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RELATIVISTIC FUZZY SETS. TOWARD A NEW

APPROACH TO SUBJECTIVITY IN HUMAN SYSTEMS

GUY JUMARIE*

1. INTRODUCTION

Many systems, and maintly those which explicitely deal with human factors,

are subjectivistic in their nature in the sense that their definitions and

their characteristics, say their observed features, are essentially varying

from an observer to another one. As a matter of fact, until now, the main

trend in mathematical modelling has been the systematic use of absolute e-

quations which does not involve, either implicitely or explicitely, the re-

lativity of the systems under consideration, and one exception (may be the

only one) is the fuzzy set theory which tries to provide a new approach to

precision and significance regarding the structure of complex systems. Un-

fortunately, as presently stated, the theory appears rather as a generali-

zation of available results by everywhere substituting the range [0, 1]
for the set TO, 1} via the concept of characteristic functions of sets; mo-

reover the advantages of this approach with regard to existing theories li-

ke catastrophe theory, stability theory, contingent differential equations,

etc... is not clear all, and in any case no comparison has been done at date

by the advocates of fuzzy sets.

*Department of Mathematics, Universit6 du Quebec à Montreal, P.O. Box 8888,
Montreal H3C 3P8, Canada.
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In fact, there is a basic fundamental need to explain how the above

substitution {0, 11 - C 0, 1] should be carried out depending upon the obser-

ver who considers the set; problem which, in our opinion, is the genuine

motivation of fuzziness, and whose a solution is herein proposed.

After a critical review of fuzzy set theory, we give a brief back-

ground on the special relativistic physics along with the new concept of re-

lativistic fuzzy sets which we derived from the Einsteinian framework, and

then we carefully identify a fuzzy set as subjectivistic fuzzy set, there-

fore we obtain various ways to associate a set with a given membership

function. It is shown that the basic concept should be that of fuzziness

function the practical meaning of which is exhibited.

The essential feature of this approach lies in the following. A rela-

tivistic fuzzy set has a fuzziness which depends explicitely upon the obser-

ver who considers it, composition laws for observers are given, the concepts

of dependent and independent observers are exhibited, therefore a new possi-

ble way to modelling systems involving subjective factors as semantics of

languages in linguistics for instance.

List o,f symbols and notations

The numbers in parentheses refer to the equation where the symbol first

appears.

A class or set A,

(A/R’) relativistic fuzzy set A given the observer R’,

characteristic function of the set A, (4.2)

fA(x) membership function of the set A, (5.5)

A complement of A

À(x/R’) relativistic characteristic function (RCF) of the class
A 

’

A given the observer R’, (4.2)

uA(x/R’) relativistic fuzziness function (RFF) of the class A gi-

ven the observer R’, (4.4)
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relativistic term 1 - -1/2, (4.4)

intersection of the sets (A/R’) and (B/R"), (4.9)

relativistic fuzziness function of B given R", condi-

tional to the pair (A/R’), (4.11)

relativistic fuzziness function of the intersection of

the set (AIR.’) and (B/R"), (4.11)

union of the set (A/R’) and (B/R"), (4.16)

2. A CRITICAL REVIEW OF FUZZY SETS

The concept of fuzzy sets has been introduced by Zadeh [141 a few years ago

to explicitely take into account the fact that in many practical instances,

the boundary of the classes or sets under consideration are not clearly de-

fined, therefore a kind of unaccurateness, say a fuzziness, which is essen-

tially different from probabilistic uncertainty and thus requires a speci-

fic representation. Broadly speaking the characteristic function 0 A
E + {0, 1}, xi- (D A (x), of a class A E is replaced by a more general function

say a membership function f A -. E - [0, 1] , x fA (x); the set is straight-

forwardly identified with its membership function to define a fuzzy set (FS)

and the algebra for FS’s is constructed vis composition rules on the member-

ship functions.

The theory is under extensive investigations by a certain school of

scientists (see for instance the textbooks by Kaufman and by Negoita

and Ralescu, J12J to who "such methods could open many new frontiers in

psychology, sociology, political science, philosophy, physiology, economics,

linguistics, operation research, management science and other fields, and

provide a basis for the design of systems for superior in artificial intel-

ligence to those we can conceive today" (foreword by Zadeh in 10 ).

We are not convinced at all by such a statement and we are rather in-

clined to think that Fuzzy Set Theory, in its present form, cannot be
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fruitfully applied just because of its flaw in experimental foundations;

probability can be defined either theoretically as a mesure or empirically

as a frequency, fuzziness is defined theoretically only by using functionals

which does not refer explicitely to the sets under consideration. In fact,

all the problem stems from the very nature of the FS concept : does it ap-

ply at the stage of describing an object which itself is not accurately well

defined, or else should it be rather considered as the unaccurate result of

the observation of an object which is on the contrary well defined ? More

specifically, the present framework of the FS theory appeals the following

comments.

(2) As defined, the membership function does not explicitely refer

to the set from which it is derived in such a manner that the theory appears

rather as a subjective approach in the sense that the class which is associa-

ted with a given membership function is defined subjectively only to a given

observer.

The theory seems to be an absolute theory which by no way refers

to the observer who considers the class under observation. This feature is

intrinsically very questionable because when, for instance, I consider the

"class of beautiful women", a given woman who appears beautiful to me, may

be not so to my brother; in other words, the membership function of this

class should explicitely depend upon the observer. This absoluteness, of

course, is not consistent with the apparent subjectivity of the theory.

(ici) The FS theory aims to be a theory of fuzziness which should ap-

ply when the probabilistic framework does not hold. But while probability

distributions are defined independently of characteristic functions,member-

ship function are merely a somewhat arbitrary extension which explicitely

refers to these characteristic functions. We think we should have a new

concept for fuzziness, concept which would be the counterpart of the pro-

bability concept and which would allow for simultaneously expending fuzzi-

ness and probability in the same framework.
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Starting from FS as the basic concept, the advocates of the theo-

ry tend to convert every mathematical question to a problem related to clas-

ses therefore the possibility of introducing the corresponding fuzzy version

and in this way appeared such tentative theories as decision-making in fuzzy

environment (Bellman and Zadeh, [1] ), approximate reasoning (Zadeh [15] ),

possibility theory (Zadeh, [16])etc.... This point of view also is subject

to contention. First, it is not sure at all that classes or sets should be

the basic mathematical concept; second, in numerous cases, the model under

observation is well defined and it is its observation process by an external

observer which involves fuzziness, so that we should have a theory for fuzzy

observation which would apply to general systems.

(v~ While the catastrophe theory initiated by Thom [13.] is basically

a theory of discontinuities which aims to provides an approach to modelling

general systems, FS’s on the contrary smooth the discontinuities which defi-

ne an object therefore an apparent contradiction between the two approaches.

This seems to strenghten the idea that FS’s should be rather considered as

the result of observation processes which involve the observer as parameter.

The idea of using FS in linguistics stems from expressions like

young, very young, may be young, more or Zess young, quite young, etc...

in which the predicate Very, may be, more or Zess and quite can be thought of

as different fuzziness degrees for the label young. Here again, the fuzzi-

ness of the predicate very, for instance, will be varying from a speaker to

another one, therefore the necessity to have a membership function which ex-

plicitely depends upon the observer. It seems that this need has been per-

ceived by Zadeh (1975) which tries to fulfill it by introducing the concept

of "fuzzy sets with fuzzy membership functions" but this model itself fails

in the way that the fuzziness of the membership functions should again ex-

plicitely depend upon the observer, and it is not the case.

Relatively to another topic, these predicates above are considered as
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operators which modify the meaning of their operands in a context way which

is given by the algebra of fuzzy sets. But this algebra itself in an arbi-

trary generalization of the usual set algebra, it is based on an intuition

which is not truly supported by experience, so that the quantitative linguii

tics which we can derive from it is not quite sure. In this way, it seems

that multiplicative values for the predicates would be very interesting sins

ce it would allow for a direct use of arithmetic, but this possibility is

subject to introducing a new concept of fuzziness function with composition

laws different from the present ones for membership functions.

The following framework is an attempt to avoid some of these difficul-

ties. 
’

3. THE LORENTZ OBSERVATION PROCESS

Consider two co-ordinate reference frames C : (O;x,y,z) and C’ : (0’;x’,

y’,z’); and assume that C moves with respect to C’ in such a manner that

the following conditions are satisfied : 0 moves on the axis O’x’ with the

constant velocity u while C and C’ remain parallel, namely Ox//0’x’, Oy/

/0’y’, 0zl10’z’. Let M denotes a point mass which moves in the frame C witl

the constant velocity v//Ox given an observer R who is at rest in 0. In th(

framework of the special relativity, the point mass is depicted as a point

event (x,y,z,t), where t denotes time, which lies on a Riemannian manifold

endowed with the geodesic

in which c represents the light velocity. da is the differential of the

geodesic observed by R, and for an observer R’ who is at rest in 0’, one

will have

It is easy to show that one has necessarily
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condition which is satisfied when and only when the following equations a-

re themselves satisfied, which are

with

Consequently, the velocity v’ of the particle as observed by R’ is

Equations (3.4) - (3.7) are refered to as the Lorentz-equations, and they

express the variables (x’,y’,z’,t’) observed by R’ in terms of those obser-

ved by R, say (x,y,z,t).

Our basic idea is to use this relativistic model to describe any ge-

neral system S which involves relativistic features due to human factors,

and our interpretation of the Lorentz equations is pictured in Fig. 1.

Fig. 1. Lorentz observation process

R observes S to define (S/R), ~..e. S given R : this corresponds to the

quartet (x,y,z,t) of the particle above. At a second level, R’ uses the

observation (S/R) to define (S/R/R.’) i.e. S given R’ via R : this corres-

ponds to the quartet (x’, y’, 9 z’, t’) of the point mass M.

This observation process will be refered to as a Lorentz observation

process. For more details see Jumarie[ 2 ], F3j , F6J) .

4. RELATIVISTIC FUZZY SETS

In this section, we shall carefully derived the new concept of relativis-

tic fuzzy sets that we further outlined elsewhere [4] .
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4.1 Derivation of relativistic fuzzy sets

Consider the following observation process.

Let A denote a mathematical class (we mean a properly well defined

class) in a space of objects E whose the generic element is denoted by x.

An observer R’ examines an element x E E and tries to determine whether

x E A or x e A. To this end, he will measure the value of the characteris-

tic function of the set A in x, and he will

so obtain an observed value 0A(x/R’) involving explicitely the subjective
factors due to R’. The process is thus the Lorentz observation process

(A/x/R’), (not (x/A/R’) since R’ observes the characteristics of A) and the

Lorentz equations will express ~A(x/R’) in terms of 0A(x) subject to the
condition that we preliminarily identify the other variables of the system

A.

In fact, let A and -(x) denote respectively the mathematical comple-
A

ment of A and its characteristic function; a careful physical analysis sug-

gests the following geodesic for A, that is

so that equations (3.4) and (3.7) then are

Moreover, by applying equation (4.2) to A, one can show (Jumarie [4] ) that

the constant c is necessarily the unit, therefore we have the following de-

finition.

Definition Z. Relativistic Fuzzy Sets RFS. Let AE = fxl denote a

given set in E, and let 6A (x) and 0-(x) denote the characteristic function’ 

" A

of A and of its complement A respectively. An observer R’, who observes A,

will measure 6A (x) and 4l_(x) in the form of the relativistic characteristic
" 

A

functions, RCF in the following, 1)’(x/R’) and Ø(x/R’) defined asA 
" 

A " 

A
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where is a function, the fuzziness

function, which is indexed by R’ and which characterizes the -fuzziness of

the observation of A by R’, and where P(uA) is given by equation (2.8). l

Definition 2. we shall refer to the function uA ( . /R’ ) : E + [0, MJ C

[0, 1] , x - u A (x/R’) as the relativistic fuzziness function RFF, of the
set A given the observer R’. 0

In the following, R’ and R’’ will denote two differents observers.

4.2 Operations on relativistic fuzzy sets

Definition 3. The RFS (A/R’) is empty if and only if

The RFS (A/R’) is contained in the RFS (B/F,") written as (A/R’ ) (B/R") if

and only if

for every x such that

The RFS’s (A/R’) and (B/R") are written (A/R’ ) - (B/R") if and

only if (A/R’) (B/R") and (B/R") (A/R’). N

As it is evident, this definition is far from the definition for usual

fuzzy sets (in Zadeh sense) in the way that it explicitely refers to the

absolute set which it is stemmed from. Indeed, recall that, in this theory,

the equality of two fuzzy sets A and B is given by the equality of their

membership functions fA(x) and fB(x) while A is contained in B when one has

By virtue of condition (4.6), 16’(x/R’) will define a relativistic fuz-A

zy singleton if the equation
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is satisfied for only one x e X.

Similary, ~A(x/R’) will define a relativistic fuzzy countable set,
if the above equation is satisfied on a countable set in X. /

4. Let denote the ,fuzz2ness function of

B given R’B conditional to the pair (A/R’), which is involved by the obser-

vation process in which R" determines the B-membership of an element x, gi-

ven that R’, has already determined the A-membership of this element. Then

the intersection, denoted (AB/R.’ ,R‘’) , of the two RFS’s (A/R’) and (B/R"),

is defined by the relativistic characteristic functions

where u (x/R’ ,/F"), which is the fuzziness function of AB ~iven the pair
AB

(R,’ , R") , is defined as

Remark that this intersection is not commutative; generally one has

and the equality holds when and only when the following equations are sa-

tisfied ;

in other words, when the pair (B,R") does not interact with the observation

process (A/x/R’) and similary when (A,R’) does not interact with (B/x/R").

Roughly, it appears a new concept of independance which involves both the

set and the observer.

De,fini tion 5. Two RFS’s (A/F’) and (B/R’") are said to be 2ndependent

reZativistic ,fuzzy sets whenever equations (4.12) and (4.13) are satis-

fied.
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De.finition 6. Two observers R’ and R’° are said to be independent ob-

servers whenever the following equations are satisfied for every A C F:

These concepts are quite meaningful by considering the "class of kind

women" and the "class of beautiful women": it may happens that a prelimina-

ry appreciation by my brother about the kindness of a given woman can effect

my posterior judgment concerning the beautifulness of this same woman.

De.finition 7. The union (A + B/R’,R") of the two RFS’s (A/R’ ) and

(B/R’’) is defined by the RCF’s

where u (x/R’,R") again is defined by (3.11).
AB

This definition is a direct consequence of equations (4.9) and 

via the equality A+B = AB.

4.3 Composition laws for observers ,

The symmetry of the formulation with respect to the set and the observer,

more explicitely, the discrimination between (A/R’) and (A/R") provides a

composition law for composite observers, which is specific to the present

approach.

Indeed, consider the observation process in which an observer R" de-

termines the A-membership of an element x, given that another observer R’

has alrealy determined the A-membership of this element. Then, according

to definition 4, the resulting fuzziness function uA(x/R’,R")so involved is
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4.4 A few specific features for RFS

(2~ Relativistic fuzziness function RFF and relativistic characteristic

functions are illustrated on Fig. 2.

Fig. 2. Fuzziness function, relativistic characteristic function and
membership function.

Clearly, one has

where cA(x/R’) denotes a positive error term. Furthermore, uA(x/R’) repre-
sents the grade of the fuzziness of x given R’; in this way it is likely

that the closer x will be to the boundary of A, the larger uA(x/R’) will be,
in such a manner that, generally, the RFF will have the convexity property,

say

with

and its maximum value will be reached on the frontier of A.
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By setting c = 1 in equation (2.8), one has

(x/R’) :5 1 (4.20)

and equation (4.18), for instance, shows that the upper bound for uA(x/R’)
can be approached when the observer is a composite one (R’ &#x3E; R" &#x3E; ...R~n)).
In the same way, consider an element Xo (if it exists) which belongs to the

intersection of an infinite set n c N} of classes An with their respec-

tive RFF UA (x/Rn); then, according to equation (4.11), the resulting value
n

for the RFF 
UA 1 A2A3** (xo/R1R?R3...) in x approaches the unit.A1A2A3.. 0 JL - 0

Remark that, due to its physical meaning itself, the RFF cannot

be consider neither as a probability density nor as a probability distribu-

tion. In fact, it would be rather close to the entropy concept as pointed

out in the following comment.

De Luca and Termini [111 "tried to introduce" a measure d(f ) of

the fuzziness of a fuzzy finite set (in Zadeh sense) A = {x., i = [1, NI }

in the form

where H(f ) is formally defined asA 
’ 

~T

with k denoting a positive constant. According to these authors such a

definition could be motivated by the following properties which are desira-

ble for this measurement concept. (Here we drop the subscript A to simpli-

fy)

p1: d(f) is zero when and only when f(x) takes on the value 0 or 1.

p2: d(f) assumes its maximum value when and only when f takes on the value

1/2.

P3: d(f) must be greater or equal to d(f*) where f* is any sharpened ver-

sion of f, that is any fuzzy set such that f*(x) -&#x3E; f(x) if f(x) 2~ 1/2
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As the authors themselves mentionned it, this definition holds only

for finite sets, and its generalization to continuous sets is not obvious

at all. Our concern is that assumptions P 1 and P2 are very questionable

because they contradict the intuitive fact that in numerous cases the fuzzi-

ness of the observer has its higher value on the boundary of the class,

boundary which is not necessarily always defined by the condition fA(x)=1/2.
Here the membership function is the basic concept from where fuzziness is

derived formally, while, in the relativistic approach, it is the fuzziness

which is fundamental and does not necessarily appeal to a concept of charac-

teristic function.

(v~ The reader may be surprized by the fact that the RFF is the same

for the intersection (AB/R’,R") and for the union (A+B/R’ ,R") of two given

RFS’s (A/R’) and (B/B."). Fig. 3 illustrates what happens, in the case whe-

re (A/R’) and (B/R") are independent relativistic fuzzy sets with indepen-

dent observers (see definitions 5 and 6)for which one has

Fig. 3 . Pictural representation for
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The resulting RFF uAB (x/R’,R") is plotted in dashed line; it illustrates

the respective contributions of the differents fuzziness components on A

and B respectively to the resulting fuzziness with regard to AB and A+B.

Another way to grasp that is to remember the identity

which exhibits the connection between A, B, A+B and AB.

From a philosophical point of view, the dualistic feature in equations

(4.4) and (4.5) represents the facts that, when an observer R’ determines

whether an element x belongs to A; more or less consciously, he simulta-

neously determines whether x does not belong to A.

5. RELATIVISTIC FUZZY SETS AND FUZZY SETS

The purpose of this section is two-fold: first, we shall exhibit the dif-

ferences between relativistic fuzzy sets and fuzzy sets; and second, we

shall show that, in a certain sense, fuzzy sets can be derived from relati-

vistic fuzzy sets, therefore a possible way to explicitely introduce relati-

vistic features in fuzzy sets.

5.1 Relativistic fuzziness function and membership function

In his pioneering work, Zadeh (1965) pointed out that the "range of the

membership function fA(x) of a set A can be taken to be suitable partially

ordered set", but for convenience he restricted the range to the unit in-

terval. As a matter a fact, the RCF, as defined by equation (3.4) may be

greater than the unit therefore an apparent discrepancy between the two

approaches, which requires some explanations.

The important fact is that fA(x) is defined as an arbitrary generali-

zation of ~A(x), while 0’(x/R’) results from the relativistic observation

of the set A, following the Lorentz observation process. In Zadeh’s aD-

proach the fuzziness of the set A is measured by fA(x) itself while, in the

relativistic approach, it is uA(x/R’) instead of 0’(x/R’) which measuresA 
’ 

A
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this fuzziness. Remark that both fA and uA are to be determined by experi-

ments, but uA is subject to composition laws for the observers, while fA is

not.

The graphical representation for fA(x) and 16 A(x/R’), as given in Fig.

2, suggests to associate with a given ~A(x/R’) a membership function fA

(x/R’) defined as follows:

Conversely, given a Zadeh membership function fA(x), we can obtain

a corresponding RFF aA(x) by using the converses of the equations (5.1) and

(5.2) to obtain

- (5.4)
The correspondence between f (x/R’) and ml(x/R’) is pictured on Fig.4A 

’ 

A 
’

Fig. 4. Membership functions derived from relativistic
characteristic function.
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...,

Such as defined., fA(x/R’) is generally discontinuous on the boundary of A.

There is continuity when and only when the respective right-hand side terms

of equations (5.1) and (5.2) have the same value on the boundary of A, that

is 
’

or else

5.2 Identification of a set defined by a membership function

Strictly speaking, identification in fuzzy set framework is not meaningful

since membership function is an abstract generalization which does not ex-

plicitely refer to the set which it is associated with; nevertheless the

comparison in subsection 4.1 provides some approaches which can be helpful

in some applications.

The question is how to associate a set A with a given membership func-

tion fA(x). Of course, there is not one answer only to this question, va-

rious solutions are proposed below which, if they are close each other, can

enforce the possibility for only one admissible class.

(2~ In the relativistic framework, the boundary of A is defined by

the discontinuity set of 0’(x/R’). Analogously, since fA(x) is generallyA ? A -

continuous, assuming further that it is differentiable, we can define the

boundary of an hypothetical corresponding class A as being the set Bi.

where the dot in fA(x) denotes the derivative of ’ fA(x).
Another way to define A consists of using the equivalent RFF aA

(x) defined in sub-section 5.1 as follows. Indeed, according to a remark

in subsection 3.4, generally, uA(x/R’) will achieve its optimum value on

the boundary of A; and in such a case, for every xo on this frontier, we

shall have
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where x E A and x E A.
o 0

Applying equation (5.6) to aA (x) yields

that is

With this criterion, the boundary B2 is the set

In the particular case where fA(x) has a continuous set of dis-

continuity points, then this latter should be identified as the boundary of

A.

Fig. 5 gives an illustration for the results i) and ii).

Fig. 5. Derivation of a set from a fuzzy set
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6. FUZZINESS FUNCTION, MEMBERSHIP AND INCERTITUDE

In this section, we shall discuss the physical meaning of the fuzziness

function uA(x/R’), seeking practical ways to determine it.

6.1 General Comments

The fuzziness function appears related to the incertitude, the doubt that

the observer R’ has concerning the membership of the element x. Mainly it

is positive, it equates zero when R’ has no doubt on the membership

of x, and it likely assumes its maximum value in the neighbourhood of the

boundary of A. This type of doubt is basically different, in nature, from

random uncertainty and to avoid confusing, we shall refer to it as "incerti-

tude".

In FS theory, the basic concept is that of membership functions, whi-

le in the RFF set theory, it is the fuzziness function which is the starting

concept.

Of course, either of these situations will hold depending upon the ex-

perimental framework as illustrated, for instance, by a photoelectric cell

and a learning process with teacher. Indeed, the cell will takes the value

1 when it is subject to light (white color) and will remain at rest in 0

when immersed in darkness, (black color); but it may happen that the state

of the cell continuously vary in the range [0, 1], for instance when the

cell is sensitive to grey colors; and in such a case the model straight -

forwardly involves the membership function of the cell.

The case of a student who is learning under the direction of a super-

visor is quite the opposite, in the way that he can himself give an estima-

te of his incertitude. To the question of the teacher who asks "are you

certain of the membership of A", the student can answer in gradual forms as

"very certain, certain, almost sure, vague, in to minds, etc..." and prior

numerical values for these predicates will yield the function uA(x/R’).
6.2 Analog computer
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Another practical example which directly involves the fuzziness function

is given by the analog computer, Fig. 6.

Fig. 6. Analog computer and fuzziness function

A typical response of an analog computer to a characteristic function

in time, is given in Fig. 6. Because of the time-lags of the physical ele-

ments which compose the computer, the output is smoothed with an ascending

slope and a descending slope, and these slopes can be interpresented in

terms of fuzziness function as shown by the relativistic characteristic

function $’(t/computer) reconstructed in Fig. 6.
A "

6.3 Fuzziness function via membership function

The difficulty then arises when one has to define the fuzziness function

of a device which is described by its membership function. In the prece-

ding section we gave a first approach which was suggested by the pictural

representation of fA(x) and 16’(x/R’) but it may be not satisfactory in someA A

instances as the functions so determined can involve discontinuities. So

we have to define other ways to link fA(x) and uA(x/R’), and a possible ap-
proach is the following.

Starting from fA(x/R’) which is the membership function as observed

by the observer R’, the RFF uA can be viewed as a functional of the deriva-

tive dfA (x/R’) / dx, say uA(fA), which would satisfy the follo-
wing desirable conditions:
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An example, for instance, is

where the constant a is such that

6.4 Incertitude and subjectivity

A few time ago, the concept of swiftness has been proposed for educational

purpose, to get a better understanding of the famous composition law of ve-

locities in the special relativity. We would have two distinct concepts

which are the "velocity"’ and the "swiftness", and they would be related by

the equation

velocity = th (swiftness) (6.3)

where th(.) denotes the hyperbolic tangent function. Swiftness is additive,

therefore the composition law for velocity via the well known equation

th(a+b) = (tha+thb) / (I+th(a+b)). (6.4)

Likewise, we shall infer that we have the concepts of fuzziness and

of incertitude and that they are related bv the equation

fuzziness = th (incertitude) (6.5)

and, while the incertitude is additive, the fuzziness is relativistic. But

the fuzziness itself, in our mind, is nothing else but the subjectivity, in

other words we would have

subjectivity = th (incertitude) (6.6)

6.5 Membership, subjectivity, incertitude

The reader may wonder why do we need to introduce the new concept of subjec-

tivity since it is defined in term of incertitude so that, at first glance,
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it brings nothing else more.

Here still, the analogy with relativistic physic is direct. As the

position of a particle can be determined by its velocity only, so the mem-

bership function of an element with respect to a class will be determined

by the fuzziness function only. We have not direct composition laws for

the membership function itself; and all we can do is to derive them from

the composition law of the fuzziness function.

For instance, assume that equation (6.1) holds. For an interval, one

has

where the sign + is on the lower side of the range, while - holds on its up-

per side, therefore fA(x/R~’) itself. This supposes that there is a cut-off

point or a cut-off region where the + sign switches to - , and of course,

this point or region is defined by the condition.

When no such a point exists, all we can do is to select either + or - , in

other word, the set in question can be thought of as a fuzziness spot insi-

de a larger set.

7 ON THE SOUNDNESS OF THE MODEL

This section is devoted to a few questions related to the validity of the

model.

7.1 On the use of the relativistic framework

The use of the mathematical formulation of the special relativity to descri-

be subjectivistic feature in medelling systems is not a mere analogy, but

rather is a consequence of a careful analysis that we performed in our ap-

proach to general systems ~2~ , ~ 3~ , [6] . Broadly speaking, a system is

defined by its inside and its outside, and the structural variable of the
/

outside has properties very similar to those of time in relativistic physics
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therefore the use of this latter.

Nevertheless, from on epistemological standpoint why not we use this

material to investigate human sciences where the observer, as a reference,

has a basic importance like in relativistic physics ? One can already does

it, and then check the results so obtained. In this way, we invite the rea-

der to consider the present paper as the first step above.

7.2 Toward prior and posterior subjectivity

Despite its rigorous mathematical foundations by Kolmogorov, the concept of

probability is basically subjectivistic, in the sense that its prior asymp-

totic value is what we believe it should be rather them what it is actual-

ly. Of course, one can consider, and it is customary to do it, that this

asymptotic probability is an objective probability, but this is quite use-

less since we never repeat a same experiment on infinite number of times,

from a practical viewpoint : I

One may expect to have similar difficulties in the practical estima-

tion of the relativistic fuzziness function uA(x/R’). It is likely that

we shall have new concepts such as "prior subjectivity" and f!posterior sub-

jectivity" which further remain to define fully.

7.3 On an apparent contradiction of the approach

A somewhat inconsistency which seems to stem from the definition of RFS is

the following. The RCF such as defined has discontinuities on the boundary

of the set, that is to say where one may expect that the incertitude achie-

ves its maximum value. But if there is discontinuity, there is discrimina-

tion and this is exactly the classical concept of class !! I

In fact, this inconsistency is only apparent. We have indentified the

characteristic functions of a set and of its complement as the state varia-

bles of this set, only to be in a position to apply the Lorentz transforma-

tion. The use of this transformation has exhibited the importance of the

relativistic fuzziness function of a set, and it is this RFF which is basic
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in our approach. As a matter of fact, a RFS is defined by its RFF only,

and it is exactly this way that we have followed to define our subjectivis-

tic calculus : I 

It is therefore clear that the boundary of a RFS is not exactly well

defined, and all we can say is that it lies on the domain of the RFF, that

is to say on the range where the fuzziness is different from zero. There

remains the task of estimating the set itself given its RFF, and it is

this problem which has been addressed in the sub-section 5.2.

We shall conclude this remark by emphasizing that the basic concept

of our approach is the RFF rather than the RCF. The relativistic characte-

ristic function has been utilized to construct the relativistic fuzziness

function, and once the latter has been obtained, we deleted the former.

7.4 Research program

A problem which contributes as an essential part in the flaw of the present

fuzzy set theory is that of defined the aggregation of membership functions

by human beings. This cannot be done without supplementary hypotheses and

it is exactly the advantage of our approach which statues theses assumptions

in a natural way via the special relativity, whereby all our results stem

from.

The question now is to verify that this hypothesis coincides with

real human aggregation behaviour; and this can be made only if we develop a

method to determine experimentally the relativistic fuzziness function.

As a matter of fact, if we work with equation (6.5), defined the fuz-

ziness is reduced to defining the incertitude, so that the problem would be

considerably simplified.

For instance, in a frequency framework similar to the frequency ap-

proach to probability, if we take the incertitude in the form -q(x/R’)

Log q(x/R’) where q(x/R’) denotes the frequency of membership, then one has

u(x/R’) = - th q(x/R’) Log q(x/R’) ;
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therefore an approach to the empirical determination of relativistic fuzzi-

ness function would be as follows:

(2~ Definition of basic interesting fuzzy terms of fuzzy sets;

Selection of appropriate samples of elements (or keywords) to

define with regard to the fuzzy classes above;

(iii) Empirical definition of the frequency of memberships for each

sample by a representative class of human beings.

This approach leads to a first subjectivistic characterization of a

human being given a fuzzy matter; and by making a systematic clustering,

we can characterize everybody in every situation by a prior reZat2v2st2e

fuzziness function. Of course, such a procedure assume implicitely that

the behaviour, or yet the assessment of somebody is repeatedly reproductive

in the presence of the same causes. This appears to be true in some cases,

for instance it is customary to talk about the "type of female beauty" for

a given man. But it may also be wrong in some scarce cases, and sometimes

the definition of woman beautifulness may change for a given observer. In

other words, we should have too the concept of posterior reZativistic fuzzi-

ness function, and these would remain to deepen the relation between prior

and posterior 

8 APPLICATIONS

This new model for fuzzy sets has been derived as a by-product of a new

approach to general systems and to information theory so that its first

direct consequences are rather related to these topics instead of to human

sciences, properly speaking, as psychology for instance. Furthermore, it

appears that its application to psychology cannot be made independently of

the general system model above which basically involves the coupling effects

between the observer and the observable. It follows that our first results

deal with that part of science which is viewed as objective, but it never-
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theless gives an idea of which kind of applications may be expected.

8.1 Application to Renyi entropy

In order to define the informational uncertainty on a random experiment a

which can provide the issues Al, A2, ... , An with the probabilities pl,

P21’ ... , p ; Renyi proposed to use the entropy Hr(A) defined as

where r denotes a constant different from the unit. This constant appears

as the result of an integration so that the theory cannot ascribe it any

physical significance.

By using our relativistic model, we have shown (7J that this coeffi-

cient is nothing else but the efficiency coefficient of the observation of

the process a by the observer R which considers a: and in effect, it depends

explicitely upon both a and R, say r(a/R). When r  1, there is loss of

information and R receives the amount Hr(a) of information only; while when

r = 1, there is no less, and R receives exactly Hr(a). The case r &#x3E; 1

corresponds to a subjective process in which R gets more information from

a than this latter contains.

Until now, this entropy of Renyi was remainded a purely mathematical

curiosity; so one can expect that this practical significance can open new

ways for its future applications in communications.

8.2 Application to societal systems

Societal systems basically involve subjectivistic factors. Consider four

individuals (A, B, C, D) which are first isolated each other, and then can

spontaneously combine by themselves to get various hierachical structures.

The problem is to determine which structural combination will be reached.

The model that we have proposed [6J to solve this problem involves ex-

plicitely relativistic fuzzy coefficients such that K(A/B) , K(D/C), ...

which have practical meanings similar to r in the Renyi entropy. Given

different prior values for the coefficients K(./.), we obtain final structu-
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res which are quite meaningful from a practical standpoint. For instance,

we have statements like "if A and B have the same organizing potential le-

vel and if they are isolated, they will remain so".

8.3 Application to subjectivity in information

The following problem is well known. People who live in a city A speak the

true while people who live in another city B tell lie. A man knows that he

is presently in A or in B, but he does not know exactly in which one. He

meets somebody, and the problem is to ask this latter only one question to

determine the city.

An example of such a question is "Do you live in the city where we

are presently" ?

The answer to this question contains a certain amount of information

I(Q), that one which is sufficient to solve the problem, but it is well

known that, given the question and its answer, a questionner will be able

to determine the city while another one will be not. Thus the amount of

information contained in 0 depends explicitely upon the observer R, say

I(Q/R) and all the problem is to define the analytical expression for this

latter.

We have shown L3] that the information which is effectively observed

by R is in the form

where K(Q/R) denotes a coefficient which involves explicitely the fuzziness

coefficient u(Q/R). Moreover, we have given the explicite expression for

K(Q/R) in terms of various probabilities and we have shown quantitatively

how the subjectivity effects the information. The coincidence with the

shannon theory is pointed out.

8.4 Appraisals in probability

As a result of the application of our relativistic model to the Renyi entro-

py, the probability pr which is involved by this latter can be viewed as an
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observed probability. More specificly, if we repeatedly make the experi-

ment A defined by the prior probability set {Pl,P2,...,Pn}’ and if we obser-

ve the i-th issue A.; then at the m-th trial, we shall observe the probabi-
1

lity pr(m) . where r(m) depends explicitely upon the order m of the trial in
question.

In a non subjectivistic framework, the coefficient r(m) is equivalent

to a random coefficient whose the asymptotic value is the unit. In the spe-

cial case of rolling a fair die , plotting Pi ’ yields a diagram similar to- i

that of the Fig. 7; and it looks like we know.

Fig. 7. Prior and observed probability

This being so, the comments which follow are on the edge of the ob-

jective science.

Assume that the source S of the random phenomenon reacts to the obser-

ver R, then the coefficient r is a relativistic coefficient r(S/R) and the

probability which is issued by S is . Such a model would be invol-P y Y 
P1

ved , for instance, by psyphenomena, or yet, by the various paradoxes which

occur in quantum mechanics like the so-called famous psi-collapse. In the

physics of particles, for instance, S would be the particle itself and R

would be the measurement device, so that r(S/R) would involve the interac-

tion between the particle and the measurement device. In our framework,

this interaction appears in a natural way, while presently, it is introdu-

ced in the form of additional assumptions in quantum mechanics ’ f
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9. AN INFORMATION THEORETIC APPROACH TO THE MODEL

In this section we shall derive our relativistic fuzzy set concept

in an information theoretic framework, by using specific features for

natural languages only.

We think we can assert, at no risk of making a grave mistake, that

information is conveyed between humain beings mainly via natural languages

(NL in the following). They are not the only ones; pictures and motion

too convey information in human systems; but they are the main ones. In

which way, how to describe NL is order that they provide a suitable approach

to the dynamics of human systems?

9.1 Natural languages

Every NL can be considered as defined by a set it = I $]- of symbols

generically denoted by 3, call them words to fix the thought, and a set

’ = {b} of meanings whose the generic element is b. The structure of

¿, or else the internal structure o f the NL is organized by a set of rules,

the grammar rules, which are referred to as the syrltax of the NL. In the

same is ruled by the so-called scmantices which somewhat define all

the admissible combinations of its elements. Each word is associated

with one or several meanings in ~’, and it is customary in linguistics to

refer to this correspondence as a lexem : shortly a lexem is a word consi-

dered in a given sense.

Formally, a NL, is an application L: Q -7 n’ P which maps fl onto the

set of the subset of 
P

Let us consider a second NL, Z’ . If there exist two
P

one-to--one applications h : 9i Z and h’ : it’ ~ E* such that the commutative
~ 

P P

diagram in Fig. 8.
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Fig 8. Equivalent languages

holds, we shall say that L and Z are equivalent. Remark that thins

diagram is exactly the basic diagram which defines the equivalence of

applications in differential geometry (catastrophe theory) : 1

9.2 Natural languages and communication

A modelling of communication in human systems can be related to

equivalent languages as above defined, in the following way. The speaker

S says something in a language (L , ~, S~’ 1 to a listener R w-rio himself tias

his own language (Z,~,~’ ) . We shall say that there is communication

between S and R provided that R can define two one-to-one applications

h and h’ such that the diagram of Fig. 8 holds.1

It is clear that with such a definition, there may be communication

without mutual understandability, but in the present framework, commu-

nication with understandability appears as being a subclass of commu-

nication processes in the general sense of this term, so that we can

restrict ourselves to this broad acceptation in a first step.

9.3 Subjectivity in communication

Subjectivity, what is it? We shall refer to subjectivity as to

this ability that an observer, because of a certain prior internal model

whicn is built in his own, has to interpret and recover the content of

a message which is receiving, in such a manner that tne understood

meaning is not the actual meaning of the message as received, but is
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rather what the observer think it should be. In this way, a human receiver

can rectify mistakes in an erroneous transmission, but it may also give

a wrong significance to a message which is nevertheless correctly trans-

mitted. 
’

One of the striking feature of subjectivity is the following. When

a message is sent by means of a certain natural language NL, to the

observer who is receiving this message, this latter is defined locally in

syntax and semantics, and it is precisely the role of subjectivity to

define which part of the syntax and of the semantics in the NL is involved

by the message in question. The message contains a certain amount of

information which can be resolved into the information related to its

syntax and the information related to its semantics. In the same way,

there is a certain uncertainty on the meaning of the message: even when

the message is suitably technically transmitted, the human receiver may

have a certain doubt on its content. Subjectivity works in such a way

that when information increases then uncertainty decreases and converseZy.

This is a modelling of this feature which is given is the following

subsection.

9.4 The framework

Despite it is by no means a strict necessity, we shall herein use

the concept of entropy as defined by Shannon, and so mainly to fix the

thought. We bear in mind: given a random experiment 6 which can yield

the results fBl,,B 29 ... BnI with the respective probabilities1 2 n

p(B1), p(B2)’...,p(Bn); the entropy H(S) of j3 is defined as
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(the symbol := means that the quantity on the left-hand side is defined

by the expression on the right, while =: means that the right-hand sideI

is defined by the expression on the left) where the logarithm function

may have any basis.

H(~) measures the mount of uncertainty hat an observer has about

the result of the experiment f3; and also, it defined the amount of

information which is contained in ~.

9.5 Information and uncertaint in natural languages

A NL is pictured on the diagram of Fig 9

Fig 9. Syntax, semantics, lexem

In the standard way of the "mathematical theory of communication" of

Shannon, we can assume that two fields of probability are given on Q

and Q’ respectively, therefore we can characterize then by the two

entropies and H(b).

Definition 8. We shall say that the total amount of information

which is contained in the NL : Q - Q’ is H(b) + H (~) . I

The reader may question why do we not rather consider the

expression
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This is merely due to the fact that, in a first stage, Q and Q’ are

defined independently by the observer who so describes them without

taking account of any relation they may involve.

Definition 9. We shall say that the amount of uncertainty which

is involved by the NL : Q - Q’ is H(b) - H(6). 0

Indeed, despite a word may have several lexems, one has generally

H(b) 2 for natural languages. This being so, when H(b) = H(~) ,

we have a somewhat identification between syntax and semantics so that

the message is completely determined by its syntax only. When

H(b) &#x3E; H(P), we have not a one-to-one correspondence between and Q’;

on the average a given word in Q has (H(b)-H(~) ) lexems, therefore

an uncertainty which is specific to the structure of the NL.

9.6 Subjectivity, information, uncertainty

We are now in a position to introduce subjectivity in the commu-

nication process via natural languages.

In the absence of subjectivity, it seems right to assume that

both H(b) + and H(b) - are constant. This assumption no

longer holds in the presence of subjectivity. Indeed, in such a case,

the structures of 0 and Q’ are not fixed as before, but they are rather

changing with the subjectivity of the observer R. All takes place as if

this latter were defining his own field of probability on Q and Q’

respectively so that the various entropy functions above depends explici-

tely upon R via these probabilities, say H(b/R) and H(~/R) . It is then

difficult to assume again that H(b/R) - H(~/R) are constant. But since

it is a current matter that uncertainty decreases when information

increases, and conversely; we shall assume that it is the product
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which remains constant.

As a word of caution about the physical dimensions of H(b/R) and

H(S/R), we shall introduce a constant c, depending upon the measurement

unit, and such that the quantity

is not affected by the subjectivity. Locally in syntax and semantics

the differential geodesic

is not affected by subjectivity.

So, according to the well known Lorentz equations, condition

holds when one has

with

and this is exactly our relativistic fuzzy set model.

One of the most interesting suggestions of this derivation is the

use of a relativistic framework to investigate societal- svstems. The

central idea in this way would be to assume that they are subject to

fields of communication, therefore the relativistic dynamics.
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10. CONCLUSIONS

Fuziness is basically different from probability. Indeed, while probabili-

ty defines the observed system itself which is stochastic in its nature in

the sense that its state occurs randomly;by contrast, fuzziness refers to

the observation process of a system by an observer, and therefore involves

subjective factors which are essentially varying from an observer to ano-

ther one.

A fuzziness theory should explicitely involve this relativistic featu-

re, and it seems that fuzzy scientists fail to meet this requirement since

fuzzy membership functions of fuzzy sets have been introduced also in the

literature. Unfortunately, this has been done in a rather arbitrary way,

and the problem of the dependence of this fuzzy membership function upon

the observer remains unsolved.

In fact, the relativistic physics supply us with a mathematical model

which explicitely involves observers, and applying it to "sets’’’ and ’"varia-

bles" straightforwardly yields, in a natural way, the new concept of relati-

vistic fuzziness function as basic concept.

The most striking characteristic of this relativistic approach is the

composition law for fuzziness and observers which exhibits a saturating ef-

fect with respect to fuzziness, and it would be interesting to examine what

it can yield in a quantitative approach to semantics and linguistics. For

instance, consider the expression very taZZ and likely taZZ from where we

derive very Likely taZZ and likely very tall. Intuitively very likely is

different from likely very, in other words, the product is not commutative,

and it is exactly the case in our relativistic framework. Moreover, it

seems that it is possible to consider taZZ as a set A, very taZZ as a rela-

tivistic fuzziness function u A (x/R’) and similary likely taZZ as uA(x/R")
so that the composition law for observers would give the value of very 

Zy tall and likely very taZZ.
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