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A POSTERIORI ERROR ESTIMATES FOR VERTEX CENTERED
FINITE VOLUME APPROXIMATIONS

OF CONVECTION-DIFFUSION-REACTION EQUATIONS

Mario Ohlberger
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Abstract. This paper is devoted to the study of a posteriori error estimates for the scalar nonlinear
convection-diffusion-reaction equation ct+∇·(uf(c))−∇·(D∇c)+λc = 0. The estimates for the error
between the exact solution and an upwind finite volume approximation to the solution are derived in
the L1-norm, independent of the diffusion parameter D. The resulting a posteriori error estimate is
used to define an grid adaptive solution algorithm for the finite volume scheme. Finally numerical
experiments underline the applicability of the theoretical results.
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1. Introduction

We consider the Cauchy problem of a degenerate convection-diffusion-reaction equation in Rd, for d = 2, 3:

ct +∇ · (uf(c))−∇ · (D(c)∇c) + λc = 0 in Rd × (0, T ), (1)

c(·, 0) = c0 in Rd.

Here u : Rd×R+ → Rd denotes a given velocity, f : R→ R a nonlinear function, D(c) ≥ 0 denotes the diffusion
parameter and λ the reaction coefficient.

In this paper we continue our work on a posteriori error estimates for finite volume approximations of
nonlinear conservation laws and convection diffusion equations, which was started in [33] and [41]. In [41] we
analyzed an explicit cell centered finite volume approximation to an unstationary convection diffusion equation
and proved an a posteriori error estimator of order (ε2 + h + ∆t)1/4, where ε denoted the small diffusion
parameter (e.g. ε ≤ h). It must be mentioned that in the case of a dominating, strictly positive diffusion
parameter, where we can assume regularity of the exact solution of the problem, an error bound of order h+ ∆t
can be shown with energy methods (cf. [3]). In those estimates the constants do heavily depend on the diffusion
parameter, such that they break down for D = ε→ 0. Thus in the study here, we are always interested in the
case, where the diffusion coefficient is either very small, or degenerate. The following analysis can be seen as
an improvement of the result, obtained in [41], as we get a uniform bound on the error, which is completely
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independent of the size of the diffusion coefficient. The improvement of the a posteriori error estimate in this
paper could be obtained by exploiting the latest results concerning uniqueness and continuous dependence for
degenerate parabolic equations [8, 15, 20, 31]. The crucial point and difference to the technique used in [41] is
that we exploit the positive second order term on the right hand side in the definition of the entropy solution
(cf. Def. 2.4). Hence we need that gradients of the approximate solution are well defined. Therefore, we choose
vertex centered finite volume schemes for the analysis in this paper instead of cell centered schemes. The choice
of an implicit scheme has no special relevance for the proof of the a posteriori error estimate. Indeed, the
estimates in this chapter do directly apply also in the explicit case if an appropriate CFL-condition is assumed.
Finally, we chose the implicit scheme for the demonstration of the proof because the freedom of the choice of
the time step ∆t is an additional challenge for the development of an adaptive solution strategy.

Equations of the type (1) are of special interest as they model physical motions in which the convective fluxes
dominate the diffusive ones. Such problems occur for example in fluid dynamics with high Reynolds numbers [32],
in density driven ground-water flow or in immiscible two-phase flow problems in porous media [40]. Another
rather important application is the transport of contaminants in subsurface flow models [25].

Many authors studied convection-diffusion equations and proposed different numeric solution techniques,
such as non-conforming finite elements [16, 17, 30, 47], streamline diffusion methods [29, 30], combined finite
volume - finite element methods [3, 28] or finite volume schemes [26,34]. See also [44] for an overview on finite
element methods and exponentially fitted schemes.

In contrast to the situation for finite volume schemes, the a posteriori theory for finite element discretizations
of parabolic problems is very well developed. Here we refer to [4,18,19,46]. We also mention the more heuristic
feed-back approach [6]. All these articles are concerned with elliptic or parabolic equations and the a posteriori
error estimates depend exponentially on the inverse of the diffusion parameter. In [27] an robust a posteriori error
estimates for Lagrange-Galerkin schemes in theH−1-norm is derived. An energy norm a posteriori error estimate
for linear stationary convection-diffusion equations, discretised via finite element methods, is given in [47]. But
the error estimate in this work is only optimal if the local mesh-Peclet number is sufficiently small which means
that the mesh size must be at least of the same order as the diffusion parameter. Especially, the results break
down for the limiting case where D tends to zero. In [38] an a posteriori error estimate for a characteristic
Galerkin approximation of linear unstationary convection-diffusion equations is deduced. Further results on
a posteriori error estimates for finite element approximations were obtained in [39] for degenerate parabolic
equations including the classical Stefan problem. In [2] linear stationary convection dominated anisotropic
diffusion problems are considered and error estimates in the energy norm are derived.

The techniques used in this paper go back [35] and [36]. In the context of nonlinear hyperbolic conservation
laws these techniques where used to prove a priori estimates [9,10,12,14,21,45,48] and a posteriori estimates [13,
33, 41]. In the context of degenerate parabolic equations these techniques where recently successfully used
in [8, 31]. Based on the uniqueness result of this last named works, convergence of an implicit finite volume
scheme for nonlinear degenerate parabolic equations on bounded domains was recently proved in [22]. Let us
remark that a priori error estimates are still an open problem in this situation. We also point out that the
problem (1), which is discussed in this paper may be seen as a scalar case of weakly coupled systems, as they
are studied in the hyperbolic framework in [42] and [43]. Thus we plan to extend the results of this work to
weakly coupled systems in a forthcoming paper.

In the sequel the paper will be organized as follows. In Section 2 some properties of the exact solution of (1)
are stated, whereas in Section 3 the approximate solution ch is defined (cf. Def. 3.5) and some assumptions for
the following analysis are given. The discrete scheme is analyzed in Section 4, where an entropy inequality for
the approximate solution is shown and some stability results are given. Finally in Section 5 the a posteriori
error estimate of the form ||ch − c||L1(Rd×(0,T )) ≤ η(ch) is proved for the implicit cell centered finite volume
scheme (cf. Th. 5.4). In Section 6 we deduce an adaptation strategy from the a posteriori error estimates and
justify the theoretical results by some numerical experiments.
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2. Properties and regularity of the exact solution

In order to define proper notations for solutions of problem (1), we state the following assumptions on the
data.

Assumption 2.1. For the data of problem (1) we assume the following conditions

c0 ∈ L∞(Rd) ∩W 1,1(Rd), f ∈ C2(R), f, f ′, f ′′ ∈ L∞(R)

u ∈ C1(Rd × R+)d ∩ L∞(Rd × R+)d with ∇ · u = 0,

λ ∈ C1(Rd × R+), ||λ||L∞(Rd×R+) ≤M, D ∈ C1(R), with D(s) ≥ 0, ∀s ∈ R.

Following the guidelines of Carrillo [8] and Karlsen, Risebro [31] we can now define weak solutions and entropy
solutions of problem (1).

Definition 2.2 (Weak solution). Let the Assumptions 2.1 be fulfilled. Then a weak solution of problem (1) is
a measurable function c satisfying

c ∈ L1(Rd × R+), ∂tc ∈ L2(0, T ;H−1(Rd)), (2)

d(c) :=
∫ c

0

D(s) ds ∈ L2(0, T ;H1(Rd)), f(c) ∈ L2(Rd × R+), (3)

ct +∇ · (uf(c))−∇ · (D(c)∇c) + λc = 0 in D′(Rd × (0, T )), (4)

c(·, 0) = c0, a.e. in Rd.

Remark 2.3. The existence of a weak solution can be shown (cf. [8]), but in general, the definition of a weak
solution does not guarantee the uniqueness. Thus, we will define an entropy solution to problem (1) which will
then give us also uniqueness. In the sequel we will always refer to the entropy solution, when we speak of the
solution of problem (1).

Definition 2.4 (Entropy solution). Let U be a smooth even entropy function and FU a corresponding entropy
flux (e.g. ∂vFU (v, κ) = f ′(v)∂vU(v − κ) for κ ∈ R fixed). An entropy solution of (1) is a weak solution c
satisfying∫

Rd×R+
U(c− κ)∂tϕ+ (FU (c, κ) u−D(c) U ′(c− κ)∇c) · ∇ϕ− λcU ′(c− κ))ϕ+

∫
Rd
U(c0 − κ)ϕ(·, 0)

≥
∫
{(x,t)∈Rd×R+|D(c(x,t))>0}

D(c) U ′′(c− κ)|∇c|2ϕ,

for all nonnegative ϕ ∈ D([0, T )× Rd) and all κ ∈ R.

Remark 2.5. We remark that the definition of an entropy solution is independent of the choice of U , as all
smooth even entropies can be approximated by linear combinations of U(· − κ), κ ∈ R.

Theorem 2.6 (Existence and uniqueness of entropy solutions). Let the Assumptions 2.1 be fulfilled. Then there
exists a unique entropy solution c as defined in 2.4.

Proof. The existence and uniqueness of entropy solutions in the degenerate case was first shown by Carrillo [8]
on bounded domains and then extended to the Cauchy-problem by Karlsen, Risebro [31], by assuming even
weaker regularity on the data.

Although all the techniques which are used in this paper are designed to treat the general nonlinear situation,
where the diffusion parameter D depends on the solution c, we will only consider the case D ≡ const in the
sequel for simplicity.
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Assumption 2.7. Let the Assumptions 2.1 be fulfilled and let the diffusion parameter D be independent of
the solution c, such that D ∈ R, with D > 0.

Remark 2.8. We point out that all the estimates which are shown in the sequel hold independently of the size
of D. Therefore, the main a posteriori result (Th. 5.4) holds also in the case D ≡ 0, where all terms involving
D vanish (at least formally). In this way the error bounds are robust in D.

In order to state the next theorem, let as introduce the space of bounded variation. Therefore we first define
for g ∈ L1(Rd) the BV-semi-norm as

|g|BV := sup
ϕ∈C1

c (Rd)d,||ϕ||∞≤1

∫
Rd

g ∇ · ϕdx.

The space of functions with bounded variation is then defined as BV (Rd) := {g ∈ L1(Rd)| |g|BV <∞}.
Theorem 2.9 (Estimates independent of the diffusion parameter D). Let c be the entropy solution of prob-
lem (1) and let the Assumptions 2.7 be fulfilled. Then c(·, t) ∈ W 1,1(Rd) for all t > 0 and the following
estimates hold for all t, t1, t2 ≥ 0, where the constants K1,K2 and K3 do not depend on D.

||c||L∞(Rd×(0,T )) ≤ ||c0||L∞(Rd)e
MT ,

||c(·, t)||W1,1(Rd) ≤ K1||c0||W1,1(Rd) +K2,∫
Rd
|c(·, t1)− c(·, t2)| ≤ K3||c0||W1,1(Rd)|t2 − t1|,

where M := ||λ||L∞(Rd×(0,T )). In the limiting case, where D = 0, these inequalities hold for the BV -norm
instead of W 1,1.

Proof. The proof of this estimates within an even more general framework is given in Kruzkov [35]. See also [37]
for a survey of the methods used and [42] for the estimates in the case of weakly coupled systems of parabolic
and hyperbolic type.

3. Notations, assumptions and definition of the scheme

In this section we will fix the notations and assumptions and define the implicit vertex centered upwind
finite volume scheme for solving (1). In order to reduce the complexity of the notations we will restrict in the
sequel to the two dimensional case, i.e. we will assume d = 2 for our further considerations. Nevertheless
all the techniques used in this paper will also hold in the three dimensional case. The only difference to two
dimensions is the construction of a dual partition of a tetrahedral grid in three dimensions which would force us
to introduce an even more complex notation (cf. [1] for the construction of dual cells in 3D and the definition
of the corresponding finite volume scheme).

Let J := {t0, ..., tN} be a partition of [0, T ] and ∆tn := tn+1 − tn the step size of J . Furthermore, let
T := {Tj|j ∈ K} be an admissible triangulation of R2, where K denotes an index set of the triangles, i.e. T
covers the domain R2 and each set Tj ∩ Tl , j, l ∈ K, j 6= l is either empty or a common (2 − k)-simplex,
k ∈ {1, 2}. The joint edge of two neighbouring vertices pj and pl will be denoted by Γjl and I denotes the set
of vertex indices of the triangulation (cf. Fig. 1). The oriented normal vector to Γjl will be denoted by mjl.
By E we denote the oriented set of faces, i.e.

E := {(j, l) ∈ I × I| Γjl is the edge connecting the points pj , pl and j > l}.

Define for each vertex pj , j ∈ I of the triangulation T the corresponding dual cell Ωj by connecting the centers
of gravity of the surrounding triangles with the center of gravities of the edges Γjl. The resulting curve is the
contour line of the dual volume Ωj (cf. Fig. 1 for an illustration in 2D). The mesh of dual cells Ω := {Ωj |j ∈ I}
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Figure 1. Notations for the triangulation T and the dual partition Ω

is a partition of our domain R2 and serves as the finite volumes in our numerical method. Let N(j) ⊂ I indicate
the indices of neighbouring cells of the dual cell Ωj .

Let us indicate values above the edge Γjl by an upper index a and values below Γjl by an upper index b and
let PM := {a, b}. More precise, above is defined by a counter clockwise orientation of the vertices pj , pl, pajl and
below by a clockwise orientation of the vertices pj , pl, pbjl (cf. Fig. 1). Thus, the joint edges of Ωj and Ωl will be
denoted by Sajl, S

b
jl. The unit outer normal vector to Sajl, S

b
jl with respect to Ωj will be denoted by najl, nbjl. In

the same manner we denote by T ajl, T
b
jl the adjacent triangles of the edges Γjl.

Furthermore, let us denote hj := diam (Ωj), hjl := diam (Ωj ∪ Ωl) and hmin := minj∈I hj , h := maxj∈I hj .
Finally, let E∗ denote the oriented set of edges defined as

E∗ := {(j, l, ∗) ∈ I × I ×PM | S∗jl is a common edge of the dual cells Ωj and Ωl lying in T ∗jl and j > l}.

Assumption 3.1. We assume that the triangulation T is weakly acute (no triangle with an angle greater then
π/2). Then there exists an α > 0 such that we have for all hj, j ∈ I

αhdj ≤ |Ωj |, α |∂Ωj| ≤ hd−1
j .

3.1. The finite volume scheme

In the sequel we will define an implicit vertex centered finite volume approximation of problem (1), where we
restrict to the case given in Assumption 2.7. In order to do so we first define numerical fluxes for the convective
and diffusive part of the problem.

Convective fluxes: For any j, l ∈ I, a ∈ PM and tn ∈ R+, let ga,njl ∈ C1(R2,R) be a numerical convective
flux, satisfying the following conditions for all w, v, w′, v′ ∈ [A,B], where A,B ∈ R are chosen such that
A ≤ c ≤ B:

∂wg
a,n
jl (w, v) ≥ 0, ∂vg

a,n
jl (w, v) ≤ 0. (5)

Furthermore, there exists a constant Lg > 0 independent of j, l, n and h, such that for all w, v, w′, v′

ga,njl (w, v) = −gb,nlj (v, w), (6)

|ga,njl (w, v) − ga,njl (w′, v′)| ≤ Lg|Sajl|(|w − w′|+ |v − v′|), (7)

ga,njl (w,w) =
1

∆tn

∫ tn+1

tn

∫
Sajl

u(x, t) · najldxdtf(w), (8)
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where najl denotes the outer unit normal to Sajl with respect to Ωj . The corresponding conditions should hold
for gb,njl : R2 → R as well. Note that

∑
l∈N(j),
∗∈PM

g∗,njl (s, s) = 0, since div u = 0.

Remark 3.2. This class of convective fluxes are called monotone upwind fluxes in conservation form. Examples
are the Lax-Friedrichs or Enquist-Osher fluxes (cf. [32] for an overview).

Diffusive fluxes: Let Vh ⊂ H1(R2) be the space of piecewise linear functions on T which are globally
continuous. For any j, l ∈ I, ∗ ∈ PM and tn ∈ R+ let the diffusive numerical fluxes d∗,njl : Vh → R be defined as

d∗,njl (wh) =
∫
S∗jl

D∇wnh · n∗jldxdt, (9)

for any wnh ∈ Vh. Note that d∗,njl (wnh) does depend on wnh |T∗jl only .

Remark 3.3. Let the Assumption 3.1 be fulfilled. Then it can be shown, that d∗,njl can be written as

d∗,njl (wh) = −D∗,njl (wj − wl), D∗,njl := |S∗jl|D
1
2

(∇Nl −∇Nj) · n∗jl, (10)

where D∗,njl ∈ R is positive and symmetric in j, l. Here Nj , Nl denote the base functions of the finite element
space Vh with respect to the points pj , pl in the triangle T ∗jl. (A proof can be found in [1].)

In the following lemma we state the equivalence between the finite element and finite volume formulation of
the diffusive part.

Lemma 3.4. Let T be an admissible triangulation. Then for each j ∈ I, T ∈ T and vh ∈ Vh the following
identity holds ∫

T

∇vh · ∇Nj dx = −
∫
∂Ωj∩T

∇vh · n dγ, (11)

where Nj denotes the base function of Vh corresponding to pj and n denotes the outer unit normal on ∂Ωj.

Proof. The proof is based on the geometric relations between the triangles and the dual cells and can be found,
for instance, in [1], Lemma 13.

Now the upwind finite volume scheme for computing the approximate solutions to (1) is defined by

Definition 3.5 (Finite volume scheme (implicit)). Let Vh ⊂ H1(R2) be the space of piecewise linear functions
on T which are globally continuous. Then for each n ∈ {0, ..., N} the approximate solution cnh ∈ Vh is given by
the nodal basis coefficients cnj , j ∈ I, defined as:

c0j :=
1
|Ωj |

∫
Ωj

c0, cn+1
j +

∆tn

|Ωj|
∑
l∈N(j)

∑
∗∈PM

{g∗,n+1
jl (cn+1

j , cn+1
l )− d∗,n+1

jl (cn+1
h )}+ ∆tnλn+1

j cn+1
j = cnj . (12)

for all n ∈ {0, ..., N} and j, l ∈ I. Here N(j) denotes the indices of the neighbouring cells of Ωj and λn+1
j are

the mean values of λ over Ωj × (tn, tn+1).
With this definition we further define the space-time function ch by:

ch(·, 0) := c0h, ch(·, t) := cn+1
h for all t ∈ (tn, tn+1]. (13)
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Assumption 3.6 (Stability condition (implicit)). For the time step ∆tn of the implicit scheme 3.5 we assume
the following stability condition for M := ||min{λ, 0}||L∞(Rd×R+) and a given β ∈ (0, 1).

min
j∈I,
tn∈J

(1 + ∆tnλn+1
j ) ≥ 1−∆tnM ≥ β.

4. Properties of the discrete solutions

In order to establish an error analysis for the convection diffusion equation (1), we first study the behaviour
of the discrete solution. Therefore, we first show that the discrete solution as defined in Definition 3.5 is L∞-
stable. Similar results for the problem without reaction (e.g. λ = 0) where obtained in [23] and [24], whereas
in [10] stability in the case of a conservation laws with source term was shown for a semi-implicit cell centered
finite volume scheme. To obtain this result we follow the guidelines of [21]. For the “local” existence and the
stability estimate we use a result of Fuhrmann and Langmach, which uses that the Jacobian of the nonlinear
mapping is an M-Matrix (cf. [24]).

Lemma 4.1 (Existence and uniqueness and L∞-stability). Let the stability condition 3.6 be fulfilled. Then
there exists a unique discrete solution ch of 3.5 with the following properties.

1) ||ch||L∞(R2×(0,tn)) ≤ ||c0||L∞(R2)

∏N
n=0

1
1−∆tnM , for all tn ∈ J .

2) If the initial values c0 are nonnegative, then for all times the discrete solution ch is nonnegative.

Here M := ||min{λ, 0}||L∞(Rd×R+).

Proof.

Step 1: Uniqueness
The proof follows by induction over the time steps. From Definition 3.5 it is clear, that the initial values c0h are
unique. Now let us assume that a solution cnh in L∞(R2) is given. Furthermore, let cn+1

h , sn+1
h be two solutions

of the discrete scheme (12) for given cnh which fulfill the bound ||cn+1
h ||∞, ||sn+1

h ||∞ ≤ 1
1−∆tnM ||cnh||L∞(R2). If we

subtract the equations defining cn+1
h , sn+1

h , we get:

|Ωj |
∆tn

(cn+1
j − sn+1

j )(1 + ∆tnλn+1
j ) = −

∑
l∈N(j),
∗∈PM

g∗,n+1
jl (cn+1

j , cn+1
l ) + g∗,n+1

jl (sn+1
j , sn+1

l )

−
∑

l∈N(j),
∗∈PM

D∗,njl (cn+1
j − cn+1

l − sn+1
j + sn+1

l ).

As 1 + ∆tnλn+1
j ≥ 1−∆tnM > 0 (Assum. 3.6) we can divide by this term and get

|Ωj |
∆tn

(cn+1
j − sn+1

j ) =
1

2(1 + ∆tnλn+1
j )

×
∑

l∈N(j),
∗∈PM

(
2g∗,n+1
jl (sn+1

j , sn+1
l )− g∗,n+1

jl (cn+1
j , sn+1

l )− g∗,n+1
jl (sn+1

j , cn+1
l )

+g∗,n+1
jl (sn+1

j , cn+1
l ) + g∗,n+1

jl (cn+1
j , sn+1

l )− 2g∗,n+1
jl (cn+1

j , cn+1
l )

+2D∗,njl (sn+1
j − cn+1

j − (sn+1
l − cn+1

l ))
)
.
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Let us define ϕ(x) := e−κ|x|, for some κ > 0 which will be defined in the sequel. Furthermore, let ϕj :=
1
|Ωj |
∫

Ωj
ϕ(x) dx. Multiplying the equation by ϕj and rearranging the summands we get

|Ωj |ϕj
∆tn

(cn+1
j − sn+1

j ) =
ϕj

2(1 + ∆tnλn+1
j )

×
∑

l∈N(j),
∗∈PM

(
(∂̄1g

∗,n+1
jl (sn+1

j , cn+1
j ; sn+1

l ) + ∂̄1g
∗,n+1
jl (sn+1

j , cn+1
j ; cn+1

l ))(sn+1
j − cn+1

j )

−(∂̄2g
∗,n+1
jl (sn+1

j ; sn+1
l , cn+1

l ) + ∂̄2g
∗,n+1
jl (cn+1

j ; sn+1
l , cn+1

l ))(sn+1
l − cn+1

l )
)

where ∂̄1g
∗,n+1
jl (u, v;w) and ∂̄2g

∗,n+1
jl (w;u, v) are defined as 0 for u = v and for u 6= v as

∂̄1g
∗,n+1
jl (u, v;w) := D∗,njl +

g∗,n+1
jl (u,w)−g∗,n+1

jl (v,w)

u−v , ∂̄2g
∗,n+1
jl (w;u, v) := D∗,njl −

g∗,n+1
jl (w,u)−g∗,n+1

jl (w,v)

u−v ·

Let us remark that using the properties of the numerical fluxes g∗,n+1
jl and the Definition of D∗,njl we have

∂̄1g
∗,n+1
lj (u, v;w) = ∂̄2g

∗,n+1
jl (w;u, v) ≥ 0. Summing up over j ∈ I we see with the same arguments as in [21,

Prop. 3.1] that the series of the resulting equation are convergent and can be reordered. Therefore, we get by
rearrangement of the summation∑
j∈I

|Ωj |ϕj
∆tn

|cn+1
j − sn+1

j | ≤ 1
2γ

∑
j∈I
|cn+1
j − sn+1

j |

×
∑

l∈N(j),
∗∈PM

(
(∂̄1g

∗,n+1
jl (sn+1

j , cn+1
j ; sn+1

l ) + ∂̄1g
∗,n+1
jl (sn+1

j , cn+1
j ; cn+1

l ))|ϕj − ϕl|
)
.

Defining aj and bj as

aj :=
|Ωj |ϕj
∆tn

, bj :=
1

2(1−∆tnM)

∑
l∈N(j),
∗∈PM

(
2(D∗,njl + Lg|S∗jl|)|ϕj − ϕl|

)

this yields with the Lipschitz continuity of g∗,n+1
jl∑

j∈I
aj |cn+1

j − sn+1
j | ≤

∑
j∈I

bj|cn+1
j − sn+1

j |.

Now we recall that ϕ(x) := e−κ|x| and we choose κ small enough in order to have aj > bj for all j ∈ I. This is
possible because for any given constant K we can choose κ such that the inequality

inf
y∈Bh(x)

ϕ(y) ≥ K sup
y∈B2h(x)

|∇ϕ(y)|

holds for all x ∈ R2. Therefore, we have shown that cn+1
j = sn+1

j which finishes the uniqueness proof.

Step 2: Existence and stability
In this step we will show by induction over the time steps that there exists a discrete solution ch of 3.5 with
the stability properties 1) and 2) of the Lemma. First of all it is clear from the definition that there exists a
c0h with the proposed properties. Now let cnh be given with a bound ||cnh||L∞(R2) ≤ An, for a given constant
An > 0. We will show that there exists a solution cn+1

h , given by the scheme (12) with the stability bound
||cn+1
h ||∞ ≤ 1

1−∆tnMAn. Furthermore, we show that if cnh is nonnegative, then cn+1
h is nonnegative as well.
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In order to prove this result we first consider a finite dimensional subproblem. Therefore, let us define c(r)h
for some r ∈ N large enough. For all j, such that Ωj 6⊂ Br(0) we define c(r)j := cnj and for all j, such that

Ωj ⊂ Br(0) let c(r)j be defined as the solution of the following equation

c
(r)
j +

∆tn

|Ωj |
∑
l∈N(j)

∑
∗∈PM

{g∗,n+1
jl (c(r)j , c

(r)
l )− d∗,n+1

jl (c(r)h )}+ ∆tnλn+1
j c

(r)
j = cnj . (14)

We will now prove that there exists {c(r)j |Ωj ⊂ Br(0)} and that c(r)h fulfills the bound ||c(r)h ||∞ ≤ 1
1−∆tnMAn.

In order to do so, we write equation (14) in the following form

|Ωj |c(r)j +∆tn
∑
l∈N(j)

∑
∗∈PM

{g∗,n+1
jl (c(r)j , c

(r)
l )− d∗,n+1

jl (c(r)h )} =
|Ωj |

1 + ∆tnλn+1
j

cnj .

As this finite dimensional nonlinear system of equations fulfills all assumptions of Theorem 5.10 in [24] we
can use exactly the proof of Theorem 5.10 in [24] which gives us the existence and uniqueness of a solution
{c(r)j |Ωj ⊂ Br(0)}, satisfying (14) and the estimate ||c(r)h ||∞ ≤ 1

1−∆tnM ||cnh ||∞ ≤
1

1−∆tnMAn. Furthermore, we

get if cnh is nonnegative that c(r)h is nonnegative as well. (Remark that the proof of this result in [24] is done by
showing that the Jacobian of the nonlinear mapping, is a M-matrix.)

As we have proven the result for the finite dimensional problem, we are now going to pass to the limit r →∞.
For r ∈ N, let {c(r)j }j∈I be the solution of the finite dimensional problem above. As we have a uniform L∞-
bound with respect to r for this sequence of solutions, we can extract, by a diagonal procedure, a subsequence
rl, l ∈ N with rl →∞ such that {c(rl)j }j∈I is convergent and the limit fulfills the same stability bounds as the

solutions {c(rl)j }j∈I . Now let cn+1
j be defined as cn+1

j := liml→∞ c
(rl)
j . Passing to the limit in equation (14)

shows, that the limit cn+1
h is solution of (12). Now, using the uniqueness of a solution, we get that cn+1

h is the
limit for the whole sequence {c(r)h }r∈N. This completes the proof of Lemma 4.1. 2

In the next step we establish entropy inequalities for the approximate solution (cf. Def. 3.5). Therefore, we
first introduce the entropies and correlated fluxes we want to consider here. Following the guidelines of Cockburn
and Gremaud [14] we introduce the entropies U = Uδ which are approximations of the Kruzkov-entropies and
the correlated entropy fluxes FU .

Definition 4.2 (Entropy U and entropy-flux FU ). Let Ū ∈ C2(R,R+) be an even function, such that

Ū(0) = 0, Ū ′(v)

 = 1 if v ≥ 1,
∈ [−1, 1] if − 1 < v < 1,
= −1 if v ≤ −1,

Ū ′′ ≥ 0.

For any δ > 0, v ∈ R let us define U : R → R+ by U(v) := δŪ(vδ ). Furthermore, define FU : R → R for any
v, κ ∈ R by FU (v, κ) :=

∫ v
κ f
′(w)U ′(w − κ) dw.

Lemma 4.3. Let U,FU be defined as above. Then the following inequalities hold for any v, κ ∈ R

|v| − k0 δ ≤ U(v) ≤ |v|, (15)

|∂v(FU (v, κ)− FU (κ, v))| ≤ k1

2
δ ||f ′′||L∞(R), (16)

where k0 := sup|w|≤1 ||w| − Ū(w)| and k1 := sup|w|≤1 Ū
′′(w).

Proof. Cf. Cockburn and Gremaud [14].
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Definition 4.4 (The discrete entropy flux). Let U be defined as in 4.2. For any j, l ∈ I, a ∈ PM and tn ∈ R+,
let Ga,njl ∈ C1(R2,R) be a discrete entropy flux correlated to the entropy U . Let us assume that Ga,njl satisfies
for all w, v, w′, v′ ∈ [A,B], where A,B ∈ R are chosen such that A ≤ c ≤ B:

∂wG
a,n
jl (w, v) ≥ 0, ∂vG

a,n
jl (w, v) ≤ 0. (17)

Furthermore, there exists a constant LG > 0 independent of j, l, n and h, such that for all w, v, w′, v′

Ga,njl (w, v) = −Gb,nlj (v, w), (18)

|Ga,njl (w, v) −Ga,njl (w′, v′)| ≤ LG|Sajl|(|w − w′|+ |v − v′|), (19)

Ga,njl (w,w) =
1

∆tn

∫ tn+1

tn

∫
Sajl

u(x, t) · najldxdtFU (w, κ) (20)

and additionally the following compatibility condition should hold

∂vG
a,n
jl (w, v) = ∂vg

a,n
jl (w, v)U ′(v − κ), (21)

where najl denotes the outer unit normal to Sajl with respect to Ωj . The corresponding conditions should hold
for Gb,njl : R2 → R as well. Note that

∑
l∈N(j),
∗∈PM

G∗,njl (s, s) = 0, since div u = 0.

Remark 4.5. For the construction of the discrete entropy fluxes correlated to the entropy U and the entropy
flux FU cf. Lemma 3 and Lemma 4 in [9].

Definition 4.6 (The discrete form Enj ). For any vh ∈ L∞(0, T ;Vh), κ ∈ R let us define

Enj (ch, κ) := U(cn+1
j − κ)− U(cnj − κ) +

∆tn

|Ωj|
∑

l∈N(j),
∗∈PM

G∗,n+1
jl (cn+1

j , cn+1
l )

+
∆tn

|Ωj|
∑
l∈N(j)

D

∫
Tajl

∇cn+1
h · ∇Nj U ′(cn+1

j − κ) + ∆tnλn+1
j cn+1

j U ′(cn+1
j − κ),

Fnj (ch, κ) :=
∫ cn+1

j

cnj

∫ cn+1
j

s

U ′′(w − κ) dw ds+
∆tn

|Ωj|
∑

l∈N(j),
∗∈PM

∫ cn+1
l

cn+1
j

∂wg
∗,n+1
jl (cn+1

j , w)
∫ cn+1

j

w

U ′′(s− κ) ds dw,

where Nj denotes the base function of Vh corresponding to pj , U is defined as in 4.2 and G∗,n+1
jl are the discrete

entropy fluxes, defined in 4.4.

Lemma 4.7 (Discrete entropy equality). Let ch be the approximate solution of (1), defined in 3.5 and let the
Assumptions 2.7, 3.1 be fulfilled. Then with the Definition 4.6 we have for all j ∈ I:

Enj (ch, κ) = −Fnj (ch, κ) ≤ 0.

Proof. If we multiply (12) by U ′(cn+1
j − κ) we get:

RHS := cn+1
j U ′(cn+1

j − κ)− cnj U ′(cn+1
j − κ) +

∆tn

|Ωj|
∑

l∈N(j),
∗∈PM

g∗,n+1
jl (cn+1

j , cn+1
l )U ′(cn+1

j − κ)

−∆tn

|Ωj|
∑

l∈N(j),
∗∈PM

d∗,n+1
jl (cn+1

h )U ′(cn+1
j − κ) + ∆tnλn+1

j cn+1
j U ′(cn+1

j − κ) = 0.
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Applying Definition (9) and Lemma 3.4 to the third term of RHS, we get

RHS = cn+1
j U ′(cn+1

j − κ)− cnj U ′(cn+1
j − κ) +

∆tn

|Ωj |
∑

l∈N(j),
∗∈PM

g∗,n+1
jl (cn+1

j , cn+1
l )U ′(cn+1

j − κ)

+
∆tn

|Ωj |
∑
l∈N(j)

D

∫
Ta
jl

∇cn+1
h · ∇Nj U ′(cn+1

j − κ) + ∆tnλn+1
j cn+1

j U ′(cn+1
j − κ).

Now it can be easily seen, that Fnj (ch, κ) is given by RHS − Enj (ch, κ), where we use for the first term of

RHS the identity U ′(b − κ)(b − a) = U(b− κ) − U(a − κ) +
∫ b
a

∫ b
s U
′′(w − κ) dw ds. Furthermore, we used the

properties (5)–(8) and (17)–(21) of the fluxes g∗,n+1
jl and G∗,n+1

jl respectively, in order to get for the second term
of RHS ∑

l∈N(j),
∗∈PM

g∗,n+1
jl (cn+1

j , cn+1
l )U ′(cn+1

j − κ) =
∑

l∈N(j),
∗∈PM

(g∗,n+1
jl (cn+1

j , cn+1
l )− g∗,n+1

jl (cn+1
j , cn+1

j ))U ′(cn+1
j − κ)

=
∑

l∈N(j),
∗∈PM

∫ cn+1
l

cn+1
j

∂wg
∗,n+1
jl (cn+1

j , w)U ′(cn+1
j − κ) dw

=
∑

l∈N(j),
∗∈PM

∫ cn+1
l

cn+1
j

∂wg
∗,n+1
jl (cn+1

j , w)U ′(w − κ) dw

+
∑

l∈N(j),
∗∈PM

∫ cn+1
l

cn+1
j

∂wg
∗,n+1
jl (cn+1

j , w)(U ′(cn+1
j − κ)− U ′(w − κ)) dw

=
∑

l∈N(j),
∗∈PM

G∗,n+1
jl (cn+1

j , cn+1
l ) +

∑
l∈N(j),
∗∈PM

∫ cn+1
l

cn+1
j

∂wg
∗,n+1
jl (cn+1

j , w)
∫ cn+1

j

w

U ′′(s− κ) ds dw.

As U ′′ and −∂wg∗,n+1
jl (v, w) are positive we get Fnj (ch, κ) ≥ 0 as well, which completes the proof.

Definition 4.8 (The form E). For any vh ∈ L∞(0, T ;Vh), κ ∈ R let us define

E(vh, κ) :=
∫
R2×R+

U(vh(x, t) − κ)∂tΦ(x, t) dxdt +
∫
R2
U(c0(x)− κ)Φ(x, 0) dx

+
∫
R2×R+

FU (vh(x, t), κ)u(x, t) · ∇Φ(x, t) dxdt

−
∫
R2×R+

D
(
U ′(vh(x, t) − κ)∇vh(x, t) · ∇Φ(x, t) + U ′′(vh(x, t) − κ)|∇vh(x, t)|2Φ(x, t)

)
dxdt

−
∫
R2×R+

λ(x, t)vh(x, t)U ′(vh(x, t)− κ)Φ(x, t) dxdt,

where Φ ∈ C∞0 (R2 × R+;R+) is a smooth nonnegative test function.

Lemma 4.9 (Continuous entropy inequality for the discrete solution). Let ch be the approximate solution of (1),
defined in 3.5 and let the Assumptions 2.7, 3.1 and 3.6 be fulfilled. Then with the Definition 4.8 we have

E(ch, κ) ≥ −Rh(ch),
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where Rh(ch) is given by

Rh(ch) :=
∑
tn∈J

∑
j∈I
|cn+1
j − cnj |

∫ tn+1

tn

∫
Ωj

∫ 1

0

|∂tΦ(x, tn + θ(t− tn))|dθ dxdt+
∫
R2
|c0(x)− ch(x, 0)|Φ(x, 0) dx

+
∑
tn∈J

∑
j∈I

hj

∫
Ωj

|∇ch(x, tn+1)|
∫ tn+1

tn
|∂tΦ(x, t)|dxdt

+
∑
tn∈J

∑
(j,l,∗)∈E∗

C∗,n+1
jl (cn+1

j , cn+1
l )|cn+1

j − cn+1
l | (hj + ∆tn) ∆tn〈µ∗,njl , |∂tΦ|+ |∇Φ|〉

+
∑
tn∈J

∑
(j,l,∗)∈E∗

C∗,n+1
lj (cn+1

l , cn+1
j )|cn+1

j − cn+1
l | (hl + ∆tn) ∆tn〈µ∗,nlj , |∂tΦ|+ |∇Φ|〉

+
∑
tn∈J

∑
(j,l,∗)∈E∗

Lf |cn+1
j − cn+1

l | (∆tn + hjl) 〈ν∗,njl , |∇Φ|+ |∂tΦ|〉

+
∑
tn∈J

∑
j∈I
||u||L∞(Ωj×(tn,tn+1])Lfhj

∫
Ωj

|∇ch(x, tn+1)|
∫ tn+1

tn
|∇Φ(x, t)|dxdt

+
∑
tn∈J

∑
(j,l)∈E

D[∇cn+1
h ·mjl]Γjl

( 2
δ
||Ū ′′||L∞(R)|cn+1

j − cn+1
l |

∫ tn+1

tn

∫
Γjl

Φ(γ, t) dγdt

+ ∆tn|Γjl|(hnjl + ∆tn)(〈µnjl, |∂tΦ|+ |∇Φ|〉+ 〈µnlj , |∂tΦ|+ |∇Φ|〉)
)

+
∑
tn∈J

∑
j∈I
|cn+1
j |

∫ tn+1

tn

∫
Ωj

Φ(x, t)|λn+1
j − λ(x, t)|dxdt

+
∑
tn∈J

∑
j∈I
||λ||L∞(Ωj×(tn,tn+1])(1 + |cn+1

j | 1
δ
||Ū ′′||L∞(R))hj

∫
Ωj

|∇ch(x, tn+1)|
∫ tn+1

tn
Φ(x, t) dt dx.

Here Lf denotes the Lipschitz constant of f and we used the notations

C∗,n+1
jl (v, w) :=

g∗,n+1
jl (v, w) − g∗,n+1

jl (v, v)
(v − w)

, [∇cn+1
h ·mjl]Γjl := |(∇cn+1

h |Tajl −∇c
n+1
h |T bjl) ·mjl|,

where C∗,n+1
jl (v, w) is positive, because of the monotony of the numerical flux. Furthermore the measures µnjl, µ

∗,n
jl

are defined as

〈µnjl, g〉 :=
1

(∆tn)2 |Ωj | |Γjl|

∫ tn+1

tn

∫
Ωj

∫ tn+1

tn

∫
Γjl

∫ 1

0

g(x+ θ(γ − x), τ + θ(t− τ)) dθ dγ ds dxdt,

〈ν∗,njl , g〉 :=
1

(∆tn)2 |S∗jl|2
∫ tn+1

tn

∫
S∗jl

(∫ tn+1

tn

∫
S∗jl

|(u(γ, t)− u(ξ, τ)) · n∗jl|dξ dτ

×
∫ tn+1

tn

∫
S∗jl

∫ 1

0

g(ξ + θ(γ − ξ), τ + θ(t− τ)) dθ dξ dτ

)
dγ dt,

〈µ∗,njl , g〉 :=
1

(∆tn)2 |Ωj | |S∗jl|

∫ tn+1

tn

∫
Ωj

∫ tn+1

tn

∫
S∗
jl

∫ 1

0

g(x+ θ(γ − x), τ + θ(t− τ)) dθ dγ ds dxdt.
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Proof. From Lemma 4.7 we have for smooth nonnegative test functions Φ

Eh(ch, κ) :=
∑
tn∈J

∑
j∈I

Enj (ch, κ)
1

∆tn

∫ tn+1

tn

∫
Ωj

Φ(x, t) dxdt ≤ 0.

Therefore we have E(ch, κ) ≥ E(ch, κ)+Eh(ch, κ) and it remains to show a lower bound for E(ch, κ)+Eh(ch, κ).
From the Definitions 4.6 and 4.8 we get E(ch, κ) +Eh(ch, κ) = Tt + Tc + Td + Tλ, with

Tt =
∫
R2×R+

U(ch(x, t)− κ)∂tΦ(x, t) dxdt +
∫
R2
U(c0(x)− κ)Φ(x, 0) dx

+
∑
tn∈J

∑
j∈I
|Ωj | (U(cn+1

j − κ)− U(cnj − κ)) Φn+1
j ,

Tc =
∫
R2×R+

FU (ch(x, t), κ)u(x, t) · ∇Φ(x, t) dxdt+
∑
tn∈J

∑
j∈I

∆tn
∑

l∈N(j),
∗∈PM

G∗,n+1
jl (cn+1

j , cn+1
l ) Φn+1

j ,

Td = −
∫
R2×R+

D
(
U ′(ch(x, t) − κ)∇ch(x, t) · ∇Φ(x, t) + U ′′(ch(x, t)− κ)|∇ch(x, t)|2Φ(x, t)

)
dxdt

+
∑
tn∈J

∑
j∈I

∑
l∈N(j)

∆tnD
∫
Ta
jl

∇cn+1
h · ∇Nj U ′(cn+1

j − κ)Φn+1
j dx,

Tλ = −
∫
R2×R+

λ(x, t)ch(x, t)U ′(ch(x, t)− κ)Φ(x, t) dxdt +
∑
tn∈J

∑
j∈I

∆tn |Ωj | λn+1
j cn+1

j U ′(cn+1
j − κ)Φn+1

j ,

where Φn+1
j := 1

|Ωj | ∆tn

∫ tn+1

tn

∫
Ωj

Φ(x, t) dxdt. In order to estimate the Terms Tt, Tc, Td and Tλ we first introduce
the projection operator Πh from C0(R2) into the space of piecewise constant functions on the dual cells which
is defined as Πh(v)|Ωj = v(pj) for all j ∈ I. For the terms Tt, Tc and Tλ we will work with the piecewise
constant projection of the approximate solution and apply similar techniques as in the purely hyperbolic situation
(cf. [10,21,33]), whereas we exploit the full piecewise linear representation of the approximate solution in order
to estimate Td.

Estimate of the term Tt:
Inserting ΠhU(ch(x, t)− κ) and using partial summation we get

Tt = −
∑
tn∈J

∑
j∈I

∫
Ωj

(U(cn+1
j − κ)− U(cnj − κ)) Φ(x, tn) dxdt

−
∫
R2

(ΠhU(ch(x, 0)− κ)− U(c0(x) − κ))Φ(x, 0) dx

+
∑
tn∈J

∫
R2

(U(ch(x, tn+1)− κ)−ΠhU(ch(x, tn+1)− κ))
∫ tn+1

tn
∂tΦ(x, t) dxdt

+
∑
tn∈J

∑
j∈I
|Ωj | (U(cn+1

j − κ)− U(cnj − κ)) Φn+1
j .
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Estimating Tt we get with the properties of U (Def. 4.2)

Tt ≥
∑
tn∈J

∑
j∈I

(U(cn+1
j − κ)− U(cnj − κ))

1
∆tn

∫ tn+1

tn

∫
Ωj

(Φ(x, t) − Φ(x, tn)) dxdt

−
∫
R2
|c0(x)− ch(x, 0)|Φ(x, 0) dx−

∑
tn∈J

∫
R2
|ch(x, tn+1)−Πhch(x, tn+1)|

∫ tn+1

tn
|∂tΦ(x, t)|dxdt

≥ −
∑
tn∈J

∑
j∈I
|cn+1
j − cnj |

∫ tn+1

tn

∫
Ωj

∫ 1

0

|∂tΦ(x, tn + θ(t− tn))|dθ dxdt

−
∫
R2
|c0(x)− ch(x, 0)|Φ(x, 0) dx−

∑
tn∈J

∑
j∈I

hj

∫
Ωj

|∇ch(x, tn+1)|
∫ tn+1

tn
|∂tΦ(x, t)|dxdt.

Estimate of the term Tc:
To estimate this term we add and subtract ΠhFU (ch(x, t), κ) into the integral and use integration by parts

Tc =
∑
tn∈J

∑
j∈I

∫ tn+1

tn

∑
l∈N(j),
∗∈PM

(
FU (cn+1

j , κ)
∫
S∗jl

u(γ, t) · n∗jlΦ(γ, t) dγ +
1
|Ωj |

G∗,n+1
jl (cn+1

j , cn+1
l )

∫
Ωj

Φ(x, t) dx

)
dt

+
∫
R2×R+

(FU (ch(x, t), κ)−ΠhFU (ch(x, t), κ))u(x, t) · ∇Φ(x, t) dxdt =: Tc1 + Tc2.

The term Tc1 is estimated in the same way as in Theorem 4.1 in [21]. First we get

Tc1 =
∑
tn∈J

∑
(j,l,∗)∈E∗

(G∗,n+1
jl (cn+1

j , cn+1
l )−G∗,n+1

jl (cn+1
j , cn+1

j ))

×
(

1
|Ωj |

∫ tn+1

tn

∫
Ωj

Φ(x, t) dxdt − 1
|S∗jl|

∫ tn+1

tn

∫
S∗
jl

Φ(γ, t) dγ dt

)
+
∑
tn∈J

∑
(j,l,∗)∈E∗

(G∗,n+1
lj (cn+1

l , cn+1
j )−G∗,n+1

lj (cn+1
l , cn+1

l ))

×
(

1
|Ωl|

∫ tn+1

tn

∫
Ωl

Φ(x, t) dxdt− 1
|S∗jl|

∫ tn+1

tn

∫
S∗jl

Φ(γ, t) dγ dt

)

−
∑
tn∈J

∑
(j,l,∗)∈E∗

∫ tn+1

tn

∫
S∗
jl

(
1
|S∗jl|

(G∗,n+1
jl (cn+1

j , cn+1
j ))− FU (cn+1

j , κ)u(γ, t) · n∗jl)

× 1
∆tn |S∗jl|

∫ tn+1

tn

∫
S∗jl

(Φ(γ, t)− Φ(ξ, τ)) dξ dτ

)
dγ dt

+
∑
tn∈J

∑
(j,l,∗)∈E∗

∫ tn+1

tn

∫
S∗jl

(
1
|S∗jl|

(G∗,n+1
jl (cn+1

l , cn+1
l ))− FU (cn+1

l , κ)u(γ, t) · n∗jl)

× 1
∆tn |S∗jl|

∫ tn+1

tn

∫
S∗jl

(Φ(γ, t)− Φ(ξ, τ)) dξ dτ

)
dγ dt

=: Tc1,a + Tc1,b + Tc1,c + Tc1,d.
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Using the monotony of the entropy fluxes and Φ(x, t) − Φ(γ, t) =
∫ 1

0 ∇Φ(γ + θ(x− γ), t)(x− γ) dθ, we further
derive for the terms Tc1,a, Tc1,b

|Tc1,a| ≤
∑
tn∈J

∑
(j,l,∗)∈E∗

C∗,n+1
jl (cn+1

j , cn+1
l )|cn+1

j − cn+1
l |(hj+∆tn)∆tn〈µ∗,njl , |∂tΦ|+ |∇Φ|〉,

|Tc1,b| ≤
∑
tn∈J

∑
(j,l,∗)∈E∗

C∗,n+1
lj (cn+1

l , cn+1
j )|cn+1

j − cn+1
l |(hl+∆tn)∆tn〈µ∗,nlj , |∂tΦ|+ |∇Φ|〉,

where the measures µ∗,njl are defined in the lemma. To estimate the terms Tc1,c, Tc1,d we use the consistency of
the entropy fluxes and get in a similar way

|Tc1,c + Tc1,d| ≤
∑
tn∈J

∑
(j,l,∗)∈E∗

|FU (cn+1
l , κ)− FU (cn+1

j , κ)| 1
(∆tn |S∗jl|)2

×
∫ tn+1

tn

∫
S∗jl

∣∣∣∣∣
∫ tn+1

tn

∫
S∗jl

(u(γ, t)− u(ξ, τ)) · n∗jl dξ dτ
∫ tn+1

tn

∫
S∗jl

(Φ(γ, t)− Φ(ξ, τ)) dξ dτ

∣∣∣∣∣ dγ dt

≤
∑
tn∈J

∑
(j,l,∗)∈E∗

Lf |cn+1
l − cn+1

j |(∆tn + hjl) 〈ν∗,njl , |∇Φ|+ |∂tΦ|〉,

where the measures ν∗,njl are defined in the lemma and Lf denotes the Lipschitz constant of f . To estimate the
term Tc2 we argue as follows

|Tc2| = |
∑
tn∈J

∑
j∈I

∫ tn+1

tn

∫
Ωj

(FU (ch(x, tn+1), κ)− FU (cn+1
j , κ))u(x, t) · ∇Φ(x, t) dxdt|

≤
∑
tn∈J

∑
j∈I
||u||L∞(Ωj×(tn,tn+1])Lfhj

∫
Ωj

|∇ch(x, tn+1)|
∫ tn+1

tn
|∇Φ(x, t)|dxdt,

where Lf is the Lipschitz constant of the flux f .

Estimate of the term Td:
To estimate the term Td we first write all terms as a summation over triangles Tk ∈ T

Td = −
∑
tn∈J

∑
k∈K

∫ tn+1

tn

∫
Tk

D U ′(ch(x, t) − κ)∇ch(x, t) · ∇Φ(x, t) dxdt

−
∑
tn∈J

∑
k∈K

∫ tn+1

tn

∫
Tk

D U ′′(ch(x, t) − κ)|∇ch(x, t)|2Φ(x, t) dxdt

+
∑
tn∈J

∑
k∈K

∫ tn+1

tn

∫
Tk

D∇cn+1
h · ∇Π1

h(U ′(cn+1
h − κ)Π0

h(Φ)) dxdt.

Here Π1
h denotes the nodal projection operator into Vh (e.g. if {Nl}l denote the linear base functions of Vh we

have Π1
h(v)|Tk =

∑
{l|pl∈Tk} v(pl)Nl) and the projection Π0

h is defined by Π0
h(Φ)(x, t) := Φn+1

j for x ∈ Ωj and
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t ∈ (tn, tn+1]. We now use integration by parts on the triangles Tk in the first and third term to get

Td =
∑
tn∈J

∑
k∈K

∫ tn+1

tn

∫
Tk

D ∇ ( U ′(ch(x, t)− κ)∇ch(x, t) ) Φ(x, t) dxdt

−
∑
tn∈J

∑
k∈K

∫ tn+1

tn

∫
Tk

D U ′′(ch(x, t)− κ)|∇ch(x, t)|2Φ(x, t) dxdt

−
∑
tn∈J

∑
j∈I

∑
l∈N(j)

∫ tn+1

tn

∫
Γjl

D∇cn+1
h |Ta

jl
·mjl U

′(ch(γ, t)− κ)Φ(γ, t) dγ dt

+
∑
tn∈J

∑
j∈I

∑
l∈N(j)

∫ tn+1

tn

∫
Γjl

D∇cn+1
h |Tajl ·mjl Π1

h(U ′(cn+1
h − κ)Π0

h(Φ)) dγ dt.

As ∆cn+1
h |Ωj∩Tajl = 0 we see that the first two terms of Td cancel. For the remaining terms we now write the

sums over j and l as a sum over the edges (j, l) and use T alj = T bjl as well as mjl = −mlj . This yields

|Td| ≤
∑
tn∈J

∑
(j,l)∈E

∫ tn+1

tn

∫
Γjl

D[∇cn+1
h ·mjl]Γjl |Π1

h(U ′(cn+1
h − κ)Π0

h(Φ))− U ′(ch(γ, t)− κ)Φ(γ, t)|dγ dt,

where we used the notation [∇cn+1
h ·mjl]Γjl := |(∇cn+1

h |Ta
jl
−∇cn+1

h |T bjl) ·mjl|. Now it remains to estimate

I :=
∫ tn+1

tn

∫
Γjl

Π1
h(U ′(cn+1

h − κ)Π0
h(Φ))− U ′(ch(γ, t)− κ)Φ(γ, t) dγ dt

which can be done as follows

I =
∫ tn+1

tn

∫
Γjl

NjU
′(cn+1

j − κ)Φn+1
j +NlU

′(cn+1
l − κ)Φn+1

l − U ′(ch(γ, t)− κ)Φ(γ, t) dγ dt

=
∫ tn+1

tn

∫
Γjl

NjU
′(cn+1

j − κ)(Φn+1
j − Φ(γ, t)) +NlU

′(cn+1
l − κ)(Φn+1

l − Φ(γ, t)) dγ dt

+
∫ tn+1

tn

∫
Γjl

(Nj(U ′(cn+1
j − κ)− U ′(ch(γ, t)− κ)) +Nl(U ′(cn+1

l − κ)− U ′(ch(γ, t)− κ)))Φ(γ, t) dγ dt.

|I| ≤ ∆tn|Γjl|(hnjl + ∆tn) (〈µnjl, |∂tΦ|+ |∇Φ|〉+ 〈µnlj , |∂tΦ|+ |∇Φ|〉)

+
2
δ
||Ū ′′||L∞(R)|cn+1

j − cn+1
l |

∫ tn+1

tn

∫
Γjl

Φ(γ, t) dγ dt,

where the measure µnjl is defined as in the statement of the Lemma. With this estimate on I we finally get the
following estimate on Td

|Td| ≤
∑
tn∈J

∑
(j,l)∈E

D[∇cn+1
h ·mjl]Γjl

(
2
δ
||Ū ′′||L∞(R)|cn+1

j − cn+1
l |

∫ tn+1

tn

∫
Γjl

Φ(γ, t) dγ dt

+∆tn|Γjl|(hnjl + ∆tn)(〈µnjl, |∂tΦ|+ |∇Φ|〉+ 〈µnlj , |∂tΦ|+ |∇Φ|〉)
)
.
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Estimate of the term Tλ:
We again introduce a projection term ΠhU

′(ch(x, t) − κ) and get

Tλ =
∑
tn∈J

∑
j∈I

cn+1
j U ′(cn+1

j − κ)
∫ tn+1

tn

∫
Ωj

Φ(x, t)(λn+1
j − λ(x, t)) dxdt

+
∫
R2×R+

λ(x, t)(Πh(ch(x, t)U ′(ch(x, t)− κ))− ch(x, t)U ′(ch(x, t) − κ))Φ(x, t) dxdt

≤
∑
tn∈J

∑
j∈I
|cn+1
j |

∫ tn+1

tn

∫
Ωj

Φ(x, t)|λn+1
j − λ(x, t)|dxdt

+
∑
tn∈J

∑
j∈I

∫ tn+1

tn

∫
Ωj

λ(x, t)(cn+1
j U ′(cn+1

j − κ)− ch(x, tn+1)U ′(ch(x, tn+1)− κ))Φ(x, t) dxdt

≤
∑
tn∈J

∑
j∈I
|cn+1
j |

∫ tn+1

tn

∫
Ωj

Φ(x, t)|λn+1
j − λ(x, t)|dxdt

+
∑
tn∈J

∑
j∈I
||λ||L∞(Ωj×(tn,tn+1])

∫ tn+1

tn

∫
Ωj

|cn+1
j − ch(x, tn+1)|Φ(x, t) dxdt

+
∑
tn∈J

∑
j∈I
||λ||L∞(Ωj×(tn,tn+1])

∫ tn+1

tn

∫
Ωj

|cn+1
j | 1

δ
||Ū ′′||L∞(R)|cn+1

j − ch(x, tn+1)|Φ(x, t) dxdt

≤
∑
tn∈J

∑
j∈I
|cn+1
j |

∫ tn+1

tn

∫
Ωj

Φ(x, t)|λn+1
j − λ(x, t)|dxdt

+
∑
tn∈J

∑
j∈I
||λ||L∞(Ωj×(tn,tn+1])(1 + |cn+1

j | 1
δ
||Ū ′′||L∞(R))hj

∫
Ωj

|∇ch(x, tn+1)|
∫ tn+1

tn
Φ(x, t) dt dx.

Collecting all the estimates shown above, we have proved the Lemma.

Definition 4.10 (Choice of the test function). Define the functions w0 ∈ C∞0 (R,R) and w̄0 ∈ C∞0 (R2,R) as
supp (w0) ⊂ [−1, 0], w0 ≥ 0,

∫
Rw0(x) dx = 1, supp (w̄0) ⊂ {x ∈ R2| |x| ≤ 1}, w̄0 ≥ 0,

∫
R2w̄0(x) dx = 1.

Furthermore for all r ≥ 1 let us define w, w̄ as

w(t) = rw0(rt), w̄(x) = rdw̄0(rx). (22)

Let ψ(t) := eM(T−t) − 1, ∀t ∈ [0, T ], where M := ||λ||L∞((0,T );R2) then we set:

Φ(x, t) = ϕ(x, t, y, s) := ψ(t)w̄(x− y)w(t− s). (23)

With this choice of the test function we are now able to state the main result of this section which is the
continuous entropy estimate of the approximate solution.

Corollary 4.11. Let ch be the discrete solution defined in 3.5 and let c be the entropy solution of (1). Fur-
thermore, let the Assumptions 2.7 and 3.1 be fulfilled and let Φ(x, t) be defined as in (23). Then we get the
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following estimate:

Ē(ch, c) :=
∫
R2×R+

E(ch, c(y, s)) dy ds ≥ −R̄h (η0, ηt, ηc, ηd, ηλ, ηp,0, ηp,1, ηU ) ,

with R̄h (η0, ηt, ηc, ηd, ηλ, ηp,0, ηp,1, ηU ) := (η0 + ηp,0 + ηλ) +
1
δ
ηU + ||ψt||L∞(0,T )(ηt+ ηc+ ηd+ ηp,1)

+r ||ψ||L∞(0,T )((K1 +K ′1)(ηt+ ηc+ ηd+ ηp,1))

and

η0 =
∫
R2
|ch(x, 0)− c0(x)|dx,

ηt =
∑
tn∈J

∑
j∈I
|cn+1
j − cnj |∆tn|Ωj |,

ηc =
∑
tn∈J

∑
(j,l,∗)∈E∗

(hjl + ∆tn)∆tnQ∗,n+1
jl (cn+1

j , cn+1
l )|cn+1

j − cn+1
l |

+
∑
tn∈J

∑
(j,l,∗)∈E∗

Lf |||u|||(S∗jl×(tn,tn+1))|cn+1
j − cn+1

l |(hjl + ∆tn)2∆tn|S∗jl|,

ηd =
∑
tn∈J

∑
(j,l)∈E

D[∇cn+1
h ·mjl]Γjl∆t

n|Γjl|(hnjl + ∆tn),

ηλ =
∑
tn∈J

∑
j∈I
|cn+1
j |

∫ tn+1

tn

∫
Ωj

|λn+1
j − λ(x, t)|dxdt,

ηp,0 =
∑
tn∈J

∑
j∈I
||λ||L∞(Ωj×(tn,tn+1])hj∆tn

∫
Ωj

|∇ch(x, tn+1)|dx,

ηp,1 =
∑
tn∈J

∑
j∈I

(1 + ||u||L∞(Ωj×(tn,tn+1])Lf )hj∆tn
∫

Ωj

|∇ch(x, tn+1)|dx,

ηU = ||Ū ′′||L∞(R)

∑
tn∈J

∑
j∈I

(
||λ||L∞(Ωj×(tn,tn+1])|cn+1

j | hj∆tn
∫

Ωj

|∇ch(x, tn+1)|dx
)

+2||Ū ′′||L∞(R)

∑
tn∈J

∑
(j,l)∈E

D[∇cn+1
h ·mjl]Γjl |cn+1

j − cn+1
l |∆tn|Γjl|.

Here δ is the regularization parameter of the entropy U (cf. Def. 4.2 for the definition of U , δ and Ū),
K1 :=

∫
R |∂tw0(t)|dt, K ′1 :=

∫
R2 |∇w̄0(x)|dx and Q∗,n+1

jl , |||u|||(S∗jl×(tn,tn+1)) are defined as

Q∗,n+1
jl (v, w) :=

2g∗,n+1
jl (v, w)− g∗,n+1

jl (v, v)− g∗,n+1
jl (w,w)

(v − w)
,

|||u|||(S∗jl×(tn,tn+1)) :=
1

(∆tn |S∗jl|)2 (hjl + ∆tn)

∫ tn+1

tn

∫
S∗jl

∫ tn+1

tn

∫
S∗jl

|(u(γ, t)− u(ξ, τ)) · n∗jl|dξ dτ dγ dt.

Proof. The proof follows analogue to the proof of Corollary 1 in [41].
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5. Approximation inequality and A POSTERIORI error estimate

In the last section we proved, that the approximate solution ch of (1) fulfills an entropy inequality up to an
residuum term R̄h (Cor. 4.11). The next step in order to prove an a posteriori error estimate for the finite
volume approximation, is an approximation inequality which will be stated in Theorem 5.3 below. Before we
can state this result we introduce the following notations.

Definition 5.1 (The two-forms Ē and its dual Ē∗). For any c̃, c ∈ L∞(0, T ;W 1,1(R2)) let the two-form Ē be
defined as in Corollary 4.11, equation (24). Furthermore, let us define the two-form Ē∗ by:

Ē∗(c̃, c) :=
∫

(R2×R+)2
U(c(y, s)− c̃(x, t))∂sϕ(x, t, y, s) dxdt dy ds

+
∫
R2×R+

∫
R2
U(c0(y)− c̃(x, t))ϕ(x, t, y, 0) dy dxdt

+
∫

(R2×R+)2
FU (c(y, s), c̃(x, t))u(y, s) · ∇yϕ(x, t, y, s) dxdt dy ds

−
∫

(R2×R+)2
D U ′(c(y, s)− c̃(x, t))∇yc(y, s) · ∇yϕ(x, t, y, s) dxdt dy ds

−
∫

(R2×R+)2
D U ′′(c(y, s)− c̃(x, t))|∇yc(y, s)|2ϕ(x, t, y, s) dxdt dy ds

−
∫

(R2×R+)2
λ(y, s)c(y, s)U ′(c(y, s)− c̃(x, t))ϕ(x, t, y, s) dxdt dy ds.

Lemma 5.2. For c̃, c ∈ L∞(0, T ;W 1,1(R2)) let A(c̃, c) be defined as

A(c̃, c) :=
∫
R2×R+

|c̃(x, t)− c(x, t)|∂tψ(t) dxdt +
∫
R2×R+

|λ(x, t)||c̃(x, t)− c(x, t)|ψ(t) dxdt.

Choose ψ as in Definition 4.10, then the following inequality holds for any M such that ||λ||L∞(R2×(0,T )) ≤M :∫
R2×R+

|c̃(x, t)− c(x, t)|dxdt ≤ − 1
M
A(c̃, c).

Proof. Using the definition of ψ and the assumption on M we get the result

A(c̃, c) ≤
∫
R2×R+

|c̃(x, t)− c(x, t)|M
(
−eM(T−t) + (eM(T−t) − 1)

)
dxdt = −M

∫
R2×R+

|c̃(x, t) − c(x, t)|dxdt.

In the next step we prove an approximation inequality. Within this proof we use some essential ideas of
Cockburn, Gripenberg [15] and Carrillo [8] to handle the diffusive part of the differential equation. Similar
results for scalar hyperbolic conservation laws where for example proved in [7, 14] and [21].

Theorem 5.3 (Approximation inequality). Let c̃ ∈ L∞(0, T ;W 1,1(R2)) and let c be the entropy solution of
problem (1), where the Assumption 2.7 is supposed to be fulfilled (especially we have Ē∗(c̃, c) = 0). Then the
following approximation inequality holds for any M > 0 such that ||λ||L∞(R2×(0,T )) ≤M :

||c̃− c||L1((0,T )×R2) +
1
M
H(c̃− c) ≤ 1

M
(k3

1
r

+ k4δ − Ē(c̃, c)),



374 M. OHLBERGER

where k3 and k4 are given by

k3 := |ψ(0)|((1 +K3)|c0|BV (R2)) + ||ψ||L∞((0,T ))||f ′||L∞(R)|u|BV (R2×(0,T ))

∫ T

0

|c(t)|BV (R2) dt

+||ψ||L∞((0,T ))(||c||L∞(R2×(0,T ))|λ|BV (R2×(0,T )) + ||λ||L∞(R2×(0,T ))|c|BV (R2×(0,T ))),

k4 := ||ψ||L∞((0,T ))||u||L∞(R2×(0,T ))
k1

2
||f ′′||L∞(R)

∫ T

0

|c(t)|BV (R2)) dt

and H(c̃− c) is defined as

H(c̃− c) :=
∫

(R2×R+)2
D U ′′(c̃(x, t)− c(y, s))|∇xc̃(x, t) −∇yc(y, s)|2ψ(t)w̄(x− y)w(t− s) dxdt dy ds.

Furthermore, K3 is the constant defined in Theorem 2.9 and k1 is defined in Lemma 4.3. Note that H(c̃− c) is
positive for all values c̃ and c. Here |u|BV (R2×(0,T )) is defined as

|u|BV (R2×(0,T )) := sup
{(ξ,τ)∈R2×R+| |ξ|≤ 1

r ,τ≤ 1
r }

∫
R2×(0,T )

|u(x, t)− u(x+ ξ, t+ τ)|r dxdt.

Proof. From the assumption on c and Lemma 5.2 we get∫
R2×R+

|c̃(x, t) − c(x, t)|dxdt ≤ 1
M

(Ē(c̃, c) + Ē∗(c̃, c)−A(c̃, c)− Ē(c̃, c)).

Thus, it remains to estimate the term Ē(c̃, c) + Ē∗(c̃, c) − A(c̃, c). With the definition of A, Ē, Ē∗ and using
ϕ(x, y, s, t) = ψ(t)w̄(x− y)w(t− s) (cf. Def. 4.10) we get (Ē + Ē∗ −A)(c̃, c) ≤ I0 + It + Ic + Id + Iλ, with

I0 :=
∫
R2×R+

∫
R2
U(c0(x) − c(y, s))ψ(0)w̄(x− y)w(−s) dxdy ds,

It :=
∫

(R2×R+)2
(U(c̃(x, t)− c(y, s))− |c̃(x, t) − c(x, t)|)∂tψ(t)w̄(x− y)w(t− s) dxdt dy ds,

Ic := −
∫

(R2×R+)2
(FU (c̃(x, t), c(y, s))u(x, t) − FU (c(y, s), c̃(x, t))u(y, s))

·ψ(t)∇yw̄(x− y)w(t− s) dxdt dy ds,

Id :=
∫

(R2×R+)2
D (∇yc(y, s) · ∇xw̄(x− y)−∇xc̃(x, t) · ∇yw̄(x− y))

U ′(c̃(x, t)− c(y, s))w(t − s)ψ(t) dxdt dy ds

−
∫

(R2×R+)2
D U ′′(c̃(x, t)− c(y, s))(|∇xc̃(x, t)|2 + |∇yc(y, s)|2)

ψ(t)w̄(x− y)w(t− s) dxdt dy ds,

Iλ :=
∫

(R2×R+)2
(λ(y, s)c(y, s)− λ(x, t)c̃(x, t))U ′(c̃(x, t)− c(y, s))ψ(t)w̄(x− y)w(t− s) dxdt dy ds

−
∫

(R2×R+)2
|λ(x, t)| |c̃(x, t)− c(x, t)|ψ(t)w̄(x− y)w(t − s) dxdt dy ds.
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In what follows these terms will be estimated separately:
The term I0: To estimate the term I0 we need a result that the exact solution c(·, s) approaches the initial
values c0 at least Lipschitz if s goes to zero. This result is stated in Theorem 2.9. Therefore, we have

|I0| ≤
∫
R2×R+

∫
R2

(|c(x, 0) − c(y, 0)|+ |c0(y, s)− c(y, 0)|)ψ(0)w̄(x− y)w(−s) dxdy ds

≤ |ψ(0)|((1 +K3)|c0|BV (R2))
1
r
,

where K3 is the constant of Theorem 2.9 which is independent of D.

The term It:

|It| ≤
∫

(R2×R+)2
|c(y, s)− c(x, t)|∂tψ(t)w̄(x− y)w(t − s) dxdt dy ds ≤ ||∂tψ||L∞(R2×(0,T ))|c|BV (R2×(0,T ))

1
r
·

The term Ic: Using integration by parts with respect to y and ∇ · u = 0 we get

Ic =
∫

(R2×R+)2
∂c(FU (c(y, s), c̃(x, t))u(y, s)− FU (c̃(x, t), c(y, s))u(x, t))∇yc(y, s)

× ψ(t)w̄(x− y)w(t− s) dxdt dy ds

=
∫

(R2×R+)2
∂c(FU (c(y, s), c̃(x, t)) − FU (c̃(x, t), c(y, s)))u(x, t)∇yc(y, s)ψ(t)w̄(x− y)w(t− s) dxdt dy ds

+
∫

(R2×R+)2
∂cFU (c(y, s), c̃(x, t))(u(y, s) − u(x, t))∇yc(y, s)ψ(t)w̄(x− y)w(t− s) dxdt dy ds.

Using Lemma 4.3 we get

Ic ≤ ||ψ||L∞((0,T ))||u||L∞(R2×(0,T ))
k1

2
δ ||f ′′||L∞(R)

∫
R2×(0,T )

|∇yc(y, s)|dy ds

+||f ′||L∞(R)

∫
(R2×R+)2

|u(y, s)− u(x, t)||∇yc(y, s)|ψ(t)w̄(x− y)w(t − s) dxdt dy ds

≤ ||ψ||L∞((0,T ))(||u||L∞(R2×(0,T ))
k1

2
||f ′′||L∞(R)

∫ T

0

|c(t)|BV (R2) dt δ

+||f ′||L∞(R)|u|BV (R2×(0,T ))

∫ T

0

|c(t)|BV (R2) dt
1
r

),

where |u|BV (R2×(0,T )) is defined in the Theorem.

The term Id: Writing the summands of the first integral separately and using integration by parts with respect
to y, x respectively, we get

Id = 2
∫

(R2×R+)2
D ∇yc(y, s) · ∇xc̃(x, t)U ′′(c̃(x, t)− c(y, s))ψ(t)w̄(x− y)w(t− s) dxdt dy ds

−
∫

(R2×R+)2
D U ′′(c̃(x, t)− c(y, s))(|∇xc̃(x, t)|2 + |∇yc(y, s)|2)ψ(t)w̄(x− y)w(t− s) dxdt dy ds

= −
∫

(R2×R+)2
D U ′′(c̃(x, t)− c(y, s))|∇xc̃(x, t)−∇yc(y, s)|2ψ(t)w̄(x− y)w(t− s) dxdt dy ds.
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As we can see, Id is negative. We therefore define H(c̃− c) := −Id and put the term to the left hand side.

The term Iλ:

|Iλ| ≤
∫

(R2×R+)2
|λ(x, t)||c(x, t) − c̃(x, t)|ψ(t)w̄(x− y)w(t− s) dxdt dy ds

+
∫

(R2×R+)2
|λ(y, s)c(y, s)− λ(x, t)c(x, t)|ψ(t)w̄(x− y)w(t− s) dxdt dy ds

−
∫

(R2×R+)2
|λ(x, t)| |c̃(x, t)− c(x, t)|ψ(t)w̄(x− y)w(t− s) dxdt dy ds

=
∫

(R2×R+)2
|λ(y, s)c(y, s)− λ(x, t)c(x, t)|ψ(t)w̄(x− y)w(t − s) dxdt dy ds

≤ 1
r
||ψ||L∞((0,T ))( ||c||L∞(R2×(0,T ))|λ|BV (R2×(0,T )) + ||λ||L∞(R2×(0,T ))|c|BV (R2×(0,T )) ).

Summing up the inequalities above, we get the desired estimate.

With the approximation inequality (Th. 5.3) and the continuous entropy inequality for the discrete solution
(Lem. 4.9 and Cor. 4.11) we have now all tools at hand to state and prove the main result of this paper.

Theorem 5.4 (A posteriori error estimate). Let c be the entropy solution of (1) and ch the approximate so-
lution, defined in 3.5. Furthermore, let the Assumptions 2.7, 3.1, 3.6 and the properties of the numerical
fluxes (5)–(9), (17)–(21) be fulfilled. Then the following a posteriori error estimate holds for any M > 0 such
that ||λ||L∞(R2×(0,T )) ≤M :

||ch − c||L1(R2×(0,T )) +
1
M
H(ch − c) ≤ η,

where η is given by

η :=
1
M

(
η0 + ηp,0 + ηλ + ||ψt||L∞((0,T ))(ηt + ηc + ηd + ηp,1) + 2

√
k4 ηU

+2
√
k3||ψ||L∞((0,T ))(K1 +K ′1) (ηt + ηc + ηd + ηp,1)

)
,

where the constants k3 and k4 and H(ch − c) are defined in Theorem 5.3 and the error estimator terms ηi, K1,
K ′1 are defined in Lemma 4.11. Note that H(ch − c) is positive for all values ch and c.

Proof. From Theorem 5.3 and Corollary 4.11 we have

||ch − c||L1(R2×(0,T )) +
1
M
H(ch − c) ≤

1
M

(k3
1
r

+ k4δ + R̄h (η0, ηt, ηc, ηd, ηλ, ηp,0, ηp,1, ηU )),

where R̄h is defined in Lemma 4.11. Minimizing the right hand side with respect to the parameters r and δ
yields the desired result.

Remark 5.5. In the situation where λ ≡ 0, M can be chosen as ln 2/T . Thus, ||ψ||L∞((0,T )) = 1 and the right
hand side of the a posteriori error estimate does not depend exponentially on T .

In this section we have proved an a posteriori error estimate for an implicit vertex centered finite volume
approximation (cf. Def. 3.5) of the scalar nonlinear convection-diffusion-reaction equation (1).

So far, the a posteriori error estimate is an upper bound for the error but we were not able to prove also
efficiency of the estimator, which corresponds to a lower bound of the error by the estimator. We also could
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not prove a convergence rate for the error estimator until now, which would then give us also an a priori error
estimate. In order to justify the obtained error estimator at least numerically, we are now going to design a
mesh-adaptive solution strategy for the numerical scheme.

6. Adaptive strategy and numerical experiments

In this section we confirm the theoretical results of the last section by some numerical tests in two space
dimensions. Therefore, we first introduce an adaptive algorithm which is based on the a posteriori error estimate
of Theorem 5.4. In [41] we have already given an adaptive refinement strategy in the case of a cell centered
explicit finite volume scheme. Thereby we followed mostly the ideas of [33], where an adaptation strategy was
also given for an explicit finite volume scheme, but for hyperbolic conservation laws.

In contrast to the cited works, we have to introduce a completely different adaptation strategy in this
situation because we deal here with an implicit finite volume scheme, where no correlation between the space
discretization parameter h and the time step ∆t has to be fulfilled. Therefore, we have to deduce an adaptation
strategy from the error estimator which dynamically adapts the time step ∆t independently of the local grid
size h. A second consequence of the implicit scheme is that information may be transported with “infinite
speed” through the domain, whereas an explicit scheme transports information at most from one grid cell to the
neighbouring cells in one time step. This is guaranteed by the CFL-condition. Thus, the adaptive algorithm
for the implicit scheme must be capable to follow steep fronts not only from one cell to the next, but through
the whole domain. Finally, the implicit scheme is defined on the “dual cells” Ωj and not on the triangular
mesh T . As we are not able to coarse and refine the dual cells directly, we have to define local adaptation
criteria on the underlying triangular mesh and to adapt the triangulation. The adapted dual mesh is then
automatically defined as the dual mesh of the adapted triangulation. Thus, two additional problems have to be
solved. First we have to define local error indicators on the primal triangles of the mesh and second we have to
define conservative prolongation and restriction operators for the solution between to successive grids.

In the next subsection we will first define local error indicators on the triangles which are motivated by the
a posteriori error estimate of Theorem 5.4. Of course our computations can only be done in a bounded domain
Ω ⊂ R2. Therefore, let us denote the triangulation of Ω at time tn by T n, the set of triangle indices of T n by
Kn and the set of vertex indices of T n by In.

6.1. Local error indicators

For the definition of an adaptive algorithm let us for simplicity look at the situation, where the velocity field
u ≡ v = const. Due to the contribution to the estimator in Theorem 5.4 let us define for k ∈ Kn, tn ∈ J the
following local estimator quantities

(η0)k :=
∫
Tk

|c0(x) − c0h(x)|dx,

(ηt)n :=
∑
j∈In
|cn+1
j − cnj |∆tn|Ωj |,

(ηc)nk :=
∑

{(j,l,∗)∈E∗|S∗jl∩Tk 6=∅}
(hjl + ∆tn)∆tnQ∗,n+1

jl (cn+1
j , cn+1

l )|cn+1
j − cn+1

l |,

(ηd)nk :=
1
2

∑
{(j,l)∈E|Γjl∩Tk 6=∅}

D[∇cn+1
h ·mjl]Γjl∆t

n|Γjl|(hnjl + ∆tn),

(ηλ)nk :=
∑

{j∈In | Ωj∩Tk 6=∅}
|cn+1
j |

∫ tn+1

tn

∫
Ωj∩Tk

|λn+1
j − λ(x, t)|dxdt,

(ηh)nk := (ηc)nk + (ηd)nk + ((ηλ)nk )2.
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Using these definition let us define the global in space estimators

η0 :=
√∑
k∈K0

((η0)k)2, (ηh)n :=
∑
k∈Kn

(ηh)nk

and finally the global in time and space estimator

ηt :=
∑
tn∈J

(ηt)n, ηh :=
∑
tn∈J

(ηh)n, η :=
√
K0(η0)2 +Ktηt +Khηh.

Here K0,Kt and Kh have to be chosen corresponding to the estimate in Theorem 5.4 and η corresponds to the
error estimator in the Theorem. Of course this correspondence is not exactly fulfilled, as we do not take care of
the higher order terms in the estimate and neglect the terms ηp,0, ηp,1 and ηU .

Before we define the adaptive algorithm let us introduce a prescribed global tolerance TOL and some local
tolerances which split up the global one. Therefore, let the factors Θ0,Θt,Θh > 0 be given such that Θ0 + Θt+
Θh = 1. Now we define

TOL0 := Θ0TOL2, (TOL0)k := TOL0/M̄
n,

(TOLh)n :=
∆tn

T
Θh TOL2, (TOLh)nk := (TOLh)n/M̄n,

(TOLt)n :=
∆tn

T
Θt TOL2,

where M̄n denotes the number of triangles in T n. With this definition we obviously have

TOL0 =
∑
k∈K0

(TOL0)k, (TOLh)n =
∑
k∈Kn

(TOLh)nk , and TOL =
√

TOL0 +
∑
tn∈J

(TOLt)n +
∑
tn∈J

(TOLh)n.

6.2. Prolongation and restriction operators

With the definition of the error indicators and tolerances of the last subsection we have nearly everything
at hand to define the adaptive solution algorithm. The only thing missing is the non trivial conservative
prolongation and restriction of the approximate solution between two meshes. Therefore, in this section we will
define the refinement and coarsening of the underlying triangular mesh and, based on this, we will define the
prolongation and restriction operators.

As a grid refinement and coarsening procedure we choose a recursive bisection algorithm, where a triangle
of the mesh is refined by introducing a new vertex on a marked edge of the triangle. In oder to get a conform
triangulation the algorithm ensures, that the corresponding neighbouring cell will be refined as well. It can
be shown that under certain assumptions on the macro triangulation, this recursion is finite and that the
refinement remains local. For a detailed definition of the refinement procedure we refer to [5]. We stress
that the refinement procedure ensures shape regularity of the successively refined meshes. In Figure 2 the
grid refinement is demonstrated. The coarsening procedure is likely the inversion of the refinement algorithm.
Therefore, the algorithm searches for vertices in the triangulation which can be removed in such a way that the
bisection of two neighbouring cells is inverted. Figure 3 demonstrates this situation. Having this refinement and
coarsening procedures in mind we are now going to define the prolongation and restriction operators between
two successively refined or coarsened grids.

6.2.1. Prolongation

Let us look at the local situation, where the triangles T̃ ajl and T̃ bjl are refined by inserting a new vertex pi := pjl
in the midpoint of the edge Γjl. This situation is sketched in Figure 4. By this local refinement procedure the
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next refinement step.

�
�
�
��

A
A
A
AA

@
@
@
@@

�
�
�
��

�
�
�
��

C
C
C
CC

Coarsening- �
�
�
��

A
A
A
AA

@
@
@
@@

�
�
�
��

Figure 3. Coarsening of triangles by inverse bisection.
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Figure 4. Sketch of the primal triangular grid and the corresponding dual cells in a refinement
or coarsening situation.

dual cells Ωj ,Ωl and Ωajl, Ωbjl are changed and a new dual cell Ωi is inserted. To differ between the old and
new cells let us denote the old ones by Ω̃j , Ω̃l and Ω̃ajl, Ω̃

b
jl. In the same manner we denote the old values of the

approximate solution by c̃j , c̃l, c̃ajl and c̃bjl.
Corresponding to the definition of the dual cells we have the following relations between the volumes of those

dual cells, where ∗ ∈ PM :

|Ω̃j ∩ T̃ ∗jl| = |Ω̃l ∩ T̃ ∗jl| =
1
3
|T̃ ∗jl|, |Ωj ∩ T ∗ji| =

1
3
|T ∗ji| =

1
2
|Ω̃j ∩ T̃ ∗jl|, |Ωl ∩ T ∗ji| =

1
3
|T ∗ji| =

1
2
|Ω̃l ∩ T̃ ∗jl|,

|T ∗ji| =
1
2
|T̃ ∗jl|, |Ωi ∩ T ∗ji| = |Ωj ∩ T ∗ji|, |Ω̃∗jl| = |Ω∗jl|.
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This relations induce that for a conservative prolongation we do not need to change the values c̃j , c̃l, c̃ajl, c̃
b
jl and

the new value ci should be defined as

ci :=
1
2

(c̃j + c̃l).

We therefore define the local prolongation operator PROLjl as

PROLjl(u, v, r, s) := (u, v, r, s, 0.5(u+ v)),

such that (cj , cl, cajl, c
b
jl, ci) := PROLjl(c̃j , c̃l, c̃ajl, c̃

b
jl). We point out that with this definition of the prolongation

operator the following properties are fulfilled:

1) c̃h = ch if ch is the prolongation of c̃h,
2) |Ω̃j |c̃j + |Ω̃j |c̃l = |Ωj |cj + |Ωl|cl + |Ωi|ci.

Especially the prolongation conserves the mass locally. The global prolongation operator PROL is defined by
applying the local prolongation operators to all patches (pairs of triangles) which are refined.

6.2.2. Restriction

In the situation of local coarsening we are exactly in the opposite situation as described in the last subsection.
Here the vertex pi is to be removed and we have to define a local restriction operator RESTjl which distributes
the value ci to the neighbouring values cj and cl. As in the prolongation step the values c∗jl do not need to
be changed, as the volume of the corresponding cells do not change their values by the coarsening procedure
(|Ω̃∗jl| = |Ω∗jl|). In order to define a local conservative restriction operator let us first define

Vji := |Ωj ∩ T aji|+ |Ωj ∩ T bji|

and Vli respectively. A sufficient condition for local conservation is then given by the relations

|Ωj |cj + Vjici = |Ω̃j |c̃j , |Ωj |cl + Vlici = |Ω̃l|c̃l,

where we mark the new values by tilde. Taking into account that |Ω̃j | = |Ωj | + Vji and |Ω̃l| = |Ωl| + Vli this
leads to the following definition of the new values c̃j , c̃l.

c̃j :=
|Ωj |cj + Vjici
|Ωj |+ Vji

, c̃l :=
|Ωl|cl + Vlici
|Ωl|+ Vli

·

Accordingly we define the local restriction operator by

RESTjl(u, v, r, s, w) :=
(
|Ωj |u+ Vjiw

|Ωj |+ Vji
,
|Ωl|v + Vliw

|Ωl|+ Vli
, r, s

)
,

such that the new values are given as (c̃j , c̃l, c̃ajl, c̃
b
jl) := RESTjl(cj , cl, cajl, c

b
jl, ci).

As in the case of the prolongation, we remark that this definition of the restriction operator ensures local
mass conservation, but in contrast to a standard restriction the values at the coarse grid nodes are changed.
Again, we define the global restriction operator REST by applying the local ones to patches which are to be
coarsened.
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6.3. Adaptive solution algorithm

Let the error indicator and the tolerances be defined as in Subsection 6.1 and the prolongation and restriction
operators as in Subsection 6.2. Then we define the solution algorithm as follows:

ADAPTIVE-ALGORITHM(TOL,Θ0,Θt,Θh) {
calculate c0h
DO

η0 := ADAPT0(T 0, c0h,TOL0)
calculate c0h

WHILE( K0(η0)2 > TOL0)
t := 0
n := 0
∆t0 := ∆tinitial
DO

calculate cn+1
h

DO
(ηt)n := ADAPTt(T n,∆tn, cnh, cn+1

h , (TOLt)n)
(ηh)n := REFINEh(T n,∆tn, cnh, cn+1

h , (TOLh)n)
calculate cn+1

h

WHILE(Ktη
n
t > (TOLt)n and Khη

n
h > (TOLh)n)

T n+1 := COARSENh(T n,∆tn, cnh, cn+1
h , (TOLh)n)

t := t+ ∆tn

n := n+ 1
∆tn+1 := ∆tn

WHILE(t < T )
}

Here the subroutines ADAPT0, REFINEh, and COARSENh and ADAPTt are given as follows.

ADAPT0(T 0, c0h,TOL0) {
calculate error indicators (η0)k, (ηh)0

k

FORALL k
IF ( K0((η0)k)2 +Kh(ηh)0

k > (TOL0)k )
refine Triangle Tk

ENDIF
ENDFOR
c0h := PROL(c0h)
FORALL k

IF ( K0((η0)2
k +Kh(ηh)0

k < ξ(TOL0)k )
coarsen Triangle Tk

ENDIF
ENDFOR
c0h := REST(c0h)
RETURN(η0)

}

In the definition of this subroutine and in the sequel ξ ∈ (0, 1) denotes a fixed constant which should be chosen in
dependence of the refinement and coarsening procedure. For the bisection algorithm we usually choose ξ = 0.5.
We stress that the subroutine returns the calculated estimator value η0, the updated triangulation T 0 and the
updated solution vector c0h.
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REFINEh(T n,∆tn, cnh, cn+1
h , (TOLh)n) {

calculate error indicators (ηh)nk
FORALL k

IF ( Kh(ηh)nk > (TOLh)nk )
refine Triangle Tk

ENDIF
ENDFOR
cnh := PROL(cnh)
RETURN((ηh)n)

}

COARSENh(T n,∆tn, cnh, cn+1
h , (TOLh)n) {

calculate error indicators (ηh)nk
FORALL k

IF ( Kh(ηh)nk < ξ(TOLh)nk )
coarsen Triangle Tk

ENDIF
ENDFOR
cnh := REST(cnh)
RETURN(T n+1)

}

ADAPTt(T n,∆tn, cnh, cn+1
h , (TOLt)n) {

calculate error indicator (ηt)n

IF (Kt(ηt)n > (TOLt)n ) OR (Kt(ηt)n < ξ(TOLt)n ) )

∆tn := 1+ξ
2

(TOLt)n
Kt(ηt)n

∆tn

ENDIF
RETURN((ηt)n)

}

Let us remark that the definition of the new time step in this subroutine is chosen under the assumption that
(ηnt ) = O((∆tn)2). As the tolerance (TOLh)nh is also influenced by the variation of ∆tn, the definition in the
subroutine guaranties that the new time step is chosen such that the new error indicator is smaller than the new
tolerance. We further mention that the relation between the error indicator in space ((ηh)n) and the tolerance
in space ((TOLh)n) is independent of ∆tn and the refinement procedure is therefore not influenced by the
variation of (TOLh)n with ∆tn. With this adaptive strategy we expect from the a posteriori error estimate of
Theorem 5.4 that we get approximately ||c− ch||L1 ≤ η ≤ TOL. In the following numerical experiment we will
show this relation numerically.

6.4. Numerical experiments

In this subsection we apply the adaptive algorithm defined in Subsection 6.3 to some test problems in order
to demonstrate the applicability and efficiency of the adaptive solution scheme. As our aim is a comparison
with the results for the explicit cell centered finite volume scheme, we choose the same examples as in [41]. Note
that the main difference between the error estimator and the adaptation strategy for the explicit cell centered
scheme in [41] and the implicit vertex centered scheme in this paper is the treatment of the error coming from
the diffusive part and the fully adaptive time discretization for the implicit method.

6.4.1. First example:

As a first example we choose a linear problem, where the exact solution is known. Thus we can compare
the L1-error between the exact and the approximate solution with the error estimator η, where η is defined in
Subsection 6.1.

We look at the following Cauchy problem in R2:

ct +∇ · ((1, 0)c)− ε∆c = 0 in R2 × (0, T ), (24)

c(·, 0) =
1
2

sign(x1) +
1
2

in R2.

Then c(x, t) = erf((x1 − t)/
√

4εt), where erf(s) := 1/
√

(π)
∫ s
−∞ e−r

2
dr denotes the error function, is the exact

solution of this problem. For the numerical computation we look at this Riemann problem on the bounded
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hmin ||c− ch||L1 EOC(||c− ch||L1) estimator η EOC(η)

3.536E-01 4.26051E-01 4.34711E-01
1.768E-01 2.72064E-01 0.64710 3.07580E-01 0.49910
8.839E-02 1.80522E-01 0.59175 2.16751E-01 0.50492
4.419E-02 1.26491E-01 0.51314 1.54180E-01 0.49142
2.210E-02 8.85093E-02 0.51514 1.09156E-01 0.49822
1.105E-02 6.20374E-02 0.51269 7.71871E-02 0.49996

Table 1. Comparison between the error estimator and the actual error for the linear prob-
lem (24) with ε = 1E − 06 and T = 1 on uniform grids. EOC denotes the experimental order
of convergence. As we are free in the choice of the time step for the implicit scheme we chose
CFL = 15 in this computation. Let us remark that we should expect a better absolute error
for smaller CFL numbers, but that the convergence history should stay the same.

TOL ||c− ch||L1
TOL
||c−ch||L1

estimator η TOL
η ∆t M̄N

1.1314 2.7651E-01 4.101 9.6503E-01 1.172 9.60E-02 105
0.8000 1.9282E-01 4.149 7.0893E-01 1.128 4.80E-02 296
0.5657 1.3498E-01 4.190 5.1182E-01 1.105 2.40E-02 966
0.4000 9.4807E-02 4.219 3.6763E-01 1.088 1.20E-02 2896
0.2828 6.6136E-02 4.276 2.6256E-01 1.077 5.72E-03 9387
0.2000 4.7063E-02 4.255 1.8754E-01 1.066 3.00E-03 26085

Table 2. Comparison between the prescribed tolerance, the actual error and the error estima-
tor for the linear problem (24) with ε = 1E−06 using the adaptive solution algorithm (T = 1.0).
The last two columns show average time step and the number of triangles in the underlying
triangulation at the last time step.

domain Ω = (−0.5, 1.5)×(0, 1), were we prescribe periodic boundary conditions on the upper and lower boundary
and Dirichlet boundary conditions (exact solution) on the left and right boundary of the domain.

Table 1 shows a comparison of the L1-error between the exact and the approximate solution with the error
estimator η on uniform meshes. We recall that η corresponds to the lowest order term in the a posteriori error
estimate of Theorem 5.4. In order to compare the convergence rate between the error estimator and the actual
error let us define for any nonnegative quantity qh depending on the uniform grid size h the experimental order
of convergence (EOC) as

EOC(qh) = ln (q2h/qh) / ln 2.

From Table 1 it can be seen that the error estimator converges with the same rate, as the error itself. This
demonstrates that the global error estimator is also efficient.

In the next step we analyze the efficiency of the adaptive algorithm. Therefore we compute the solution of
problem (24) with our adaptive algorithm for different prescribed tolerances. In Table 2 the square root of this
prescribed global tolerance is given and a comparison with the actual L1-error of the approximate solution and
the square root of the estimator η is shown. In order to compare the prescribed tolerance with the error and
the estimator values we also give the corresponding ratios. We see that the ratio between the tolerance and η
converges to one which would be optimal. This indicates that our adaptive strategy and the definition of local
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error indicators is efficient. Furthermore, the ratio between the tolerance and the actual L1-error nearly remains
constant which again shows the efficiency of the estimator. The last two columns of Table 2 show the time step
∆t which remains constant in this experiment, and the number of triangles in the underlying triangulation at
the last time step. It can be seen that the time step is bisected from one calculation to the next and that the
number of triangles is approximately tripled from one calculation to the next. In a uniform calculation (∆t and
h fixed) we expect the error to be of order

√
h+ ∆t which was also the result of Table 1. This means, for a

bisection of the error we have to take h/4 and ∆t/4 as parameters for the triangulation and the partition of the
time interval which leads to a factor of 16 between the number of triangles in the primal and the refined grid.
In the case of our adaptive algorithm this factor is reduced to 9, whereas the time step is also divided by four.
Thus, we can say that not only the error estimator is efficient, but also the adaptive strategy.

6.4.2. Second example:

As a second example we look at the following scalar nonlinear and degenerate parabolic equation for the
saturation s on Ω = (0, 1)× (0, 0.5) ⊂ R2 which models immiscible two phase flow in porous media

Φst + ∇ · (uf(s))−∇ · (KD(s)∇s) = 0,

where u = (1, 0), f(s) is the fractional flow rate and D(s) the capillary diffusion given by f(s) = λ1(s)/(λ1(s)+
λ2(s)), D(s) = λ2(s)f(s)p′c(s). The mobilities λ1, λ2 of the phases and the capillary pressure pc are given by
λ1(s) = s3/(2µ1), λ2(s) = (1 − s)3/µ2 and pc(s) = −

√
(1− s)/s. Furthermore, in this example we choose the

viscosities µ1 = 1, µ2 = 3, the porosity Φ = 0.2 and the permeability K = 0.2. As initial condition we choose
s ≡ 0 in (0.1, 1) × (0, 0.5) and s ≡ 1 in (0.1, 1) × (0, 0.5) and as boundary conditions we impose s = 1 on
{0}× (0, 0.5) and homogeneous Neumann boundary conditions on all other boundaries. Let us remark that this
is the same problem as we dealt with in [41], where the initial conditions were shifted by 0.1. Thus, we omit the
resolution of the Dirichlet boundary conditions here. This “Buckley-Leverett” type problem is highly nonlinear
in both the convection and diffusion term. Additionally the diffusion term which depends on the solution s is
degenerate for s = 0 and s = 1. As a solution we expect in the hyperbolic case (D ≡ 0) a rarefaction wave
followed by a shock. In the degenerate parabolic case which we examine here we have the same coarse structure
of the solution, but the shock is smeared out in the upper part by the diffusion term which models capillary
pressure effects. We refer to [11] for a more detailed discussion of the problem.

Figure 5 shows the result of the adaptive numerical scheme. The adaptively refined grid shows that the error
estimator detects the regions of steep gradients very well. The profile of the saturation distribution computed
with the adaptive algorithm on a horizontal slice is shown in Figure 6. Comparing these results with those
obtained in [41], we see that the refinement of the mesh is concentrated more in the region of the steep gradient
here. This is due to the fact, that the error indicator related to the diffusive part has the wrong order of
convergence in [41] and overestimates the error outside the steep gradient. Therefore, especially the smooth
regions of the solution are treated more appropriate here.

Conclusion

In this paper, we established robust a posteriori error estimates for finite volume approximations of convection
dominated transport equations. The key to uniform error estimates for arbitrary large diffusion coefficients was
the exploitation of the dissipation term in the entropy inequality. As these techniques require the dissipation
term to be also well defined for the approximate solution, we dealt with vertex centered finite volume schemes
in the analysis. Thus, for the vertex centered finite volume approximation, we obtained uniform a posteriori
error estimates which on the one hand recover the results obtained in [33] for the hyperbolic case (D ≡ 0),
and on the other hand provide an robust extension of those estimates for arbitrary large diffusion coefficients
(D > 0). Finally, we derived a numerical solution algorithm for the implicit vertex centered scheme which is
adaptive both in the time and space discretization. Numerical experiments demonstrated the applicability and
efficiency of the adaptive method.
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Figure 5. Adaptive dual mesh and satu-
ration distribution for the degenerate par-
abolic problem at t = 0.005, t = 0.051 and
t = 0.1.
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Figure 6. Profile of the saturation distri-
bution of the degenerate parabolic prob-
lem on a horizontal slice at t = 0.005,
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[34] D. Kröner and M. Rokyta, A priori error estimates for upwind finite volume schemes in several space dimensions. Preprint 37,

Math. Fakultät, Freiburg (1996).
[35] S.N. Kruzkov, First order quasilinear equations in several independent variables. Math. USSR Sbornik 10 (1970) 217–243.
[36] N.N. Kuznetsov, Accuracy of some approximate methods for computing the weak solutions of a first-order quasi-linear equation.

USSR, Comput. Math. Math. Phys. 16 (1976) 159–193.
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