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MEASUREMENT REPRESENTATIONS OF ORDERED, RELATIONAL STRUCTURES

WITH ARCHIMEDEAN ORDERED TRANSLATIONS

R.D. LUCE *

During the past 12 years, research into the conditions under which mea-

surement is feasible - that is, the characterization of those qualitative,

ordered, relational systems that admit numerical representations - has pro-

gressed from axiomatizations of highly specific systems (see, for example,

Krantz, Luce, Suppes &#x26; Tversky, 1971, and Roberts, 1979) to a far more com-

plete understanding of the entire range of possibilities. At least this is

true for structures that are highly symmetric - technically, homogeneous.
The notes that follow, which are only a minor modification of the handout

used at the talk, summarize the key concepts, definitions, major results, and

selected references. The style is terse with little comment and no proofs.
For more a discursive discussion, see Luce and Narens (1987) and Narens and

Luce (1986); for more technical surveys see Luce, Krantz, Suppes, and Tversky
(in press) and Narens (1985).

There is, of course, a closely related mathematical literature on order-

ed algebraic systems, in particular ordered groups and semigroups. For an

early summary see Fuchs (1963), and for a more recent one, covering the nume-

rous developments after 1960 through the late 1970s, see Glass (1981). To the

best of my knowledge, the results reported here do not duplicate exactly those

in the mathematical literature. To some extent this may be due to the motiva-

tion and guidance of our work issues by representing empirical information

numerically - by measurement structures.
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ORDERED RELATIONAL STRUCTURES

Ordered Relation Structure :

A is a non-empty set (of empirical entities or numbers),

k is a total (or, sometimes, weak) order,
J is a non-empty set (usually integers) called an index set, and for

each j in J, S. is a relation of finite order on A .
J

Ordered Humerical Structure :

where R is a subset of the real numbers Re .

IsotMTphism : Suppose a, and a.’ are relational structures with

(i) the same index set J ,

(ii) for each j in J , order (S.) = order (S.,) .J J

is a one-to-one mapping from A onto A’ such that for all a,b E A ,

and for all j E J and all a1 ,a2, ... ,a n (j) E A ,
n j

Numcrical Representation : An isomporphism of a into (onto) a numerical

structure R .

AUTOMORPHISMS OF ORDERED RELATIONAL STRUCTURES

Aut080rphism : An isomorphism of a structure a, onto itself. Let J denote

the set of automorphisms, which is a group under function composition.

Translation : Any automorphism that either has no fixed point or is the

identity, i .

Dilation : Any automorphism with a fixed point.

Asymptotic Order : ~’ on J defined by : for a,6 E J , iff for

some a E A and all b E A such that b &#x3E; a , 

It is easy to see that z’ is transitive and antisymmetric; however

it may not be connected. Often, connectedness will derive from the assumptions
made. Relative to function composition, denoted . , , it is monotonic : for all
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Archimedean Ordered Subgroup of Automorphisms : T~’,’) where

(i) T is a subgroup of J ,
(ii) ~’ is connected, and so a total order ,

(iii) · denotes function composition, and

(iv) for each a,j3 E J such that a ~’ i , there is some

integer n such that an ~’S .

Stevens (1946,1951) suggested a classification of measurement systems

according to the behavior of the automorphism group of a numerical represen-

tation ; it is summarized in Table 1. Although widely cited and used in the

behavioral and social science literature, this classification was never

very thoroughly investigated until the work to be described.

HOMOGENEITY, UNIQUENESS, AND SCALE TYPE

The following concept of M-point homogeneity, which has been extensively stu-

died in the literature on ordered permutation groups (see Glass, 1981, for a

summary of results), was independently introduced by Narens (1981a,b) in arri-

ving at a formal definition of scale type. The results uncovered appear to

be distinct from those reviewed by Glass.

A subset of B automorphisms is :

M-Point Homogeneous : Given any two strictly increasing sequences of M

elements, there is an automorphism in B that takes one into the other.

Degree of Homogeneity : The largest M for which M-point homogeneity holds.

Homogeneous : Degree of homogeneity &#x3E; 1 .

N-Point Uniqueness : Whenever two automorphisms of B agree at N distinct

points, they are identical.

Finite Uniqueness : Degree of uniqueness  .

Scale Type (M,N) :
M = the degree of homogeneity, and

N = the degree of uniqueness of group of automorphisms.

Homogeneity means, among other things, that no element is distinguish-
able from others by properties formulated in terms of the primitives. Thus,

any system is excluded that has a singular element, e.g., a zero or a bound.
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CLASSICAL MODELS OF MEASUREMENT BASED ON AN OPERATION

Consider an ordered relational structure in which either one of the relations

is a binary operation or there is an operation that along with the order is

equivalent to the relational structure (as is true for some difference and

conjoint structures).

The operation is assumed to be positive and Archimedean.

In the associative case, Holder’s theorem (1901) is used to show :

(i) the existence of a representation onto Re + &#x3E;,+&#x3E; ,
(ii) the representation is unique up to similarities x -~ rx , r &#x3E; 0 ,

i.e., the structure and its representation are of scale type (1,1).

Behavorial and social scientists speak of such a representation that

is unique up to the similarities as a ratio scale representation.

In the non-associative case, a modification of Hblder’s proof (Cohen

&#x26; Narens,1979; Luce et al., in press; Narens &#x26; Luce, 1976) is used to show

(i) the existence of a (non-additive) numerical representation, such

that

(ii) the automorphisms form a subgroup of the similarity group, and so

the scale type is (0,1) or (1,1) .

A series of results (Krantz et al.,1971;Luce et al., in press; Luce 1978;

Luce &#x26; Narens, 1985; Narens, 1976; Narens &#x26; Luce, 1976) show how such opera-

tions enter into the structure of physical dimensions. Consider :

Conjoint Structure : C = Axp~&#x3E; ~ where for each a, b E A and p , q E P ,

the following three conditions are satisfied :

1. ueak Ordering : k is a non-trivial weak ordering.

2. Independence (or monotonocity) :

Observe that independence permits one to define induced weak orders on A

and P , which are denoted ZA and k , respectively .A p

3. A are total orders.

Suppose further :

4. 0 A is a positive operation on A and that a = A, A,OA&#x3E; has

a ratio scale representation, the positive reals;
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5. a distributes in C = AxP,~) in the sense that for all

a,b,c,d E A and p,q E P ,

Then there exists a function ~ on P such that represents C .

If there is also an operation 0 p p on P with a ratio scale representation
then for some real p , represents C .

This is the typical product of powers exhibited by physical units. It

is potentially important to other sciences to know the degree to which the

conditions leading to the product of powers representation can be generalized.
So we turn to that.

QUESTION : HOW DOES ALL OF THIS GENERALIZE WHEN NO OPERATION IS DEFINED ?

In particular :
1. Is there some natural concept of Archimedeanness in the absence of

an operation ?

2. When does an ordered relational structure have a real, ratio scale

representation ?

3. How can the idea of an operation distributing in a conjoint struc-

ture be generalized so one continues to arrive at the product of powers re-

presentation of physical dimensions ?

These questions are of special interest in the social sciences since

they place mathematical limits on the possibility of adding new dimensions

to those currently known.

ANSWERS IN THE HOMOGENEOUS CASE

Answers are not known in general, but assuming homogeneity the situa-

tion is clear and moderately simple.

Real Unit Structure : R = R,_&#x3E;,R.&#x3E;. J , where R is a subset of Re+ and

. 

there is some subset T of Re such that

1. T is a group under multiplication,
2. T maps R into R , i.e., for each RE R and t E T ,

then tr F R ,

3. T restricted to R is the set of translation of R .

Dedekind Complete : Every bounded subset of elements has a least upper

bound.
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Order Dense : A, ~&#x3E; is such that if a,b E A and a &#x3E; b , then there

exists c E A such that a &#x3E; c &#x3E; b .

THEOREM (Luce, 1986) Suppose R = R,&#x3E;,R.&#x3E;.E J is a real unit structure
, -- JJ

with T its group of translations.

(i) Then R can be densely imbedded in Dedekind complete unit struc-

ture, R* .

(ii) If R is order dense in Re+ , then each automorphism of R

extends to an autoporphism of R* .

(iii) If T is homogeneous and R is order dense in Re+ , then R*

of Part (i) is on Re+ and T* is homogeneous.

THEOREM (Luce, 1986) Suppose a = A, is a relational structure,’ 
JJ

T is its set of translations, and ’ is the asymptotic ordering of the

automorphisms. Then the following are equivalent :

(i) a, is isomorphic to a real unit structure with a homogeneous group
of translations.

(ii) T, -’,.&#x3E; is a homogeneous, Archimedean ordered group.

COROLLARY. If, in addition, A,~&#x3E; is order dense, then the automorphism

group of the real unit structure is a subgroup of the power group (see Table

1) restricted to its domain.

This theorem answers question 2 - when does a relational structure have

a ratio scale representation ? - and suggests that condition (ii) is an

answer to question 1 - is there a natural concept of Archimedeanness in the

absence of an operator ? The latter point is discussed more fully in Luce

and Narens(in press). Moreover, it provides a routine way to proceed : given
an axiom system, investigate whether the translations are :

(i) homogeneous,

(ii) closed under function composition, and so a group,

(iii) Archimedean ordered.

The following is a sufficient condition for translations that form a

group to be Archimedean ordered.

THEOREM (Luce, 1987) Suppose a is a relational structure that is Dedekind

complete and order dense. If its set T of translations is 1-point unique

(equivalently, a group), then T is Archimedean.
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This means that for order dense, Dedekind complete cases the issue is

to show that the translations form a group. That is the difficult part in

proving the following sufficient condition :

THEOREM (Alper, 1985, 1987, Narens, 1981 a,b).Suppose that R = 
- J J-

is a numerical relational structure that is homogeneous and finitely unique.

Then the following are true.

(i) R is of scale type ( 1 ,1 ) , ( 1,2) , or (2,2).

(ii) R is of scale type (1,1) iff R is isomorphic to a real struc-

ture whose automorphisms are the similarity group.
(iii) R is of scale type (2,2) iff R,’ is isomorphic to a real struc-

ture whose automorphisms are the power group (see Table 1).

(iv) R is of scale type (1,2) iff R is isomorphic to a real struc-

ture whose automorphisms are a proper subgroup of the power group
that properly includes the similarity group.

One should not assume this result generalizes. In unpublished work,
Cameron (1987) has shown that structures on the rationals of scale type

(M,N) can be found for any integers M and N for which 1  M  N  ~ . .

To my knowledge, the case M = N is not understood.

THEOREM (Luce &#x26; Narens, 1985). If a is a homogeneous concatenation struc-

ture, then : ,

(i) Either a, is weakly positive or idempotent

[ (V) a0a - a] or weakly negative [(V) a0a.a]

(ii) If a is also finitely unique, then it is of scale type (1,1),

(1,2) or (2,2).

THEOREM (Cohen &#x26; Narens, 1979; Luce &#x26; Narens, 1985) a = Re, &#x3E; 0,&#x3E; is a

homogeneous and finitely unique concatenation structure iff a. is isomorphic
to a real unit structure R = Re+,’&#x3E; , &#x3E; , in which case a can be charac-

terized as follows : there is a function f : Re+ (onto) Re+ such that :

(i) f is strictly increasing,
(ii) f/i is strictly decreasing, where i is the identity,

(iii) for all x,y E Re+ ,
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COROLLARY : Consider
..... ,...

Then R is of scale type :

(1,1) iff Eq. (1) is satisfied only for p = 1 .

(1,2) iff Eq. (1) is satisfied for p = kn , where k &#x3E; 0 is fixed

and n is any integer.

(2,2) iff Eq. (1) holds for all p &#x3E; 0 .

Applications of homogeneity ideas, using both concatenation and conjoint

structures, are given by Falmagne (1985) to psychophysical problems and by
Luce and Narens (1985) to the study of preferences among uncertain alterna-

tives.

DISTRIBUTION IN A CONJOINT STRUCTURE

Suppose C = A x P, ~ ) is a conjoint structure (defined above) :

SimdLlarn-Tuples : The n-tuples (a1,...,an) and (b1, ... ,bn) from A are

such that for some p,q E P and for each i - 1,...,n ,

Distributive Relation in C : S is a relation of order n on A such that

if (a ,...,an) and (b1,...,bn) are similar and one is in S , then so is
1 n In

the other.

Note : the induced order kA is always distributive in C .

Distributive Structure in C : Any relational structure on a component of C

each of whose relations distributes in C .

The following is the culmination of a series of increasinly more gene-
ral results by Narens and Luce.

THEOREM (Luce, 1987). Suppose a = is an ordered relational
JJ

structure with translations T and asumptotic ordering ’ . Then the follow-

ing are equivalent :

( i ) T, ~’ , &#x3E; is a homogeneous, Archimedean ordered group.

(ii) T is 1-point unique and there exists an~Archimedean, solvable

conjoint structure C with a relational structure a.’ on the

first component such that a.’ is isomorphic to a, and a’

distributes in C .
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COROLLARY. The conjoint structure of Part (ii) satisfies the Thomsen condi-

tion : for a,b,c E A and p,q,u E P ,

Solvability : Given any three of a,b-C.A , p,q E P , the fourth exists such

that (a,p) -(b,q) .

In solvable conjoint structures with an operation, the general concept
of distribution implies the one introduced earlier.

Archimedean : If {ai} and {ai+1} are similar and bounded, then the sequen-

ce is finite. And a similar condition on the P-component.

THEOREM (Luce, 1987). Suppose C = A x P, g5&#x3E; is a conjoint structure that is

solvable and Archimedean. Suppose, further, that a = A, z ,S.&#x3E;. is a
A J jEJ

relational structure whose translations form an Archimedean ordered group.

(i) If a. distributes in. C , then a is 1-point homogeneous and

C satisfies the Thomsen condition.

(ii) If, in addition, a is Dedekind complete and order dense, then

under some mapping from A onto Re+ a has a homogeneous

real unit representation and there exists a mapping from P

into Re+ such that is a representation of C .

(iii) If, further, there is a Dedekind complete relational structure on

P that, under some (pl, from P onto Re+ , has a homogenèous

unit representation, then for some real constant p , AP

representation of C .

The latter result is highly relevant to issues in the foundations of

dimensional analysis; see Luce (1978). It says :

Real unit structures that distribute in a conjoint structure are such

that products of powers of their representations form a representation
of the conjoint structure.

This is the typical pattern of physical dimensions, e.g., E =(1/2)mv2
and is reflected in the pattern of physical units.

This result establishes that such a dimensional triple is not, as was

for some time believed, restricted to extensive structures; it can be true

for any real unit structure. The net effect is to increase considerable the

opportunities for augmenting the system of physical units.

For a somewhat different, but related, approach to this problem of pro-

ducts of powers, see Falmagne and Narens (1983).
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CONCLUSION

We now understand a good deal about homogeneous measurement stru.ctures; but

we still do not have an equally satisfactory understanding of non-homogeneous

ones. Some of these are important. In particular, we do not understand the

interlock of conjoint structures and bounded structures on one of the factors.

One example is relativistic velocity, which superficially looks like any other

physical dimension except for being bounded; however, unlike the unbounded

physical attributes, velocity does not distribute in the distance = velocity
x time conjoint structure. Another example is probability, which has never

been incorporated into the system of physical units although it has been, to

an extent, into economic measures (e.g., subjective expected utility). Pre-

sumably, sensory variables, like loudness and brightness, are bounded. These

structures, unlike many other non-homogeneous one, are richly endowed with

automorphisms or partial automorphisms, and seem in many ways comparable to

the homogeneous ones. So results about them may be anticipated.
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TABLE 1*

Stevens’ Classification of Scale Types (Augmented)

* This is Table 20.1 of Luce, Krantz, Suppes and Tversky, in press.


