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A SPECTRAL STUDY OF AN INFINITE AXISYMMETRIC ELASTIC LAYER

Lahcène Chorfi
1

Abstract. We present here a theoretical study of eigenmodes in axisymmetric elastic layers. The
mathematical modelling allows us to bring this problem to a spectral study of a sequence of unbounded
self-adjoint operators An, n ∈ N, in a suitable Hilbert space. We show that the essential spectrum of
An is an interval of type [γ,+∞[ and that, under certain conditions on the coefficients of the medium,
the discrete spectrum is non empty.

Résumé. Nous présentons ici une étude théorique des modes propres dans une couche élastique
axisymétrique. La modélisation mathématique permet de ramener ce problème à l’étude spectrale
d’une suite d’opérateurs An, n ∈ N, non bornés et autoadjoints dans un espace de Hilbert adéquat. On
montre que le spectre essentiel de An est un intervalle du type [γ,+∞[ et que, sous certaines conditions
portant sur les coefficients du milieu, le spectre discret est non vide.
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1. The problem setting

We consider an elastic layer occupying the open set Ω̃ = {(x1, x2, x3) ∈ R3; 0 < x3 < h}. We assume that the
medium is axisymmetric, which means that the density ρ and the Lamé coefficients (λ, µ) depend on (r, z) if
r < R, and are constants if r > R (the triple (r, θ, z) denote the cylindrical coordinates). We suppose that the
surface z = 0 is rigid and the one at z = h is stress free. We call an eigenmode a field of displacement U(x, t),
time-harmonic, travelling in the medium without source for t > 0, and with the amplitude |U | ∈ L2(Ω̃) (i.e.
the energy of the mode is localized in a neighbourhood of the axis of symmetry).

In this paper we consider the question of existence of such eigenmodes which amounts to studying the
spectrum of a sequence of self-adjoint operators An derived from the linearized elasticity equations (n is the
order of the harmonic). Generalized eigenfunction expansion ofAn is essential for the construction of the Green’s
function which enable us to resolve transient problems (with source). This problem appears, for example, in
geophysics in the study of seismic waves generated in soil by a source placed in a borehole (with variable
diameter and/or with casing) (cf. [3, 13]).

This paper is a generalisation of [4] where we studied the guided waves in an elastic space with a symmetry
of revolution, in other words the coefficients depend only on the radial variable r. The spectral theory of
self-adjoint operators and in particular the Min-Max principle are the main tools used (as in [1, 2, 5]).
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Our problem appears to be more difficult than those mentioned above. Indeed, in our case the free boundary
does not permit us to extend directly the results of [1], moreover as the medium is heterogeneous with unbounded
boundary, we cannot also extend the result of [2] and [5].

The main result of this paper is the determination of the essential spectrum of the operator An. Then we
establish two existence results of eigenmodes for suitable Lamé coefficients.

Our paper is organized as follows. In Section 2, we obtain the equations for eigenmodes. Section 3 is devoted
to the mathematical study of the problem. As we shall see, an eigenmode appears as an eigenfunction of an
unbounded self-adjoint operator An (with two variables) defined in an adequate Hilbert space. In Section 4, we
establish the regularity of u, the solution of Anu = f in the exterior domain Ω′R =]R,+∞[×]0, h[. In Section 5,
we study σe(An) which is the essential spectrum of the operators An. This is a fundamental preliminary step in
the analysis of their point spectrum. The value of the lower bound of σe(An) seems predictable but its proof is
not so much trivial. Indeed, as the free surface is unbounded, this leads to significant difficulties in elasticity. To
overcome these difficulties, we introduce weighted Sobolev spaces, which is not classic in the previous works on
waveguides, to obtain a compactness result. In Section 6, we give sufficient existence conditions of eigenmodes
for the operator An. Here we point out the influence of the perturbation.

2. The equations

Because the structure of the layer is cylindrical, we are looking for a particular solution U(x, t) of the form:{
U(r, θ, z, t) = Urer + Uθeθ + Uzez with

(Ur, Uθ, Uz) = (u1(r, z),−i u2(r, z), u3(r, z)) exp i(nθ ± ωt), n ∈ Z,
(1)

where (er, eθ, ez) is the local basis of the cylindrical coordinates (r, θ, z). The field U(r, θ, z, t) must satisfy the
elastodynamic equations (in cylindrical coordinates) [6]:

∂(rσrr)
∂r

+
∂σθr
∂θ

+ r
∂σzr
∂z
− σθθ = rρ

∂2Ur
∂t2

1
r

∂(r2σrθ)
∂r

+
∂σθθ
∂θ

+ r
∂σθz
∂z

= rρ
∂2Uθ
∂t2

∂(rσrz)
∂r

+
∂σθz
∂θ

+ r
∂σzz
∂z

= rρ
∂2Uz
∂t2

(2)

where σ is the stress tensor given by Hooke’s law:

σrr = λdiv U + 2µ
∂Ur
∂r

; σrθ = µ

[
1
r

∂Ur
∂θ

+ r
∂

∂r
(
Uθ
r

)
]

σrz = µ

(
∂Uz
∂r

+
∂Ur
∂z

)
; σθθ = λdiv U +

2µ
r

(
∂Uθ
∂θ

+ Ur

)
σθz = µ

(
∂Uθ
∂z

+
1
r

∂Uz
∂θ

)
; σzz = λdiv U + 2µ

∂Uz
∂z

(3)

with

div U =
1
r

[∂(rUr)
∂r

+
∂Uθ
∂θ

]
+
∂Uz
∂z

and the boundary conditions

U = 0, if z = 0 and σrz(U) = σrθ(U) = σzz(U) = 0, if z = h. (4)
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We denote by u(r, z) = (u1, u2, u3) the field of amplitudes. Therefore, to find the eigenmodes we must solve,
for each n ∈ Z, the following two dimensional problem:

(P̃n)


Find u ∈ D′(Ω), u 6= 0, and ω > 0 such that :√
r|u| ∈ L2(Ω) with Ω = {(r, z) ∈ R2, r > 0, 0 < z < h};
Anu = ω2u in Ω;
u(r, 0) = 0; σnrz(u)(r, h) = σnθz(u)(r, h) = σnzz(u)(r, h) = 0.

where An is the partial differential operator defined formally by:

Anu =
1
ρr

[
− ∂

∂r

(
B
∂u

∂r
+B2u

)
+B1

∂u

∂r
+B3u−

∂

∂r

(
B6

∂u

∂z

)
− ∂

∂z

(
B7

∂u

∂r

)
− ∂

∂z

(
B8

∂u

∂z

)
+B4

∂u

∂z
− ∂

∂z
(B5u)

] (5)

and the matrices B and Bi, i = 1 to 8, are given by:

B =

(λ+ 2µ)r 0 0
0 µr 0
0 0 µr

 ; B1 = Bt2 =

 λ −nµ 0
nλ −µ 0
0 0 0



B3 =


λ+ (n2 + 2)µ

r

n(λ+ 3µ)
r

0
n(λ+ 3µ)

r

n2λ+ (2n2 + 1)µ
r

0

0 0
n2µ

r

 ; B4 = Bt5 =

0 0 λ
0 0 nλ
0 −nµ 0



B6 = Bt7 =

 0 0 λr
0 0 0
µr 0 0

 ; B8 =

µr 0 0
0 µr 0
0 0 (λ+ 2µ)r

 .

The reduced stress vector σnz (u) is given by:

σnrz(u) = µ

(
∂u3

∂r
+
∂u1

∂z

)
σnθz(u) = µ

(
∂u2

∂z
− n

r
u3

)
σnzz(u) = (λ+ 2µ)

∂u3

∂z
+ λ

(
∂u1

∂r
+
u1 + nu2

r

) (6)

Remark 2.1.
1) We have introduced (−i) in the solution (1) to deal with a system with real coefficients.
2) We point out that if the field u = (u1, u2, u3) satisfies (P̃n) then the field u = (u1,−u2, u3) satisfies (P̃−n).
Therefore it is sufficient to study the problem (P̃n) for n ∈ N.
3) The system of solutions of the form (1) is complete since each solution of (2) can be expanded in series
of solutions of type (1). This can be rigorously proved by using Fourier decomposition in θ (see [10] for Ω̃ a
bounded axisymmetric domain).



852 L. CHORFI

3. The variational formulation of P̃n

In the following we suppose that λ, µ, ρ ∈ L∞(Ω) and satisfy the assumptions:
(i) ∃ R > 0 such that (λ(r, z), µ(r, z), ρ(r, z)) = (λ∞, µ∞, ρ∞) for all r > R,
(ii) infΩ λ(r, z) = λ− > 0, infΩ µ(r, z) = µ− > 0, infΩ ρ(r, z) = ρ− > 0.

We also define the velocities of the P and S waves given respectively by

cS =
(
µ∞
ρ∞

) 1
2

and cP =
(
λ∞ + 2µ∞

ρ∞

) 1
2

.

We set λ+ = sup
Ω
λ(r, z), µ+ = sup

Ω
µ(r, z) and ρ+ = sup

Ω
ρ(r, z).

We define the real Hilbert space:

H = {u = (u1, u2, u3) ∈ (L2
loc(Ω))3;

√
r|u| ∈ L2(Ω)} (7)

with the inner product (u, v) =
∫∫

Ω

uvρr dr dz.

We then define a sequence of real Hilbert spaces:

Vn = {u ∈ (H1
loc(Ω))3 such that ‖u‖Vn < +∞ and u(r, 0) = 0}, n ∈ N , (8)

with the norms:

‖u‖2Vn =


∫∫

Ω

[
r(|u|2 + |∇u|2) +

n2 + 1
r

(u2
1 + u2

2) +
n2u2

3

r

]
dr dz if n 6= 1,∫∫

Ω

[
r(|u|2 + |∇u|2) +

1
r

(u1 + u2)2 +
u2

3

r

]
dr dz if n = 1.

(9)

Consider the following bilinear form on Vn × Vn defined by:

an(u, v) =
∫∫

Ω

[
B
∂u

∂r
· ∂v
∂r

+B1
∂u

∂r
· v + u ·B1

∂v

∂r
+B3u · v +

∂u

∂r
·B6

∂v

∂z

+B6
∂u

∂z
· ∂v
∂r

+ u ·B4
∂v

∂z
+ B4

∂u

∂z
· v + B8

∂u

∂z
· ∂v
∂z

]
dr dz.

(10)

The variational formulation of (P̃n) is:

(Pn) Find u ∈ Vn, u 6= 0, and ω > 0 such that: an(u, v) = ω2(u, v), ∀v ∈ Vn.

The bilinear form an(., .) is obviously symmetric and continuous, we shall show that it is coercive and, con-
sequently, it defines a self-adjoint operator An in H. Then the problem (Pn) is equivalent to the spectral
problem:

(Pn) Find u ∈ D(An), u 6= 0, and ω > 0 such that: Anu = ω2u.

The coerciveness of an(., .)

We have the following decomposition:

an(u, u) =
∫∫

Ω

λ|divnu|2r dr dz +
∫∫

Ω

µεn(u, u)r dr dz, (11)
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where

divnu =
∂u1

∂r
+
∂u3

∂z
+
u1 + nu2

r
, εn(u, u) = 2

∑
τ,σ

εnτσ(u)2 (12)

with εn(u) the symmetric tensor

εnrr(u) =
∂u1

∂r
; εnzz(u) =

∂u3

∂z
; εnθθ(u) =

nu2 + u1

r
;

2εnrz(u) =
∂u3

∂r
+
∂u1

∂z
; 2εnrθ(u) =

nu1 + u2

r
− ∂u2

∂r
; 2εnθz(u) =

∂u2

∂z
− nu3

r
.

To prove the coerciveness of an it suffices to establish the following inequality∫∫
Ω

εn(v, v)r dr dz ≥ K‖v‖2Vn(Ω), ∀v ∈ Vn with K > 0. (13)

For this we use Korn’s inequality in the half-space Πh := {x ∈ R3, x3 < h} (cf. [9]):

∫∫∫
Πh

3∑
i,j=1

|eij(ũ)|2 dx ≥ C1

∫∫∫
Πh

|∇ũ|2 dx, for ũ ∈ H1(Πh)3 with C1 > 0. (14)

The inequality (14) is also valid for ũ ∈W 1
0 (Ω̃) := {ṽ ∈ H1(Ω̃)3 ; ṽ|z=0 = 0}.

We would like now to derive (13) from (14). We proceed in two steps.

Step 1. We recall some transformations between Cartesian and cylindrical coordinates (cf. [10]). Each
vector field ũ = (ũ1, ũ2, ũ3) is transformed into a vector field u = (ur, uθ, uz) on Ω̃ by

ur = ũ1 cos θ + ũ2 sin θ , uθ = −ũ1 sin θ + ũ2 cos θ , uz = ũ3. (15)

We get the following integrals∫∫∫
Ω̃

|∇ũ|2 dx =
∫∫∫

Ω̃

{ ∑
τ=r,θ,z

r

(
|∂uτ
∂r
|2 + |∂uτ

∂z
|2
)

+
1
r

[(
∂ur
∂θ
− uθ

)2

+
(
∂uθ
∂θ

+ ur

)2

+
(
∂uz
∂θ

)2
]}

dr dθ dz ,

(16)

∫∫∫
Ω̃

3∑
i,j=1

|eij(ũ)|2 dx = 2
∫∫∫

Ω̃

∑
τ,σ

|ετ,σ(u)|2r dr dθ dz, (17)

where

εrr(u) =
∂ur
∂r

, εθθ(u) =
1
r

(
ur +

∂uθ
∂θ

)
, εzz(u) =

∂uz
∂z

,

2εrz(u) =
∂ur
∂z

+
∂uz
∂r

, 2εθr(u) =
1
r

∂ur
∂θ

+
∂uθ
∂r
− uθ

r
, 2εzθ(u) =

∂uθ
∂z

+
1
r

∂uz
∂θ

.

Step 2. We consider test functions u(n), n ∈ N, such that:

u(n)(r, θ, z) = (v1(r, z) cosnθ, v2(r, z) sinnθ, v3(r, z) cosnθ) (18)



854 L. CHORFI

where v = (v1, v2, v3) is an arbitrary field in Vn. The vector field ũ(n) associated to u(n) by the inverse
transformation (15) belongs to the space W 1

0 (Ω̃).
Inserting the test functions ũ(n) in (14), and taking into consideration (16) and (17), we derive the estimate

∫∫
Ω

εn(v, v)r dr dz ≥ C1

∫∫
Ω

{
3∑
i=1

r

(
|∂vi
∂r
|2 + |∂vi

∂z
|2
)

+
1
r

[
(n2 + 1)(v2

1 + v2
2) + n2v2

3 + 4nv1v2

]}
dr dz.

(19)

To conclude, we use the inequality

(n2 + 1)(v2
1 + v2

2) + 4nv1v2 ≥
{

(n− 1)2(v2
1 + v2

2) if n 6= 1
2(v1 + v2)2 if n = 1 (20)

and the following Poincaré inequality

∫∫
Ω

( 3∑
i=1

|∂vi
∂z
|2
)
r dr dz ≥ π2

4h2

∫∫
Ω

|v|2r dr dz , for v ∈ Vn. (21)

Hence, we have proved the following

Proposition 3.1. The bilinear form an(u, v) is coercive i.e. there exists a constant K > 0 (independent of n)
such that

an(u, u) ≥ K‖u‖2Vn , ∀u ∈ Vn.

Applying the Kato first representation theorem (see [7]), we assert that an(., .) spans a self-adjoint operator An
defined in H by:{

D(An) = {u ∈ Vn ;Anu ∈ H and σnrz(u)(r, h) = σnθz(u)(r, h) = σnzz(u)(r, h) = 0},

Anu = Anu for u ∈ D(An).

Using the generalized Green’s formula, we obtain

an(u, v) = (Anu, v) for (u, v) ∈ D(An)× Vn.

Notice that the traces σnτz(u)(r, h), τ = r, θ, z, lie in the space H−1/2
loc (R+).

Now we are going to study the spectrum of the operator An, but in a preliminary step we study the essential
spectrum. First of all we prove a result on the regularity of an element u ∈ D(An) in the exterior domain Ω′R1 =
]R1,+∞[× ]0, h[ with R1 > R (i.e. outside the perturbation). Such a result will be useful in Paragraph 5.1 to
get a compactness result.

4. A regularity result

We consider the equation:

Anu = f̃ , (f̃ ∈ H). (22)
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Due to the coerciveness of an(., .), the estimation ‖u‖Vn ≤ C‖f̃‖H follows. Our purpose now is to obtain a
better estimation on Ω′R1 , namely:

‖
√
ru‖2,Ω′R1

≤ C(‖f̃‖H + ‖u‖Vn).

This inequality would be obvious if the domain was bounded. First of all we transform the equation (22). We
set v =

√
ru, then v satisfies in Ω′R = ]R,+∞[× ]0, h[ the system:

µ∞

(
∂2v1

∂r2
+
∂2v1

∂z2

)
+ (λ∞ + µ∞)

∂

∂r

(
∂v1

∂r
+
∂v3

∂z

)
= f1(v)

∂2v2

∂r2
+
∂2v2

∂z2
= f2(v)

µ∞

(
∂2v3

∂r2
+
∂2v3

∂z2

)
+ (λ∞ + µ∞)

∂

∂z

(
∂v1

∂r
+
∂v3

∂z

)
= f3(v)

where f(v) = (f1(v), f2(v), f3(v)) satisfies the inequality:

‖f(v)‖0,Ω′R ≤ c(‖f̃‖H + ‖u‖Vn).

For v̄ = (v1, v3), we consider the quantities:
σ13(v̄) = µ∞

(
∂v3

∂r
+
∂v1

∂z

)
σ33(v̄) = (λ∞ + 2µ∞)

∂v3

∂z
+ λ∞

∂v1

∂r
·

The condition of free surface {σnrz(u) = σnθz(u) = σnzz(u) = 0, for z = h} implies together with (6) that

σ13(v̄) + µ∞
u3

2
√
r

= 0, for z = h,

σ33(v̄) + λ∞

(
u1

2r
+
u1 + nu2

r
√
r

)
= 0, for z = h,

∂v2

∂z
(r, h) +

n

r
√
r
u2(r, h) = 0.

Consequently, the traces σ13(v̄)(r, h), σ33(v̄)(r, h) and
∂v2

∂z
(r, h) lie in the space H1/2(R,+∞). Then the field

v̄ ∈ [H1(Ω′R)]2 satisfies the 2D elasticity problem:

(P1)


Av̄ = f in Ω′R,

v̄(r, 0) = 0, ∀r > R,

σ13(v̄)(r, h) = g1(r), σ33(v̄)(r, h) = g3(r), ∀r > R,

with
Av̄ = µ∞∆v̄ + (λ∞ + µ∞)∇(∇.v̄).

Moreover we have:
‖g1‖ 1

2
+ ‖g3‖ 1

2
≤ c‖u‖Vn (with ‖g‖s := ‖g‖Hs).
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The function v2 ∈ H1(Ω′R) satisfies the scalar problem:

(P2)


∆v2 = f2, in Ω′R,

v2(r, 0) = 0,

∂v2
∂z (r, h) = g2(r), ∀r > R,

with the estimation ‖g2‖ 1
2
≤ c‖u‖Vn .

Now we look at the regularity of v in the unbounded domain Ω′R1 . Without loss of generality, we can suppose
that R1 = R+ 2, then there exists a cut-off function ϕ ∈ D(]− 1, 1[) such that:∑

m≥0

ϕ(r −m) = 1, ∀r > 0.

We let ϕm(r) = ϕ(r −m), Im =]m− 1,m+ 1[ and Ωm = Im×]0, h[.
Setting vm(r, z) = ϕm(r)v(r, z) where v is the solution of (P1) − (P2), we see that v̄m = (vm1, vm3) and vm2

satisfy regular elliptic boundary-value problems in the bounded domain Ωm. Hence vm ∈ H2(Ωm)3 and we have
the following inequality:

‖vm‖2,Ωm ≤ c(‖f‖0,Ω + ‖g‖ 1
2
),

where the constant c is independent of m (the diameter of Ωm which is uniformly bounded). Since v =
∑
m≥m0

vm

on Ω′R1 where m0 is the integer part of R1, we obtain:

‖v‖2,Ω ≤ c1
∑
m≥m0

‖vm‖2,Ωm ≤ c2(‖f‖0,Ω + ‖g‖ 1
2
).

Hence we have the result:

Proposition 4.1. Let u ∈ Vn be a solution of (22), then u satisfies:
(1)
√
ru ∈ H2(Ω′R1

)3 with Ω′R1
=]R1,+∞[×]0, h[ and R1 > R,

(2) ‖√ru‖2,Ω′R1
≤ c(R1)(‖f̃‖H + ‖u‖Vn).

5. The essential spectrum of An

The operator An is self-adjoint and non negative, then its spectrum is a subset of R+. Since the imbedding of
Vn in H is not compact, the resolvent of An is not compact and its spectrum σ(An) is composed of a continuous
part (the essential spectrum σe(An)) and sometimes of a discrete part σd(An) corresponding to the eigenmodes.
We recall (see [12]) that a real number σ ∈ σe(An) if and only if there exists a singular sequence up ∈ D(An)
such that:

‖up‖ = 1 , up ⇀ 0 weakly in H and Anu
p − σup → 0 in H. (23)

Often the essential spectrum of the global operator A, defined on Ω̃ as Hilbertian sum of the operators An,
coincides with the spectrum of the non-perturbed operator Ā (corresponding to the homogeneous layer). The
study of the reduced operators (obtained after performing Fourier transformation in the horizontal direction)
enables us to predict the lower bound of σ(Ā). Thus we should have σe(An) ⊂ σ(Ā). But the initial hypothesis
(σe(A) = σ(Ā)) is not proved in this general case. We can prove this strictly (as in [5]) under a restrictive
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hypothesis on Lamé coefficients, namely if λ and µ are Lipschitz continuous functions, which restricts the
generality. The aim of this section is to prove the inclusion σe(An) ⊂ σ(Ā) in the general case (i.e. when
λ, µ ∈ L∞(Ω)). First of all we establish a compactness result based on Proposition 4.1.

5.1. A compactness result

We recall some properties of weighted Sobolev spaces. To our knowledge theses spaces have not been used
before on the similar works in waveguides.

Definitions. For s, t ∈ R, we define the Hilbert spaces:

L2,s(R) = {u ∈ L2
loc(R) ; ρsu ∈ L2(R)} , Hs,t(R) = {u ∈ S′(R) ; F (ρtu) ∈ L2,s(R)}

with the norms ‖u‖s,t = ‖F (ρtu)‖L2
s

where F is the Fourier transform and ρ(x) = (1 + x2)1/2.
If I ⊂ R is an unbounded interval we set Hs,t(I) = {u = v|I ; v ∈ Hs,t(R)}.
We have the properties:
1) If s ≥ s′ and t ≥ t′ then the embedding Hs,t(R) ⊂ Hs′,t′(R) is continuous.
2) If s > s′ ≥ 0 and t > t′ then the embedding Hs,t(R) ⊂ Hs′,t′(R) is compact.
3) If s ≥ 0 and t ∈ R then the dual (Hs,t(R))′ = H−s,−t(R).

Proposition 5.1. Let (up)p∈N be a sequence of D(An) satisfying ‖Anup‖H ≤ c for all p. Then we can extract
a subsequence, still denoted (up), which converges weakly in Vn to an element u such that:

(i)
√
rup(., h)→√ru(., h) strongly in Y ∗ = (H−

1
2 ,t(R̄,+∞))3 with R̄ > R and t > 0,

(ii)
√
r
∂up

∂r
(., h)→

√
r
∂u

∂r
(., h) weakly in Y = (H

1
2 ,−t(R̄,+∞))3,

(iii) up(., h)→ u(., h) strongly in (L2(R̄,+∞))3.

Proof. It follows from the coerciveness of an(., .) that ‖up‖Vn ≤ c for all p. Then there exists a subsequence
which converges weakly in Vn to an element u. The proposition 4.1 shows that ∀p, ‖√rup‖2,Ω′

R̄
≤ c(‖Anup‖H+

‖up‖Vn) ≤ c1. This implies that the sequence of traces (
√
rup(., h))p is bounded in the space H

3
2 (R̄,+∞)3.

This last space is compactly embedded in the space Y = H
1
2 ,−t(R̄,+∞)3 with t > 0 arbitrary. Therefore√

rup(., h) tends to
√
ru(., h) strongly in Y . Since the embedding Y ⊂ Y ∗ = H−

1
2 ,t(R̄,+∞)3 is continuous,

we obtain (i).

The sequence
√
r
∂up

∂r
(r, h) is bounded in H

1
2 (R̄,+∞)3, hence in Y , which proves the property (ii). The

property (iii) follows from the fact that the sequence (up(., h)) is bounded in H
1
2 ,

1
2 (R̄,+∞)3 which is embedded

compactly in L2(R̄,+∞)3. �
Lemma 5.2. For every u ∈ D(An):

an(u, u) ≥ µ∞
∫∫

Ω′
R̄

|∇u|2r dr dz + µ∞pn(u, u), (R̄ > R), (24)

with

pn(u, u) = 2
∫ +∞

R̄

[r
∂u3

∂r
(r, h)u1(r, h)− nu2(r, h)u3(r, h)] dr

+
∫ h

0

[u2
1(R̄, z) + u2

2(R̄, z) + 2nu1(R̄, z)u2(R̄, z)] dz

−2
∫ h

0

R̄
∂u3

∂z
(R̄, z)u1(R̄, z) dz
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Proof. an(., .) can be written in the form:

an(u, u) =
∫∫

Ω

λ|divnu|2r dr dz +
∫∫

Ω

µεn(u, u) dr dz (25)

with divnu given in (12) and

rεn(u, u) = r|divnu|2 + r|∇u|2 +
1
r

((n2 + 1)(u2
1 + u2

2) + n2u2
3 + 4nu1u2)

+2r
(
∂u1

∂z

∂u3

∂r
− ∂u1

∂r

∂u3

∂z

)
− 2(nu1 + u2)

∂u2

∂r

−2(u1 + nu2)
∂u1

∂r
− 2n

∂

∂z
(u2u3)− 2u1

∂u3

∂z
·

Using the inequality (20) the decomposition (25) gives

an(u, u) ≥ µ∞

∫∫
Ω′
R̄

|∇u|2r dr dz

+2µ∞
∫∫

Ω′
R̄

[
r

(
∂u1

∂z

∂u3

∂r
− ∂u1

∂r

∂u3

∂z

)
− (nu1 + u2)

∂u2

∂r

]
dr dz

−2µ∞
∫∫

Ω′
R̄

[
(u1 + nu2)

∂u1

∂r
+ n

∂

∂z
(u2u3) + u1

∂u3

∂z

]
dr dz.

Since
√
ru ∈ H2(]R̄,+∞[× ]0, h[)3 (see Prop. 4.1), we integrate twice by parts to get (24). �

The following proposition is the key result which will be useful in the next paragraph to determine the lower
bound of the essential spectrum of An.

Proposition 5.3. Let (up) be a singular sequence of D(An). Then

lim
p→+∞

pn(up, up) = 0

Proof. It follows from the properties of singular sequence (see (23)) that up ⇀ 0 weakly in Vn and the sequence
(Anup)p is bounded in H. The result follows from the regularity of up (see Prop. 4.1) and the compactness
result (see Prop. 5.1) noting that when p→ +∞∫ +∞

R̄

up1(r, h)
∂up3
∂r

(r, h)r dr =
〈√

r
∂up3
∂r

(r, h),
√
rup1(r, h)

〉
Y×Y ∗

→ 0.

�

5.2. The essential spectrum

The following lemma gives a lower bound for the essential spectrum of An.

Lemma 5.4. For all n ∈ N we have:

σe(An) ⊂ [ω2
1,+∞[ with ω2

1 =
π2

4h2
c2S (26)
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Proof. Let ω2 ∈ σe(An). We suppose the contrary (i.e. ω2 < ω2
1) and let (up) the associated singular sequence.

The sequence (up) is bounded in Vn(ΩR̄) = {u = v|ΩR̄ , v ∈ Vn}, ΩR̄ =]0, R̄[× ]0, h[, which is embedded
compactly in L2(ΩR̄). Then we can extract a subsequence satisfying

lim
p→∞

∫∫
ΩR̄

|up|2ρr dr dz = 0. (27)

Combining Lemma 5.2 and Poincaré inequality (21) we obtain the inequality

an(up, up) ≥ ω2
1

∫∫
Ω′
R̄

|up|2ρ∞r dr dz + µ∞pn(up, up), (28)

therefore

an(up, up)− ω2 ≥ (ω2
1 − ω2)

∫∫
Ω′
R̄

|up|2ρ∞r dr dz − ω2

∫∫
ΩR̄

|up|2ρr dr dz + µ∞pn(up, up). (29)

As lim
p→∞

an(up, up) = ω2, the Proposition 5.3 together with (27) and (28) lead to

lim
p→∞

∫∫
Ω′
R̄

|up|2ρ∞r dr dz = 0,

which is in contradiction with
∫∫

Ω

|up|2ρr dr dz = 1, which shows ω2 ≥ ω2
1. �

Theorem 5.5. For all n ∈ N we have σe(An) = [ω2
1,+∞[.

Proof. We will now construct singular sequences to prove that the inclusion (26) is in fact an equality. For
σ > ω2

1, we built a generalized eigenfunction uσ of the non-perturbed operator Ān, obtained from An by putting
(λ, µ, ρ) = (λ∞, µ∞, ρ∞). To do this, let us consider the following problem:

Find uσ ∈ Dloc(Ān) ∩ L∞(Ω)3 such that Ānuσ = σuσ.

This problem can be solved explicitly by using the method of potentials (see for example [8]). The field uσ is
given by 

uσ1 (r, z) = (Jn−1(kr)− n

r
Jn(kr))(kg1(z) + g′2(z))

uσ2 (r, z) = −n
r
Jn(kr)(g1(z) +

1
k
g′2(z))

uσ3 (r, z) = Jn(kr)(g1(z) + kg′2(z))
where Jn(r) is the Bessel’s function of the first kind and of order n, and{

g1(z) = A(k) cos(αz) +B(k) sin(αz)

g2(z) = C(k) cos(βz) +D(k) sin(βz)

with α2 =
σ

c2P
− k2, β2 =

σ

c2S
− k2 and k = k1(σ) is an analytic function defined implicitly by the following

dispersion equation:

2k2αβ[ξ − µ∞(k2 − β2)] + αβ[4k2µ∞ − ξ(k2 − β2] cos(αh) cos(βh) +

k2[ξ(k2 − β2)− 4µ∞α2β2] sin(αh) sin(βh) = 0
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with ξ = λ∞
σ

c2P
+ 2µ∞α2. The curve σ → k1(σ), σ > ω2

1, is plotted numerically, it is strictly increasing and has

the properties: k1(σ) > 0 if σ > ω2
1 and lim

σ→∞

σ

k1(σ)
= c2P .

The field uσ is not in Vn. Consider now the sequence (up) in H defined as follows:

up(r, z) =
1
√
p
ϕp(r)uσ(r, z)

where (ϕp) is a sequence of cut-off functions defined by:
ϕp(r) = ϕ( rp),

ϕ ∈ C∞0 (]0,+∞[), ϕ(r) = 0 if r < R,∫ +∞
0 |ϕ|2 dr = 1.

The sequence (up) satisfies all the properties of a singular sequence. This proves that σ ∈ σe(An). As σe(An)
is a closed set, the theorem is proved. �

6. The point spectrum

We are interested now in the point spectrum of the operator An. The eigenvalues ω2 such that ω2 < ω2
1 form

the discrete spectrum; they can be studied by means of the Min-Max principle (see [11]) as will be seen in
the following. The study of the so-called embedded eigenvalues such that ω2 ≥ ω2

1 is much more complicated.
Obviously, this discrete spectrum may be empty: it is the case for example if the layer is homogeneous. Therefore,
our goal is to find out the types of perturbations for which eigenmodes exist.

Hypothesis. Suppose that there exists a rectangle G =]a, b[×]0, h[, a ≥ 0, such that:

µ(r, z) = µ∞ and ρ(r, z) = ρ∞ in Ω \G. (H1 )

We put: µ0 = sup
G
µ(r, z) and λ0 = sup

G
λ(r, z).

Theorem 6.1. Suppose that the couple (µ, ρ) satisfies hypothesis (H1), then there exists a number δ > 0 (which
depends of (n, h, b− a, µ0, λ0)) such that the discrete spectrum of An is non empty if

µ∞ − µ0 ≥ δ. (H2 )

Proof. We consider the Bessel’s operatorB1v = −1
r

d
dr

(
r

dv
dr

)
+

v

r2
in I =]a, b[,

v(a) = v(b) = 0.

Denoting by v the eigenfunction of B0 associated to the first eigenvalue α1, we have:∫
I

(
r

∣∣∣∣dvdr

∣∣∣∣2 +
v2

r

)
dr = α1 and

∫
I

|v|2r dr = 1.
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Considering the function g(z) =
√

2
ρ∞h

sin(
ω1

cS
z), we can verify that:

∫ h

0

|g|2ρ∞ dz = 1 and
∫ h

0

|g′|2µ∞ dz = ω2
1.

Now we put u(r, z) = (w(r)g(z), 0, 0), where w(r) is the extension by zero of v(r) outside the interval I. Then
we have:

an(u, u) =
∫∫

Ω

[
(λ+ 2µ)r

∣∣∣∣dwdr
∣∣∣∣2 |g|2 + 2λw

dw
dr
|g|2

+
λ+ (n2 + 2)µ

r
|w|2|g|2 + rµ|w|2

∣∣∣∣dgdz

∣∣∣∣2 ]dr dz

=
∫∫

Ω

(λ+ 2µ)r
(

dw
dr

+
w

r

)2

|g|2 dr dz − 4
∫∫

Ω

µw
dw
dr
|g|2 dr dz

+
∫∫

Ω

rµ|w|2
∣∣∣∣dgdz

∣∣∣∣2 dr dz + n2

∫∫
Ω

µ

r
|w|2|g|2 dr dz.

On the other hand we have:∫∫
Ω

(λ+ 2µ)r
(

dw
dr

+
w

r

)2

|g|2 dr dz ≤ λ0 + 2µ0

ρ∞

∫
I

(
dv
dr

+
v

r

)2

r dr ×
∫ h

0

|g|2ρ∞ dz

≤ λ0 + 2µ0

ρ∞
α1,∫∫

Ω

µ

r
|w|2|g|2 dr dz ≤ µ0

ρ∞

∫
I

|v|2 dr
r
≤ µ0

ρ∞
α1,

and according to (H2) we have:∫∫
Ω

rµ|w|2
∣∣∣∣dgdz

∣∣∣∣2 dr dz =
∫∫

G

rµ|v|2
∣∣∣∣dgdz

∣∣∣∣2 dr dz ≤
∫ h

0

(µ∞ − δ)
∣∣∣∣dgdz

∣∣∣∣2 dz ≤ ω2
1 − δ

ω2
1

µ∞
·

We also have

4
∫∫

Ω

µ|w|
∣∣∣∣dwdr

∣∣∣∣ |g|2 dr dz ≤ 4
µ0

ρ∞

∫
I

|v|
∣∣∣∣dvdr

∣∣∣∣dr ≤ 2
µ0

ρ∞

∫
I

(
|v|2
r

+ r

∣∣∣∣dvdr

∣∣∣∣2
)

dr = 2α1
µ0

ρ∞
,

which gives

an(u, u)− ω2
1‖u‖2 ≤ α1

(
λ0 + (n2 + 4)µ0

ρ∞

)
− δ ω

2
1

µ∞
·

The left hand side is negative if δ >
4α1h

2

π2
[λ0 + (n2 + 4)µ0]. The Min-Max principle proves that An has at

least one eigenvalue less than ω2
1. �

Remark 6.2.
1) If a = 0 then α1 = (

β1

b
)2 where β1 is the first root of Bessel function J1(r). More generally α1 decreases

when (b− a) grows.
2) Theorem 6.1 means that if in an elastic layer there is a region which is considerably softer than the rest
then one would expect a ”trapped mode” localised around the soft region, moreover it is a radial field. From
the proof we can see that only a finite number of harmonics occur in the layer. This number increases with
δ0 = µ∞ − µ0.
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The following theorem complete the previous one.

Theorem 6.3. If the following condition is satisfied:∫∫
ΩR

(µ
ρ
|g′|2 − ω2

1|g|2
)
ρr dr dz < 0, with g(z) =

√
2

ρ∞h
sin
(
ω1

cS
z

)
, (H3 )

then the operator A1 has at least one discrete eigenvalue.

Proof. It suffices to find u ∈ V1 such that a1(u, u)− ω2
1‖u‖2 < 0. For a > R we define ϕa(r) by:

ϕa(r) =


1 if 0 ≤ r ≤ R,

log a
r

log a
R

if R ≤ r ≤ a,

0 if a ≤ r.

We verify that:
√
rϕa ∈ L2(R+),

√
rϕ′a ∈ L2(R+) and lim

a→∞

∫ ∞
0

|ϕ′a|2r dr = 0.

Putting u(r, z) = (ϕa(r)g(z),−ϕa(r)g(z), 0), then u ∈ V1 and the decomposition (25) gives for n = 1:

a1(u, u)− ω2
1‖u‖2 = b1(u, u)

with

b1(u, u) =
∫∫

Ω

(
(λ+ 3µ)|ϕ′a|2|g|2 + 2µ|ϕa|2|g′|2 − ω2

1|g|2|ϕa|2ρ
)
r dr dz

= (λ∞ + 3µ∞)
∫ ∞

0

|ϕ′a|2r dr + 2
∫∫

ΩR

(
µ

ρ
|g′|2 − ω1|g|2

)
ρr dr dz.

Under the hypothesis (H3), we can see that a1(u, u)−ω2
1‖u‖2 < 0 if a is sufficiently large and the result follows

from the Min-Max Principle. �

Remark 6.4.
1) The condition (H3) is satisfied, for example, if ρ = ρ∞ and µ∞ − µ0 > 0.
2) In Theorem 6.3 we consider the situation when δ0 = µ∞ − µ0 is small. In this case there exists always a
flexural mode (i.e. harmonic of order n = 1).

7. Conclusion

We have studied in this article the spectrum of a self-adjoint operator which models the self-oscillations of an
axisymmetric elastic layer considered as a locally perturbed homogeneous layer. In geophysics applications, the
earth’s layer is more often stratified, then it is important to extend the obtained results to perturbed stratified
layer. Finally, we can think of the situation when the perturbation is not axisymmetric (the case where the
harmonics in θ are coupled).
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