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THE BOUNDARY BEHAVIOR OF A COMPOSITE MATERIAL

Maria Neuss-Radu
1

Abstract. In this paper, we study how solutions to elliptic problems with periodically oscillating
coefficients behave in the neighborhood of the boundary of a domain. We extend the results known
for flat boundaries to domains with curved boundaries in the case of a layered medium. This is done
by generalizing the notion of boundary layer and by defining boundary correctors which lead to an
approximation of order ε in the energy norm.

Résumé. On étudie ici le comportement au voisinage de la frontière du domaine de solutions de
problèmes elliptiques à coefficients oscillant périodiquement. Les résultats, connus pour des frontières
plannes, sont étendus au cas de frontières courbes et pour un milieu stratifié. On généralise pour cela
la notion de couche limite et on définit des correcteurs de frontière qui conduisent à une approximation
d’ordre ε dans la norme énergie.
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1. Introduction

Various thermal and electrical conductivity problems in a periodic composite are modeled on the microscopic
level by partial differential equations with periodically oscillating coefficients of the following type:

(P ε) Find uε ∈ H1
0 (Ω) : −∂i

(
Aεij(x)∂juε(x)

)
= f(x) , ∀x ∈ Ω ,

where Ω ⊂ Rn is a bounded domain, f ∈ L2(Ω), and ε > 0 represents the period of the oscillations in the
coefficients. The coefficient matrix Aε describing the conductivity tensor of the material is given by:

Aε(x) := A
(x
ε

)
,

where the matrix A(y) is defined as follows:
(i) The elements Aij are periodic with period 1; i.e., Aij are defined on the unit cube Y = [0, 1]n and extended

by periodicity over the whole space Rn,
(ii) Aij = Aji,
(iii) A is bounded and strongly elliptic; i.e., there exist 0 < λ ≤ Λ < +∞ such that, for a.e. y ∈ Y,

λ |η|2 ≤ Aij(y)ηiηj ≤ Λ |η|2 , ∀η ∈ Rn.

We are interested in the behavior of the solution uε for small values of the parameter ε. In this case the
numerical treatment of this microscopic model is very difficult, often even impossible. In applications, however,
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one is usually not interested in what exactly happens on the microscopic scale; one rather needs macroscopic
(effective) approximations which take into account the local effects. In order to find such approximations, we
look for the limit of uε for ε→ 0 in properly chosen function spaces. This approach is called homogenization.

There are essentially two methods used to get the equations for the macroscopic approximations. The first
one is the method of asymptotic expansions, see [8,21], or [19], and consists of two steps: the formal derivation
of the homogenized equation and then the rigorous proof of the convergence of the microsolutions to the solution
of the derived equation. The second method introduced by Nguetseng and Allaire in [18], resp. [3], replaces the
two steps with a single step by using a new type of convergence called two-scale-convergence.

The macroscopic (homogenized) problem corresponding to (P ε) is the following boundary value problem
with constant coefficients:

(P 0) Find u0 ∈ H1
0 (Ω) : −∂i

(
A0
ij∂ju

0(x)
)

= f(x) , ∀x ∈ Ω

where the homogenized coefficients A0
ik representing the tensor of effective conductivity of the composite are

given by

A0
ik := 〈Aij(δjk + ∂yjw

k)〉Y = 〈(δil + ∂ylw
i)Alj(δjk + ∂yjw

k)〉Y . (1)

Here and in the following, 〈.〉Y denotes the mean value operator over Y. The functions wk, k = 1, . . . , n used
in the definition of the homogenized coefficients are defined on the cell Y = [0, 1]n and are the solutions to the
so-called cell-problems:

(Ck) Find wk ∈ H1
per(Y ) : ∂yi

(
Aij(y)(∂yjw

k(y) + δjk)
)

= 0 , ∀y ∈ Y

The function space H1
per(Y ) is the completion of the space C∞per(Y ) of infinitely differentiable, periodic functions

on the cell Y = [0, 1]n with respect to the H1-norm.
Concerning the convergence of the solutions uε to u0 for ε→ 0, the following theorem holds:

Theorem 1.1. The sequence uε converges to u0 strongly in L2(Ω), weakly in H1
0 (Ω) and in the two-scale sense.

Proof. See for example [3]. �
Now the question arises whether we have strong convergence of uε towards u0 in H1

0 (Ω). In general, this
is not the case, i.e., the derivatives of uε do not converge strongly in L2, although they converge weakly. To
improve the convergence, one needs a corrector.

Theorem 1.2. Using the solutions wk of the cell-problems, we can construct the approximation

u1
ε = u0 + ε∂ku

0wk
( .
ε

)
(2)

with the property that uε − u1
ε converges to zero in H1(Ω) strongly.

Proof. See [6] or [8]. �
The study of the accuracy of the approximation u1

ε given in (2) is done by looking for estimates on the rate
of convergence. To get such estimates, we have to treat separately the cases when the boundary ∂Ω of the
domain Ω is empty or not. In the first case, which includes the situations when Ω = Rn or when we have
periodic boundary conditions on ∂Ω, the approximation u1

ε obtained by using the homogenization techniques
leads to an estimate of order ε for the energy error, see [5]. In the second case, the error estimate in the energy
norm is only of order ε

1
2 and can be found in [6, 13]. This is due to the fact that the periodic structure of the

approximation u1
ε is not consistent with the homogeneous Dirichlet boundary condition for the solution uε. In

order to catch the boundary effects on the solution uε, we have to improve this approximation by adding a
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corrector. A possible choice for this corrector is given in the following theorem. However, in order to be able to
deal with problems on unbounded domains, we first have to introduce several further function spaces.

Consider a domain Ω bounded or unbounded, and let C∞(Ω̄) be the space of all infinitely differentiable
functions on Ω such that all derivatives have continuous extensions to ∂Ω. We define the space Ḣ1(Ω) as the
closure of

{u ∈ C∞(Ω̄)/R : ‖∇u‖L2(Ω) ≤ C}
in the norm

‖u‖Ḣ1(Ω) := ‖∇u‖L2(Ω) .

We also introduce the function space Ḣ1
0 (Ω) as the subspace of Ḣ1(Ω) consisting of functions with vanishing

trace on ∂Ω.

Theorem 1.3. Let Ω be a bounded or unbounded domain with Lipschitz-boundary. For Ω bounded, let uε and
u0 be the solutions of (P ε), respectively (P 0), with f ∈ L2(Ω). For Ω unbounded and f ∈ C∞0 (Ω̄), we search for
solutions uε and u0 lying in Ḣ1

0 (Ω).
Further, let vε be the solution of the problem:

− ∂i
(
Aεij(x)∂jvε(x)

)
= 0 for x ∈ Ω,

vε(x) = −ε∂ku0(x)wk
(x
ε

)
for x ∈ ∂Ω.

(3)

If the homogenized solution u0 satisfies the condition
∥∥∇2u0

∥∥
L2(Ω)

≤ C, and the cell-solutions wk ∈ W 1,∞(Y ),
then we have the estimate∥∥∥uε − (u0 + ε∂ku

0wk
( ·
ε

)
+ vε

)∥∥∥
Ḣ1(Ω)

≤ Cε
∥∥∇2u0

∥∥
L2(Ω)

. (4)

Proof. For bounded domains, the result has been proven in [15,16]. For unbounded domains see the Appendix
in [17]. �

The drawback of the corrector vε given in Theorem 1.3 is that it is given only implicitly, and that we do
not know anything about its decay. Thus, the numerical computations for this corrector would have the same
complexity as the computation for the initial solution uε. To avoid this, we would like to have correctors
whose energies concentrate in a neighborhood of the boundary of the domain. So far, such boundary correctors
could be defined only for the situations when the domain is a half space whose boundary intersects the axes
of periodicity in an angle with rational slope, see [6, 7, 9, 12, 14, 20], when it is an infinite strip with the same
property, see [19], or a rectangular domain, see [4, 10]. For these domains, the boundary corrector can be
constructed with the help of special functions called boundary layers. They are solutions to elliptic problems
defined on a semi-infinite strip [0, 1]n−1 × [0,∞], periodic in y1, . . . , yn−1, decaying exponentially with respect
to yn.

For geometries other than the ones mentioned above, the construction of the classical boundary layers is not
possible and, to our knowledge, there are no results concerning boundary correctors for general (say smooth)
domains.

In our paper, we generalize the notion of boundary layer and define boundary correctors for general smooth
domains. After restricting to a special class of domains, in the case of a layered medium, we prove that the
defined boundary corrector is weakly differentiable with respect to the boundary parameters and that it leads
to an error estimate of order ε with respect to the energy norm.

The paper is organized as follows: In Section 2, we recall the techniques used for the construction of the
boundary correctors for the half space and give a new proof for the ε-estimate in the energy norm. In Section 3,
we generalize the notion of boundary layer in the sense that we define boundary layers corresponding to each
point of the boundary ∂Ω, and that we drop the periodicity assumptions for the boundary layers. Using
these generalized boundary layers and a tubular neighborhood of ∂Ω, we define boundary correctors for general
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smooth domains. In order to prove weak differentiability of the boundary corrector with respect to the boundary
parameters, in Section 4 we restrict to laminate composites and domains of the form:

Ω = {x = (x1, . . . , xn) ∈ Rn | (x1, . . . , xn−1) ∈ Rn−1, xn > g(x1, . . . , xn−1)},

where g ∈ C2(Rn−1) satisfies ‖g‖C2(Rn−1) ≤ G < ∞. For this situation, we prove an error estimate of order ε
with respect to the energy norm.

2. An estimate of order ε for the half space

In this section, we consider the problem:

Find uε ∈ Ḣ1
0 (Ω) , such that∫

Ω

Aεij(x)∂juε(x)∂iϕ(x) dx =
∫

Ω

f(x)ϕ(x) dx , ∀ϕ ∈ Ḣ1
0 (Ω) (5)

on the half space Ω = {x ∈ Rn, xn > 0} with f ∈ C∞0 (Ω̄). A boundary corrector for this problem was constructed
for example in [6, 7, 9, 19], where we can also find energy estimates of order ε for the error between uε and the
approximation given by help of the boundary corrector. In this section, we will prove a similar estimate by using
a new approach. Our approach has two advantages: less regularity is required for the homogenized solution u0,
and – which is very important – it can also be used for domains with curved boundaries, as we will show in
Section 4.2.

We will now briefly recall some existence and regularity results concerning the boundary layers for the half
space.

Definition 2.1. Let the Aij satisfy the conditions (i), (ii), (iii). The boundary layers are the solutions
wbl,k , k = 1, . . . , n of the problems

Find wbl,k such that:

− ∂yi
(
Aij(y)∂yjw

bl,k(y)
)

= 0 , ∀y ∈ Z
wbl,k(y′, 0) = −wk(y′, 0) , ∀y′ ∈ Z ′

wbl,k is periodic in y′

∇wbl,k decreases exponentially as yn →∞.

(6)

where Z = Z ′×]0,∞[ is called the boundary layer cell and Z ′ =]0, 1[n−1 (see Fig. 1).

To give the variational formulation of the boundary layer problems and also a rigorous formulation of the
condition on the decay, we introduce the following weighted spaces, see [14]. For γ > 0, set

Wγ(Z) = {w ∈ L2(]0, R[,H1
per(Z

′)),∀R <∞, eγyn∇w ∈ L2(Z)}

and
W 0
γ (Z) = {w ∈Wγ(Z), w(y′, 0) = 0}.

They are Hilbert spaces for the scalar product given by:

〈v, w〉Wγ (Z) =
∫
Z

e2γyn∇v∇w dy.

This scalar product then induces the norm

‖w‖Wγ (Z) = ‖eγyn∇w‖L2(Z)
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Figure 1. The boundary layer cell Z.

Let now ŵk be an extension in Wγ(Z) of the boundary values wk |Z′ to the whole boundary layer cell Z. Then
the variational formulation of the boundary layer problems is:

Find wbl,k + ŵk ∈W 0
γ (Z) :∫

Z

Aij(y)∂yjw
bl,k(y)∂yiϕ(y)dy = 0, ∀ϕ ∈W 0

γ (Z). (7)

The following theorem gives the existence and uniqueness of the wbl,k in Wγ(Z).

Theorem 2.2. Let ρ1 be the smallest nonzero eigenvalue of the Laplace-operator on Z ′ for periodic boundary
conditions. Then for every 0 < γ <

λ
√
ρ1

2Λ there exist solutions wbl,k to the boundary layer-problems (7), and
they are uniquely determined in Wγ(Z). The following estimates hold:∥∥wbl,k∥∥

Wγ(Z)
≤ C

∥∥ŵk∥∥
Wγ (Z)

.

Proof. This theorem is a more precise formulation of the result given in Theorem 10.1 from [14]. �
Let us now refer to some regularity properties of the wbl,k.

Theorem 2.3. Let the coefficients Aij ∈ C0,κ(Rn) , 0 < κ < 1. Then for y0 ∈ Z and R > 0 with y0
2 ≥ 4R we

have that wbl,k ∈ C1,κ(B̄4R(y0)) for k = 1, . . . , n, and the following estimates hold:∥∥∇wbl,k∥∥
C0,κ(B̄R(y0))

≤ C(R)e−γy
0
2
∥∥wbl,k∥∥

Wγ (Z)
. (8)

Proof. Without loss of generality, we can assume that B4R(y0) ⊂ Z. Then wbl,k ∈ H1
2 (B4R(y0)) is a solution of

the equation

∂yi
(
Aij(y)∂yjw

bl,k(y)
)

= 0 (9)

in B4R(y0). Then standard regularity results imply that wbl,k ∈ C1,κ(B̄4R(y0)), and when we set

w̄bl,k =
1

|B4R(y0)|

∫
B4R(y0)

wbl,k(y) dy

we have the estimate: ∥∥wbl,k − w̄bl,k∥∥
C1,κ(B̄R(y0))

≤ C(R)
∥∥wbl,k − w̄bl,k∥∥

L2(B4R(y0))
.
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Now, the Poincaré inequality on B4R(y0) yields:∥∥∇wbl,k∥∥
C0,κ(B̄R(y0))

≤ C(R)
∥∥∇wbl,k∥∥

L2(B4R(y0))

= C(R)e−γ(y0
2−4R)

(∫
B4R(y0)

e2γ(y0
2−4R)

∣∣∇wbl,k∣∣2) 1
2

≤ C(R)e−γy
0
2

(∫
B4R(y0)

e2γy2
∣∣∇wbl,k∣∣2) 1

2

≤ C(R)e−γy
0
2
∥∥wbl,k∥∥

Wγ(Z)
. �

Theorem 2.4. Let the coefficients Aij ∈ C0,κ(Rn) , 0 < κ < 1. Let y0 ∈ Z ′ and R > 0. We define:

B+
R(y0) = BR(y0) ∩ {yn > 0}

and

TR(y0) = BR(y0) ∩ {yn = 0}.

Then wbl,k ∈ C1,κ(B+
4R(y0) ∪ T4R(y0)) and∥∥∇wbl,k∥∥

C0,κ(B̄+
R(y0))

≤ C(R)
(∥∥wbl,k∥∥

Wγ (Z)
+
∥∥wk∥∥

C1,κ(Ȳ )

)
. (10)

Proof. This theorem can be proven in analogy to Theorem 2.3. �
Using the boundary layers wbl,k given by Definition 2.1, we now define the boundary corrector wε by:

wε(x) = ε∂ku
0(x)wbl,k(

x

ε
), for all x ∈ Ω, (11)

where u0 is now the solution of the homogenized problem:

Find u0 ∈ Ḣ1
0 (Ω) , such that∫

Ω

A0
ij∂ju

0(x)∂iϕ(x) dx =
∫

Ω

f(x)ϕ(x) dx , ∀ϕ ∈ Ḣ1
0 (Ω). (12)

Adding this boundary corrector to the approximation u1
ε given in (2), we obtain the following approximation

for the solution uε:

uappε (x) := u0(x) + ε∂ku
0(x)wk(

x

ε
) + wε(x). (13)
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This approximation leads to an energy-estimate of order ε:

Theorem 2.5. If u0 satisfies
∥∥∇2u0

∥∥
L2(Ω)

≤ C and the coefficients satisfy the additional assumption Aij ∈
C0,κ(Rn) with 0 < κ < 1, then the following estimate holds:∥∥∥uε − (u0 + ε∂ku

0wk
( ·
ε

)
+ wε

)∥∥∥
Ḣ1(Ω)

≤ Cε
∥∥∇2u0

∥∥
L2(Ω)

. (14)

Proof. Using the fact that uε and u0 satisfy the equations (5), respectively (12), we have for all ϕ ∈ Ḣ1
0 (Ω):∫

Ω

Aεij(x)∂j
(
uε(x) − u0(x)− ε∂ku0(x)

(
wk
(x
ε

)
+ wbl,k

(x
ε

)))
∂iϕ(x)dx

=
∫

Ω

(
A0
ij∂ju

0(x)−Aεij(x)∂ju0(x)−Aεij(x)ε∂j
(
∂ku

0(x)wk
(x
ε

)))
∂iϕ(x)dx

−
∫

Ω

Aεij(x)ε∂j
(
∂ku

0(x)wbl,k
(x
ε

))
∂iϕ(x)dx

=
∫

Ω

(
A0
ij −Aεij(x)−Aεik(x)∂ykw

j
(x
ε

))
∂ju

0(x)∂iϕ(x)dx (15)

−ε
∫

Ω

Aεij(x)∂jku0(x)(wk + wbl,k)
(x
ε

)
∂iϕ(x)dx

−
∫

Ω

Aεij(x)∂yjw
bl,k
(x
ε

)
∂ku

0(x)∂iϕ(x)dx.

For the first term on the right hand side, we use the same technique as in Theorem A.1 from the Appendix
in [17], see also [16], in order to obtain:∫

Ω

(
A0
ij −Aεij(x) −Aεik(x)∂ykw

j
(x
ε

))
∂ju

0(x)∂iϕ(x) dx ≤ O(ε
∥∥∇2u0

∥∥
L2(Ω)

‖∇ϕ‖L2(Ω)) + σ(R),

with σ(R) → 0 for R → ∞. For the second term, we observe that by the weak maximum principle the wbl,k

are bounded in L∞, and we can estimate this term by Cε
∥∥∇2u0

∥∥
L2(Ω)

‖∇ϕ‖L2(Ω). To estimate the third term

in (15), we use the fact that the wbl,k are solutions of the boundary layer-problems (7) and therefore

∂yi
(
Aij(y)∂yjw

bl,k(y)
)

= 0.

The subsequent Lemma 2.6 then yields the existence of skew-symmetric tensors (βkil) ∈ (Wγ(Z))n
2

such that

∂ylβ
k
il(y) = Aij(y)∂yjw

bl,k(y).

Taking into account that ∂yk = ε∂xk , we obtain for the third term in (15):∫
Ω

Aij(
x

ε
)∂yjw

bl,k(
x

ε
)∂ku0(x)∂iϕ(x)

=
∫

Ω∩BR
∂ylβ

k
il(
x

ε
)∂ku0(x)∂iϕ(x) +

∫
Ω\BR

Aij(
x

ε
)∂yjw

bl,k(
x

ε
)∂ku0(x)∂iϕ(x)

= ε

∫
Ω∩BR

∂l(βkil(
x

ε
)∂ku0(x))∂iϕ(x) − ε

∫
Ω∩BR

βkip(
x

ε
)∂lku0(x)∂iϕ(x)

+
∫

Ω\BR
Aij(

x

ε
)∂yjw

bl,k(
x

ε
)∂ku0(x)∂iϕ(x).
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Due to the Hölder-regularity of the coefficients Aij , the ∇wbl,k and βkil are bounded in L∞. Together with the
regularity of u0 and ϕ, this implies that the second term on the right hand side of the relation above is of the
desired form and that the third term tends to zero for R→∞. Integrating by parts for ϕ ∈ Ḣ1

0 (Ω)∩ {C∞(Ω̄) |
supp(ϕ) ∩ ∂Ω = ∅}, we get:

ε

∫
Ω∩BR

∂l(βkil(
x

ε
)∂ku0(x))∂iϕ(x) = ε

∫
Ω∩BR

βkil(
x

ε
)∂ku0(x)∂liϕ(x) − ε

∫
Ω∩∂BR

βkil(
x

ε
)∂ku0(x)∂iϕ(x)nl.

Now the first term is zero because of the skew-symmetry of βkil, and the second term tends to zero for R→∞.
Since the subspace

{ϕ ∈ C∞(Ω̄) | ‖∇ϕ‖L2(Ω) ≤ C, supp(ϕ) ∩ ∂Ω = ∅}
is dense in Ḣ1

0 (Ω) with respect to the norm ‖·‖Ḣ1(Ω), we can put

ϕ(x) = uε(x)− u0(x) − ε∂ku0(x)(wk + wbl,k)
(x
ε

)
in (15). Then, for R → ∞, and by using the ellipticity of the coefficients Aεij , we get the desired energy-
estimate (14). �

In the proof of Theorem 2.5 we have used the following lemma. We will also use it in Section 4.2 when we
deal with the case of a domain with a curved boundary.

Lemma 2.6. Let hi, i = 1, . . . , n be defined on the boundary layer cell and have the following properties:
1. There exists γ > 0 such that (eγynhi) ∈ (L2(Z))n

2. ∂yihi = 0 in the sense of distributions.

Then there exists a skew-symmetric matrix (βil) with (eγynβil) ∈ (H1
2 (Z))n

2

such that

∂ylβil = hi, i = 1, . . . , n. (16)

Proof. Let ζi, i = 1, . . . , n be solutions of the following problems:
∆ζi = hi in Z;
ζi(y′, 0) = 0 for y′ ∈ Z ′ and i = 1, . . . , n− 1;
∂ζn
∂yn

(y′, 0) = 0 for y′ ∈ Z ′;
ζi periodic in y′;
∇ζi decreases exponentially as yn →∞.

For i = 1, . . . , n− 1, the existence and uniqueness of ζi ∈Wγ(Z) follows directly from Theorem 10.1 in [14]. To
study the problem for ζn, we first have to prove that hn satisfies the compatibility condition:∫

Z

hn(y)dy =
∫
∂Z

ni
∂ζn
∂yi

=
∫
Z′

∂ζn
∂yn

(y′, 0)dσ = 0.

Using the fact that (hi) is divergence-free and periodic in y′, we get:

∫
Z′

∫ b

a

∂hn(y)
∂yn

= −
n−1∑
i=1

∫
Z′

∫ b

a

∂hi(y)
∂yi

= 0.

Therefore ∫
Z′
hn(y′, a) =

∫
Z′
hn(y′, b), ∀ a, b > 0.
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If we now let b→∞, we have ∫
Z′
hn(y′, α) = 0 ∀α > 0,

and by integrating over α from 0 to ∞, we get∫
Z

hn(y)dy =
∫ ∞

0

∫
Z′
hn(y′, α)dy′dα = 0.

Existence and uniqueness of ζn in the space

Ẇγ(Z) = {w ∈ L2(]0, R[,H1
per(Z

′))/R,∀R <∞, eγyn∇w ∈ L2(Z)}

now follow from Tartar’s Lemma A.1 by using the techniques of Theorem 10.1 in [14]. By using standard
techniques, we can also prove the regularity of the second derivatives of ~ζ, i.e., that eγyn∇2ζi ∈ (L2(Z))n

2

.
Let us now define the matrix βil by:

βil := ∂ylζi − ∂yiζl.
Then, obviously, βil is skew-symmetric, and due to the regularity of the ζi, it satisfies (eγynβil) ∈ (H1

2 (Z))n
2

.
Let us now verify the relation (16):

∂ylβil = ∂yl∂ylζi − ∂yl∂yiζl = hi − ∂yl∂yiζl.

We have to show that ∂yiΞ = 0, for Ξ :=
∑n
l=1 ∂ylζl. Using the properties of the solutions ζl and the relation

∂yihi = 0, we have Ξ as the unique solution of the following problem:
∆Ξ = 0 in Z
Ξ(y′, 0) = 0 for y′ ∈ Z ′
Ξ is periodic in y′

∇Ξ decreases exponentially for yn →∞
and is necessarily equal to zero. Thus, (βil) satisfies the desired relation. �

3. The construction of boundary correctors for domains

with curved boundary

The results concerning boundary correctors which were presented in the previous section have been obtained
for a domain with a very special geometry. Now it is of interest whether the techniques developed there can
also be used for more general domains. Obviously, if we drop the special assumptions on the geometry of the
domain, we lose the periodicity properties parallel to the boundary, and the boundary layer cell becomes a half
space. It is therefore clear that the techniques of the previous section can be applied to arbitrary domains only
if we generalize the boundary layers such that the case of an infinite period is included.

In this section, we will construct boundary correctors for domains Ω of class C2 defined in the following.

Definition 3.1. We say that a domain Ω ⊂ Rn is of class Ck, for k ∈ IN , k ≥ 1, if for any ω ∈ ∂Ω there
exist a neighborhood Uω and a orthogonal coordinate transform Aω : Rn → Rn, two numbers αω, βω > 0 and a
function aω : Rn−1 → R, such that, if z1, . . . , zn are the new Cartesian coordinates given by the transformation
Aω and Wn−1(αω) is the cube:

{(z1, . . . , zn−1) | |zi| < αω , i = 1, . . . , n− 1} in Rn−1,
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Figure 2. Domain of class Ck.

then the following properties hold:
1. aω ∈ Ck(Wn−1(αω)) with Kω := ‖aω‖Ck(Wn−1(αω)) <∞ , aω(0) = 0 , and ∇aω(0) = 0.
2. Aω(ω) = 0
3. The boundary portion Aω(Uω ∩ ∂Ω) is given by the function yn = aω(z1, . . . , zn−1), i.e.,

A(Uω ∩ ∂Ω) = {(z1, . . . , zn) | (z1, . . . , zn−1) ∈Wn−1(αω), yn = aω(z1, . . . , zn−1)}

4. The intersection Aω(Uω ∩ Ω) is given by:

Aω(Uω ∩ Ω) = {(z1, . . . , zn) | (z1, . . . , zn−1) ∈Wn−1(αω), 0 < zn − aω(z1, . . . , zn−1) < βω}

5. The intersection Aω(Uω ∩CΩ) can be described by:

Aω(Uω ∩CΩ) = {(z1, . . . , zn) | (z1, . . . , zn−1) ∈Wn−1(αω), −βω < zn − aω(z1, . . . , zn−1) < 0}.

We say that Ω is uniformly of the class C2 if we can choose αω = α, βω = β and Kω = K for α, β,K > 0.

Remark 3.2. The definition above is equivalent to the usual definition for domains of class Ck, see [22].

Theorem 3.3 (Tubular neighborhoods). Let Ω ⊂ Rn be a domain uniformly of class Ck , k ≥ 2 and ~v ∈
C2(∂Ω) be a vector-field such that for each ω ∈ ∂Ω we have |~v(ω)| = 1 and

(Aω~v)n(0) ≥ ρ > 0 (17)

where the transformation Aω is the same as in Definition 3.1. Then there exist a number δ > 0 , δ =
δ(α, β,K, ‖~v‖C2(∂Ω , ρ), and a neighborhood Vδ of ∂Ω such that the transformation

Φ : ∂Ω×]− δ, δ[−→ Vδ , (ω, t) 7→ ω + t~v(ω)

is a C2-diffeomorphism.

Proof. The assertion of the theorem will be proven if for each ω ∈ ∂Ω we can find a neighborhood W (ω)×]−δ, δ[
of the point (ω, 0) ∈ ∂Ω× R with δ = δ(α, β,K, ρ) such that:

(a) the transformation
Φ : W (ω)×]− δ, δ[−→ Φ(W (ω)×]− δ, δ[)

is a C2-diffeomorphism, and
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(b) on the union
⋃
ω∈∂ΩW (ω)×]−δ, δ[ the transformation Φ remains bijective, and is thus a C2-diffeomorphism

from ∂Ω×]− δ, δ[ into Φ(∂Ω×]− δ, δ[).
Because the domain Ω is uniformly of class C2 in the sense of Definition 3.1, it is sufficient to show the
assertion (a) in a coordinate-neighborhood

Uαβ(0) = {(z′, zn) : |z′| < α, |zn − aω(z′)| < β}.

In this coordinate-neighborhood, the function Φ is given by:
z1

. . .
zn−1

t

 7→


z1

. . .
zn−1

aω(z′)

+ t


(Aω~v)1(z′, aω(z′))
. . .
(Aω~v)n−1(z′, aω(z′))
(Aω~v)n(z′, aω(z′))

 . (18)

Now it is possible to choose a smaller neighborhood ]−α′, α′[n−1×]−β′, β′[⊂ Uαβ(0), with α′ and β′ depending
on α, β and K, such that Φ |]−α′,α′[n−1×]−β′,β′[ takes values in Uαβ(0).

Due to the smoothness assumptions on the function aω and on the vector-field ~v, it follows that
Φ ∈ C2(]− α′, α′[n−1×]− β′, β′[, Uαβ(0)), and there exists a constant CΦ = CΦ(K, ‖~v‖C2(∂Ω)) with

‖Φ‖C2(]−α′,α′[n−1×]−β′,β′[) ≤ CΦ.

In order to show that Φ is a C2-diffeomorphism, we intend to use the Inverse Mapping Theorem. Therefore let
us first calculate the Jacobian of Φ in 0:

∇Φ(0) =


1 0 0 (Aω~v)1(0)
. . .
0 1 (Aω~v)n−1(0)

∂aω
∂z1

(0), . . . , ∂aω
∂zn−1

(0) (Aω~v)n(0)

 .

Due to the relation (17) and the properties of aω from Definition 3.1, we have that

det∇Φ(0) = (Aω~v)n(0) ≥ ρ > 0.

One also easily sees that ∥∥∇Φ(0)−1
∥∥ ≤ √2

ρ
·

Then, by the Inverse Mapping Theorem A.5, there exists

r = r(CΦ, ρ, α
′, β′)

with ]− r, r[n⊂]− α′, α′[n−1×]− β′, β′[ such that

Φ |]−r,r[n :]− r, r[n→ Φ(]− r, r[n) ⊂ Uα,β(0)

is a C2-diffeomorphism.
If we set

δ =
r

2
,

the assertion of (b) is also satisfied, and the proof is complete. �
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Figure 3. The domain HP,~v.

Remark 3.4. For domains of class Ck , k ≥ 3, a possible choice for the vector-field ~v would be the inner normal
~ν to ∂Ω, locally given by:

~ν = (ν1, ..., νn) =
1
K

(−∂aω
∂z1

, ...,− ∂aω
∂zn−1

, 1), where K =

[
1 +

n−1∑
i=1

(
∂aω
∂zi

)2
] 1

2

.

After these considerations on the domain, let us turn our attention to the construction of the boundary cor-
rectors. As we have already mentioned in the beginning of this section, in order to define boundary correctors
for general smooth domains, we first have to extend the notion of boundary layer. This will be done by help
of the following construction (see Fig. 3). For any point P ∈ Rn and vector ~v ∈ Sn−1, we denote by TP,~v the

hyperplane containing the point P and having the normal vector ~v:

TP,~v = {y ∈ Rn | (y − P, v) = 0}

and by HP,~v be the half space with boundary TP,~v and having ~v as inner normal:

HP,~v = {y ∈ Rn | (y − P, v) > 0}.

Let the coefficients Aij(y) be defined by (i), (ii), (iii), and wk ∈ H1
per(Y ) be the solutions of the cell-

problems (Ck).

Definition 3.5. We define the functions wP,~vk : HP,~v → R to be the solutions of the following problems:

∂yi

(
Aij(y)∂yjw

P,~v
k

)
= 0, y ∈ HP,~v

wP,~vk (y) = −wk(y), y ∈ TP,~v∥∥∥wP,~vk ∥∥∥
L∞(HP,~v)

≤ C. (19)
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Since the restriction of the cell-solution wk to the boundary TP,~v is not periodic in general, we cannot use
Theorem 2.2 to obtain existence and uniqueness of the solutions wP,~vk to problem (19). Instead, we use the
theory of de Giorgi, Nash and Moser to obtain the following theorem:

Theorem 3.6. Let the coefficients Aij ∈ C0,κ(Rn). Then there exists a unique solution wP,~vk ∈ C1,κ(H̄P,~v) .

Proof. The existence of the solutions wP,~vk can be proven by using Perron’s method of subsolutions (resp.
supersolutions), see for example [11]. The uniqueness of the solution wP,~vk follows from Theorem A.4 in the
following way: Let w1 and w2 be two solutions for the problem (19). Then the difference w1,2 = w1 − w2

satisfies

∂yi
(
Aij(y)∂yjw

1,2
)

= 0, y ∈ HP,~v

w1,2(y) = 0, y ∈ TP,~v∥∥w1,2
∥∥
L∞(HP,~v)

≤ C. (20)

Consider now y ∈ HP,~v and let y0 ∈ TP,~v be the orthogonal projection of y on TP,~v. Let R > 0 be such that y ∈
BR(y0). For eachR0 > R , w1,2 lies in H1,2(HP,~v∩B2R0(y0)), and it vanishes on ∂(HP,~v∩B2R0(y0))∩B√RR0

(y0).
Then by Theorem A.4, for each y′ ∈ HP,~v ∩BR(y0) we have that

∣∣w1,2(y)− w1,2(y′)
∣∣ ≤ C [ R

R0

]κ
sup

HP,~v∩BR0(y0)

∣∣w1,2
∣∣ .

For R0 → ∞, the right hand side of the relation above tends to zero. Since w1,2 = 0 on TP,~v,
we obtain w1,2 ≡ 0. �

By help of the functions wP,~vk , we can give the following generalization for the boundary layers: Let Ω be a
domain of class C2. In each ω ∈ ∂Ω, we consider the inner unit normal ~ν(ω).

Definition 3.7. We define the generalized boundary layers in a point ω ∈ ∂Ω as the unique solutions

w
ω
ε ,~ν(ω)

k : Hω
ε ,~ν(ω) → R

of the problems (19), corresponding to the parameters (ωε , ~ν(ω)).

Remark 3.8. For the special case of Section 2, the generalized boundary layers coincide with the classical,
periodic boundary layers wk,bl defined on the standard boundary layer-cell Z =]0, 1[(n−1)×]0,∞[ and extended
periodically to the half space.

Using the generalized boundary layers, we define the boundary corrector wε by the formula:

wε(x) =

{
ε∂ku

0(x)w
ω
ε ,~ν(ω)

k

(
x
ε

)
η(t) x = Φ(ω, t) ∈ Ωδ

0 x ∈ Ω \ Ωδ
(21)

where the subdomain Ωδ is the intersection of the tubular neighborhood Vδ from Theorem 3.3 with Ω and is
given by:

Ωδ := {x ∈ Ω | x = Φ(ω, t) , ω ∈ ∂Ω , 0 < t < δ},
and η is a cut-off function defined by:

η ∈ C∞(Ω, [0, 1]), η(t) =
{

1 0 < t < δ
2

0 δ < t
.
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If we compare the boundary correctors given by (11), respectively (21), we see that in the case of curved
boundaries they have a more complicated form. In (11) they are determined by the values of the boundary
layers on a standard boundary layer cell. For curved boundaries, the boundary corrector is given in each point
x = Φ(ω, t) by the values of the generalized boundary layers corresponding to the parameters ω

ε , ~ν(ω).
For the study of the regularity of the boundary corrector with respect to the boundary parameters, we need

some knowledge about the decay of the generalized boundary layers w
ω
ε ,~ν(ω)

k in the direction normal to the
boundary. However, in [17] we have proved that the exponential decay property of the classical boundary layers
does not hold in the case of a general domain. Since, in general, we do not have precise decay estimates of the
generalized boundary layers, we will restrict to the special case of a layered medium.

4. The case of a layered medium

In this section, we will study the regularity of the boundary corrector for one class of domains with curved
boundaries in the case of a layered medium. Then, we will show that this boundary corrector leads to an error
estimate of order ε with respect to the energy norm. For simplicity, we consider the two-dimensional case here,
but all arguments can easily be extended to the multidimensional case.

Let the domain Ω ⊂ R2 (see Fig. 4) be given by

Ω = {x = (x1, x2) | x1 ∈ R, x2 > g(x1)}, (22)

where g ∈ C2(R) satisfies

‖g‖C2(R) ≤ G <∞, (23)

and set
φg := arctan ‖∇g‖C0(R) .

We start from the microscopic problem:

For f ∈ C∞0 (Ω̄), find uε ∈ Ḣ1
0 (Ω), such that∫

Ω

Aεij(x1)∂juε(x)∂iϕ(x) dx =
∫

Ω

f(x)ϕ(x) dx , ∀ϕ ∈ Ḣ1
0 (Ω) (24)

on the domain Ω defined in (22). The coefficients Aεij(x1) describing the layered medium structure satisfy the
conditions (i), (ii), (iii) from Section 1.

Since Ω is smooth, we can construct the boundary corrector analogously to Section 3. We consider again the
solutions wP,~vk to the auxiliary problems (19). If φ is the angle between TP,~v and the y1-axes, then the vector ~v
is given by ~v(φ) = (− sinφ, cosφ). Therefore, we will use P, φ as the parameters determining the solution wP,~vk ,
which from now on will be denoted by wP,φk . We will also use the following notations:

HP,φ := HP,~ν(φ) and TP,φ := TP,~ν(φ).

For the special case of a layered medium, we can give the following theorem concerning the behavior at infinity
of the solutions wP,φk .

Theorem 4.1. Let Zφ := Z ∩HP,φ and |φ| < π
2 . Then for

0 < γ ≤ γφ :=
λ
√
ρ1

2Λ
(1 + tan2 φ)−2 (25)
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Figure 4. The domain Ω.

the functions wP,φk satisfy the following problems:

∂yi

(
Aij(y1)∂yjw

P,φ
k (y)

)
= 0, y ∈ HP,φ

wP,φk (y) = −wk(y), y ∈ TP,φ

wP,φk is periodic parallel to TP,φ with period
1

cosφ

eγy2∇wP,φk ∈ L2(Zφ). (26)

Here ρ1 = 4π2 is the smallest nonzero eigenvalue of the Laplace-operator on [0, 1] for periodic boundary condi-
tions.

Proof. We intend to apply Theorem 2.2. Therefore, we first transform the problem (26) into a problem on the
standard half plane R× (0,∞). For each P ∈ R2 and φ ∈]− π

2 ,
π
2 [ we consider the transformation:

R× (0,∞) → HP,φ(
ỹ1

ỹ2

)
7→

(
y1

y2

)
=
(
ỹ1 + P1

ỹ2 + ỹ1 tanφ+ P2

)
. (27)

Under this transformation, the coefficient matrix becomes:

ÃP,φ(ỹ1) = T t(φ)A(y1(ỹ1))T (φ) (28)

where

T (φ) =

( ∂y1
∂ỹ1

∂y1
∂ỹ2

∂y2
∂ỹ1

∂y2
∂ỹ2

)−t
=
(

1 − tanφ
0 1

)

and the functions

w̃P,φk (ỹ1, ỹ2) = wP,φk (y1(ỹ1, ỹ2), y2(ỹ1, ỹ2))
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are the solutions to the following problems:

∂ỹi

(
ÃP,φij (ỹ1)∂ỹj w̃

P,φ
k (ỹ)

)
= 0 , ỹ ∈ R×]0,∞[

w̃P,φk (ỹ1, 0) = −w̃k(ỹ1)

w̃P,φk periodic in ỹ1 with the period 1

eγỹ2∇w̃P,φk ∈ L2(Z̃)

(29)

where Z̃ =
]
− 1

2 ,
1
2

[
×]0,∞[. By Theorem 2.2, for all γ satisfying

0 < γ <
λφ
√
ρ1

2Λφ
,

the problem (29) has a unique solution in the Wγ(Z̃), which can be extended by periodicity to the entire domain
R×]0,∞[. The spectral condition of the matrix ÃP,φ can be estimated by

Λφ
λφ
≤ Λ
λ

(1 + tan2 φ)2

and the assertion of the theorem is proven. �

Remark 4.2. From the relation (25) we observe that for φ→ π
2 we have that γφ → 0. In [17] we have proven

that this result is optimal.

Let us now define the generalized boundary layers and the boundary corrector. We consider in each point
ω(x1) = (x1, g(x1)) ∈ ∂Ω the inner unit normal ~ν(x1) = (− sinφ(x1), cosφ(x1)), where φ(x1) is the angle
between the tangent in ω(x1) to ∂Ω and the x1-axis.

Definition 4.3. The generalized boundary layers w
ω(x1)
ε ,φ(x1)

k are defined as the solutions to the problems (26)
corresponding to the parameters ω(x1)

ε , φ(x1).

Remark 4.4. The regularity assumption (23) on the domain Ω together with Theorem 4.1 imply a uniform

exponential decay for the generalized boundary layers w
ω(x1)
ε ,φ(x1)

k .

For the definition of the boundary corrector, we will use the special geometry of our problem, i.e. the fact
that the boundary ∂Ω is a graph with bounded slope, as well as the layered media structure.

Definition 4.5. The boundary corrector wε : Ω→ R is defined as follows:

wε(x) = ε∂ku
0(x)w

ω(x1)
ε ,φ(x1)

k

(x
ε

)
. (30)

4.1. Regularity of the boundary corrector

By help of the boundary corrector wε, we can give the following approximation for the solution uε:

uappε (x) := u0(x) + ε∂ku
0(x)wk

(x
ε

)
+ wε(x). (31)

To determine the accuracy of this approximation with respect to the energy norm, we have to prove an energy
estimate for the difference uε − uapp

ε . The first step toward such an estimate consists in studying the regularity
of the boundary corrector wε. Since the regularity of the homogenized solution u0 is well known, we have to
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Figure 5. Variation of the point P .

analyze the regularity of the generalized boundary layers w
ω(x1)
ε ,φ(x1)

k

(
x
ε

)
with respect to x. Thus, we first study

the differentiability of the auxiliary functions wP,φk in the variables (P, φ, y).
The regularity with respect to y follows from Theorem 2.3 and Theorem 2.4.

Theorem 4.6. If we assume the coefficients Aij ∈ C0,κ(R) with 0 < κ < 1, then for each P ∈ Rn and
φ ∈ ]−φg, φg[ the C0,κ-norm of the gradient of the functions wP,φk can be estimated by:

∥∥∥∇wP,φk ∥∥∥
C0,κ(Zφ)

≤ C
(∥∥∥wP,φk ∥∥∥

Wγ (Zφ)
+
∥∥wk∥∥

C1,κ(Ȳ )

)
.

This result especially implies that the wP,φk are Lipschitz-continuous with respect to y, with an uniform Lipschitz
constant on Zφ.

For the study of the differentiability with respect to P and φ, we will use the following two lemmata.

Lemma 4.7. Let Aij ∈ C0,κ(R) with κ ∈ (0, 1) , P,Q be two neighboring points in R2 and let φ ∈] − φg, φg[.
Then for each y ∈ HP,φ ∩HQ,φ the following estimate holds:∣∣∣wP,φk (y)− wQ,φk (y)

∣∣∣ ≤ C ‖P −Q‖ .
Proof. We write the difference above in the following way:

wP,φk (y)− wQ,φk (y) = wP,φk (y)− wP
′,φ

k (y) + wP
′,φ

k (y)− wQ,φk (y)

where the point P ′ lies on the line TP,φ and has the first coordinate Q1, see Figure 5. Now we observe that
the first difference is zero because wP,φk and wP

′,φ
k are the solutions of the same problem defined on the half

space HP,φ. For the second difference, we use the fact that the coefficients and the boundary condition of the
problems (26) do not change if we shift the domain HP ′,φ by a vector proportional to ~e2. Therefore we have
that:

wP
′,φ

k (y)− wQ,φk (y) = wP
′,φ

k (y)− wP
′,φ

k (y + (P ′ −Q))



424 M. NEUSS-RADU

P

P

1

φ τ

y
1 

y
2

TP,φ

ΤP,τ

Figure 6. Variation of the angle φ.

and using the Lipschitz-continuity of wP
′,φ

k , we obtain:∣∣∣wP ′,φk (y)− wQ,φ(y)
∣∣∣ ≤ C |P ′2 −Q2| ≤ C |P ′2 − P2|+ |P2 −Q2|
≤ C |tanφ| |P1 −Q1|+ C |P2 −Q2|
≤ C ‖P −Q‖ .

�

Lemma 4.8. Let Aij ∈ C0,κ(R) with κ ∈ (0, 1) , P ∈ R2 and φ, τ be two neighboring angles in ]− φg, φg[, see
Figure 6. Then for each y ∈ HP,φ ∩HP,τ the following estimate holds:∣∣∣wP,φk (y)− wP,τk (y)

∣∣∣ ≤ C |y1 − P1| |φ− τ |+ C |φ− τ | .

Proof. Again let us use the coordinates (ỹ1, ỹ2) from (27), and write the difference above in the following way:

wP,φk (y)− wP,τk (y) = w̃P,φk (y1 − P1, y2 + (y1 − P1) tanφ− P2)

−w̃P,τk (y1 − P1, y2 + (y1 − P1) tan τ − P2).

Now we split this difference and obtain:

wP,φk (y)− wP,τk (y) = w̃P,φk (y1 − P1, y2 + (y1 − P1) tanφ− P2)

−w̃P,φk (y1 − P1, y2 + (y1 − P1) tan τ − P2)

+w̃P,φk (y1 − P1, y2 + (y1 − P1) tan τ − P2)

−w̃P,τk (y1 − P1, y2 + (y1 − P1) tan τ − P2). (32)

To estimate the first difference, we can use the Lipschitz-continuity of w̃P,φk . An estimate for the second difference
follows by a more complicated argument: Let us introduce the functions

θ̃P,φ,τk = w̃P,φk − w̃P,τk
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which are defined on our standard boundary layer-cell Z̃ =
]
− 1

2 ,
1
2

[
×]0,∞[ and can be extended periodically

to R× (0,∞). The functions θ̃P,φ,τk satisfy the following problems:

∂ỹi

(
ÃP,φij (ỹ1)∂ỹj θ̃

P,φ,τ
k (ỹ)

)
= ∂ỹi((ÃP,τij − Ã

P,φ
ij )∂ỹj w̃

P,τ
k ) , ỹ ∈ R× (0,∞);

θ̃P,φ,τk (ỹ1, 0) = 0;

θ̃P,φ,τk periodic in ỹ1 with the period 1;

θ̃P,φ,τk decreases exponentially as ỹn →∞.

(33)

By using Lemma A.1, the norm of θ̃P,φ,τk in Wγ(Z̃) can be estimated by:∥∥∥θ̃P,φ,τk

∥∥∥
Wγ(Z̃)

≤
∥∥∥ÃP,τij − ÃP,φij ∥∥∥

L∞(Z̃)

∥∥∥w̃P,τk ∥∥∥
Wγ(Z̃)

=
∥∥(T t(τ)A(y1(ỹ1))T (τ)− T t(φ)A(y1(ỹ1))T (φ))

∥∥
L∞(Z̃)

∥∥∥w̃P,τk ∥∥∥
Wγ(Z̃)

≤
∥∥(T t(τ)− T t(φ))A(y1(ỹ1))T (τ)

∥∥
L∞(Z̃)

∥∥∥w̃P,τk ∥∥∥
Wγ (Z̃)

+
∥∥T t(φ)A(y1(ỹ1))(T (τ)− T (φ))

∥∥
L∞(Z̃)

∥∥∥w̃P,τk ∥∥∥
Wγ (Z̃)

≤ C |τ − φ|
∥∥∥w̃P,τk ∥∥∥

Wγ(Z̃)
. (34)

In the next step, we will derive a Hölder-estimate for the gradient of θ̃P,φ,τk . Because the right hand side of (33)
is Hölder-continuous, regularity results for weak solutions imply that for ỹ0 ∈ Z̃ with

∣∣ỹ0
2

∣∣ ≥ 1
4 :∥∥∥∇θ̃P,φ,τk

∥∥∥
C0,κ(B 1

16
(ỹ0))

≤ C
∥∥∥θ̃P,φ,τk

∥∥∥
L2(B 1

4
(ỹ0))

+ C sup
i=1,2

[
(ÃP,τij − Ã

P,φ
ij )∂ỹj w̃

P,τ
k

]
C0,κ(B 1

8
(ỹ0))

.

Since the left hand side is invariant under shifts by constants, replacing θ̃P,φ,τk by

θ̃P,φ,τk − 1∣∣∣B 1
4
(ỹ0)

∣∣∣
∫
B 1

4
(ỹ0)

θ̃P,φ,τk

and applying the Poincaré inequality yields:∥∥∥∇θ̃P,φ,τk

∥∥∥
C0,κ(B 1

16
(ỹ0))

≤ C
∥∥∥∇θ̃P,φ,τk

∥∥∥
L2(B 1

4
(ỹ0))

+C sup
i=1,2

[
(ÃP,τij − Ã

P,φ
ij )∂ỹj w̃

P,τ
k

]
C0,κ(B 1

8
(ỹ0))

. (35)

If we now use the local Hölder estimate (8) and the Wγ-estimate (34), we get for all ỹ0 ∈ Z̃ with ỹ0
2 ≥ 1

4 the
following estimate of the gradient of θ̃P,φ,τk :∥∥∥∇θ̃P,φ,τk

∥∥∥
C0,κ(B 1

16
(ỹ0))

≤ Ce−γy
0
2

∥∥∥θ̃P,φ,τk

∥∥∥
Wγ (Z̃)

+ C |τ − φ| e−γy0
2

∥∥∥∇w̃P,τk ∥∥∥
Wγ (Z̃)

≤ C |τ − φ| e−γỹ0
2 .

For ỹ0 with
∣∣ỹ0

2

∣∣ < 1
4 we obtain an analogous estimate on B 1

4
(ỹ0

1, 0) ∩ Z̃.
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Integration by parts and the homogeneous boundary condition of θ̃P,φ,τk on ỹ2 = 0 leads to:

∣∣∣θ̃P,φ,τk (ỹ1, ỹ2)
∣∣∣ ≤ ∫ ỹ2

0

∣∣∣∂ρθ̃P,φ,τk (ỹ1, ρ)
∣∣∣dρ ≤ C |τ − φ|∫ ỹ2

0

e−γρdρ ≤ C |τ − φ| .

Now, from (32) it follows immediately that:∣∣∣wP,φk (y)− wP,τk (y)
∣∣∣ ≤ C{|y1 − P1| |tanφ− tan τ |+ |τ − φ|}

and the the lemma is proven. �
Let us now consider the domain

G =
{

(P, φ, y) | P = (P1, P2) ∈ R2, φ ∈ ]−φg, φg[ , y ∈ HP,φ ∩ {|y1 − P1| ≤ ρ}
}
,

and set:

Φk : G→ R , (P, φ, y) 7→ wP,φk (y). (36)

By Theorem 4.6, Lemma 4.7, Lemma 4.8, and the triangle inequality, we have that the functions Φk are
Lipschitz-continuous on G with a global Lipschitz constant CLip(ρ). Then by Theorem A.6, we have that Φk
belong to W 1,∞(G) and the norm of its gradient can be estimated by:

‖∇Φk‖L∞(G) ≤ CLip(ρ). (37)

Let us then return to the generalized boundary layers which are given by the composition

w
ω(·)
ε ,φ(·)

k

( ·
ε

)
= Φk ◦ τ (38)

where the function τ : Ω→ G is defined by:

τ(x) =
(
x1

ε
,
g(x1)
ε

, φ(x1),
x1

ε
,
x2

ε

)
. (39)

Since τ is a C2-diffeomorphism mapping Ω to S ⊂ G with

S =
{

(P, φ, y) ∈ G | P = (P1, P2) ∈ 1
ε
∂Ω, φ = φP , y1 = P1

}
,

and Φk is Lipschitz-continuous on G, the composition Φk ◦ τ is Lipschitz-continuous on Ω. Using Theorem A.6
again, we obtain that Φk ◦ τ is differentiable almost everywhere in Ω. However, for our calculations we also
need an explicit representation of the partial derivatives of Φk ◦ τ . We cannot get such an representation
immediately because the chain rule does not apply for our situation. This is due to the fact that τ maps Ω into
the submanifold S of G, on which Φk might be not differentiable. To overcome this difficulty, we will use the
following theorem:

Theorem 4.9. Let Ω ⊂ Rn and G ⊂ Rm be two domains. We consider the functions

τ : Ω→ τ(Ω) ⊂ G

to be a C1-diffeomorphism and
Φ : G→ R
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to be Lipschitz-continuous. Let Φ̃ : Ω→ R be the composition:

Φ̃ = Φ ◦ τ.

If ~̃v is a vector in Rn and x0 ∈ Ω is a point where Φ̃ is differentiable in the direction ~̃v, then Φ is differentiable
in τ(x0) in the direction ~v = Dτ(x0) · ~̃v and the directional derivative is given by

D~vΦ(τ(x0)) = D~̃vΦ̃(x0).

Proof. For h > 0 such that x0 + h~̃v ∈ Ω and τ(x0) + h~v ∈ G, let us consider the difference

Φ(τ(x0) + h~v)− Φ(τ(x)) = Φ(τ(x0) + h~v)− Φ(τ(x0 + h~̃v)) + Φ(τ(x0 + h~̃v))− Φ(τ(x)).

For the first term, we use the Lipschitz continuity of Φ on G and the fact that τ is a C2-diffeomorphism on Ω
to get: ∣∣∣Φ(τ(x0) + h~v)− Φ(τ(x0 + h~̃v))

∣∣∣ ≤ CLip

∣∣∣τ(x0) + h~v − τ(x0 + h~̃v)
∣∣∣

= CLip

∣∣∣τ(x0) + hDτ(x0)~̃v − τ(x0 + h~̃v)
∣∣∣

= CLip ·O(h2) ‖τ‖C2 ≤ Ch2. (40)

For the second term, we use the differentiability property of Φ̃ as follows:

Φ(τ(x0 + h~̃v))− Φ(τ(x)) = Φ̃(x0 + h~̃v)− Φ̃(x)

= hD~̃vΦ̃(x) + o(h). (41)

From the relations (40) and (41), the assertion of the theorem follows. �
Theorem 4.9 now implies the following result for the weak partial derivatives of the generalized boundary

layers:

Theorem 4.10. The generalized boundary layers w
ω(·)
ε ,φ(·)

k

( ·
ε

)
lie in W 1,∞(Ω), and the weak partial derivatives

are given by:

∂x1w
ω(x1)
ε ,φ(x1)

k

(x
ε

)
=

1
ε
∂y1w

ω(x1)
ε ,φ(x1)

k

(x
ε

)
+W (x) (42)

∂x2w
ω(x1)
ε ,φ(x1)

k

(x
ε

)
=

1
ε
∂y2w

ω(x1)
ε ,φ(x1)

k

(x
ε

)
, (43)

where W : Ω→ R is a measurable function with ‖W‖L∞(Ω) ≤ C.

Proof. For x ∈ Ω, we have

w
ω(x1)
ε ,φ(x1)

k

(x
ε

)
= (Φk |S ◦τ)(x) =: Φ̃k(x),

and from our previous considerations about Φ̃k, it follows that the w
ω(·)
ε ,φ(·)

k

( ·
ε

)
lie in W 1,∞(Ω). By Theorem 4.9,

the weak partial derivatives can be calculated as follows:

∂xiw
ω(x1)
ε ,φ(x1)

k

(x
ε

)
= D~eiΦ̃k(x) = DDτ(x)·~eiΦk(τ(x))

= lim
h→0

Φk (τ(x) + hDτ(x) · ~ei)− Φk(τ(x))
h

(44)
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where the vectors Dτ(x) · ~ei are given by:

Dτ(x) · ~e1 =


1
ε

g′(x1)
ε

φ′(x1)
1
ε
0

 and Dτ(x) · ~e2 =


0
0
0
0
1

 .

To get the explicit formulas (42) and (43), we use the definition of the functions Φk. Thus, let us first consider
the difference-quotient corresponding to the partial derivative with respect to x1:

1
h

(Φk (τ(x) + hDτ(x) · ~e1)− Φk(τ(x)))

=
1
h

(
w
ω(x1)
ε +h

�
1
ε ,
g′(x1)
ε

�
,φ(x1)+hφ′(x1)

k

(
x1

ε
+
h

ε
,
x2

ε

)
− w

ω(x1)
ε ,φ(x1)

k

(x1

ε
,
x2

ε

))
=

1
h

(
w
ω(x1)
ε ,φ(x1)

k

(
x1

ε
+
h

ε
,
x2

ε

)
− w

ω(x1)
ε ,φ(x1)

k

(x1

ε
,
x2

ε

))
(45)

+
1
h

(
w
ω(x1)
ε +h

�
1
ε ,
g′(x1)
ε

�
,φ(x1)

k

(
x1

ε
+
h

ε
,
x2

ε

)
− w

ω(x1)
ε ,φ(x1)

k

(
x1

ε
+
h

ε
,
x2

ε

))
(46)

+
1
h

(
w
ω(x1)
ε +h

�
1
ε ,
g′(x1)
ε

�
,φ(x1)+hφ′(x1)

k

(
x1

ε
+
h

ε
,
x2

ε

)
− w

ω(x1)
ε +h

�
1
ε ,
g′(x1)
ε

�
,φ(x1)

k

(
x1

ε
+
h

ε
,
x2

ε

))
· (47)

For h→ 0, the first difference (45) tends to

1
ε
∂y1w

ω(x1)
ε ,φ(x1)

k

(x1

ε
,
x2

ε

)
,

due to the C1,κ-regularity of the generalized boundary layers. The second difference is zero because the point
ω(x1)
ε +h

(
1
ε ,

g′(x1)
ε

)
lies on the tangent Tω(x1)

ε ,φ(x1)
and the parameters ω(x1)

ε +h
(

1
ε ,

g′(x1)
ε

)
, φ(x1) determine the

same generalized boundary layers as ω(x1)
ε , φ(x1). For the third difference (47), we use the Lipschitz-continuity

of the functions Φk to estimate the absolute value of this difference by

CLip |φ′(x1)| .

These arguments imply the formula (42). The formula (43) for the partial derivatives of the generalized boundary
layers with respect to x2 follows immediately from (44) and the C1,κ-regularity of the generalized boundary
layers. �
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4.2. Error estimates

In this section, we will show that for domains Ω given by (22) in the case of a layered medium the approxi-
mation

uappε = u0 + ε∂ku
0wk(

·
ε

) + wε (48)

with wε defined in (30) leads to an error estimate of order ε in the energy norm. This is an extension to domains
with curved boundaries of the results given in [6, 7, 9, 14,19,20] for the half space.

Theorem 4.11. Let the domain Ω be given by (22), and let uε be the solution of problem (24) where the
coefficients Aεij are given by A : R → R2×2, with Aij(y1) periodic in y1 with period 1, bounded, and strongly
elliptic, satisfying the additional regularity assumption A ∈ C0,κ(R,R2×2) with 0 < κ < 1. If the solution u0 of
the homogenized problem satisfies

∥∥∇2u0
∥∥
L2(Ω)

≤ C, then the following estimate holds:

‖uε − uapp
ε ‖Ḣ1(Ω) ≤ Cε

(∥∥∇u0
∥∥
L2(Ω)

+
∥∥∇2u0

∥∥
L2(Ω)

)
. (49)

To prove this theorem, we need additional results which we formulate in the next lemmata.

Lemma 4.12. Let the coefficients matrix Aij be given as in Theorem 4.11. For k = 1, 2 we consider the vector
~hP,φk : HP,φ → R2 given by:

hP,φk,i = Aij∂yjwP,φk , i = 1, 2.

Then there exist skew-symmetric tensors (βP,φk ) : HP,φ → R2×2 with the following properties:

(a) βP,φk,li ∈ C1,κ(HP,φ) ∩ L∞(HP,φ), l, i = 1, 2 ;
(b) ∂lβ

P,φ
k,li = hP,φk,i , i = 1, 2;

(c) βP,φk is periodic in the direction parallel to TP,φ;
(d) ∇βP,φk decreases exponentially normal to TP,φ.

Proof. For each k = 1, 2, we construct the matrix (βP,φk ) by help of the vector ~ζP,φk defined as the solution of
the following system:

∆~ζP,φk = ~hP,φk , y ∈ HP,φ

~ζP,φk · ~t = 0 , y ∈ TP,φ
∂

∂~n
(~ζP,φk · ~n) = 0 , y ∈ TP,φ

~ζP,φk periodic parallel to the boundary

∇~ζP,φk decreases exponentially normal to the boundary

(50)

where the vectors ~t, ~n are given by: ~t = ~t(φ) = (cosφ, sinφ) and ~n = ~n(φ) = (− sinφ, cosφ). The system above
can be decoupled if we write

~ζP,φk = (~ζP,φk · ~t)~t+ (~ζP,φk · ~n)~n = ζP,φk,t
~t+ ζP,φk,n ~n



430 M. NEUSS-RADU

and consider the problems for ζP,φk,t and ζP,φk,n :

∆ζP,φk,t = ~hP,φk · ~t , y ∈ HP,φ

ζP,φk,t = 0 , y ∈ TP,φ
ζP,φk,t periodic parallel to the boundary

∇ζP,φk,t decreases exponentially normal to the boundary

(51)

and

∆ζP,φk,n = ~hP,φk · ~n , y ∈ HP,φ

∂

∂~n
(ζP,φk,n ) = 0 , y ∈ TP,φ

ζP,φk,n periodic parallel to the boundary

∇ζP,φk,n decreases exponentially normal to the boundary.

(52)

Now by a simple rotation we get the situation of Lemma 2.6. By also using the C0,κ regularity of the vector
~hP,φk , we have that the solutions ζP,φk,t and ζP,φk,n exist and are uniquely determined in C2,κ(HP,φ)∩W 1,∞(HP,φ).

Using the vectors ~ζP,φk , we define the tensor (βP,φk ) by the following formulas:

βP,φk,li (y) := ∂ylζ
P,φ
k,i (y)− ∂yiζP,φk,l (y), l, i = 1, 2. (53)

Then (βP,φk ) is skew-symmetric, and due to the regularity of ζP,φk,i it belongs to (C1,κ(HP,φ))2×2∩(L∞(HP,φ))2×2.
The relation (b) can be proven analogously to relation (16) form Lemma 2.6. �

In the proof of Theorem 4.11, we will deal with matrices (βP,φk (y)) of the form (βP (x),φ(x)
k (y(x))), for x ∈ Ω;

and we have to consider derivatives of the matrix elements with respect to x. Therefore, we have to study the
regularity of (βP,φk ) with respect to the parameters (P, φ). The regularity relative to y is given by Lemma 4.12.
We had to deal with a similar problem when we studied the regularity of the boundary corrector wε. Using the
same techniques, we obtain the following analogues to Lemma 4.7 and Lemma 4.8.

Lemma 4.13. Let Aij ∈ C0,κ(R) with κ ∈ (0, 1) , P,Q be two neighboring points in R2 and φ ∈] − φg, φg[.
Then for each y ∈ HP,φ ∩HQ,φ the following estimate holds:∣∣∣∂ylζP,φk,i (y)− ∂ylζ

Q,φ
k,i (y)

∣∣∣ ≤ C ‖P −Q‖ .
Lemma 4.14. Let Aij ∈ C0,κ(R) with κ ∈ (0, 1) , P ∈ R2 and φ, τ be two neighboring angles in ] − φg, φg[.
Then for each y ∈ HP,φ ∩HP,τ the following estimate holds:∣∣∣∂ylζP,φk,i (y)− ∂ylζ

P,τ
k,i (y)

∣∣∣ ≤ C |y1 − P1| |φ− τ |+ C |φ− τ | .

If we now regard (βP,φk ) defined by (53) as matrix-valued functions depending on the variables (P, φ, y), then, by
the lemmas above, it follows that they are uniformly Lipschitz-continuous for (P, φ, y) belonging to the domain

G =
{

(P, φ, y) | P = (P1, P2) ∈ R2, φ ∈ ]−φg, φg[ , y ∈ HP,φ ∩ {|y1 − P1| ≤ ρ}
}
,

where ρ is an arbitrary positive constant. By Theorem A.6, we have that (βP,φk ) belongs to (W 1,∞(G))2×2 and∥∥∥∇βP,φk,li

∥∥∥
L∞(G)

≤ CLip(ρ). (54)
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Now the same arguments as in the study of the boundary corrector wε lead to the following theorem concerning

the differentiability of the matrices (β
ω(x1)
ε ,φ(x1)

k (xε )) with respect to x:

Theorem 4.15. The functions β
ω(·)
ε ,φ(·)

k,li ( ·ε) lie in W 1,∞(Ω), and the weak partial derivatives are given by:

∂x1β
ω(x1)
ε ,φ(x1)

k,li

(x
ε

)
=

1
ε
∂y1β

ω(x1)
ε ,φ(x1)

k,li

(x
ε

)
+B(x)

∂x2β
ω(x1)
ε ,φ(x1)

k,li

(x
ε

)
=

1
ε
∂y2β

ω(x1)
ε ,φ(x1)

k,li

(x
ε

)

where B : Ω→ R is a measurable function with ‖B‖L∞(Ω) ≤ C.

Now we can start with:

Proof of Theorem 4.11. We will proceed as in the proof of Theorem 2.5. This time, however, we have to deal
with additional difficulties since the generalized boundary layers depend on the boundary parameters. Thus,
for all testfunctions ϕ ∈ Ḣ1

0 (Ω), we have:∫
Ω

Aεij(x1)∂j

(
uε(x) − u0(x) − ε∂ku0(x)

(
wk
(x
ε

)
+ w

ω(x1)
ε ,φ(x1)

k

(x
ε

)))
∂iϕ

=
∫

Ω

(
A0
ij∂ju

0(x) −Aεij(x1)∂ju0(x)−Aεij(x1)ε∂j
(
∂ku

0(x)wk
(x
ε

)))
∂iϕ(x)dx

−
∫

Ω

Aεij(x1)ε∂j

(
∂ku

0(x)w
ω(x1)
ε ,φ(x1)

k

(x
ε

))
∂iϕ(x)dx

=
∫

Ω

(
A0
ij −Aεij(x1)−Aεik(x1)∂ykw

j
(x
ε

))
∂ju

0(x)∂iϕ(x)dx

−ε
∫

Ω

Aεij(x1)∂jw
ω(x1)
ε ,φ(x1)

k

(x
ε

)
∂ku

0(x)∂iϕ(x)dx

−ε
∫

Ω

Aεij(x1)∂jku0(x)
(
wk
(x
ε

)
+ w

ω(x1)
ε ,φ(x1)

k

(x
ε

))
∂iϕ(x)dx. (55)

The first term on the right hand side of (55) can be treated like in Theorem 1.3 to obtain:∫
Ω

(
A0
ij −Aεij(x1)−Aεik(x1)∂ykw

j
(x
ε

))
∂ju

0(x)∂iϕ(x)dx ≤ Cε
∥∥∇2u0

∥∥
L2(Ω)

‖∇ϕ‖L2(Ω) + o(R).

For the second term, we first use the results of Theorem 4.10 to write it in the following way:

ε

∫
Ω

Aij
(x1

ε

)
∂jw

ω(x1)
ε ,φ(x1)

k

(x
ε

)
∂ku

0(x)∂iϕ(x)dx =
∫

Ω

Aij
(x1

ε

)
∂yjw

ω(x1)
ε ,φ(x1)

k

(x
ε

)
∂ku

0(x)∂iϕ(x)dx

+O(ε
∥∥∇u0

∥∥
L2(Ω)

‖∇ϕ‖L2(Ω)).

Lemma 4.12 then yields the existence of a skew-symmetric tensor (β
ω(x1)
ε ,φ(x1)

k ) ∈ (C1,κ(Hω(x1)
ε ,φ(x1)

))2×2 ∩
(L∞(Hω(x1)

ε ,φ(x1)
))2×2 such that

∂ylβ
ω(x1)
ε ,φ(x1)

k,li (y) = Aij(y1)∂yjw
ω(x1)
ε ,φ(x1)

k (y), i = 1, 2.
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Therefore, the second term in (55) becomes:

ε

∫
Ω

Aij
(x1

ε

)
∂jw

ω(x1)
ε ,φ(x1)

k

(x
ε

)
∂ku

0(x)∂iϕ(x)dx

=
∫

Ω∩BR
∂ylβ

ω(x1)
ε ,φ(x1)

k,li

(x
ε

)
∂ku

0(x)∂iϕ(x)dx

+
∫

Ω\BR
Aij

(x1

ε

)
∂yjw

ω(x1)
ε ,φ(x1)

k

(x
ε

)
∂ku

0(x)∂iϕ(x)dx

+O(ε
∥∥∇u0

∥∥
L2(Ω)

‖∇ϕ‖L2(Ω)).

For the first term on the right hand side, we now use the result of Theorem 4.15 to write ∂ylβ
ω(x1)
ε ,φ(x1)

k,li in
terms of derivatives with respect to x. The second term tends to zero for R →∞ due to the regularity of the
homogenized solution u0. Thus we have:

ε

∫
Ω

Aij
(x1

ε

)
∂jw

ω(x1)
ε ,φ(x1)

k

(x
ε

)
∂ku

0(x)∂iϕ(x)dx

= ε

∫
Ω∩BR

(
∂xlβ

ω(x1)
ε ,φ(x1)

k,li

(x
ε

)
+B(x)

)
∂ku

0(x)∂iϕ(x)dx

+O(ε
∥∥∇u0

∥∥
L2(Ω)

‖∇ϕ‖L2(Ω)) + o(R).

What remains is the analysis of the term:

ε

∫
Ω∩BR

∂xlβ
ω(x1)
ε ,φ(x1)

k,li

(x
ε

)
∂ku

0(x)∂iϕ(x)dx

= ε

∫
Ω∩BR

∂xl

(
β
ω(x1)
ε ,φ(x1)

k,li

(x
ε

)
∂ku

0(x)
)
∂iϕ(x)dx

−ε
∫

Ω∩BR
β
ω(x1)
ε ,φ(x1)

k,li

(x
ε

)
∂l∂ku

0(x)∂iϕ(x)dx.

Because of the regularity of u0 and the L∞-boundedness of β
ω(x1)
ε ,φ(x1)

k,li , the second term has the form
O(ε

∥∥∇2u0
∥∥
L2(Ω)

‖∇ϕ‖L2(Ω)). Integrating by parts in the first integral for ϕ ∈ C∞(Ω)∩ Ḣ1
0 (Ω) with supp(ϕ)∩

∂Ω = ∅, we get:

ε

∫
Ω∩BR

∂xl

(
β
ω(x1)
ε ,φ(x1)

k,li

(x
ε

)
∂ku

0(x)
)
∂iϕ(x)dx

= ε

∫
Ω∩BR

β
ω(x1)
ε ,φ(x1)

k,li

(x
ε

)
∂ku

0(x)∂liϕ(x)dx

−ε
∫

Ω∩∂BR
β
ω(x1)
ε ,φ(x1)

k,li

(x
ε

)
∂ku

0(x)∂iϕ(x)νl(x)dσx.

The first term is zero because of the skew-symmetry of β
ω(x1)
ε ,φ(x1)

k,li , and the second term tends to zero for
R→∞.

The third term on the right-hand side of (55) has the form O(ε
∥∥∇2u0

∥∥
L2(Ω)

‖∇ϕ‖L2(Ω)), due to the L∞-

boundedness of the cell-solutions wk and of the boundary correctors wε,blk .
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By an argument analogous to the one in the proof of Theorem 2.5, we have that the subspace {ϕ ∈ C∞(Ω̄) |
‖∇ϕ‖L2(Ω) ≤ C, supp(ϕ) ∩ ∂Ω = ∅} is dense in Ḣ1

0 (Ω) with respect to the norm ‖·‖Ḣ1(Ω). Thus, taking

ϕ = uε −
(
u0 + ε∂ku

0wk
( ·
ε

)
+ wε

)
in (55), for R → ∞, and using the ellipticity of the coefficients Aεij , we get the energy-estimate (49) for the
difference uε − uapp

ε . �

Appendix A

A.1. Tartar’s Lemma

Lemma A.1. Let (V, |·|) and (V0, |·|0) be two Hilbert spaces on R, such that V0 ⊂ V with continuous injection.
We are given a continuous bilinear form a(·, ·) on V ×V0, and a linear, continuous operator M ∈ L(V, V0) such
that M maps V onto V0.

If there exists a µ > 0 such that a(u,Mu) ≥ µ|u|2, ∀u ∈ V then ∀f ∈ V ′0 , there exists a unique u0 ∈ V such
that

a(u0, v) = 〈f, v〉, ∀v ∈ V0

and

|u0| ≤ C ‖f‖V ′0 .

Proof. See [14]. �

A.2. Local bounds for weak solutions

Let us consider the equation:

Lu := −∂i (Aij(y)∂ju(y)) = g + ∂ifi (56)

on the domain Ω ⊂ Rn, with the operator L having strictly elliptic and bounded coefficients, and suppose that
fi ∈ Lq(Ω) and g ∈ L q

2
(Ω), for some q > n. Then we can formulate the following results:

Theorem A.2 (Inner estimates). If u ∈W 1,2(Ω) is a weak solution of (56), then for any ball B2R(y) ⊂ Ω and
p > 1 we have:

sup
BR(y)

|u| ≤ C
(
R−

n
p ‖u‖Lp(B2R) +R1−nq ‖f‖Lq(B2R) +R2(1−nq ) ‖g‖L q

2
(B2R)

)
. (57)

Proof. See [11], Chapter 8, Theorem 8.17.

Theorem A.3 (Estimates at the boundary). If u ∈ W 1,2(Ω) is a subsolution of equation(56) in Ω, then we
have for any y ∈ Rn , R > 0 and p > 1,

sup
BR(y)

u+
M ≤ C

(
R−

n
p

∥∥u+
M

∥∥
Lp(B2R)

+R1−nq ‖f‖Lq(B2R) +R2(1−nq ) ‖g‖L q
2

(B2R)

)
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where

M = sup
∂Ω∩B2R

u+

u+
M(y) =

{
sup{u(y),M}, y ∈ Ω,
M, y /∈ Ω.

Proof. See [11], Chapter 8, Theorem 8.25. �

Theorem A.4 (Hölder estimates at the boundary). Let the domain Ω satisfy an exterior cone condition at a
point y0 ∈ ∂Ω and 0 < R < R0. If u ∈ W 1,2(Ω) is a solution of equation (56) in Ω with homogeneous right
hand side, such that u vanishes on ∂Ω ∩B√RR0

(y0), then there exists 0 < κ < 1 with:

sup
Ω∩BR(y0)

u− inf
Ω∩BR(y0)

u ≤ C
[
R

R0

]κ
sup

Ω∩BR0 (y0)

|u| ,

and C = C(n, Λ
λ ).

Proof. See [11], Chapter 8, Theorem 8.27. �

A.3. The size of the neighborhoods in the Inverse Mapping Theorem

Theorem A.5. Let U be an open subset of Rn, f : U → Rn be a map of class Ck , k ≥ 2 and x0 ∈ U with
Df(x0) a linear isomorphism. We denote:

L =
∥∥Df(x0)

∥∥ and M =
∥∥Df(x0)−1

∥∥ .
Assume ∥∥D2f(x)

∥∥ ≤ K, for ‖x− x0‖ ≤ R and BR(x0) ⊂ U.
Let

P = min
{

1
2KM

,R

}
, Q = min

{
1

2NL
,
P

M
,P

}
, S = min

{
1

2KM
,
Q

2L
,Q

}
.

Here N = 8M3K. Then f |B Q
2L

(x0): B Q
2L

(x0)→ B S
2M

(f(x0)) is a Ck-diffeomorphism.

Proof. See [2]. �

A.4. A Rademacher-type theorem

Theorem A.6. Let Ω be a domain in Rn and f ∈ C0,1(Ω). Then the classical partial derivatives ∂f/∂xi , i=1,...,n,
exist almost everywhere in Ω, they are measurable and bounded,∥∥∥∥ ∂f∂xi

∥∥∥∥
L∞(Ω)

≤ ‖f‖C0,1(Ω)

and they coincide with the weak derivatives.

Proof. See [22]. �
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