v E V having Xv = i, set Rljk equal to the number of edges
{ u,v } E (v) 2 having X = i, Xv j, Y = k (where Y = Y~ by définition), and set Sijk1 equal
to the number of arcs (u,v) E V(2) having Xu = i, Xv = j, Zuv = k, Z~u = 1. The vertex color
frequencies (N1,...,Na) are summary statistics of the composition of the graph, and the edge
and arc color frequencies (R;jk : k = 1,...,b) and (S;jkl : k = 1,...,c ; 1 = 1,...c) between and
within different vertex colors 1  i  j  a are summary statistics of the structure of the graph
conditional on the composition. Here

where Nil = (1~’) and Nii = NiNj for i ~ j. The composition and structure summary statistics are
sufficient statistics if the edge and arc colors (Y uv’ Zuv, z,u) are independent for distinct pairs

{u,v} E (v) conditional on the vertex colors (Xi,---,Xn). An example of such a model is2

described in the next section.

It is possible to classify general random graph models by distinguishing between random
and non-random composition and structure. Table 2 illustrates this typology. If both the
composition and the structure are non-random, the graph is deterministic and not of concern
here. If the composition is random but the structure is non-random, the graph can be considered
as a model for a random process on the vertices of a fixed graph. Random percolation processes
on a lattice medium and random adhesion processes on the surface of a polyhedron are of this
type ; Markov chains, Ising models and more general Markov fields are other examples. Such
models are typically concerned with some probabilistic process going on in some fixed
environment having a specific neighborhood structure.

If the composition is non-random but the structure is random, the graph can be a classical
uniform random graph or a Bernoulli graph. Also more elaborate statistical graph models like the
ones in the next section belong to this type as long as there are no vertex colors or only
deterministic vertex colors. Such models are typically concerned with probabilistic
interrelationships or interactions between the units in a fixed set.

If there is some kind of probabilistic interdependence between the development of a process
and the characteristics of the environment in which it arises, we need a model in which both
conlposition and structure are random. Several of the models in the next section are of this type.

Table 2. Classification of random graphs according to composition and structure.
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4. MULTIPARAMETRIC MODELS

Various attempts have been made to find a multiparametric model for social network data that is
of sufficient generality to fit reasonably well in many different contexts ; see, for instance, Burt
(1982) and Knoke and Kuklinski (1982). An implicit or explicit constraint in some
methodological papers seems to be that the model should also be easy to handle, preferably via
standard packages for linear statistical models or other easily accessible programs. This double
goal of generality and readiness is good if it brings empirical findings and feedback from
widespread applications. Otherwise it may just be too limiting and more of an obstacle to further
development of specific models.

This section surveys some of the approaches in the literature which are mainly exploratory in
purpose and aim at providing general data analytic tools for network data. A few more restricted
models are also mentioned.

Holland and Leinhardt (1981) investigate a class of probability distributions for networks
that belongs to the exponential family and contains parameters that can be interpreted as contact
intensity, individual attraction, individual activity, and mutual contact intensity. The basic
assumption is that contacts are independent between different pairs of individuals. More
specifically, let Y be a random graph in the set G of directed graphs of order n having no loops
or multiple edges. The vertex set is V = ~ 1,...,n}, and Y is considered either as a random subset

of V(2) or as a random adjacency matrix of edge indicators YuV for (u,v) E V(2). The (n)UV 2

random dyads (Yuv, Yvu) for 1  u  v  n are independent, and the probability function of Y is
accordingly given by a product

Its logarithm is equal to

Here PUy (1,0) = Pvu (0,1 ) for u &#x3E; v. The most general model of this type would require 3 (n)
parameters, but the Holland-Leinhardt model reduces this number to 2n by assuming

where 1 0152v = L Py, and Àuv is a normalizing constant.

Holland and Leinhardt (1981) and Fienberg, Meyer and Wasserman (1985) extend the
previous model of pure structure to situations in which composition data are also available ; that
is, when the vertices are colored to distinguish between various categories of vertices. Let X. be
the color of vertex v and Yuv an indicator of edge (u,v), as before. The probability function of
the graph (X,Y) having composition X = (X1,...,Xn) and structure Y = (Yuv : u ~ v) can be
given as
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if it is assumed that the vertices are colored independently and that, conditional on the vertex
colors, the dyads have probabilities that depend only on the colors of the two vertices in the pair,
and dyads are independent for different pairs of vertices. Now, the number of parameters can be
restricted by suitable parameterizatzon so that it increases with the number of colors only and not
with the number of vertices. This is a convenient way to avoid the complications due to
increasing degrees of freedom that make it difficult to evaluate asymptotic distributions for large
graph orders n.

White, Boorman and Breiger (1976), Arabie, Boorman and Levitt (1978) and others have
analyzed block models that aim at an integrated representation of composition and structure. The
vertices can be colored to distinguish between different blocks of vertices. The block-modelling
approach is combinatorial and not probabilistic, and its purpose is to find a block composition
that in a combinatorial sense gives an optimal structure between and within the blocks.
Stochastic block-modelling is similar to the modelling of randomly colored graphs. An early
reference is Holland, Laskey and Leinhardt (1983) and a more recent one is Wang and Wong
( 1987).

The approach of Frank et al. (1986) and Wellman et al. (1988) considers colored vertices
and colored edges and allows the order of the graph to be random. The typical application is to
an individual’s social support network consisting of intimate kins and friends and some kinds of
interrelationships between them. In order to include various attributes of the individuals,
relationships, and networks in a study, we need models of the interdependence between
composition and structure. The order of the network is taken as a truncated Poisson variable.
Conditional on the order, the individual attributes are supposed to be independent for different
members of the network. Conditional on the individual composition, the attributes of
relationships are supposed to be independent for different dyads. This leads to a loglinear model
that can be fitted by a stepwise testing procedure.

Another exploratory technique for investigating network data has been applied by Frank,
Hallinan, and Nowicki (1985) and Frank, Komanska, and Widaman (1985). The main idea here
is to use cluster analysis to reduce the number of dyad distributions between and within vertex
categories. This typically leads to a substantial reduction of the initial number of parameters
needed when all the dyad distributions are distinct. An advantage with this approach is that no
assumptions are needed about the parametric form of the dyad distributions. The final model
may contain a few quite general dyad distributions that refer to a coarser classification into vertex
categories.

As an example of a more specific model of the interdependence between composition and
structure of a network, let us now consider the following model investigated by Frank and
Harary (1982). The vertices in V = ~ 1,...,n} are independently colored according to a
probability distribution P1,...,Pr on r colors. An initial graph is formed by joining by edges all
the vertices of the same color. Edges between vertices of the same color can be deleted with a
probability a, and new edges between vertices of different colors can be inserted with a
probability ~. All the deletions and insertions are mutually independent and independent of the
vertex coloration. The final graph of remaining initial edges and inserted new edges is observed.
This graph Y can be described as the union of a graph that is Bernoulli (X,1-«) and a graph that
is Bernouilli (X, p) where X is the graph on V obtained by joining vertices of the same color
and X is its complement.
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This model can be considered appropriate for a set of n objects exhibiting a latent clustering
into r clusters of similar objects. Similarity cannot, however, be observed without error. There
is a probability a of observing a false dissimilarity and a probability of observing a false
similarity. If there is an unknown number r of equally likely clusters so that pi = 1/r, then there
are parameters r, a, P that must be estimated to fit this model to data. Frank and Harary (1982)
discuss this and similar estimation problems. Further related material can also be found in Frank
(1978a).

The models discussed so far have a common assumption of independence between dyads
conditional on the vertex colors. Thus, in general there can be dependence between edge colors,
but this dependence is then explained by the vertex colors. This means that structural
dependence not explicable by the composition cannot be handled by these models. A kind of
models govemed by a more general structural dependence is the Markov graphs investigated by
Frank (1985) and Frank and Strauss (1986). In a Markov graph, the colors of any pair of non-
incident edges are independent conditional on the colors of all other edges, but the colors of a
pair of incident edges could be conditionally dependent. A Markov graph with a probability
function that is invariant under isomorphism is called a homogeneous Markov graph. The
minimal sufficient statistics of a homogeneous Markov graph Y are given by the star and triangle
counts, that is by the frequencies of subgraphs of Y that are isomorphic to various distinct stars
and triangles. A star at center v E V is specified by the colors of all the vertices adjacent to v

and of all the edges incident to v. A triangle at tu,v,wl E (j) is specified by the colors of these
vertices and all edges joining them. Stars and triangles are called sufficient subgraphs of a
Markov graph. Figure 5 shows the sufficient subgraphs of simple undirected Markov graphs of
order 5 with two vertex colors and two edge colors. Inference problems for Markov graphs are
not easy. Frank and Strauss (1986) have suggested a method of estimating Markov graph
parameters which is based on simulations. The computational complexity involved seems to be
prohibitive for extensive applications.

Figure 5. Sufficient subgraphs of undirected Markov
graphs of order 5 with two vertex colors.
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5. SUBGRAPH SAMPLING

A particular class of graph-sampling problems arises when a fixed population graph is
investigated by sampling and observing only a part of it. This section describes various
subgraph sampling designs that have been considered by Bloemena (1964), Capobianco (1970,
1974) and Frank (1969, 1977a,b,c, 1978b).

Let V = { 1,...,N ~ be a population of N units and g = (x,y,z) a colored multigraph defined
on V. Various population parameters of interest can be the color distributions of the vertices,
edges, and arcs, the number of induced subgraphs of different kinds, etc. Sometimes the totals

¿xi, lyij, lzij can be interpreted as quantities of particular interest. When only a simple graph
y is defined on V, its size and number of connected components are examples of population
parameters that can be given as totals.

Let S be a subset of V selected according to a specific random sampling design having
inclusion probabilities

In particular, simple random sampling of n units implies that ni = n/N, ng = n(n-1 ) / N(N-1 )
for i ~ j, and Bernoulli (p) sampling implies that nç = p, ng = p2 for i ~ j. If S is a vertex
sample, induced subgraph sampling means that the subgraph of the population graph g induced
by S is observed. Denote this subgraph by g(S). Thus, colors are observed of the vertices in
the sample and of the edges and arcs between pairs of vertices in the sample. If g = y, then

g(S) = y û (S), and a total T = 1 yij can be estimated byg( ) Y 2 Y1 can be estimated by Y

where Si indicates i E S. This and other Horvitz-Thompson estimators for graph totals are
investigated in Frank { 1977a,b,c).

An alternative subgraph sampling procedure based on a vertex sample S is star sampling, in
which colors are observed of vertices, edges, and arcs adjacent and incident to the sample. Star
sampling based on S and induced subgraph sampling based on the complement S = V-S are
complementary ; that is, g(S) denotes the star sample based on S. This relationship can be used
to derive results for star sampling procedures from corresponding results for induced subgraph
sampling procedures. Capobianco and Frank (1982) have compared different estimators based
on these subgraph sampling procedures.

A generalization of star sampling is snowball sampling which is a successive extension of
an initial vertex sample to its star, of the vertex set of this star to its star, etc. Goodman (1961)
and Frank (1979) give further results on snowball sampling.

Other sampling procedures in graphs are based on edge sampling designs. For instance,
incident subgraph sampling based on an edge sample S - c (~) 2 means that the colors are
observed of the vertices and edges incident to at least one edge in S. An application of this
subgraph sampling procedure is the following. Let the vertices be people and the edges
telephone calls during a specific period of time. Some calls are sampled, and for each sampled
call the speakers are asked to report specific information about the people they have been calling
and the calls they have made during the time period.
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The subgraph sampling procedures discussed so far have referred to a fixed population
graph. As in ordinary survey sampling, it is sometimes useful to introduce a superpopulation
model by which the population graph is considered as sampled from some family
(superpopulation) of population graphs. For instance, the introduction of a Bernoulli population
graph makes it possible to use Bayesian methods for estimating the size of a population graph.
The exploration of Bayesian and empirical Bayesian methods in graph sampling has hardly
begun.

6. PROSPECTS

After the appearance of the pioneering papers by Erdôs and Rényi (1959, 1960) random graph
theory has developed rapidly. The review article by Karonski (1982) contains about 250
references, and the textbook by Bollobas (1985) has more than 750 references. Random graph
evolution and limit theorems for random graphs continue to inspire much research and produce
interesting results.

Computer science is one of the most important sources for new and interesting random graph
problems. Random graphs also find interesting applications in theoretical chemistry and biology,
and these fields are likely to have increasing influence on applied and theoretical graph theory in
the future.

Families of random graphs or parametric graph distributions appropriate for statistical
modelling of graph data are not yet available to any large extent. Important contributions to the
development have mainly been initiated by applications in the social and behavioral sciences.
Other areas in which statistical graph theory can be expected to find future applications are in
pattern and image modelling. Spatial statistics and random field theory are expanding branches
of statistics that may also be of importance for the development of statistical graph theory. See,
for instance, Ripley (1981), Adler (1981), and Vanmarcke (1983).

Furthermore, the rapid development of discrete mathematics and combinatorics may also
bring with it an increasing interest in combinatorial configurations other than graphs. Random
hypergraphs, random permutations, random partitions, and random tesselations are a few
examples of such objects that have appeared already. See, for instance, Berge (1973), Lovasz
(1979), and Ahuja and Schachter (1983).
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