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MEANINGFULNESS AND THE ERLANGER PROGRAM OF FELIX KLEIN*

L. NARENS**

"Meaningfulness" is a term that has been used in the theory of measu-

rement to describe the qualitative or empirical significance of quantitative
statements. Measurement, of course, is that part of science that is concerned

with assigning quantitative entities - usually "numbers", although sometimes

"points" in a geometrical space - to qualitative or empirical entities. Pre-

sumably, one of the most important reasons for employing measurement is that

the quantitative entities have well-known properties and are easy to manipu-

late. However, an obvious problem arises in that certain quantitative manipu-
lations - although correct mathematically - may produce results that do not

have any qualitative or empirical interpretation, and more strongly, may have

no "qualitative significance" at all.

This is obviously a very ancient problem, and one that has received

much attention in those times when mathematics was extended to new kinds of

entities and when particular sciences employed new and different kinds of

mathematical modeling procedures : In informal terms, it is the problem of

whether one is just "playing mathematical games" or one is "describing or

uncovering important structure". This paper will report on some of my inves-

tigations into this elusive, fundamental issue. Because of its brevity, most

of the discussion will be restricted to an important, classical case - Felix

Klein’s famous Erlanger Program for geometry.

* This work was supported by National Science Foundation grant IST-8602765
to Harvard University. Final preparation was completed while the author
was a Fellow at the Center for Advanced Study in the Behavorial Sciences
with financial support provided by National Science Foundation grant
BNS-8700864 and by the Alfred Sloan Foundation.

** Center for Advanced Study in the Behavorial Sciences, 202 Junipero Serra
Blvd., Standford, CA 94305, USA and School of Social Sciences, UCI,
Irvine, CA 92717, USA. January 18, 1988.
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Since ancient times, plane Euclidean geometry has had axiomatic syn-
thetic characterizations. In such characterizations, the primitives (the un-

defined terms) supposedly corresponded to basic, intuitive geometric concepts,
and the axioms to intuitively true propositions about those concepts. In more

recent times, plane Euclidean geometry has also had an analytic characteri-

zation, which in this paper will be taken to be the algebraic characteriza-

tion in terms of 2-tuples of real numbers with a concept of distance defined

by the metric
- - 1 1

In this analytic characterization, geometric curves are described by

graphs of equations, e.g., straight lines by graphs of linear equations.

What bothered synthetically oriented geometers of the Nineteenth Cen-

tury was that in the analytic characterization there were curves describable by

equations that apparently did not have synthetic geometric meaning - that is,

were apparently "nongeometrical". Felix Klein,,in this Erlanger Program for geo-
metry, tried to bridge this difficulty by declaring those concepts in the

analytic characterization to be Euclidean geometric if and only if they were

invariant under the Euclidean motions (i.e. the group of transformations

generated by rotations, reflections, and translations). Kleine’s idea of

identifying intrinsic concepts of a well-defined domain with invariance un-

der a particular group of transformations is still very prevalent in mathe-

matics and science today. Klein, however, did not justify philosophically
his decision to identify "geometric" with "invariant", and to my knowledge

no one since him has given a satisfactory philosophical argument as to the

correctness of such an identification. This paper will look very closely at

this identification and its consequences.

Nineteenth Century geometry and modern measurement theory have much in

common in terms of methods and concepts. Klein’s approach to "geometric" is

essentially identical to many measurement theorists approach to "meaningful".
To keep a host of technical issues from obscuring the main points of this

paper, the example of plane Euclidean geometry will be used as the focus of

discussion rather than some more complicated scientific context of measure-

ment. In order to make clear that a measurement context is really being stu-

died, this geometric setting will be described in terms of measurement ter-

minology :
Let X be a model of some synthetic axiomatization of plane Euclidean

geometry. It is assumed that the set X of planar points is the domain of

X , , so that in this formulation individual lines and circles are sets of

points. X is called the synthetic model.
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Let E2 - Re x Re (where Re denotes the real numbers), and let N

be a structure with domain E2. N is called the analytic model.

In measurement theory, X is called the qualitative structure and N

the numerical structure. Let’s assume that N has been selected in an appro-

priate way, and that the synthetic axioms about X are such that the follow-

ing "existence theorem" can be proved : There exists an isomorphism from X

onto N . Let’s also assume that N has been selected in such a way that the

graphs of linear equations are the "lines" of N , and the graphs of circular

quadratic equations are the "circles" of N . (Such an axiomatic situation is

common in geometry, e.g., see Hilbert 1899). In measurement theory, the set

S of isomorphisms from X onto N is called the scale (based on N ) for

X . Elements of S are also called representations. Let E be the group of

Euclidean motions of E2 . Under the above assumptions the following unique-
ness theorem for S can be shown (where * denotes the operation of functional

composition) : For all representat2ons cp S,(i) there exists a in

E such that (p = a*~, and (ii) is in S for 2n E.

Let (P be an element of S , and let T be the following 4-ary rela-

tion on E2 : For all points x,y,u,v in X ,

Then in measurement theory T is said to be nwaningful since it is easy to

. show that :

for all in S . Since all elements of S are isomorphisms onto N , it

is easy to show that T is also geometric in the Erlanger Program sense (i.e.,
T is invariant under Euclidean motions). To help understand the geometric
nature of T synthetically, it is useful to interpret T synthetically.
This is done by looking at R = ~-1(T) , ~ which is defined by,

for all x,y,u,v in the domain of X . By (1) it follows that R = w-1(T)
for all ~ in S. Since S consists of isomorphisms, it easily follows that

R is invariant under the automorphisms of )( .

It similarly follows that each (analytic) geometric relation or concept
based on E 2 has a corresponding (synthetic) relation or concept based on X

that is invariant under the automorphisms of X . Thus for purposes of trying
to understand the Erlanger Program’s concept of "geometric", it is sufficient

to focus on the question, "Why should automorphism invariant relations and

concepts based on X be the synthetically geometric ones ? 
"

In order to answer this, it is convenient to formulate the problem in a

general abstract setting that includes the target setting of plane Euclidean
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geometry. In this abstract approach, X will denote some nonempty set of

qualitative objects that has certain primitive concepts P1’...’P n9"’ of
. n

qualitative significance. (These concepts may be elements of X , relations

on X , relations of relations on X , etc.). In addition a new one place

predicate M will be added. The expression "M(x)" is to be read as " 
x is

meaningful" , and M will be called the meaningfulness predicate. It will be

. taken as an undefined term, and axioms about it will be stated. For Euclidean

plane geometry discussed above, X would be the set of points of the synthe-

tic Euclidean plane, P1,...,Pn’... the primitive synthetic concepts used in
axiomatizing synthetic Euclidean geometry, and M(x) would be interpreted
as " x is synthetically geometric".

The essential idea of trying to understand the thrust of the Erlanger

Program’s meaningfulness concept is to give two different but equivalent
axiomatic characterizations of it. The first is essentially Klein’s charac-

terization applied to the qualitative structure X : : Let G be the group of

transformations on X that leave each primitive concept P n invariant and

assume the following axiom : A concept c is meaningful (i.e., M(c)) if and

only if it is invariant under G . The second, which will be given shortly,
has axioms that say each primitive concept is meaningful and that concepts
that are appropriately definable or constructible out of meaningful concepts

are also meaningful. In the second characterization, if the "appropriateness"
of the definability and constructibility concepts are defensible philosophic-

ally, then the equivalence of the two characterizations can then be seen as a

philosophical justification of the concept of meaningfulness inherent in the

Erlanger Program.

In order to treat invariance and definability concepts in complete ge-

nerality, I will assume a variant of axiomatic set theory called ZFA or

"Zermelo-Fraenkel Set Theory With Atoms ". This version of set theory differs

from the usual axiomatic developments found in the literature in that it pos-

tulates the existence of a set of "urelements" or "atoms". Thus, ZFA is a

theory about two types of entities, sets and atoms, the latter being nonsets.

The word "entity" will be used to refer to elements of the theory - that is,
to either sets or atoms. ZFA is axiomatizable in a first order language L

that has a binary predicate symbol E and an individual constant symbol A .

Of course, in interpreting L , 6 will stand for the set-theoretic member-

ship relation, E , and A for the set of atoms, A . The axioms for ZFA -

which include the axioms of Choice and Regularity - are slightly modified

versions of the usual Zermelo-Fraenkel axioms, and they will not be present-
ed here. The modifications are very minor and are made to accomodate the

nonsets, i.e., the elements of A .
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The set of atoms A in the current context is to be thought of as the

qualitative domain of interest, e.g.,in synthetic plane geometry the set of

planar points. Relations on A are given their usual set-theoretic interpre-
tations as sets of ordered n-tuples, where an ordered 2-tuple (a,b) is by

definition the set etc. Thus, in this theory relations on A ,

relations of relations on A , and for that matter all concepts based on A

are either elements of A or sets ultimately based on A and its elements.

This set-theoretic way of viewing relations and higher-order concepts based

on A has some advantages when considering the effects of transformations.

Let f be a transformation on A (i.e., a one-to-one function from A

onto A ). Suppose b is a set and f(c) has been defined for all c in b .

Then, by definition,

By use of Equation 2 and transfinite induction it is easy to show that f(d)

is defined for each entity d and that for all entities x and y ,

Let H be a set of transformations on A , and let x be an entity.

By definition, x is said to be invariant under H , in symbols, IH(x) , if

and only if f(x) = x for all f in H . It is easy to show that this con-

cept of invariance coincides with the usual concept of invariance of rela-

tions, nam.ely, for an n-ary relation R ,

IH(R) if and only if for all entities x 19... 3, xnand all f in H ,

In using ZFA as part of a formal description, the set of atoms, A ,

will correspond to the domain of the qualitative or empirical structure,

e.g., in space-time relativity to the set of space-time points. There are

some concepts of ZFA that do not depend on A , e.g., the empty sent, 0 . 0

can be viewed as the same entity no matter whether A was chosen to be the

set of space-time points or the set of masses. 0 is a logical entity and

is definable in terms of logical concepts (i.e., concepts not dependent on

A ). Similarly, {0} can be viewed as a logical entity. 0 and {0} are

examples of "pure sets", which are defined within ZFA by the following trans-

finite induction :

For each ordinal a, let Pa+1- P(P ) U Pa, where
a+1 a a

P is the power set operator.

For each nonzero limit ordinal y; ~ let P y = PS
Then an entity d is said to be a pure set if
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and only if for some ordinal 6.

By use of transfinite induction, it is easy to show that

for each pure set d and each transformation f on a .
.

The identification of invariance under automorphisms with (qualitative)
meaningfulness is captured in the following axiomatization (which along
with the following axioms and theorems assume implicitly axiom system ZFA)

AXIOM SYSTEM TM . There exists an entity G that is a group of transforma-

tions on A and such that for all entities x ,

Assume axiom system TM. Let G be an entity that is a group of

transformations on A and such that for all entities x,

u

Then the following five axioms are consequences of axiom system TA4:

1. Axiom MC’ (Meaningful Comprehension’) : For all sets a and all

then M(a) .

The proof that T~4 implies MC’ is somewhat complicated and will not

be given hère. ,

MC’ says that any set definable in terms of meaningful entities v2a

the axiom of Comprehension of ZFA is itself meaningful. Note that the mean-

ingfulness of atoms cannot directly be established through the use of MC’ ,
since applications of the axiom of Comprehension of ZFA yield only sets. To

obtain meaningfulness of atoms, another axiom - which is a very easy conse-

quence of axiom system is used :

2. Axiom AL (Atomic Legacy) : For a1l atoms, if then t,f(a) .

In axiom system the meaningfulness predicate M is also defina-

ble through L and meaningful entities : Since IG(G) holds, M(G) is true,

and thus M is definable by the following :

M(x) iff 

where ~p(y,x) is the formula of L that says y is a set of transforma-

tions on A and each element of y leaves x invariant. The definability
of M in this case is an instance of a more general axiom :

3. Axiom DM* (Definable Meaningfulness*) : There exist a formula

P (x , u 1 ’ ... , un) of L and entities a 1 ,...,an such that 
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and for all entities x ,

m

From Equation 4 it immediately follows that IG(d) for each pure set

d , and thus by axiom system TM that M(d) . Thus the following axiom is

an immediate consequence of axiom system 

4. Axiom MP (Meaningful Pure Sets) : Each pure set is meaningful.

By Equation 2, the following axiom is an immediate consequence of axiom

system TM : .

5. Axiom MI (Meaningful Inheritability) : For all sets b if M(c)

for all elements c of b , then M(b) .

THEOREM 1 (Narens, 1988). Axiom system TM is true if and only if axioms

MC’ , AL , DM* , MP , and MI are true.

Theorem 1 shows that transformational invariance is logically equiva-
lent to a set of axioms that for the most part allows one to "define" or

"construct" new meaningful entities out of already known ones. Of these

axioms, Axiom MI is most suspect as a valid definability or construc-

tibility principle, since (in its formulation above) the set b is not spe-

cified by either formula or rule. In practice axiom MI is a powerful prin-

ciple. For example, it is easy to show through transfinite induction that

MI and M(O) imply axiom MP .

By Theorem 1, any weakening of the conjunction of the above axioms will

constitute a generalization of axiom system TM. This provides enormous flexibi-

lity in generalizing the Erlanger Program’s concept of meaningfulness. This extra

flexibility is important, since the Erlanger concept of meaningfulness fails

to provide an adequate theory of meaningfulness in many important situations.

This is especially so when the qualitative structure has the identity as its

only automorphism. In such cases, the Erlanger Program will yield all con-

cepts meaningful, which is usually highly undesirable. (Historically, it

was an example of a structure with only the trivial automorphism that led to

the demise of the Erlanger Program as the arbitrator of things geometric :
In 1916, Albert Einstein presented his famous general theory of relativity,
in which physical space-time - a situation whose geometric character could

not be denied - had only the trivial automorphism).
A different - but related - meaningfulness - like issue of great mathe-

matical importance is the status of Lebesgue nonmeasurable sets of points.

Historically, this issue - which is intertwined with the status of the axiom

of Choice - generated some long lasting controversies :

At the beginning of the Twentieth Century, many prominent mathemati-



68

cians voiced concerns about the "reality" of Lebesgue nonmeasurable sets of

points. These concerns mainly had to do with the introduction of the highly
infinitistic set-theoretic techniques of Georg Cantor into analysis, es-

pecially uses of the axiom of Choice. The latter was the subject of a famous
series of correspondences between the mathematicians Lebesgue, Borel, Baire and

Hadamard that was published in BuZZetin de la Société Mathématique de France,
1905. Much of the discussion in these correspondences can be looked at as an

informal attempt to try and establish a meaningfulness criterion for those

concepts in analysis that had a more solid and direct mathematical existence

from those that only existed through some highly infinitistic application,
like the axiom of Choice. (The link of these early discussions about the

axiom of Choice to standard meaningfulness issues like "geometric" becomes

more apparent when one considers the early literature about the counter- .

intuitiveness of Vitali’s 1905 result about the existence of Lebesgue non-

measurable sets, Hausdorff’s 1914 paradox, Banach’s and Tarski’s 1924 paradox,
and Von Neumann’s 1929 general result about such paradoxes). Narens (1988)

shows how Lebesgue measurability nicely fits into a axiomatic meaningfulness
scheme based on axioms 1 to 4 above :

Let A be the set of Euclidean planar points. Let’s identify meaning-
fulness and Lebesgue measurability of subsets of A . Then {a} is meaning-
ful for each element a in A, and the pure set 0. is meaningful. From this,-
it follows by transfinite induction that if axiom MI were true, then each

entity would be meaningful. (Also note that if the Lebesgue measurable sub-

sets of A were taken as primitives, then the resulting structure would

only have the trivial automorphism.) Narens (1988) shows that the predicate
M can be defined so that (2~ axioms MC’ , AL , DM* , and MP are true; (ii)

axiom MI is false; (iii) each Lebesgue measurable subset of A is meaning-

ful ; and each Lebesgue nonmeasurable subset of A is not meaningful.
Thus in particular it follows from this result that any subset of A that is

is definable from elements of A , Lebesgue measurable subsets of A , and

pure sets through a formula of L is meaningful and therefore Lebesgue
measurable.

The above result shows that axiom MI is not derivable from the con-

junction of axioms MC’ , AL , DM* , and MP . This is one of the independence
results contained in the following theorem :

THEOREM 2 (Narens, 1988). The following three statements are true :
1. The conjunction of MC’ , AL , DM*, and MP does not impZy MI .

2. The conjunction of MC’ , AL , and DM* does not impZy MP .

3. The conjunction of MC’ , AL , MP , and MI does not imply DM*.
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A consequence of Theorem 2 is that the conjunction of axioms MC’ and

AL does not imply axioms MI , MP or DM* . These later three axioms appear

to me to be very difficult to justify as valid meaningfulness principles :
The nonconstructive nature of axiom MI has already been discussed

above, and because of it I believe that MI should not be taken as a neces-

sary meaningfulness principle.
Axiom MP allows the use of all possible logical concepts in defining

new meaningful entities from priorly established ones through an application
of axiom MC’ . These logical concepts include highly infinitistic ones, and,
in particular, ones that result from applications of the axiom of Choice to

pure sets. The philosophical doctrine of logicism, which was developed by
G. Frege and became the central idea behind Whitehead’s and Russell’s famous

Principia Mathematica, holds that pure mathematics consists of exactly the

logical concepts expressible in terms of pure sets and the set-theoretic

E-relation. While for mathematical uses of the meaningfulness concept (such

as specifying the geometric entities of Euclidean plane geometry) axiom MP

may be a somewhat defensible meaningfulness principle, it is far less so

for scientific applications, since it is much more difficult in scientific

contexts to justify highly infinitistic concepts as having any qualitative or

empirical relevance. In other words, the highly platonic metaphysical

assumptions inherent in logicism is incompatible with the kind of metaphysi-
cal assumptions generally made in scientific applications, and this incompati-

bility makes it imperative that the meaningfulness concept for the scientific

applications keeps metaphysically incompatible mathematical concepts from

having (meaningful) scientific import. Thus for most scientific applications,
axiom MP should either be greatly weakened or eliminated.

Axiom DM* , which says that the meaningfulness predicate M is

definable through a formula of set theory and meaningful entities, is diffi-

cult to justify. It was included in the axioms above since it is a conse-

quence of Erlanger Program that is independent of the other axioms (Theorem

2). While axiom DM* is a highly desirable meaningfulness property, I see

no reason to include it as a necessary condition for meaningfulness.
Axioms MC’ and AL appear to me to be much more reasonable meaning-

fulness principles, except that axiom MC’ appears to be in some ways too

powerful :

Axiom MC’ says that a set that is definable through a formula of

and meaningful entities is itself meaningful. The problem with this princi-

ple is that rather abstract - in fact, infinitely abstract - sets can be

defined in ZFA through formulas of L and the set A . Thus in scientific

meaningfulness contexts, MC’ would allow the meaningfulness of some infini-



70

tely abstract objects. From many philosophical perspectives this is highly

undesirable, and for this (and other reasons) it seems reasonable that axiom

MC’ should be weakened.

Axiom AL is a perfectly straightforward and reasonable meaningfulness
condition.

Thus to summarize, the concept of meaningfulness inherent in Felix

Klein’s Erlanger Program can be formalized as axiom system TM. It can be

shown (Theorem 1) that this axiom system is logically equivalent of the

conjunction of five meaningfulness principles - MC’ , AL , DM* , MP ,

and MI - that stress meaningfulness as a definability concept. In terms of

these five principles, the philosophical commitments inherent in Erlanger

Program meaningfulness concept become somewhat clarified, and it appears

that they are inadequate for scientific applications, since they embrace

unacceptably strong, infinitistic methods. A weakened version of these prin-

ciples which assumes AL and weakened forms of MC’ and MP appears to be

a realistic avenue for developing a more robust and philosophically sound

meaningfulness concept. (This and other methods of weakening the assumptions
of Erlanger Program are discussed in detail in Narens, 1988).

One of the main applications of the Erlanger Program’s meaningfulness

concept has been to rule out nonmeaningful entities from consideration. This

practice can be intuitively justified by Theorem 1 as follows :

Suppose in a particular setting we are interested in finding the func-

tional relationship of the qualitative variables x , y , and z . We be-

lieve that the primitive relations (which are known) completely characterize

the current situation. Furthermore, our understanding (or insight) about the

situation tells us that x must be a function of y and z . (This is the

typical case for an application of dimensional analysis in physics). This

unknown function - which we will call "the desired function" - must be

determined by the primitive relations and the qualitative variables x , y

and z . Therefore, it should somehow be "definable" from these relations

and variables. Even though the exact nature of the definability condition

is not known, (it can be argued that) it must be weaker than the enormously

powerful methods of definability encompassed by the conjunction of axioms

MC’ , AL , DM* , MP , and MI . Thus by Theorem 1 we know that any func-

tion relating the variable x to the variables y and z that is not

invariant under the automorphisms of the primitives cannot be the desired

function. In many situations, this knowledge of knowing that functions not
invariant under the automorphisms of the primitives cannot be the desired

function can be used to effectively find or narrow down the possibilities
for the desired function.
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It appears likely to the author that the near future will bring better

theories of meaningfulness that will more precisely specify the nature of

definability properties of the meaningfulness predicate, and that this addi-

tional knowledge will likely prove useful in strengthening the techniques of

dimensional analysis of physics and other meaningfulness methods of drawing
inferences about qualitative relationships.
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