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ON THE DISCRETIZATION IN TIME OF PARABOLIC STOCHASTIC PARTIAL
DIFFERENTIAL EQUATIONS

Jacques Printems
1

Abstract. We first generalize, in an abstract framework, results on the order of convergence of a
semi-discretization in time by an implicit Euler scheme of a stochastic parabolic equation. In this part,
all the coefficients are globally Lipchitz. The case when the nonlinearity is only locally Lipchitz is then
treated. For the sake of simplicity, we restrict our attention to the Burgers equation. We are not able
in this case to compute a pathwise order of the approximation, we introduce the weaker notion of order
in probability and generalize in that context the results of the globally Lipschitz case.
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1. Introduction

Let us introduce the abstract framework of the stochastic parabolic partial differential equation which will
be treated in this paper. Let H be a Hilbert space, we will consider the following evolution equation written in
the abstract Ito form

du+ (Au+ f(u)) dt = σ(u)dW, (1.1)

with the initial condition

u(0) = u0 ∈ H, (1.2)

where u is a H-valued random process, A : D(A) ⊂ H → H denotes an unbounded, non-negative self-adjoint
operator, such that D(A) is compactly embedded into H, f is a non-linear mapping from H into D(A−s) for
some s ∈ [0, 1[ and σ is a mapping from H into L(H,D(A−β)), the space of linear bounded operator from H
into D(A−β) for some β. The interplay between A and β will be specified below. Here, {W (t)}t≥0 denotes a
cylindrical Wiener process on H (see [8]) defined on a given stochastic basis (Ω,F ,P, {Ft}t≥0).

Such a framework is very general. It includes the stochastic versions of the Burgers equation, the Navier–
Stokes equation, the Cahn–Hilliard equation, the Ginzburg–Landau equation, the Kuramoto–Sivashinsky equa-
tion or more generally reaction–diffusion equations. If theses equations are considered on a bounded domain
then they fit the above framework.

Keywords and phrases. Stochastic partial differential equations, semi-discretized scheme for stochastic partial differential equa-
tions, Euler scheme.
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For example, in space dimension one, let us consider the following stochastic partial differential equations

∂u(x, t)
∂t

− ∂2u(x, t)
∂x2

+ F (u(x, t)) = G(u(x, t))
∂2W̃ (x, t)
∂x∂t

, (1.3)

or

∂u(x, t)
∂t

− ∂2u(x, t)
∂x2

+
∂F (u(x, t))

∂x
= G(u(x, t))

∂2W̃ (x, t)
∂x∂t

, (1.4)

where x ∈ (0, 1) and t > 0, with Dirichlet boundary conditions and an initial condition.
Where u = u(x, t) is a R-valued random process and {W̃ (x, t)} a brownian sheet on ]0, 1[×R+. We recall

that {W̃ (x, t)} is a zero mean gaussian process such that

E W̃ (x, t)W̃ (y, s) = (x ∧ y)(t ∧ s),

for t, s and x, y. We recognize for example in equation (1.4), for F (y) = y2/2, the Burgers equation. Other
boundary conditions could be considered.

In both cases, H = L2(0, 1), A denotes the operator − ∂2

∂x2
defined on D(A) = H2(0, 1) ∩ H1

0 (0, 1). For

equation (1.4), we set f(u)(x) =
∂(F (u(x)))

∂x
and if for instance F : R→ R is a Lipschitz function it is easy to

check that f is a Lipschitz function from H = L2(0, 1) to H−1(0, 1) = D(A−1/2) so that we take s = 1/2. We

will see in Section 4 that for the Burgers case, f(u)(x) =
1
2
∂(u(x)2)
∂x

, we can take any s > 3/4.

Also, W (t) can formally be written as the space derivative of W̃ (t, x). More precisely,

W (t) =
∂W̃

∂x
=
∑
i≥0

βi(t) ei,

where {ei}i≥0 are the eigenfunctions of A and form a Hilbertian basis of L2(0, 1); {βi}i≥1 is a family of real
Brownian motions mutually independent in a fixed probability space. In the case of equations (1.3)–(1.4),

ei(x) =

√
2
π

sin(iπx), x ∈ (0, 1).

Also, in (1.3)–(1.4), we can consider σ(u) to be the operator given by

σ(u) : H −→ H
v 7→ G(u)v (1.5)

where G : R → R is a bounded function. In this case β = 0. Another example is provided by the stochastic
Cahn–Hilliard equation which in Ito form reads

du+
(
∆2u+ ∆f(u)

)
dt = σ(u) dW, (1.6)

with Neumann boundary conditions for (x, t) ∈ D × R+, D an open bounded set on Rn, n = 1, 2, 3. Here
H = L2(0, 1) and A = ∆2 on the domain H4(D). Again, if f is Lipschitz we can take s = 1/2. The noise term
may be of the same form as described in (1.5) and then β = 0. However, it is also physically relevant to consider
a noise of the form ∇(G(u)dW ) in which case β = 1/4. Nevertheless, some restrictions described below do not
allow to treat this latter noise unless n = 1.
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Several authors have already considered Cauchy Problems associated to (1.1)–(1.2) or (1.3)–(1.5) (see [1, 8,
16, 19, 20, 24, 25] and references therein). Results of existence and uniqueness of global strong solutions u are
classical if f and σ are globally Lipschitz. In many cases where f is only locally Lipschitz (stochastic Burgers
equation, stochastic Cahn–Hilliard or stochastic Navier–Stokes), and σ is bounded, existence of global strong
solutions can also be shown (see [3, 5–7,9, 13]).

In this paper, we are interested in the approximation of (1.1)–(1.2) by a semi-implicit scheme. Let T > 0
and N an integer. We set τ = T/N and construct a sequence of approximations {un}0≤n≤N of the solution u
by the following scheme: {

un+1 − un + τ(Aun+θ + f(un)) =
√
τσ(un)χn,

u0 = u0 ∈ H,
(1.7)

where we have set un+θ = θun+1 + (1 − θ)un for some θ ∈ [0, 1] and {χn}n≥0 is a sequence of i.i.d. H-valued
normal random variables.

Of course, (1.7) is formal and has to be understood in the following sense

un+1 = Sτu
n − (I + τθA)−1f(un) + (I + τθA)−1√τσ(un)χn,

with Sτ = (I + τθA)−1(I − τ(1 − θ)A). Note that under our assumptions Sτ can be extended to an operator
bounded from H to H and since s < 1, (I + τθA)−1f(un) ∈ D(A1−s) ⊂ H for un ∈ H.

Concerning the scheme (1.7), let us note that results on the order of convergence in the deterministic case
(σ = 0) are classical. For instance, in [4,17], the authors have shown that the infinite dimensional setting implies
the restriction

θ > 1/2 (1.8)

for the convergence. In this case, they were able to show that this scheme is of order 1 in the absence of noise.
Typically, since here un, u are H-valued random variables, various type of convergence and order can be

considered, either we consider pathwise approximation (strong order) or approximation of the law (weak order).
In the finite dimensional case, discretization in time of stochastic differential equations have already been
discussed by several authors [15,18,22,23]. Typically, the lack of regularity of the noise implies that the explicit
Euler scheme applied to such equations is of strong order 1/2. Nevertheless, in [18], the author noted that,
provided suitable assumptions on the coefficients hold and when some correction terms are introduced (which
vanish for additive noise), the explicit Euler scheme is of strong order 1 and of weak order 2 (see also [22,23]).

Available results are much weaker in the infinite dimensional case. Recently, in the case where A is the
Laplacian operator on the interval (0,1) with Dirichlet boundary conditions, Gyöngy and Nualart [12] have
been able to prove the Lp(Ω) convergence for any p of the approximations un given by (1.7) to the exact
solution u in the case of equation (1.3). Moreover, by the mean of the Green function, they found a rate of
the convergence in τγ with γ < 1/4 when f and σ are globally Lipschitz. In the case where f and σ are only
locally bounded, continuous functions, they proved a convergence in probability of the approximation to the
exact solution.

It seems difficult to use similar ideas as in [18, 22, 23] and obtain better order of convergence, this would
require strong assumptions on the spatial regularity of the noise.

Our first goal in this paper is to generalize the first part of [12] concerning globally Lipschitz nonlinearity.
There, the authors use extensively the explicit form of the Green function of the continuous problem. Here, we
propose to use spectral properties of the linear operator A. Thus, we can use powerful tools already developped
in the deterministic case. Also, the Green function is not always available so that we think that our method
applies to more situations.

The main difficulty in studying numerical schemes for stochastic partial differential equations is in the treat-
ment of the time discretization. For the sake of simplicity, we have prefered to describe first this part. However
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as will be exposed in a forthcoming work, our arguments extend to the analysis of a fully discretized scheme
when combined with the arguments used in the deterministic theory. For instance the tools introduced in [2,14]
allow to study a discretization with finite elements on a non uniform grid. Note that in [12] a full discretization
with finite difference is considered; there a discrete Green function is used. However, it seems that this approach
is restricted to uniform grids.

In this first part, we will be able to prove the Lp-convergence of un to u with the rate γ̃ < min(1 − s, (1 −
α)/2− β). Our main assumptions are in this case

Tr(A−α) < +∞, (1.9)

for some α > 0.
This trace assumption is very natural when stochastic partial differential equations of parabolic type are

concerned. It consists in assuming that the linear operator has discrete spectral values and that the p-th power
of their inverses defines a convergent series for some p. This is not very restrictive when dealing with elliptic
operator on a bounded domain.

The following assumptions are

|f(u)− f(v)|D(A−s) ≤ Lf |u− v|H , (1.10)

and

|σ(u)− σ(v)|L(H,D(A−β)) ≤ Lσ|u− v|H , (1.11)

for any (u, v) in H and for some constants Lf , Lσ > 0. The coefficients α, defined by the trace assumption (1.9),
and β, the space regularity of the noise, are linked by the inequality

1− α− 2β > 0, (1.12)

which is essential when proving the Hilbert-Schmidt property of the semi-group {e−tA}t≥0 (cf. Lem. 2.2) in
the space L(H,D(A−β)). Concerning the nonlinearity, note that s ≥ 0 allows f to depend on some spatial
derivatives of the solution. Moreover, we assume that s < 1 in order that, as it is classical in the deterministic
case, the following expression (and its discrete version) make sense∫ t

0

e−(t−τ)Af(u(τ)) dτ.

Indeed, we can note that the roles played by the nonlinearity and the noise are independant both in the
assumptions and in the expression of the rate of convergence.

In this setting, the result of this section is general and can be applied to all parabolic stochastic partial
differential equations with a Lipschitz non linearity provided (1.12) holds. For example, in dimension d with a
white noise (β = 0), let A = (−∆)r/2 for some positive real r > d on some bounded domain of Rd with Dirichlet
or Neumann boundary conditions. If α is any number greater than d/r then condition (1.9) holds. If s = 0, we
find that the order of convergence of un is 1

2 (1− d
r ). For the Cahn–Hilliard equation (1.6) with a Lipschitz f ,

if β = 0 we obtain an order 3/8 in space dimension 1, 1/4 in space dimension 2 and 1/8 in space dimension 3.
If β = 1/4, condition (1.12) cannot hold if n = 2 or 3. And for n = 1, we obtain an order 1/8.

We then treat the case where σ is still globally Lipschitz but the nonlinearity f is only locally Lipschitz. We
will restrict ourselves to the one-dimensionnal case of the stochastic Burgers equation (Eq. (1.4) with f(y) = y2).
In this case H = L2(0, 1), s > 3/4, β = 0 and α > 1/2. However our approach is general and, using the setting
of the preceeding section, can be applied in many situations. The idea is to mimic the proof of existence and
uniqueness for the continuous problem (see [7]). An extra assumption for σ is required

∀u ∈ L2(0, 1), |σ(u)|L(L2(0,1)) ≤ Cσ, (1.13)
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for some Cσ > 0. We consider truncated versions of (1.1) and (1.7) for which the results of the preceeding section
hold. Then, we prove convergence in probability of the scheme which implies boundedness in probability. These
two facts are used together to obtain that

lim
C→+∞

P
{
τ−eγ max

0≤n≤N
|un − u(nτ)|H ≥ C

}
= 0,

for γ̃ < 1/4, uniformly with respect to N . We say that the scheme is of order in probability γ̃ < 1/4.
This definition is quite natural. Indeed, a deterministic scheme is of order γ̃ if

τ−eγ max
0≤n≤N

|un − u(nτ)|H

is bounded. Since different notions of boundedness (almost surely, in Lp(Ω,H), in probability) can be considered
for random variables, different notions of order of convergence naturally arise.

The paper is organized as follows. In Section 2, after some notations and preliminairies, we will present the
different notions of order that we will need afterwards. In Section 3, we give in Theorem 3.2 the general results in
the case of a globally Lipschitz non linearity and obtain a Lp-order of convergence γ̃ < min(1−s, (1−α)/2−β).
In Section 4, we will first recall existence and uniqueness of stochastic process solution of the Burgers equation
(cf. [7]). We then give in Theorem 4.3 the result of order in probability of the scheme (1.7) in the case of the
Burgers equation with the extra assumption (1.13).

These ideas are general and although we only consider the Burgers equation, our approach can be extended
to others equations: stochastic reaction diffusion equations, stochastic Navier-Stokes equation or stochastic
Cahn-Hilliard equation with a polynomial nonlinearity.

2. Preliminaries

2.1. Some notations

Let X be a Banach space. We will denote by | · |X the norm on the Banach space X . In the case when
X = H is a Hilbert space, we will simply use | · |. If (Ω,F ,P) denotes a probability space, we will denote by
Lp(Ω, X), 1 ≤ p < +∞, the space of X-valued random variables u with Böchner integrable p-th power on Ω.
We set

E|u|pX =
∫

Ω

|u(ω)|pXP(dω).

Now let σ be a linear operator from F into G, two Hilbert spaces, σ is said to be Hilbert-Schmidt if the following
sum is finite:

|σ|2L0
2(F,G)

def=
∑
i≥1

|σei|2G < +∞,

where {ei}i≥1 is a Hilbertian basis of F and where the set of all Hilbert–Schmidt operators is denoted by
L0

2(F,G). When F = G, we will use the notation L0
2(F ) and when F = G = L2(0, 1), the shorter notation L0

2

will be used.
Let A be a positive, self-adjoint operator, unbounded on H, a Hilbert space. We will denote by D(A), its

domain. We assume furthermore that D(A) is compactly embedded in H. It follows that there exists a series
of increasing real numbers {λi}i≥1 such that

0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λi −→ +∞,

which represents the eigenvalues of A. Moreover, we suppose that there exist a real positive α such that∑
i≥1

λ−αi < +∞. (2.1)
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Equation (2.1) is the translation of the trace assumption (1.9). Let us recall that, as written above in the
introduction after (1.9), such assumptions are very general when bounded domains are concerned in the par-
abolic context. For example, (2.1) holds when the linear operator is the realization of the Laplacian on a
bounded domain with Dirichlet or Neuman boundary conditions. More generally, other elliptic operators can
be considered.

A family of eigenvectors {ei}i≥1, ei ∈ H is associated to these eigenvalues. It constitutes a Hilbertian basis
of H. For any u =

∑
i≥1 uiei in D(A), we get

Au =
∑
i≥1

λiuiei. (2.2)

We can define for any s ∈ R, the operator As and its domain D(As). We have for any u ∈ D(As)

Asu =
∑
i≥1

λsiuiei, (2.3)

and

D(As) =

u =
∑
i≥1

uiei such that |u|2D(As)
def= |Asu|2H =

∑
i≥1

λ2s
i u

2
i < +∞

 ·
It is well known that A generates a contraction semi-group on H which will be denoted by {e−tA}t≥0. The
main properties of such a semi-group which will be used throughout this paper are summarized in the following
lemmas.

Lemma 2.1. Let a ≥ 0, then

∀t ≥ 0,
∣∣e−tA∣∣L(H)

≤ 1, (2.4)

∀t > 0,
∣∣e−tA∣∣L(H,D(Aa))

≤ Ca t−a. (2.5)

Moreover, for b ∈ [0, 1], ∣∣A−b (IdH − e−tA)∣∣L(H)
≤ Cb tb. (2.6)

Eventually, (2.1) will strengthen the property (2.5) as shown in the following result whose elementary proof is
left to the reader.

Lemma 2.2. For any t > 0 and for any β < (1 − α)/2, e−tA is Hilbert-Schmidt from H into D(Aβ). More
precisely, for any γ̃ < γ, there exists Cγ > 0 such that

∀t > 0, |e−tA|L0
2(H,D(Aβ)) ≤ Ceγ

∑
i≥1

λ
−α−(γ−eγ)
i

1/2

t(eγ−1)/2 (2.7)

where γ = 1− α− 2β > 0.

We will need below the following discrete version of the well-known Gronwall Lemma:
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Lemma 2.3. Let τ be a positive number and {ξn}n≥0, {ηn}n≥0 be two sequences of nonnegative real numbers
such that ξ0 = η0 = 0 and such that there exists a positive constant L such that

∀n ≥ 1, ξn ≤ L
n−1∑
k=0

ξk + ηn.

Then, we have

∀n ≥ 1, ξn ≤
n−1∑
k=0

e(n−k−1)L(ηk+1 − ηk).

Proof. By induction with respect to n using L ≤ eL − 1.

Remark 2.4. From the Lemma 2.3, we can deduce that

∀n ≥ 1, ξn ≤ e(n−1)Lηn.

2.2. Definitions of different notions of order

We now give the definitions of orders of convergence for a numerical scheme which will be used in Section 3
and 4. We first note that since we consider random variables, different notions of convergence can be taken into
account. Let un be a sequence of H valued random variable defined by some numerical scheme Σ and u be a
H-valued stochastic process on the time interval [0, T ]. Let τ = T/N where N is an integer. We say that un

converge almost surely to u if

lim
N→+∞

max
0≤n≤N

|(un − u(nτ))(ω)|H = 0, a.s. ω. (2.8)

Also we will say that the scheme Σ is convergent in Lp(Ω,H) for some p ≥ 1 if

lim
N→+∞

E max
0≤n≤N

|(un − u(nτ))|pH = 0. (2.9)

Finally, we define convergence in probability of Σ when

∀ε > 0, lim
N→+∞

P
{

max
0≤n≤N

|(un − u(nτ))|H ≥ ε
}

= 0. (2.10)

These three kinds of convergence are somewhat pathwise notions. At the opposite, in the case of convergence
in law of the sequence un, we say that there is weak convergence:

lim
N→+∞

max
0≤n≤N

E (ϕ(un)− ϕ(u(nτ))) = 0,

for any real valued measurable bounded function ϕ defined on H.
These notions of convergence are connected with corresponding notions of order.

Definition 2.5 (a.s. order). Let X be a Banach space. Let {un}0≤n≤N a sequence of X-valued random vari-
ables defined by a numerical scheme Σ and u a X-valued stochastic process on the time interval [0, T ]. We say
that the scheme Σ is of a.s. order γ̃ > 0 in X if for a.s. ω, there exists a constant C(ω) > 0 such that

max
0≤n≤N

|un − u(nτ)|X ≤ C(ω)τeγ

for any N ≥ 1.
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Definition 2.6 (Lp order). Let X be a Banach space and {un}0≤n≤N a sequence of X-valued random variables
defined by a scheme Σ and u a X-valued stochastic process on the time interval [0, T ]. Let p ≥ 1 be an integer.
We say that the scheme Σ is of Lp order γ̃ > 0 in X if there exists a constant C(p) > 0 such that(

E max
0≤n≤N

|un − u(nτ)|pX
)1/p

≤ C(p)τeγ ,

for any N ≥ 1.

The following notion is weaker than the previous two but is still connected with pathwise approximation and
corresponds to the convergence in probability (2.10):

Definition 2.7 (Order in probability). Let X be a Banach space. Let {un}0≤n≤N a sequence of X-valued
random variables defined by a numerical scheme Σ and u a X-valued stochastic process on the time interval
[0, T ]. We will say that the scheme Σ is of order in probability γ̃ > 0 in X , if

lim
C→+∞

P
{

max
0≤n≤N

|un − u(nτ)|X ≥ Cτeγ
}

= 0,

uniformly with respect to τ .

The connections between these notions of order can be summarized as follows

Lemma 2.8. Let un a sequence of H-valued random variables defined by some scheme Σ. Let u be a H-valued
stochastic process on the interval [0, T ]. Then, the following assertions hold

1. If Σ is of Lp-order γ̃ with p > 1/γ̃, then Σ is of order in probability γ̃;
2. If Σ is of Lp-order γ̃ in H with p > 1/γ̃, then Σ is of a.s. order γ̃′ < γ̃ − 1

p ;
3. If Σ is of a.s. order γ̃ then Σ is of order in probability γ̃;
4. If Σ is of Lp-order γ̃ > 0 for any p ≥ 2, then Σ is of a.s. order γ̃′ < γ̃.

Proof.
1. It is a consequence of the Bienaymé-Tchebyschev inequality.
2. It can be proved using the Borel-Cantelli lemma.
3. It is the Egorov lemma.
4. This assertion comes from the second one.

�

3. The globally Lipschitz case

3.1. Setting of the problem and main result

We recall here some results on the continuous Cauchy problem which is written in the Ito form

du+ (Au+ f(u)) dt = σ(u) dW, (3.1)

supplemented with the initial condition

u(0) = u0 ∈ H. (3.2)

Here, {W (t)}t>0 will denote a cylindrical Wiener process defined on the Hilbert space H and A is the operator
introduced in Section 2.
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The nonlinearity is denoted by f , a mapping from H into D(A−s), for some s ∈ ]0, 1[, and σ is considered as
an application from H into L(H,D(A−β)) where β is such that

∃γ > 0,
∑
i≥1

λγ+2β−1
i < +∞. (3.3)

We note that thanks to (2.1), (3.3) holds as soon as we have

β <
1− α

2
·

We assume furthermore that there exist real numbers Lf , Lσ > 0 such that

|A−s(f(u)− f(v))| ≤ Lf |u− v|, (3.4)

|A−sf(u)| ≤ Lf (1 + |u|) (3.5)

|A−β(σ(u)− σ(v))|L(H) ≤ Lσ|u− v|, (3.6)

|A−βσ(u)| ≤ Lσ(1 + |u|). (3.7)

for any u, v in H.
Then we have the following result of existence whose proof, which consists in a contraction argument in

L∞([0, T ], Lp(Ω,H)), can be found in Theorem 7.4, p. 186 in [8].

Proposition 3.1. Let T > 0 and p an integer such that p ≥ 2. Then, under the assumptions (3.3)–(3.7), for
any u0 ∈ Lp(Ω,H), there exists a unique stochastic process u solution of the Cauchy problem (3.1)–(3.2).

Moreover, there exists some constants C(T ) > 0 such that

sup
t∈[0,T ]

(E|u(t)|p)1/p ≤ C(T )
(

1 + (E|u0|p)1/p
)
. (3.8)

Now, assume that we are given a subdivision of the interval [0, T ] with uniform time step τ where τ = T/N for
an integer N . We seek an approximation of the values {u(nτ)}0≤n≤N where u is the solution of (3.1)–(3.2) on
the interval [0, T ]. The following scheme is choosen

un+1 = un − τ (Aun+θ + f(un)) +
√
τ σ(un)χn (3.9)

where un+θ = θun+1 + (1− θ)un for θ which will be precised below and where {χn}0≤n≤N denotes a sequence
of independent normal random variables (χn = 1√

τ
(W ((n+ 1)τ)−W (nτ))). Scheme (3.9) is formal and has to

be understood in the following sense

un+1 = Sτu
n − (I + τθA)−1f(un) + (I + τθA)−1

√
τσ(un)χn,

with Sτ = (I + τθA)−1(I − τ(1− θ)A) bounded from H to H.
We assume furthermore that

θ >
1
2
· (3.10)
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We wish to understand how un approximates u(nτ). More precisely, we set for any n ≤ N

en = un − u(nτ). (3.11)

The main result of this section is stated below.

Theorem 3.2. Let T > 0 and u0 ∈ Lp(Ω,H) for some integer p ≥ 2. Let u be the solution of (3.1)–(3.2) on
[0,T] given by Proposition 3.1.

Then under assumptions (3.3)–(3.7) and (3.10), for any γ̃ < min{1− s, (1− α)/2− β}, the scheme (3.9) is
of Lp-order γ̃ in H. More precisely, there exists a constant C(p) > 0 such that

(E|en|p)1/p ≤ C(p)
(
τeγ +

1
n

(E|u0|p)1/p

)
,

for any n ∈ {1, . . . , N}.

Remark 3.3. The term
1
n

(E|u0|p)1/p involves a term of order 1 in τ except for small times. Indeed, we have

1
n

(E|u0|p)1/p =
τ

nτ
(E|u0|p)1/p ≤ τ(E|u0|p)1/p,

for nτ ≥ 1 for example. Hence, since γ̃ < 1, the estimate of Theorem 3.2 becomes(
E max
n?≤n≤N

|en|p
)1/p

≤ Cτeγ ,

where n? = E(1/τ) + 1. This component of the error is purely deterministic.

3.2. Regularity in time of the solution of (3.1)–(3.2) with values in H

As in the deterministic theory, in order to prove Theorem 3.2, we need regularity in time of the continuous
solution. It is the purpose of this subsection. The proof of Theorem 3.2 is postponed to Section 3.3 while the
proof of the following Proposition can be found in appendix.

Proposition 3.4. Let u be a solution of (3.1)–(3.2). Then according to (3.3)–(3.7), for any (t1, t2) ∈ [0, T ]2,
for any p ≥ 2 and γ̃ < min{(1− α)/2− β, 1− s}, we have

E|u(t1)− u(t2)|p ≤ C(p, T, f, σ)

(
1 + sup

t∈[0,T ]

E|u(t)|p
)
|t1 − t2|eγp.

Corollary 3.5. Let u be the solution of (3.1)–(3.2) given by Proposition 3.1, then there exists a version of u
whose trajectories in H are almost surely γ̃-Hölder with respect to time, for any γ̃ < min(1− s, (1− α)/2− β).

Proof. The proof is a straightforward application of the Kolmogorov criterion (see for example Th. 3.3, p. 73
in [8]). �

3.3. Proof of Theorem 3.2

According to (3.9), un can be written as

un = Snτ u0 − τ
n−1∑
k=0

Sn−k−1
τ (I + τθA)−1f(uk)

+
√
τ
n−1∑
k=0

Sn−k−1
τ (I + τθA)−1σ(uk)χk, (3.12)
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where we have set
Sτ = (I + τθA)−1(I − τ(1− θ)A).

The solution u of (3.1)–(3.2) satisfies the following mild formulation

u(nτ) = e−nτAu0 −
∫ nτ

0

e−(nτ−s)Af(u(s)) ds+
∫ nτ

0

e−(nτ−s)Aσ(u(s)) dW (s). (3.13)

From (3.12) and (3.13), we get

en = (Sτ − e−nτA)u0

−
n−1∑
k=0

∫ (k+1)τ

kτ

[
Sn−k−1
τ (I + τθA)−1f(uk)− e−(nτ−s)Af(u(s))

]
ds

−
n−1∑
k=0

∫ (k+1)τ

kτ

[
Sn−k−1
τ (I + τθA)−1σ(uk)− e−(nτ−s)Aσ(u(s))

]
dW (s)

= A+ B+ C. (3.14)

The first term of (3.14) can be easily estimated owing to the following lemma (cf. Th. 1.1, p. 921 in [17]):

Lemma 3.6. Assuming that (3.10) holds, then there exists a constant C(θ) > 0, such that

|Snτ − e−nτA|L(H) ≤
C(θ)
n

, ∀n ≥ 1.

Owing to the previous lemma, for any p ≥ 2, we have

|A|Lp(Ω,H) ≤
C1

n
|u0|Lp(Ω,H). (3.15)

We now treat the second term of (3.14). It is further splitted into three parts

B = −
n−1∑
k=0

∫ (k+1)τ

kτ

Sn−k−1
τ (I + τθA)−1[f(uk)− f(u(kτ))] ds

−
n−1∑
k=0

∫ (k+1)τ

kτ

Sn−k−1
τ (I + τθA)−1[f(u(kτ)) − f(u(s))] ds

−
n−1∑
k=0

∫ (k+1)τ

kτ

[
Sn−k−1
τ (I + τθA)−1 − e−(nτ−s)A

]
f(u(s)) ds

= B1 + B2 + B3. (3.16)

According to (3.4), we get for any p ≥ 2,

|B1| ≤ Lf

n−1∑
k=0

τ
∣∣AsSn−k−1

τ (I + τθA)−1
∣∣
L(H)

|ek|

≤ Lf

n−1∑
k=0

τ
∣∣∣As (Sn−k−1

τ − e−(n−k−1)τA
)

(I + τθA)−1
∣∣∣
L(H)

|ek|

+Lf
n−1∑
k=0

τ
∣∣∣Ase−(n−k−1)τA(I + τθA)−1

∣∣∣
L(H)

|ek|.
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Then, Lemma 3.6 and estimate (2.5) leads to, for any p ≥ 2,

E|B1|p ≤ C1

(
n−1∑
k=0

τ

((n− k − 1)τ)s
(
E|ek|p

)1/p)p
(3.17)

where we have used the Minkowski inequality in the last step.
Using Proposition 3.4, the same computations leads to, for any p ≥ 2:

E|B2|p ≤ Lpf

(
1 + sup

t∈[0,T ]

E|u(t)|p
)(

n−1∑
k=0

τ

((n− k − 1)τ)s

)p
τeγp.

Since s < 1, the last sum can be estimated as follows:

n−1∑
k=0

τ

((n− k − 1)τ)s
≤

n−1∑
k=0

∫ (k+1)τ

kτ

dt
ts

≤ 1
1− sT

1−s. (3.18)

Eventually, thanks to estimate (3.8), we get

E|B2|p ≤ c2(p,E|u0|p, T )τeγp. (3.19)

The term B3 is estimated using (3.5) first

|B3| ≤ Lf

n−1∑
k=0

∫ (k+1)τ

kτ

∣∣∣As (Sn−k−1
τ (I + τθA)−1 − e−(nτ−s)A

)∣∣∣
L(H)

(1 + |u(s)|) ds

≤ Lf

n−1∑
k=0

∫ (k+1)τ

kτ

∣∣∣As (Sn−k−1
τ − e−(n−k−1)τA

)
(I + τθA)−1

∣∣∣
L(H)

(1 + |u(s)|) ds

+Lf
n−1∑
k=0

∫ (k+1)τ

kτ

∣∣∣As (e−(n−k−1)τA − e−(nτ−s)A
)

(I + τθA)−1
∣∣∣
L(H)

(1 + |u(s)|) ds

+Lf
n−1∑
k=0

∫ (k+1)τ

kτ

∣∣∣Ase−(nτ−s)A((I + τθA)−1 − I)
∣∣∣
L(H)

(1 + |u(s)|) ds. (3.20)

Let us estimate the different L(H)-norms which appear in (3.20). Thanks to Lemma 3.6, the L(H)-norm of the
first term of the right hand side of (3.20) can be majorized by

∣∣∣As (Sn−k−1
τ − e−(n−k−1)τA

)
(I + τθA)−1

∣∣∣
L(H)

≤ C(θ) τ−s

n− k − 1
sup
i≥1

(
(λiτ)s

1 + τθλi

)
≤ C(θ) τγ1

((n− k − 1)τ)s+γ1
,

where γ1 > 0 is such that γ̃ < γ1 < 1− s which is possible since s < 1 and γ̃ < 1− s.
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The following one can be estimated as follows∣∣∣As (e−(n−k−1)τA − e−(nτ−s)A
)

(I + τθA)−1
∣∣∣
L(H)

≤ sup
i≥1

{(
1− e−((k+1)τ−s)λi

1 + τθλi

)
λsi e
−(n−k−1)τλi

}
≤ sup

i≥1

{
λsie
−(n−k−1)τλi

}
≤ C(s)τγ1

((n− k − 1)τ)s+γ1

where we have used (2.5) in the second line.
Finally, the third L(H)-norm of (3.20) is estimated owing to (2.5) which gives∣∣∣Ase−(nτ−s)A((I + τθA)−1 − I)

∣∣∣
L(H)

≤ sup
i≥1

{
λsi e
−(nτ−s)λi

(
τθλi

1 + τθλi

)}
≤ sup

i≥1

{
λsi e
−(n−k−1)τλi

}
≤ C(s)τγ1

((n− k − 1)τ)s+γ1

since s ∈]kτ, (k + 1)τ [.
We take now the expectation of (3.20) to the power p ≥ 2, and we get, after substuting the last three

estimates into the new estimate in Lp(Ω,H):

E|B3|p ≤ C(p, θ, T, f, s)τγ1p(1 + E|u0|p) (3.21)

where the sum in k was estimated as in (3.18) since s+ γ1 < 1. Eventually, (3.17), (3.19) and (3.21) lead to

|B|Lp(Ω,H) ≤ C2

(
τeγ +

n−1∑
k=0

τ

((n− k − 1)τ)s
|ek|Lp(Ω,H)

)
, (3.22)

for τ ≤ 1 since γ1 > γ̃.
At last, the stochastic term in (3.14) can be estimated in Lp(Ω,H) using Burkholder-Davis-Gundy inequality:

E|C|p ≤ Cp

(
n−1∑
k=0

∫ (k+1)τ

kτ

(
E |Dk(s)|pL0

2

)2/p

ds

)p/2
, (3.23)

where we have written
Dk(s) = Sn−k−1

τ (I + τθA)−1σ(uk)− e−(nτ−s)Aσ(u(s)).
Using the same ideas as in (3.16), this last term can be split into three terms:

Dk(s) = D1
k(s) + D2

k(s) + D3
k(s), (3.24)

where for any k and s in ]kτ, (k + 1)τ [,

D1
k(s) = Sn−k−1

τ (I + τθA)−1[σ(uk)− σ(u(kτ))],

D2
k(s) = Sn−k−1

τ (I + τθA)−1[σ(u(kτ)) − σ(u(s))],

D3
k(s) =

[
Sn−k−1
τ (I + τθA)−1 − e−(nτ−s)A]σ(u(s)).
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Using (3.6), taking the L0
2-norm of D1

k(s) leads to(
E|D1

k(s)|p
L0

2

)2/p

≤ L2
σ

(
2
∣∣∣Aβ (Sn−k−1

τ − e−(n−k−1)τA
)

(I + τθA)−1
∣∣∣2
L0

2

+2
∣∣∣Aβe−(n−k−1)τA(I + τθA)−1

∣∣∣2
L0

2

)
(E|ek|p)2/p

≤ (a+ b)(E|ek|p)2/p. (3.25)

Then, using Lemma 3.6, we have for γ ∈ (0, 1),

a ≤ C(θ)
(n− k − 1)2

∑
i≥1

λ2β
i

(1 + τθλi)2

≤ C(θ)
(n− k − 1)2

∑
i≥1

λ2β+γ−1
i

 sup
i≥1

{
λ1−γ
i

(1 + τθλi)2

}

≤ C(θ)
(n− k − 1)1−γ

∑
i≥1

λ2β+γ−1
i

 sup
i≥1

{
(λiτ)1−γ

(1 + τθλi)1−γ

}
τγ−1,

since 1+τθλi ≥ 1 so that (1+τθλi)2 ≥ (1+τθλi)1−γ . In the same way, we have used (n−k−1)2 ≥ (n−k−1)1−γ

for every k = 0, . . . , n− 1. Finally with γ chosen such that (3.3) holds, we get

a ≤ C(θ)
((n− k − 1)τ)1−γ ·

Next, (2.5) and (3.3) allow us to estimate easily b as

b ≤ C′

((n− k − 1)τ)1−γ ·

Substituting the estimate for a and b in (3.25) yields

(
E|D1

k(s)|p
)2/p ≤ C′′(θ)

((n− k − 1)τ)1−γ (E|ek|p)2/p. (3.26)

for γ > 0 such that (3.3) holds.
Next, Proposition 3.4, estimate (3.8) and similar computations lead to

(E|D2
k(s)|p)2/p ≤ C(p, σ, θ, T, |u0|Lp(Ω,H))

τ2eγ

((n− k − 1)τ)1−γ · (3.27)

Finally, using first (3.7), (E|D3
k(s)|p)2/p can be estimated as follows:

(E|D3
k(s)|p)2/p ≤ L2

σ

∣∣∣Aβ (Sn−k−1
τ − e−(n−k−1)τA

)
(I + τθA)−1

∣∣∣2
L0

2

(
1 + (E|u(s)|p)2/p

)
+L2

σ

∣∣∣Aβ (e−(n−k−1)τA − e−(nτ−s)A
)

(I + τθA)−1
∣∣∣2
L0

2

(
1 + (E|u(s)|p)2/p

)
+L2

σ

∣∣∣Aβe−(nτ−s)A((I + τθA)−1 − I)
∣∣∣2
L0

2

(
1 + (E|u(s)|p)2/p

)
. (3.28)
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The first L0
2-norm in the right hand side of (3.28) has already been estimated (cf. a in (3.25)), so we get

∣∣∣Aβ (Sn−k−1
τ − e−(n−k−1)τA

)
(I + τθA)−1

∣∣∣2
L0

2

≤ C(θ)τγ2

((n− k − 1)τ)1−γ+γ2

where γ2 > 0 is such that 2γ̃ < γ2 < γ, which is possible since γ > 2γ̃.
The second one can be majorized as follows

∣∣∣Aβ (e−(n−k−1)τA − e−(nτ−s)A
)

(I + τθA)−1
∣∣∣2
L0

2

≤ C sup
i≥1

{(
1− e−((k+1)τ−s)λi

)2
(1 + τθλi)2

λ1−γ
i e−2(n−k−1)τλi

}
≤ C sup

i≥1

{
(τλi)γ2λ1−γ

i e−2(n−k−1)τλi
}

≤ Cτγ2 sup
i≥1

{
λ1−γ+γ2
i e−2(n−k−1)τλi

}
≤ C(γ)τγ2

((n− k − 1)τ)1−γ+γ2

where we have used (3.3) in the first line. In the second line, we have used the fact that for any δ in [0,1] (here
δ = γ2), there exists a constant cδ > 0 such that |e−x−e−y| ≤ cδ|x−y|δ, for all x, y ≥ 0 (cf. also (2.6)). Finally,
(2.5) yields the last line.

Eventually, (2.5) and (3.3) lead to

∣∣∣Aβe−(nτ−s)A((I + τθA)−1 − I)
∣∣∣2
L0

2

≤ C(γ)τγ2

((n− k − 1)τ)1−γ+γ2
·

After substituting the last three estimates in (3.28) and using the estimate (3.8), we get

(E|D3
k(s)|p)2/p ≤ C(γ, θ, |u0|Lp(Ω,H), σ)

τ2eγ

((n− k − 1)τ)1−γ+γ2
, (3.29)

for τ ≤ 1, since γ2 > 2γ̃.
At last, (3.26), (3.27) and (3.19) can be put back together into (3.23) in order to obtain

|C|Lp(Ω) ≤ C3

τeγ +

(
n−1∑
k=0

τ

((n− k − 1)τ)1−γ |e
k|2Lp(Ω,H)

)1/2
 , (3.30)

where C3 = C(p, γ, θ, |u0|Lp(Ω,H), σ, T ). Let us note that again we have used (3.18) in order to estimate the
remaining sum in k since 1− γ + γ2 < 1.

Lastly, we can estimate |en|Lp(Ω,H) by gathering (3.15), (3.22) and (3.30) and this yields

|en|Lp(Ω,H) ≤ C4

(
τeγ +

1
n
|u0|Lp(Ω,H) +

n−1∑
k=0

τ

((n− k − 1)τ)s
|ek|Lp(Ω,H)

+

(
n−1∑
k=0

τ

((n− k − 1)τ)1−γ |e
k|2Lp(Ω,H)

)1/2
 . (3.31)
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We now take an integer q ≥ 1 such that 1
2q ≤ γ̃ and estimate |en|2qLp(Ω,H). First, the Hölder inequality in the

first sum in (3.31) leads to

n−1∑
k=0

τ

((n− k − 1)τ)s
|ek|Lp(Ω,H) ≤

(
n−1∑
k=0

τ

((n− k − 1)τ)s
2q

2q−1

) 2q−1
2q
(
n−1∑
k=0

τ |ek|2qLp(Ω,H)

) 1
2q

≤ 1
1− s 2q

2q−1

T
2q−1

2q −s
(
n−1∑
k=0

τ |ek|2qLp(Ω,H)

) 1
2q

,

where we have used (3.18) in the second line, since 1/2q ≤ γ̃ < 1− s.
Next, the second sum is majorized as

(
n−1∑
k=0

τ

((n− k − 1)τ)1−γ |e
k|2Lp(Ω,H)

)1/2

≤
(
n−1∑
k=0

τ

((n− k − 1)τ)(1−γ) q
q−1

) q−1
2q
(
n−1∑
k=0

τ |ek|2qLp(Ω,H)

) 1
2q

≤ 1
1− (1− γ) q

q−1

T (γ−1
q )/2

(
n−1∑
k=0

τ |ek|2qLp(Ω,H)

) 1
2q

,

where we have used again (3.18) since 1/2q ≤ γ̃ < γ/2. Eventually, taking the power 2q of (3.31) yields

|en|2qLp(Ω,H) ≤ C5(q, T )

((
τeγ +

1
n
|u0|Lp(Ω,H)

)2q

+
n−1∑
k=0

τ |ek|2qLp(Ω,H)

)
. (3.32)

Applying the discrete Gronwall Lemma 2.3 with ξn = |en|2qLp(Ω,H), ηn =
(
τeγ + 1

n |u0|Lp(Ω,H)

)2q
and L =

C5(q, T )τ , yields the result. Namely according to Remark 2.4,

|en|Lp(Ω,H) ≤ C6(q, T )
(
τeγ +

1
n
|u0|Lp(Ω,H)

)
for any 0 ≤ n ≤ N . This ends the proof of Theorem 3.2. �

4. The locally Lipschitz case

In this section, we deal with a non linearity f which is only locally Lipschitz. For the sake of clarity, we will
treat this case in a one-dimensional framework and

f(u) =
∂

∂x

(
u2

2

)
(4.1)

but the ideas we introduce are general and can be applied in more general situations.
We first study the following continuous Cauchy Problem: find a stochastic process u such that

du+ (Au+ f(u)) dt = σ(u) dW (4.2)

with the initial condition

u(0) = u0. (4.3)
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Here, A denotes the operator − ∂2

∂x2
on (0, 1) with either Dirichlet or Neumann boundary conditions. We know

that A is an unbounded self-adjoint operator on H = L2(0, 1), whose domain D(A) is compactly embedded
in H. We denote in the same way as in the previous section by {λi}i≥1 its eigenvalues and by {ei}i≥1 its
eigenfunctions. In the case of Burgers equation, we have

ei(x) =

√
2
π

sin(iπx), x ∈ (0, 1),

and
λi = i2π2.

Let α be such that
∑
i≥1 λ

−α
i < +∞. Then, we know that here we can take any

α >
1
2
· (4.4)

The assumptions concerning the noise is strengthened; {W (t)}t∈[0,T ] remains the same as in Section 3, i.e. a
cylindrical Wiener process on L2(0, 1) but here σ is Lipschitz continuous from L2(0, 1) into L(L2(0, 1), D(A−β))
with

β = 0, (4.5)

and there exists a constant Lσ > 0 such that

|σ(u)− σ(v)|L(L2(0,1)) ≤ Lσ|u− v|. (4.6)

Moreover, we take the extra assumption

∀u ∈ L2(0, 1), |σ(u)|L(L2(0,1)) ≤ Cσ, (4.7)

for some constant Cσ > 0.

Remark 4.1. For example, we can consider the case where, σ: R → R is a bounded function and σ(u) is the
pointwise multiplication by σ(u), which, with abusive notation, can be denoted again by σ(u).

The results concerning this problem can be summarized in the following proposition (see [7]).

Proposition 4.2. Let T > 0. Let p be an integer such that p ≥ 2 and u0 ∈ Lp(Ω,H). Then, under the assump-
tions (4.1), (4.6) and (4.7), there exists a unique stochastic process u solution to the Cauchy Problem (4.2)–(4.3).
Moreover, we have

lim
M→+∞

P

{
sup
t∈[0,T ]

|u(t)| ≥M
}

= 0.

For any positive real T and positive integer N , we set

τ =
T

N
,

and we denote by {un}0≤n≤N the sequence in H defined by the following induction{
un+1 − un + τ(Aun+θ + f(un)) =

√
τσ(un)χn,

u0 = u0,
(4.8)

where the notations are the same as in Section 3.
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We eventually set for any n in {0, . . . , N},

en = un − u(nτ),

where u is the solution given by Proposition 4.2.
The main result of this section is:

Theorem 4.3. Let T > 0 and u0 ∈ Lp(Ω, L2(0, 1)) for some integer p ≥ 2. Let u be the solution of (4.2)–(4.3)
on [0, T ] given by Proposition 4.2, and {un}n≥0 defined by the numerical scheme (4.8).

Then, scheme (4.8) is convergent in probability to u. Moreover, for any γ̃ < 1/4, scheme (4.8) is of order in
probability γ̃ in L2(0, 1). Indeed, we have

lim
C→+∞

lim sup
τ→0

P
{

max
1≤nτ≤T

|en| ≥ C
(
τeγ + τ(E|u0|p)1/p

)}
= 0, (4.9)

for any γ̃ < 1/4.

The proof of Proposition 4.2 can be found in [7]. We will give here in the following subsection the outline
of this proof. First it consists in truncating the nonlinearity f in order to recover a Lipschitz function. Then
the truncation is removed according to an a priori estimate of the solution of the truncated equation uniformly
with respect to the parameter of truncation.

Theorem 4.3 will be proved in the last subsection. It consists first in proving that the scheme converges in
probability. This implies boundedness in probability of the approximating sequence {un} and allows us to use
the results in the globally Lipschitz case.

4.1. Outline of the proof of Proposition 4.2

Let ϕ ∈ C∞0 (R), supp(ϕ) ⊂]− 2,+2[, ϕ(x) = 1, if |x| ≤ 1. For any R > 0, we put

ϕR(x) = ϕ
( x
R

)
, (4.10)

and

fR(u) = ϕR(|u|)f(u). (4.11)

Then, we have the following lemma whose proof is left to the reader.

Lemma 4.4. For any s > 3/4 and R > 0, there exists some constants C1(s), C2(s,R) > 0 such that for any
(u, v) in L2(0, 1), one has

|f(u)− f(v)|D(A−s) ≤ C1(s)(|u|+ |v|) |u− v|, (4.12)
|fR(u)− fR(v)|D(A−s) ≤ C2(s,R)|u− v|. (4.13)

Let the following Cauchy Problem: find uR, R > 0, such that

duR + (AuR + fR(uR)) dt = σ(uR) dW, (4.14)

with the initial condition

uR(0) = u0. (4.15)

Owing to (4.13), (4.6) and Proposition 3.1, we know that for any R > 0 and for any T > 0, there exists a unique
stochastic process uR solution of (4.14)–(4.15). The proof of Proposition 4.2 essentially consists in deriving
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a priori estimate on uR in L2(Ω, C([0, T ],H)) uniformly with respect to R. The first step consists in deriving
similar estimate on the solution of the pseudo-linear problem{

dzR +AzR dt = σ(uR) dW,
zR(0) = 0, (4.16)

whose solution is given by

zR(t) =
∫ t

0

e−(t−τ)Aσ(uR(τ))dW (τ). (4.17)

Those estimates are given in the following Proposition (see [7]):

Proposition 4.5. For any T > 0, there exists some constants Ci(T ) > 0, i = 1, 2, such that

E sup
t∈[0,T ]

|zR(t)| ≤ C1(T ), (4.18)

E sup
t∈[0,T ]

|zR(t)|4L4(0,1) ≤ C2(T ), (4.19)

where Ci(T ), i = 1, 2, are locally bounded functions of T .

Now Proposition 4.5 implies the following a priori estimate on the solution uR of the Cauchy Problem (4.2)–
(4.3) (see again [7]):

Proposition 4.6. For any T > 0,

lim
M→+∞

lim sup
R→+∞

P

{
sup
t∈[0,T ]

|uR(t)| ≥M
}

= 0. (4.20)

Finally, existence and uniqueness of a stochastic process solution of (4.2)–(4.3) will be deduced from Proposi-
tions 4.5 and 4.6. Such computations can be summarized in the following lemma (see [7]).

Lemma 4.7. Let R > 0 and
τR = inf{t ∈ [0, T ] | |uR(t)| ≥ R} ∧ T.

Then we have
• {τR}R>0 is non-decreasing with respect to R,
• limR→+∞ τR = T , a.s.,
• ∀t ≤ τR, uR(t) = u(t), a.s.,

where u satisfies the mild formulation, a.s.,

u(t) = e−tAu0 −
∫ t

0

e−(t−τ)A ∂

∂x

(
u2

2

)
dτ +

∫ t

0

e−(t−τ)Aσ(u(τ)) dW (τ). (4.21)

4.2. Proof of Theorem 4.3

Similarly as in the begining of this section, we define {unR}0≤n≤N for any R > 0, by the induction{
un+1
R − unR + τ(Aun+θ

R + fR(unR)) =
√
τσ(unR)χn,

u0
R = u0,

(4.22)
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and we set for any n in {0, . . . , N},
enR = unR − uR(nτ),

where the notations are the same as in the previous subsections.
Let u and un be given respectively by Proposition 4.2 and Scheme (4.8). The proof of Theorem 4.3 relies

mainly on the following Lemma:

Lemma 4.8. Scheme (4.8) is convergent in probability to u. More precisely, for any ε in (0, 1) and R > 0, we
have

lim
N→+∞

P
{

max
0≤n≤N

|en| ≥ ε
}

= 0, (4.23)

and

lim
M→+∞

lim sup
N→+∞

P
{

max
0≤n≤N

|un| ≥M
}

= 0. (4.24)

Proof. For any ε in (0, 1), R > 0 and any integer N , similarly as in [12], we define the following random
variables:

θR = inf {t ≤ T, |u(t)| ≥ R − 1} a.s.,
nε = min {n ≤ N, |un − u(nτ)| ≥ ε} a.s.

We have the following inclusion{
max

0≤n≤N
|en| ≥ ε

}
⊂

[
{θR < T} ∩

{
max

0≤n≤N
|en| ≥ ε

}]
∪

[
{θR ≥ T} ∩ {nετ < T} ∩

{
max

0≤n≤N
|en| ≥ ε

}]
∪

[
{θR ≥ T} ∩ {nετ ≥ T} ∩

{
max

0≤n≤N
|en| ≥ ε

}]
·

Since the last event is empty, the last inclusion can be reduced to{
max

0≤n≤N
|en| ≥ ε

}
⊂
[
{θR < T} ∪

[
{θR ≥ T} ∩ {nετ < T}

]]
·

On the one hand, since nτ ≤ T ≤ θR in the second event of the right hand side of the previous inclusion, we
deduce that for any n ≤ N , |u(nτ)| ≤ R − 1 ≤ R. Hence thanks to Lemma 4.7, we know that u(nτ) = uR(nτ)
for any n ≤ N .

On the other hand, if nε < N then |unε−1 − u((nε − 1)τ)| < ε < 1 and so |unε−1| ≤ R. Then we deduce
from (4.22) that unε = unεR . We can then replace enε by enεR . Finally, we conclude to

P
{

max
0≤n≤N

|en| ≥ ε
}
≤ P{θR < T}+ P

{
max

0≤n≤N
|enR| ≥ ε

}
· (4.25)

Next, thanks to Theorem 3.2, we can take the limit in N in (4.25) by the mean of Bienaymé-Tchebycheff
inequality:

lim
N→+∞

P
{

max
0≤n≤N

|en| ≥ ε
}
≤ P{θR < T}·

Then, owing to Lemma 4.7, we can take the limit in R (τR being replaced by θR) and we eventually get (4.23).
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Then (4.23) and the result of boundedness in probability of Proposition 4.2 implies that {un}0≤n≤N is
bounded in probability, uniformly with respect to N . Indeed, we have for any M > 0:

P
{

max
0≤n≤N

|un| ≥M
}
≤ P

{
max

0≤n≤N
|en| ≥ ε

}
+ P

{
sup
t∈[0,T ]

|u(t)| ≥M − ε
}
·

Thus, (4.23) allow us to take the supremum limit in N in the previous inequality for a fixed M ≥ 1. Then we
can take the limit with respect to M and get according to Proposition 4.2 the result (4.24). �

Now, we are able to conclude the proof of Theorem 4.3. Let γ̃ < 1/4, then we can write for some fixed
M ≥ 1, N ≥ 1, τ > 0 such that Nτ = T and C > 0,

P
{

max
1≤nτ≤T

|en| ≥ C
(
τeγ + τ(E|u0|p)1/p

)}
≤ P

{
max

1≤nτ≤T
|enM | ≥ C

(
τeγ + τ(E|u0|p)1/p

)}
+P
{

max
0≤n≤N

|un| ≥M
}

+P

{
sup
t∈[0,T ]

|u(t)| ≥M
}
· (4.26)

By the mean of the Bienaymé-Tchebycheff inequality and Theorem 3.2, we estimate the first term of the right
hand of (4.26). Hence, since γ̃ < 1/4, (4.4), (4.5) and (4.13) lead to

P
{

max
1≤nτ≤T

|en| ≥ C
(
τeγ + τ(E|u0|p)1/p

)}
≤ C(M,p)

Cp
+ P

{
max

0≤n≤N
|un| ≥M

}
+P

{
sup
t∈[0,T ]

|u(t)| ≥M
}
, (4.27)

where the constant C(M,p) does not depend on τ or N .
Next, taking the limitsup in τ towards 0 in (4.27) yields

lim sup
τ→0

P
{

max
1≤nτ≤T

|en| ≥ C
(
τeγ + τ(E|u0|p)1/p

)}
≤ C(M,p)

Cp
+ lim sup

τ→0
P
{

max
0≤n≤N

|un| ≥M
}

+P

{
sup
t∈[0,T ]

|u(t)| ≥M
}
· (4.28)

Eventually, we take the limit in C. Equation (4.24) and estimate of Proposition 4.2 yield the result (4.9). �

Appendix: Proof of Proposition 3.4

Let u be the solution of (3.1)–(3.2). Then, for any (t1, t2) in [0, T ], t2 < t1 for example, u(t1)− u(t2) can be
split into three parts, namely:

u(t1)− u(t2) = (e−t1A − e−t2A)u0

+
∫ t1

0

e−(t1−s)Af(u(s)) ds−
∫ t2

0

e−(t2−s)Af(u(s)) ds

+
∫ t1

0

e−(t1−s)Aσ(u(s)) dW (s) −
∫ t2

0

e−(t2−s)Aσ(u(s)) dW (s). (4.29)
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Let us estimate the first term in L2-norm. We take η ∈ [0, 1] and write

|(e−t1A − e−t2A)u0| = |(e−(t1−t2)A − Id)e−t2Au0|
≤ C|t1 − t2|ηt−η2 |u0|,

where we have used (2.5) and (2.6) in the right hand side. The second term of the right hand side of (4.29) can
be split into two terms:∫ t1

0

e−(t1−s)Af(u(s)) ds−
∫ t2

0

e−(t2−s)Af(u(s)) ds

=
∫ t2

0

(e−(t1−s)A − e−(t2−s)A)f(u(s)) ds+
∫ t1

t2

e−(t1−s)Af(u(s)) ds

= I + II,

where I and II can be estimated as follows. Using (2.5), (2.6) and assumption (3.5):

|I| ≤ Lf

∫ t2

0

∣∣∣As (e−(t1−s)A − e−(t2−s)A
)∣∣∣ (1 + |u(s)|) ds

≤ CLf

∫ t2

0

∣∣∣As+γ1e−(t2−s)A
∣∣∣ ∣∣∣A−γ1

(
e−(t1−t2)A − Id

)∣∣∣ (1 + |u(s)|) ds

≤ CLf |t1 − t2|γ1

∫ t2

0

1
|t2 − s|s+γ1

(1 + |u(s)|) ds,

where γ1 is such that s+ γ1 < 1.
Then, for any integer p ≥ 1, we get

(E|I|p)1/p ≤ C |t1 − t2|γ1

∣∣∣∣∫ t2

0

1
|t2 − s|s+γ1

(1 + |u(s)|) ds
∣∣∣∣
Lp(Ω)

≤ C |t1 − t2|γ1

(
sup
t∈[0,T ]

(E|u(t)|p)1/p + 1

)
. (4.30)

With the same method, we get for II:

(E|II|p)1/p| ≤ C |t1 − t2|1−s
(

sup
t∈[0,T ]

(E|u(t)|p)1/p + 1

)
. (4.31)

In the same manner, the third term of the right hand side of (4.29) can be written as :∫ t1

0

e−(t1−s)Aσ(u(s)) dW (s) −
∫ t2

0

e−(t2−s)Aσ(u(s)) dW (s)

=
∫ t2

0

(e−(t1−s)A − e−(t2−s)A)σ(u(s)) dW (s) +
∫ t1

t2

e−(t1−s)Aσ(u(s)) dW (s)

= III + IV,

where III can be estimated first using Burkholder-Davis-Gundy inequality for example:

(E|III|p)1/p ≤ C
(∫ t2

0

(
E
∣∣∣(e−(t1−s)A − e−(t2−s)A

)
σ(u(s))

∣∣∣p
L0

2(H)

)2/p

ds

)1/2
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and then owing to (3.7), (3.3) and (2.6), we are lead to

(E|III|p)1/p ≤ CLσ

(∫ t2

0

∣∣∣(e−(t1−s)A − e−(t2−s)A
)
Aβ
∣∣∣2
L0

2

(
1 + (E|u(s)|p)2/p

)
ds
)1/2

≤ CLσ

∫ t2

0

∑
i≥0

λ2β
i

(
e−(t1−s)λi − e−(t2−s)λi

)2

(1 + (E|u(s)|p)2/p
)

ds

1/2

≤ C

2
Lσ

∑
i≥0

λ2β−1
i

[
2
(

1− e−(t1−t2)λi
)
−
(

1− e−2(t1−t2)λi
)

−
(
e−t1λi − e−t2λi

)2](
1 + sup

t∈[0,T ]

(E|u(t)|p)2/p

))1/2

≤ CLσ

∑
i≥0

λ2β−1
i

(
1− e−(t1−t2)λi

)1/2(
1 + sup

t∈[0,T ]

(E|u(t)|p)1/p

)

≤ C′|t1 − t2|γ/2
(

1 + sup
t∈[0,T ]

(E|u(t)|p)1/p

)
, (4.32)

for some 0 < γ < 1− α− 2β.
We estimate IV in exactly the same way and we get

(E|IV|p)1/p ≤ C
(

1 + sup
t∈[0,T ]

(E|u(t)|p)1/p

)
|t1 − t2|γ/2. (4.33)

Eventually, (4.30)–(4.33) yield the result. �
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