P. V.RAMANA MURTY

TERESA ENGELBERT
On valuation in semilattices

Mathématiques et sciences humaines, tome 90 (1985), p. 19-44
<http://www.numdam.org/item?id=MSH_1985__90__19_0>

© Centre d’analyse et de mathématiques sociales de I’EHESS, 1985, tous droits réservés.

L’acces aux archives de la revue « Mathématiques et sciences humaines » (http:/
msh.revues.org/) implique 1’accord avec les conditions générales d’utilisation (http:/www.
numdam.org/conditions). Toute utilisation commerciale ou impression systématique est consti-
tutive d’une infraction pénale. Toute copie ou impression de ce fichier doit conte-
nir la présente mention de copyright.

‘NuMbDAM

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques
http://www.numdam.org/


http://www.numdam.org/item?id=MSH_1985__90__19_0
http://msh.revues.org/
http://msh.revues.org/
http://www.numdam.org/conditions
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/

19

Math. Sei. hum. (23° année, n°90, 1985, p.19-43).

ON VALUATION IN SEMILATTICES

P.V. RAMANA MURTY
SR. TERESA ENGELBERT

¥*

INTROCUCTION

The purpose of this paper is to extend some of the results
obtained in [5] to semilattices. To d so, we need a defi-
nition of valuation in semilattices. It is from the survey
made by B.Monjardet [4], we take a suitable definition of valu-
ation in semilattices.,

Before entering into the matter of this paper, we shall
summarize the results we generalize from [5] and [9]. A real
valued function v defined on a lattice L is called a valuation
on L if for any pair of elements a,b € L;

v(a) + v(b) = v(av b) + v(aab).

A valuation is called isotone if a < b implies v(a) < v(b) and

strictly isotone if a < b implies v(a) < v(b) ([1], page 231).

A real valued function d defined on a set S is called a pseudo-
metric on S if
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i) d(x,x)

ii) d(X,Y)
iii) d(x,y)

C 3 x€ S8
d(y,x); X,Yy€S
d(y,z) 2 d(x,2); X,y,z € S

+

A pseudo-metric d on S is called a metric on S if d(x,y) = 0O
implies x = y for x,y € S[1]. G.Birkhoff in [1] has shown that
an isotone valuation on a lattice L induces a pseudo-metric on

L given by d(x,y) = v(xvy)=v(x ay) for all x,y € L and this
pseudo-metric satisfies the inequality

d(t vx,t vy) + d(t ax,t Ay) < d(x,y) for all x,y,t€L
([1], chapter 10, Theorem 1). .1 [7] it is proved that if L
is a lattice with least element O and d is a pseudometric on L
such that d(t vx,tvy) + d(t ax,tay) £ d(x,y) for all x,y,t€L;
then there exists an isotone valuation v on L such that
d(x,y) = v(xvy)= v(xay) for all x,yeL. This v is unique
upto a constant additive factor. Moreover if 4 is induced by an
isotone valuation, we have the equations

i) d(o,a)+d(a,b) = d(c,b) whenever a,b € L and a < b

ii) d(a,a Ab)+ d(a Ab,b) = d(a,b) = d(a,av b)+d(a vb,b)
for all a,b € L (see [7]).
The first theorem of [5] establishes a one-to-one correspondence

between the isotone valuations preserving C and the pseudometrics
satisfying the above inewality.

Theorem 1 ([5])

In a lattice L with least element 0, there is a one-to-one
correspondence between the isotone valuations preserving U and

the pseudo-metrics satisfying the inequality
d(t vx,tvy) + d(t ax,t ay) < d(x,v)
A valuation on a lattice L is called distributive if

2v(avb ve)=2v(aab ac)= v(av b)+v(bvc)+v(c va)-v(aab)-v(bac)
-v(caa) (see [8])

It is krown that in a metric distributive lattice,
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d(a,b)+d(b,c) = d(a,c) <=> belaanc, avc]
([1], page 234, problem 2), However in theorems 2 and 3 of [5]
the implications d(a,b)+d(b,c)=d(a,c) => b€[aarc,ave] and
b €[a Ac,a vec] => d(a,b)+d(b,c)=d(a,c) are characterized indi-
vidually. 1In fact the first is equivalent to saying that the
isotone valuation which induces the pseudo-metric is strictly
isotone and the second is equivalent to the distributivity of
the valuation. Hence the abowve result turns out to be a coro-
llary of these two theorems.

Theorem 2([5]):

Let v be an isotone valuation on a lattice L., Then v is strict-
ly isotone if and only if "d(a,b)+d(b,c)=d(a,c) =db€ [arc,avc]"
where d is the pseudo-metric induced by v.

Theorem 3 ([5]):

Let v be an isotone valuation on a lattice I.. Then v is distri-
butive if and only if "b ¢ [a ac,a vc] =>d(a,b)+d(b,c) =d(a,c)".

corollary 1([5]):

In a metric-distributive lattice
d(a,b)+d(b,c) = d(a,c) <=> b €[anrc,avc]

Combining Theorems 2 and 3 we get theorem 4 of [5].

Theorem 4 g]5|2:

Let v be an isotone valuation on a lattice L. Then for
a,b,c €L d(a,b)+d(b,c) = d(a,c) <=> belaarc, avc]" if and
only if L is distributive and v is strictly isotone.

In [8] it is shown that if L is a lettice and v is a
strictly isotone valuation on L, the distributivity of L is
equivalent to the distributivity of the valuation([8],page 109).
However, in a lattice L with an isotone valuation, the distri-
butivity of L guarantees the distributivity of the valuation.
But the converse need not be true. For example the constant
valuation on any lattice L is an isotone valuation which is dis-

tributive. But L need not even be modular,
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In [9] Wilcox and Smiley have proved that if v is a strict-
ly isotone function defined on a lattice L such that

v(avb)+v(aab) < v(a) + v(b), then

av(b Ac) = (avb) ac for a £ ¢ whenever v(bvc)+v(bac)
=v(b) + v(c). It is this theorem of [9] that we extend to
Join-semilattices. We also give an example to show that the
extension is proper.

Theorem 1.2 [9]:

If v is an affine dimension function defined on a lattice L, then
(avb)ac =av(bac) for a ¢ ¢ holds for a given pair b,c €L
whenever v(b ve) + v(bac) = v(b) + v(c).

Now coming to this paper, in the first theorem we prove
that the inequality d(t vx,t vy)+d(tax,t ay)< d(x,y) is equi-
valent to the following three equalities. -

i)d(a,b)+d(b,c) = d(a,c) for a ¢ b < ¢
ii)d(a,avb) + d(a vb,b) = d(a,b)

iii)d(a,aab) +d(aa b,b) = d(a,b); thereby making it possible
to extend many of the results on valuation in lattices to valua-
tion in semilattices (see theorems 3 4,5,6 of this paper). Also
we observe that if I is a join-semilattice with 0, the set of all
isotone valuations preserving 0 is a commutative semi-group with
O isomorphic to the semi-group of all pseudo-metrics satisfying
(1), (2) and (3'), [Theorem 7]. Theorem 2 of this paper shows
"that the theorem of Wilcox and Smiley ([9], Theorem 1.2) is true
for join-semilattices, with a strictly isotone upper valuation.
If L is a lattice with a strictly isotone valuation, then L is
modular ([8]). In theorem 3 we show that if v is a strictly
isotone valuation on a join-semilattice L, then L is a lattice
and hence modular. In theorem 11 we show that in a distributive
semilattice every isotone valuation is distributive; thus exten-
ding the result of [8], page 109. 1In theorem 13 we characterize
the implication "b €[t,a vc] => d(a,b)+d(b,c)=d(a,c)" for all
t € (alc) . It is equivalent to the distributivity of v. 1In
theorem '14 we prove that if "d(a,b)+d(b,c)=d(a,c) =>b € [t,av c]"
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for all t€ (alc)v, then L is a lattice. We also give suitable
examples wherever necessary.
NOTATIONS AWD DEFINITIONS

As far as possible we follow the notations used by B.Monjardet
in [4].

Let L be a Join-semilattice. ' We denote the least element
by 0. [x) denotes the set of all upper bounds of x in L and
(x], the set of all lower bounds.

xuy = [x)n[y) and x1y = (x] n (y]

vt (x,y) = min v(z), vV (x,y) = max v(z)
zz_x,y asx’y
(xuy), = {ze€xuy with v(z) = vi(x,y)?

(xly)v ={z € x1ly with v(z) = v (x,¥)}

Definition 1:

A real valued function v defined on a Jjoin-semilattice L is
called a valuation on L if and only v(a)+v(b)=v(a vb)+ v (a,b)

for all a,b € L. Where for x,y €L, v (X,y)= max v(z) exists
z<X,y
in L.

Definition 2:

A valuation v on a join-semilattice L is said to be distributive
if 2v(a vb vc)=2v (a,b,c)=v(a vb)+v(bv c)+v(cv a)-v (a,b)
-v (b,c)~v (c,a)

where for any x,yz €L, Vv (X,y,2) = max v(t) exists in L.
t<x,y,2

Definition 33

A real-valued function v defined on a join-semilattice L is
called an upper valuation on L, if for a,b,c€ L,

v(a)+ v(b) > v(avb) + v(c) for all ¢ £ a,b [&4].

Definition 43

A join-semilattice L is called distributive if a  bv c(a,b,c€ L)
implies the existence of b;,c;€ L with b, < b and ¢; < ¢ such
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that a = byve,( [3], page 117).

Definition 5:

A join-semilattice L is called modular if a ¢ bvc(a,b,ceL)

implies that there exist bl »C, €L such that bl
c; & ¢ such that avb, =ave, =by v ey ([ 6 ]).

RESULTS
THEOREM 1:

< b and -

Let d be a pseudo-metric on a lattice L with least element O.
Then the inequality d(tvx, t vy)+d(t ax,tay)< d(x,y) is equi-

valent to the following three equalities
1) d(a,b) + d(b,c) = d(a,c) for a { b < c
2) d(a,a vb) +d (a vb,b) = d(a,b)
3) d(a,a Ab) + d(a ab,b) = d(a,b)
Proof:
First suppose that d satisfies the above inequality.
d(a,b) + d(b,c) > d(a,c) (Triangle inequality)
Putting x = a, y = ¢, t = b we have
d(b,c) +d(a,b) < d(a,c). So that
d(a,b) +d(b,c) = d(a,c) for a < b £ c.
Now by triangle inequality we have
" d(a,av b) + d(avb,b) > d(a,b) and
d(a,aA b) +d(ab,b) > d(a,b)
putting x = a, y = b, t = a in the above inequality
d(a,a vb) + d(a,asb) < d(a,b)
Now putting x = a, y = b, t = b we have
d(a vb,b) + d(a ab,b) < d(a,b). Adding
d(a,avb) +d(avb,b) +d(a,ab)+d(ansb,b)< 2d(a,b)

< d(a,b) + d(a,aab) +d(aa b,b). So that

Let a<b<c.
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d(a,avb) +d(a vb,b) < d(a,b) and hence
d(a,avb) +4d(a vb,b) = d(a,b) cee...(2)
similarly d(a,aab) +d(aab,b) = d(a,b) eceeeees(3)

Conversely suppose that d is a pseudo-metric on L satis-
fying the equalities (1), (2) and (3). We shall show that d
satisfies the above inequality. First we shall prove that

d(x,y) = d(xA y,xvy)
XAy  x { xvy. Hence by (1)
A(x Ay,x) + d(x,xvy) = d(xAry, X VYy)
similarly since x Ay { y £ Xvy we get
d(xay, yv) + d(y, xvy) = d(xay,xvy). Adding
d(x,x Ay) +d(xa V,y)+d(x,x vy)+d(xvy,y) = 2d(xA ¥,xVy)
By (2) and (3) this becomes
2d(x,y) = 2d(x Ay,xv y) so that
d(x,y ) = d(x Ay, xvy) eeesee (1)
Now we shall prove that
d(0,x) + d(0,y) = d(0,x Ay) +d(0,x vy)
We have d(x Ay,x) +d(X,x vy) =d(xAy,xvy) =d(x,y)
=d(x,Xxvy) +d(x vy,y) so that
d(x Ay,x) = d(x vy,y)
Now O  xAy < xand O  y £ X vy so that
d(0y,x Ay) +d(x AYy,x) = d(0,x) and
d(0,y) + d(y,xvy) = d(0,xvy)

Hence d(0,x) = d(0,x Ay) = d(X Ay,Xx)

d(x vy,y)
d(o,x VY) - d(09Y)
so that d(0,x)+d(0,y) = A(0yx AY) +d(0,X VY) eeeceses (ii)

Now we shall prove that d satisfies the above inequality.
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d(tvx,tvy) =+ d(tax,t ay)
= d(tvxvy,(tvx)a (tvy))
+3((tax)v (EAY)stax ay)
by (1)
Ldltvxvy,(tvx)a (tEvy)+d((t vx)a(tvy)yt v(xay))
+A(t A(xvy)y(tax)v (EAY))+d((t Ax)v (EAY)ytAaAx AY)
= d(tvxvy,t v(xay))+d(t a(xvy),t axay)
by (1) since tvxvy > (tvx)a(tvy) > t v(xay) and
ta(xvy) 2 (Eax)v(tay) 2 taxay
d(0,tvx vy)=d(0,t Vv (x Ay))+d(0,t A (x vy))=d(0,t AxAY)

d(o,t vx VY)+d(O’tA (xv Y))"[d(ovt v(xay))+d(0,tax /\Y)]
d(0,t)+d(0,x vy) -[d(0,t)+d(0,x. ay)] by (ii)
d(0,x vy) =d(0,x AY)

]

= d(x vy, xay) =d(x,y) by (i)
Hence the result.

In the following theorem we extend the result of Wilcox
and Smiley (obtained for lattices) to semilattices.

THEOREM 2:

v is a strictly isotone upper valuation on a Jjoin-semilattice L.
Let b,c € L such that b Ac exists and v(bv c)+v(b ac)=v(b)+v(c).
Then for a { c, (avb)ac exists and (avb)ac = av (b ac).

Proo f:

Since v is an upper valuation

v(a)+v(b) > v(av.b) + v(t) for t £ a,b. Let a £ c;

Clearly av (b ac) < avb and c. Therefore a v(b ac) is a lower
bound of a vb and c. Let x be any other lower bound of a vb and
c. Then xva v(bac) avb and c. Since v is an upper valua-

tion this implies
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viave) +v(c) 2 v(bve) + v(xvav(bac))

Now we have v(xvav (b ac)). =v(av (bac))
< v(avb) + v(c) =v(bVve)-v(av (bac))
=v(av b) +v(c) = [v(b)+v(c)= v(b ac)] = v(a Vv (b ac))
= v(avb) +v(bac) - [v(b)+v(a v (b ac))]

< v(d)+ v(av (bac)) = [v(p) «v(av (bac))] =0

since v(b) + vlav(bac)] > v(avb) +v(bac)
Therefore v(xvav (bac)) < v(av (b Ac))

since v is isotone v(xvav (b ac)) > v(av (b ac))

Therefore v(xva v(bac)) = v(av (bac)) and

this implies xvav(b ac) =av(bac) &s v is strictly isotone.

Hence x { av(bac). Therefore av (bac) is the greatest lower
bound of avb and ¢, so that av (b ac) = (avb) ac.

EXAMPLE 1

We give an example of a join-semilattice (which is not a lattice)
with a strictly isotone upper valuation in which the above theorem
holds. I (4)

Consider the infinite join-cemi-
lattice in Figure.l. Here a and e ()b 1)
are greater than every element of
the infinite chain of non-negative

integers with least element 0 and

without a greatest element. v is L

a strictly isotone upper valuation

on L. For any element x,v(x) is (1) ag »e (1)
given in the bracket. b ac exists \Q:\ /;,”

and v(b ve)+v(b ac)=v(b)+ v(c) NN /’//

a Ae does not exist. Here \\\ \",//
av(bac) =avd = d and \\‘,:1 o
(avb)ac =barc = d and hence o n+i

av(b ac) = (avb)ac. This is Figure 1
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true for all a,c€L with a { c. Hence the theorem holds in this
example.

EXAMPIE 2

The following example shows that the above result is not true for
isotone valuations. Consider the infinite Jjoin-semilattice L
in Fig.Z2. Here e and f are greater than every element of the
infinite chain of non-negative integers with least element 0O

and without a greatest element. T (4)

v 1s an isotone upper valuation on L. (3) .
For any element x,v(x) is given in the
bracket. b aAc exists and b (3)
v(b) +v(c)= v(b vec) + v(b ac)
e Af does not exist .

a {cand av(bac)=avd=a d (2)
(avb) Ac =1ac = c. Hence

av(bac) # (avb)ac. Thus

(3) a

thisresult is not true for an isotone (1) e £ (1)
7
valuation, N a4
AN 7/
NN ,/,
\\ \\ , 7
Y
\\ /7
/
AN V4 n
Y _n
n (n+1)
0
Figure 2

Next theorem shows that no strictly isotone valuation can

exist on a proper Jjoin-semilattice.

THEOREM 3:

Let L be a join-semilattice with O, If v is a strictly isotone
valuation on L, then L is a lattice and hence modular,

Procf:

We have to show that given any two elements a and b; gheir glb

exists in L. v (a,b) = Max v(z) = v(zo). z, £ a,b implies z
z<a,b

is a lower bound of both a and b, Let c¢c be any other lower
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bound. Then c vz, is a lower bound of both a and b which implies
v(c vzo) < v(zo) but as v is isotone v(cv zo) > v(zo) and hence
v(c vzo) = v(zo). Again because v is strictly isotone we get
cvz, =z, so that ¢ { z . Hence z, is the glb of a and b.
Therefore L is a lattice. Since v is strictly isotone, L is

modular,
EXAMPIE 3 a (4)

Any number of isotone valuations can
exist on a join semi-lattice L;

directed below., For example a Ne
mp co 2) ¢ (3)

stant valuation is an isotone valua- NI .7
tion on a join semi-lattice. The MV R
valuation as shown in Fig.3 is an YL
example of a non-trivial isotone Nl
valuation on a join-semilattice L, Y (1)
Where every point x on the infinite

chain is a lower bound of b and c. Fige 3

Although the following theorems 4 and 5 are stated in [4]
for completeness we give proofs of the same,

THEOREM 4

An isotone valuation v on a join-semilattice L with O induces a
pseudometric on L given by d(a,b) = v(avb)=v (a,b) which satis-
fies the following three equalities

1) d(a,b) + d(b,c) = d(a,c) a<b<c

2) d(a,avb) +d(avb,b) = d(a,b) and

¥) d(a,t) +d(t,b) = d(a,b) for all t e(alb), .

Proof:

Since an isotone valuation on a join-semilattice L is an isotone
upper (increasing) valuation on L; it induces a pseudometric on
L given by d(a,b)= 2v(avb) - v(a) =v(b) which satisfies (1) and
(2) ( [2], Theorem 1 and Note 3).

d(a,b) = 2v(av b) - v(a) - v(b)

2v(av b) - [v(avb) +v (a,b)]
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= v(a vb) - v (a, b)
Now we have to prove (3') also.
Let t E(eztlb)v so that v(t) = v (a,b) and t € a,b.
Hence d(a,t) + d(t,b) = v(a) = v(t) + v(b) -v(t)
v(a) +v(b) - 2v(t)

v(a vb) +v (a,b) - 2v (a,b)

v(a vb) = v (a,b) = d(a, d)
Hence d(a,t) +d(t,b) = d(a,b) for all t E(alb)v.
Hence (3') also holds.

THEOREM 5

Let L be a join-semilattice with least element O and d be a
pseudo-metric on L satisfying

-

1) d(a,b) +d(b,c) = d(a,c) fora < b < c
2) d(a,avb) +d(av b,b) =d(a,b)
3t) d(a,t) + d(t,b) = d(a,b) for all te€ alb

such that d(C,t) = Max d(0,z)

z€ a,b
Then there exists on isotone valuation v on L preserving O such
that d(a,b) = v(avb) -v (a,b) for all a,b € L,

Proof:

Define v(x) = d(0,x). Then v(0) =d(0,0) = 0. If x <y, we get
0 ¢ x £y so that d(0,x) +d(x,y) =d(0,y) by (i) that is

v(x) + d(x,y) = v(y). This implies v(x) < v(y) since d(x,y) > o.
Therefore v is isotone and v preserves O, 0 ¢ a ¢ avb and

O <£b<avb so that

d(0,a) + d(a,avb) = d(0,a vb) and

d(o,b) + d(b,avb) = d(0,a vb). Adding

da(o,a) +d( 0,b) +d(a,b) = 2d(0,av b) by (2) .

That is v(a) +v(b) +d(a,b) = 2v(a vDb) ceeeesl(i)

Now 0 < t (¢ @a and 0 { t { b where t is such that
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d(o,t) = Max d(0,z)

z<a,b
Then by (1) we have

d(o,t) + d(t,a) = d(0,a)

d(o,t) + d(t,b) = d(0,b) Adding

2d(0,t) +d(a,b) = d(o,a) +d(0,b) by (31)
i.e., v(a) + v(b) =d(a,b) = 2v(t) ceseeceo (ii)
Adding (i) and (ii) we get v(a) +v(b) = v(avb) + v(t) ... (iii)

Subtracting (ii) from (i)

d(a,b) = V(av b) - V(t) cCeevceoe (iV)
Now d(0,t) = Max d(0,z) implies
z<a,b

v(t) = Max v(z) = v (a,b) so that
z<a, b

from (iii) and (iv) we get
v(a) + v(b) = v(av®) + v (a,b) and
d(a,b) = v(avb) - v (a,b)
Thus v is an isotone valuation on L preserving O.

From the following Lemma we see that isotone valuations on
a join-semilattice, L with least element O from a semi-group.

Lemma 6

Let L be a join-semilattice with 0. If vy and v, are isotone
valuations on L. Then V14V, and aglare isotone valuations on L
where « is a non-negative real number and (vl+v2)(x)=vl(x)+v2(x).

Proofs
First we shall prove that
(vy+v,)7 (%,5) = VI (x,¥) + v5(x,¥)
Let VI(X,Y) = Vl(zl) and.vg(x,y) = v2(22)
Let t = zy vz, so that vl(t) > vl(zl) and vz(t) > v2(22)

But t £ X,y implies vl(t) < Vl(zl) and vz(t) < v2(22)
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Thus vl(t) = ﬁ‘zl) and vz(t) = v2(22)
vl(t) + vz(t) = (v1 +v2) (t) and t < x,y.

Now let z £ xX,y. Then
(V1+V2)(Z) = Vl(Z) + Vz(z) £ VI(X’Y) + VE(XsY)

= 1(21) + v2(22) = vl(t) + v, (t)

=(V1+V2) (t)
Therefore (vl+ vz)'(x,y) exists and is equal to
vl(t) + vy (t) = vi(x,y) + VE(X’Y)o Now
(Vl"' VZ)(X) + (V1+V2) (y) = Bﬁ_(x)"’vl(Y)] + [Vz(x) + vz(Y)]

= vl(X‘vy) + vz(x,y) + VZ(X\/Y)+ vg(x,y)

]

(Vl"‘ VZ)(X vVy) +(.V1+V2 )-(X’Y)
so that Vi+ Yy is a valuation on L. Obviously it is tdsotone.
Next we shall prove that

(e0)™(%,7) = & v (%)

Let z £ x,y so that gfz) < j;(x,y)

and hence ag{z) < avi(x,y). That is
(aYp(z) < ayl(x,y) and hence (aYg (x,y)
exists and (agg-(x,y) = aY;(x,y). Moreover

() (x) + (a)(¥)

a« [wzl(x)ﬂﬁ(y)
« [vl(xvy) + VI(X,Y)]

(agg(X\/y) + (ag?'(x,y) so that qv is a
a valuation on L., Obviously it is isotone,

In the following theorem we show that on a join-semilattice
L with U, the isotone valuations preserving U correspond one-to-
one to the pseudo-metric satisfying ‘1), (2) and (3') of theorem-5
Moreover it is an isomorphism of semi-groups. Al though the
first part of the following theorem is stated in [4] we give a
proof of the same for the sake of completeness.,
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THEOREM 7
The set of all isotone valuations preserving O on a join-semi-
lattice L with O is an additive abelign semigroup with O which is
isomorphic to the semi-group of all pseudometrics satisfying
(1), (2) and (3'). Moreover if o is the mapping, then

o(av) = a o(v) for all « > 0( « is @ real number).

Proof:

Let L be a join-semilattice with least element O and d be a
pseudometric satisfying (1), (2) and (3') of theorem 5. Let V3

be the isotone valuation induced by d and d@ be the pseudo-
d
metric induced by Vae Then

dvd(x,y) = va(xvy) = va(x,y) = 2vy(xvy) - yx) - vy)
Zd(O)X VY) - d(O,X) -d(O’Y)
=[da(0,xv y)-d(0,x)]

+[d(0,x vy)-d(0,y)]
=d(x,x vy) +d(xvy,y) by (1)

=d(x,y)  by(2)

Hence d =d.
Va

Conversely suppose that v is an isotone valuation on L
preserving 0. Let dv be the pseudometric induced by v. Then dV

satisfies (1), (2) and (3'). Let v, Dbe the isotone valuation

d
v
induced by dv. Then we claim that vy =V
v
vy (x) = d,(0,%) = v(x) - v(0)
v
Thus V3 =v., Thus the correspondence is one-to-one.
v

Moreover, by Lemma 1, it is easily seen that the set of all
isotone valuations preserving O is an additive abelian semi-
group. Let o v — dv where dV is the pseudo-metric induced
by v be the mapping. Now we claim that o¢ is a homomorphism.

o (V1+V2)(x,Y) = dVl+V2(X’Y)



34

(vy+v5) (x vy) =(vyav,) (x,Y)

vy (xv y)-vi (x,¥)4v,(x y)-v,(x,y) by Lemma 6

o (Vl)(X’Y) + O(Vz)(X’Y)O

More over if a 2 O

o (av)(x,y) = d_,(%,¥)

(av)(xvy) =(av) (x,y)

alv(xvy) - v (x,y)] by Lemma 6.

a O (V)(X9Y)
Hence the result.
LEMMA 8:

Let L be a join-semilattice with least element O and v an iso-
tone valuation on L. Then x >a, y >b imply v (x,y) > v ( a,b)

Proof

v (a,b) = Max v(z)
z<a,b

z <a,b implies z £ X,y so that v (a,b) < v (x,y)
L.MMA O:

Let L be a Jjoin-semilattice with least element O and with an
isotone valuation v such that v (a,b,c) exists for a,b,c € L.

Then if t, €(a1b)v, t, E(blc)v then

i) V_(a’tz) = V—(a’brc)
ii) v‘(tl,tz) = v (a,b,c)
Proof:
(i) we have by definition,

v-(a,tz) = Max v(z)
ZS?’tg

z £ a,t implies z £ a,b,c. so that

2
v(a,t,) < v (a,b,c)

vow v (a,b,c) = Max v(z) = v(zy) (say)
zgg,b,c
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Putting t} = z,vt,; we have t < b,c and hence v(té)sv(tz).
? []
But v(t2) > v(tz) so that v(tz) = v(t2).
]
Also av t, = avzyvt =avt, since z; £ a.
Therefore v(a v té) = v(av t2)

v_(a,t;) = v(a) + v(té) - v(a Vt;)

v(a) + v(tz) -v(a vt2)

]

V-(a!tz)-

LI . - 1 -
Now zq < a,t, implies v(z;) <V (a,t,) = v (2,t,)
So that v(z;) = v (a,b,c) = v(a,t,)

(ii) V—(tl,tz) = Max v(z)
z_<_t1,t2

.
2L bt

V_(tlytz) £ V-(a,bvc)

implies z £ a,b,c so that

Now v (a,b,c) = Max v(z) = v (21) (say)
z£{ a,b,c

1 1

As above putting tl =29V t1 and t2 = 2q th we have

] 1
v(tl) = v(tl) and v(t2) = v(t2)
t ]
Also tl v t2
1 ]
v(tl v t2) > v(t1 v tz)

VIt yty) = v(ty) + v(ty) =v(t] v t))

= 21Vt1"tg Z tl v t2 . So that

< v(tl) + v(t2) --v(tl v t2)

=V (tl’tZ)
1
21 2
Hence v(zl) = v (a,b,c) < v—(tl,tz) < v (a,b,c)

! Ty -t - N
< ty,t, implies v(zl) <v (tl,tz) LV (tl, 2)
Therefcre V_(tl’tZ) = v (a,b,c)

EXAVPLE 43

We shall give an example of a cdistributive Jjoin-semilettice.
g D
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The lattice L in Fig.4 represents a 1
distributive Jjoin-semilattice with

0 and 1. avb=l, a Ab does not

exist, since any point on the infi-

nite chain which has no upper bound s e
is a lower bound of both a and b o~ L7
a a vb implies there exists \ ’
a,x { b such that a = avx. Y,
avb implies there exist x £ a,
b such that x = xvx . Then L |

is distributive, Fig.4

a

X

IAIA IA A

X

LEMMA 10:
If L is a distributive join semilattice with least element O then

i) v(tlvt3) = v (a,bve)
ii) v(thZ) = v (avb,avec)

where t; € (alb)v, t, € (blc)V and t3 € (alc)v

Proof:
i) t) < a,b ; ts < a,0 implies ty v t5 < a,bvec
so that v(t:L vt3) < v(a,bve) cevees (1)

Now v (a,b ve) = Max v(z) = v(zl) (say)
z<a,bve

Since L is distributive zy £ bvc implies there exist bl,cleL
such that b; < b, ¢; < ¢ and z; =by;vecy. Putting t,=b,v 1,y

and t vt, we have bl < 2y < a and b1 £ b so that bISa,b.

5% %Y
Also tl £ a,b so that th = blv tl £ a,b and hence
v(t,) < v (a,b) = v(t;). But v(t,) 2 v(t;). Therefore

V(ta)

v(tl). Similarly v(t5) = V(t3)°

V(t4 v t5) = V(Zl vty v t3) b v(’cl vt3)
v"(tq,t5) = v(t,) +v(t5) -v(thvts)
v(tl) + Vv (t3) - v(t]_Vt.j)

T Vo

v-(tl,t3)
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t, 2 t; and t5 2 ‘r3 implies

v'(ta,t5) > v-(tl,tB) by lemma 8

Hence v-(th’tS) = v-(tl’tS)

v(tavts) = v(t,) + v(ts) - v"(t4,t5)
= v(ty) + v(t3) - v-(tl,tB)
= v(tl v 1:3)

v(thv t5) = v(bIth V. eV t3) = v(zlv’clvtB) > v(zl)
Ther’efore V(tlvt3> Z V(Zl) oootooooooo(Z)
From (1) and (2) v(t,V t3) = v(z)) = v (a,bVvec)

ii) v (avb,ave) = v(avb) 4+v(avec) - v(avbvec)

v(a)+v(b)-v (a,b)+v(a)+v(c)-v (a,c)

-v(avbve)

2v(a)+v(b)+v(c)=v(avb v c)-v(tl)-v(tB)

2v(a)+v(b ve)+v (b,c)-v(avbyv c)—v(tl)-v(tB)

]

2v(a)+v(b v c)-v(avbVc)+v(t,)
=[v(ty v t3)+v (£,t5)]
=v(a)+v (a,bv c)+v(t2)-v'(a,b ve)=v (a,b,c)
by Lemma 10(i) and 9(ii)
=v(a)+v(t2) -v (a,b,c)

-_~v(a)+v(t2)-v (a,t2) by lemma 9(i)
=v(a v 'tz)

It is well known that in a distributive lattice every
isotone valuation is distributive. In the following theorem it is
shown that the same is true even for semilattices the fact of
which is not available in the literature.
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THEOREM 11:

In a distributive Join-semilattice with least element 0, every
isotone valuation is distributive.

Proof:

Let L be a distributive join-semilattice with least element O
and with an isotone valuationv. We shall prove that v is distrie
butive.

v(a vb ve)-v (a,b,c) = v(a)+v(bvec)-v (a,bve)=v (a,b,c)

v(a) +v(bvec)-v (a,bv c)-v—(a,tz)
by Lemma 9(i)
=v(a)+v(b vc)—v-(a,b\/c)-v(a)-v(t2)+v(a vt,)
=v(b\/c)-v(tl\/tB)—v(t2)+v-(a vb,ave)
by Lemma (1Q)
=v(b\/c)-v(tl)-v(t3)+v—(t1,t3)-v(t2)
+v(avb)sv(ave)-v(avbyvec)
2v(avbvec)-v (a,b,c)=v(avb)+v(bvc)+v(cv a)-v (a,b)=v (b,c)
-v (c,a)+v (a,b,c) by Lemma 9(ii)
Hence 2v(avbv c)=2v (a,b,c)=v(av b)+v(ov c)+v(cv a)=v (a,b)
~v (o,c)=v (c,a)
Therefore v is distributive.
- LEMMA 12:

Let L be a join-semilattice with least element O and with an iso-
tone valuation v such that v (a,b,c) exists for all a,b,c € L.

Then if t; €(a1b)v, t, €(blc)v, ts € (cla)v anc t, € (al(b Vc))V
then,

i) v (ty,t,) = v (a,b,c)

ii) v-(c,th) =v (c,a)
Proof:

(i) We have by definition V-(t2’t4)= Max  v(z)
zstz,t4



39

z £ E, t4 implies z £ a,b,c so that
V_(tzvth) Lv (aybvc)
Let v (a,b,c) = v(zl)
] ] ] |
Putting t2 =2V tgvtq =Zlvt4 we get t2 and th £ b,c
] ]
so that v(tz) < v(t2) and v(th) < V(th)

|
But v(t,) 2 v(t,) and v(t,) > v(t,) so that

v(t,) =v(t,) and v(t,) = v(t,)
v(ty viy)= v(zg Vi, v t,) 2 v(t, vt,)
V(tyaty) = v(ty) + v(t,) =v (t, vty )

< v(t2) + v(tu) - v(t, vt,)
= v (t,,t,)
z; £ t;,t; and hence v(zl) <v (té,td) < v (tZ’tq)
V—(tz’th) < v (a,b,c) = v(zl) < V-(tz'tu)
Hence v"(tz,tq) = v (a,b,c)

(ii) By definition v(c,t,) = Max v(z)
z_<_c,tZ+

If z £ ¢c,t;, 3 then z £ c,a so that

V-(Catg) < V-(C,a) = V(Zl) (say)
' '
Putting t, = z,Vt, v(tl+ ) > v(tu)
z9< ¢35 T, £ a,bvc implies z; vt, £ a,bve. So that

1 1
t, £ a,bvc which implies v(t,) < v(t,)sco that v(t,) = v(t,).

1
cvt, =cvz vit, =cvi,since 2 £ C.

V-(Cot;)

v(c) + V(té) - v (c v t;)

v(c) + v(th) - v(cv th)

[

V-(Cotu)
zy £ ¢ and tL . Therefecre v(zl)g v_(c,tL) = GKc,th). Sc that
V(Zl) = v (cya) = v (c,yt)



In [5] we have proved that an isotone valuation v on a
lattice L is distributive if and only if

"b € [a Ac,a ve] ==> d(a,b)+d(b,c)= d(a,c)"
However in the following theorem it is extended for semilattices.
THEOREM 13:

Let v be an isotone valuation on a Jjoin-semilattice L with O.
Then v is distributive if and only if

"o €[t,avc] ==> d(a,b)+d(b,c) = d(a,c)" whenever t € (alc)v.
Proof:

First suppose that v is distributive and b€ [t,av c] for some
t € (alc), so that we have t { b ( avc andavbve = av.c,

v (a,b,c) < v (a,c) = v(t)
t < a,c and b and hence v(t) £ v (a,b,¢)
Hence v (a,b,c) < v(t) < v (a,b,c) implies
v (a,b,c) = v(t) = v (a,c)
since | v .is distributive we have

v(avb)+v(bvec)+v(cva) =v (a,b) - v (b,c) - v (a,c)

2v (avbve) - 2 v (a,b,c)
2v(ave) - 2v (a,c) so that

v(avb) -v (a,b) + v(bve) =v (b,c)=v(avec) - v (a,c)
- That is d(a,b) +d(b,c) = d(a,c)
Conversely suppose thatt
"b € [t,a ve] ==> d(a,b)+d(b,c) =d(a,c)" for some t € (alc)V
Let t; € (alb)v, t, € (blc:)v,t3 € (a].c)V and t, € (al(b VC))V

Let x =%, v‘(:3 vt, andy = t,vz. where v(z) =v (avt,,bvc)

2
First we shall prove that v(y) = v(z)
y = tyvz => v(y) > v(z)

v(z) = v (av tz,bv c) ==>z<ayv t2, bve.
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t2 < a vt2 3 t2 £ byc ==> t2 £ b vc so that t2 £ av tZ,bv C.
y =2z Vt2 £ a Vt2, b ve, Hence

v(y) < v (a Vt,,b ve) = v(z) so that v(y) = v(z)

v(y) = v (a vt, ,bvec)

v(a vtz) + v(b ve) - v(av bve)

v(a) + V(t2) -v-(a,tz) +v(bve) - v(avbve)

v(a)+v (b,c) -v (a,b,c) + v(b ve) =v(a vb ve)

by Lemma 9(i)
Next we shall prove that v(x) = v(y)
v(x) = v(t2 v t3 v tq)
v(t2 v t3 Vth) pd v(t2 v tq)

t, € a,c; tq £ a,bvc implies t

3 VT, L a,bve

sc that v(t3 v ta) < v(tq)

But v(t3 v tq) > v(th)

v(ty vtz v t,) = v(t,) +v(t3 v ty,) —v—(tz,t3 v t,)
< v(t,) +v(t,) -V_(tz’th)
= v(t2 v t4>

Hence v(x) = v(t2 v th)

]

v(t,) +v(th)-v—(t2,t4)
= v (b,c) +v (a,bvec)=v (a,b,c) by Lemma 12(i)

= v (b,c)+v(a)+v(oVvc)-v(avove)-v (a,b,c)

= v(y).
t3 { x £ ave so that
d(a,x) + d(x,c) = d(&,c). Ther:zfore

2v(a vx)=v(a) = v(x) +v(c vx)-v (c,x) = v(a ve)=v (a8,c) o.e(1)
to <y £ bVvec so that

d(b,y) + d(y,c) = d(b,c). Hence
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2v(b vV y)=v(b)=v(y)+v(c VvV y)=v (c,y)= v(bVv c)=v (b,C) oceeees(2)

Yow we shell prove thit v(cvx)= v(cVvy)

v(c vx) v(thq)

[l

v(c)+v(t,) -v (cyt,,)
=v(c)+v (a,bve)=v (a,c) Doy Lemma 12(ii)
=v(c)+v(a)+v(b ve)=v(a vb ve)-v (a,c)
=v(e ve)+v(b ve)=v(avbvc)
=v (av c,dDvVvcC)
v(y) = v (av “oyb v C)
v (e,v) = v (¢, vtz) by Lemma 12(ii)
v(c vy) = v(c) + v(y) =v (c,y)
= v(c) + v (a Viy,dv c)=v (c,a v't;Z)
= v(c)+v(a vt2)+v(b ve)=v(a vb ve)=v(c)
-v(a vt2)+ v(iavec) cince t, < b,e
= v(oVve)+v(ave)=v(avbve)
=v (2 vc,bvc)
Simiieriy we Lot v{ovy)m vV (8vDDvC) eeseeeas (3)
v(cvx) = vicvy), v(x) = v(y) i.pliec v (c,x) =v (c,y)
wb.urnc-ing (2) Zreo (1)
ev(c v n)=v(a)=v(c)=2v(bv y)+v(b)+v(y)

= v(avc)=-v (z,c)=v{bv c)+v (b,c)

(.ovx) = v(nv t2)
= v(z.)+«'(L2)-—v—(a,t2)
= v(u)+v (v,c)=v (g,0,c) by Lemme 9(i)
v(bvy) = v (= vb,ovec) Dby (3) cubstituiing thise values we get

() 4w (0, 2) = (5, 0,0) J=r()=2v T (5 v b,b v e )av(D)

=r(ave)=v (,ci=v(bve)rs (0,2)
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2v(avbvc)=2vT(a,b,c)=v(av c)+v(bv c)+2v(av b)-v (b,c)
-v (a,c)=v(a)=-v(b)
=v(aVob)+v(bV c)+v(cv a)=v (a,b)-v (b,c)=v (c,a)
Hence v is caistributive

In [5] we have provea that if v is an isotone valuation
on a l=zttice L, then v iz strictly isotone if and only if

"d(a,b)+d(b,c) = d(a,c)==> b € [aanc,a vc]"
But by theorem 3 o: this pérer i v ie strictly isotone, the
Joir zemilattice is @ lattice. Thus we have the follcwing theorem
THLCREM 143
Let v be an isoione v:lusticn on & Join-semilattice L a.c d, the
ind.ced pseuco-metric. +f "c(a,b)+cd(b,c)=d(a,c)==>b € [t,avec]®
whenever t € (alc) ; ihen L ic a lattice,

v

Proof:
First we snall prove Ui t v is ctrictly isotcone. Let x,y € L

“.¢ X < yeo Since v i: isctone v(x)<v(y). If poscible let
v(zy= v(v); e et o(y,x)+a(x,y) = 2d(x,y)

=2[v(y)-v(x)]

=C

=d(v,Y)
maic implies x €[,y scr All t €(y1y)v. y € (yly)v=>x €Ly,y]
==> X = V. Thic io = contrazciction. Hence v(x) <v(y). %o

tnat v iz strictly isctoreg Siice v ic strictl isotdéne b
J
S

theorem 3, L a l=tlice,
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